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This conference, led by J�urgen Ritter (Augsburg) und Martin J. Taylor (UMIST, Manch-

ester), was the third on the above subject held in Oberwolfach. It was dedicated to

the memory of Ali Fr�ohlich who died on November 8, 2001. Below is a list of the pre-

sented talks and their abstracts. Topics of the meeting included Stark's, Rubin's, and the

Coates-Sinnott conjectures, Fitting ideals of the minus class group of CM �elds, Tamagawa

numbers and values of L-functions, equivariant Iwasawa theory, deformations of Galois co-

homology classes and orthogonal representations, Hilbert's Theorem 90 for formal groups,

Hilbert's Theorem 132 and Galois module theory, Galois module classes to Steinitz classes

for integers in tame extensions, quadratic forms on schemes, Hopf orders, group actions on

polynomial rings. Ivan Fesenko spoke on recent work on �-functions of higher dimensional

local �elds (generalising Tate's thesis) and potential applications to arithmetic varieties.

Lively discussions accompanied and completed the talks.
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Monday

09:15-10:10 Victor Snaith

The Coates-Sinnott conjecture

10:30-11:25 Martin Taylor

Galois invariants for curves in positive characteristic

16:00-16:55 Bernhard K�ock

Computing equivariant Euler characteristics on curves

17:15-18:10 Mikhail Bondarko

Hilbert's Theorem 90 for formal groups and `good' extensions of local �elds

Tuesday

09:15-10:10 David Solomon

Abelian Stark conjectures in Z

p

-extensions

10:30-11:25 Adebisi Agboola

Twisted forms and relative K-theory

16:00-16:55 Nigel Byott

Which Hopf orders are associated orders of valuation rings?

17:15-18:10 Ivan Fesenko

Analysis on arithmetic schemes

Wednesday

09:00-09:55 Eva Bayer-Fluckiger

Euclidean �elds, Euclidean minima and Arakelov invariants

10:10-11:05 Ted Chinburg

Deformations of Galois cohomology classes and orthogonal representations

11:20-12:15 Leon McCulloh

From Galois module classes to Steinitz classes

Thursday

09:15-10:10 Masato Kurihara

Fitting ideals of the minus class group of CM �elds

10:30-11:25 Al Weiss

Equivariant Iwasawa theory

16:00-16:55 David Burns

Tamagawa numbers and values of L-functions

17:15-18:10 Cristian Popescu

On the Rubin-Stark Conjecture in characteristic p

Friday

09:15-10:10 Boas Erez

Invariants of tame coverings of schemes

10:30-11:25 Philippe Cassou-Nogu�es

Quadratic forms on schemes

15:30-16:25 Peter Symonds

Group actions on polynomial rings

16:40-17:25 Marcin Mazur

Galois module structure of units in real biquadratic extensions of Q

17:40-18:25 Werner Bley

Hilbert's Theorem 132 and Galois module theory
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Abstracts

Twisted forms and relative K-theory

Agboola, Adebisi

(joint work with D. Burns)

In this talk we explained how combining ideas arising from the study of Galois structure

invariants attached to �nite group schemes with techniques from relative K-theory leads

to a natural re�nement of several di�erent aspects of Galois module theory.

Let R be a Dedekind domain with �eld of fractions F . Write F

c

for an algebraic closure

of F , and let A denote a �nitely generated R-algebra such that A

F

c

:= A 


R

F

c

' F

c

�.

Here � is a �nite group acted upon by Gal(F

c

=F ).

Suppose that � is any extension of R. A categorical �-twisted A-form is a triple (M;N; �),

where

M;N are �nitely generated projective A�modules;

� : M 


R

�

'

�! N 


R

� is a A

�

-isomorphism:

Such twisted forms may be classi�ed by a relative algebraic K-group K

0

(A;�).

Theorem If � is a �eld, then K

0

(A;�) admits a Fr�ohlich-type Hom-description.

Suppose that F is a number �eld, and � = F

c

. Then there is a natural surjection (de�ned

in the �rst instance via Hom-descriptions) @ : K

0

(A; F

c

)! AC(A), where AC(A) denotes

the arithmetic class group of A. (The group AC(A) measures the structure of metrised

locally free A-modules; when A is abelian, AC(A) '

c

Pic(A), the Arakelow divisor class

group of A.)

Theorem Suppose that (M;N; �) is a twisted form with M;N locally free A-modules.

Then for any metric � on N , we have

@(M;N; �) = (M;�

�

�)� (N; �) 2 AC(A):

In the remainder of the talk, we discussed the following:

(a) A natural re�nement of the class invariant homomorphism �rst studied by W. Water-

house. This re�ned homomorphism takes values in a suitable relative K-group, is injective,

and its image admits a precise functorial description in almost all cases of interest.

(b) We explained how results of L. McCulloh concerning realisable classes of rings of integers

of tame extensions may be lifted to an appropriate relative K-group. In general, (unlike

the case of realisable classes in locally free class groups) the collection of realisable classes

in the relative K-group does not form a group.

Euclidean �elds, Euclidean minima and Arakelov invariants

Bayer-Fluckiger, Eva

Let K be an algebraic number �eld, N : K ! Q the absolute value of the norm map and

let O be the ring of integers of K. The Euclidean minimum of K is de�ned as

M(K) = inff� 2 R j 8x 2 K9c 2 O s.t. N(x� c) � �g:

If M(K) < 1, then K is Euclidean.

Let n = [K : Q] and let d

K

be the absolute value of the discriminant of K. The following

is called \Minkowski's conjecture":
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Conjecture If K is totally real, then M(K) � 2

�n

p

d

K

.

This conjecture was proved by Minkowski for n = 2, by Remak for n = 3, by Dyson for

n = 4 and by Skubenko for n = 5. This leads to the following de�nition.

De�nition A number �eld K is said to be a Minkowski �eld if M(K) � 2

�n

p

d

K

.

(Note that many �elds do not have this property: for instance, an imaginary quadratic

�eld Q(

p

d) is a Minkowski �eld if and only if d = �1;�3.)

This talk presented the following result:

Theorem Cyclotomic �elds and their maximal totally real sub�elds are Minkowski �elds.

For certain families of �elds one gets much better bounds. For instance,

Proposition Let K = Q(�

m

); m = 2

r

5

s

7

t

; r � 0; s; t � 1. Then M(K) � 2

�n

3

�n=2

p

d

K

.

We also study a class of Euclidean �elds, called thin �elds. The proofs use packing and

covering invariants associated to hermitian line bundles over Spec(O).

Hilbert's Theorem 132 and Galois module theory

Bley, Werner

(joint work with D. Burns)

Let L=K be a �nite Galois extension of number �elds with group G. We formulate a

conjectural equality between an element of the relative K-group K

0

(Z[G];R) which is

constructed from the equivariant Artin epsilon constant of L=K and a sum of invariants

associated to L=K. The precise conjecture is motivated by the requirement that the

Equivariant Tamagawa Number Conjectures (as formulated by Burns and Flach) for the

Tate motives h

0

(Spec(L)) and h

0

(Spec(L))(1) should be compatible with the functional

equation of the associated L-functions. Our conjecture may also be seen as a re�nement of

Chinburg's second conjecture and, as a very special case, also recovers Hilbert's Theorem

132. The conjecture is known to be true modulo K

0

(Z[G];R)

tors

and is fully veri�ed in

the following cases:

a) K = Q; L=Q abelian with odd conductor.

b) L=K tame.

c) Certain wildly rami�ed non-abelian extensions.

Hilbert's Theorem 90 for formal groups and `good' extensions of local �elds

Bondarko, Mikhail

We apply the long exact sequence of tensor powers of a faithfully 
at algebra with �ltration

and prove that Amitsur cohomology groups for a formal group are zero. This implies an

if and only if condition for the splitting of a 1-cocycle in a formal Galois module in terms

of associated (additive) Galois modules. As a partial case we prove that H

1

= f0g for a

formally �etale extension. Besides we obtain an if and only if condition for an extension to

be Kummer for a formal group. Some of such extensions have very nice structure.
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Tamagawa Numbers and values of L-functions

Burns, David

In the �rst part of our talk we described an algebraic formalism which, under suitable

conditions, allows one to interpret the determinant of a perfect complex of modules over a

commutative ring as an explicit relation between the �tting ideals of its homology groups.

In the second part of our talk we applied the above formalism in the context of the following

special cases of the Equivariant Tamagawa Number Conjecture (ETNC).

Tate motives: In this context we show that the validity of the ETNC implies an explicit

description of the Fitting ideal of certain algebraic K-groups in terms of the values of the

Dirichlet L-functions at negative integers. This relation is �ner than those given in recent

works of Cornacchia and �stvaer, of Nguyen Quang Do and of Snaith and is also related

to a recent result of Kurihara.

We also showed that the conjecture of Gross (and Tate's recent re�nement of it) concerning

congruences for the values at 0 of Dirichlet L-functions can in many cases be recovered as

a consequence of the ETNC.

Recalling that the ETNC is known to be valid for Tate motives over absolutely abelian

�elds (by joint work with C.Greither) and over function �elds (at least away from the

residue characteristic) we obtain new insight concerning the above results and conjectures.

Elliptic curves: In this case we show that, under certain very special conditions, the

ETNC for modular elliptic curves over Q implies congruences for modular elements which

appear to be very similar to those predicted by the \re�ned conjecture of the Birch and

Swinnerton-Dyer type" formulated by Mazur and Tate.

Which Hopf orders are associated orders of valuation rings?

Byott, Nigel

Let K be �nite extension of Q

p

, G a �nite abelian group, and A � K[G] a Hopf order.

We sketch a proof of the following theorem.

Theorem Assume that A and its dual Hopf order H = Hom

O

K

(A;O

K

) are connected (i.e.

contain no idempotents 6= 0; 1). Then the following are equivalent:

(i) 9 an extension L=K, Galois with group isomorphic to G, whose valuation ring O

L

has A as its associated order: A = f� 2 K[G] j �O

L

� O

L

g.

(ii) H is monogenic as an O

K

-algebra.

When L exists, O

L

is a free A-module by the Childs-Hurley criterion, i.e. we have \tamed"

the wild extension L=K using the Hopf order A.

The proof (i) =) (ii) depends on the fact that Spec(O

L

) is a torso for the group scheme

Spec(H); one then has an algebraic isomorphism O

L


H ' O

L


O

L

.

The proof (ii) =) (i) relies on the following

Embedding Theorem Let H = O

K

[x

1

; : : : ; x

d

] be a Hopf order as above, requiring d

generators. Then Spec(H) can be obtained as the kernel of an isogeny f : F ! F

0

between

n-dimensional formal groups over O

K

(with n = jGj � 1), where moreover f

i

(X) = X

i

for

all i > d.
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Quadratic forms on schemes

Cassou-Nogu

�

es, Philippe

(joint work with B. Erez and M.J. Taylor)

In a sequel to the talk of B. Erez we presented a proof of the main results explained above

in the light of \twisting". The sbs attached to X

�

�! Y involves the trace form. The

map � gives the representation t of �

1

(Y ) (or �

1

(Y )

tame;odd

) into the symmetric group on

degree of � letters. Vaguely speaking the trace form is the twist of the standard form via

t. Following Fr�ohlich we start with a sbs E on Y and show how to get a sbs E

t

on Y by

twisting via a representation t of �

1

in O(E). Then we compare the Hasse-Witt invariants

of E and E

t

in degree 1 and 2. One interesting aspect of this work is the appearance

of an algebraic class in H

2

(Y

�et

;F

2

) which generalizes the class de�ned by Serre and only

depends on rami�cation (which has this 
avour:

P

�

e

2

�

�1

8

[�]).

Deformations of cohomology classes and orthogonal representations

Chinburg, Ted

(joint work with F. Bleher)

The �rst part concerned applications of the existence of versal deformations of complexes

of Galois modules satisfying certain natural conditions. A class c in H

j

(Gal(

�

L=L); N)

for some �eld L and �nite k�-module N with k a �nite �eld de�nes a complex V

�

of k�-

modules which is the cone of c when one views c as a morphism in the derived category. One

can thus view the versal deformations of V

�

as the versal deformations of c. The natural

problem is then to �nd explicit constructions of such deformations parallel to the known

or conjectural constructions of the versal deformations of various Galois modules, e.g. of

the module of p-torsion points on an elliptic curve. I discussed a conjectural construction

of this kind when L = Q

l

; l > 2 is a prime, N = f�1g; k = Z=2 and c is the element of

order two in H

2

(Gal(

�

L=L); N).

The second part of the talk was about the fact that one has a parallel of Mazur's defor-

mation theory on replacing Gl

n

by an arbitrary smooth linear algebraic group G over Z

p

.

When G is the orthogonal group O(n), this leads to the problem of �nding \universal"

versions of the theorems of Serre, Fr�ohlich and Saito concerning Stiefel Whitney classes

and Hasse-Witt invariants. Our result about this is that if one specializes a universal or-

thogonal representation at a geometric point, the associated second Stiefel Whitney class

is independent of the point.

Invariants of tame coverings of schemes

Erez, Boas

(joint work with Ph. Cassou-Nogu�es and M.J. Taylor)

Jardine has de�ned Hasse-Witt invariants for symmetric bilinear spaces (sbs) over schemes

Y such that

1

2

is in O

Y

. We have presented joint work with Ph.Cassou-Nogu�es and M.J.

Taylor in which we study these invariants for a sbs attached to a covering of schemes

X ! Y which is tamely rami�ed in the sense of Grothendieck and Murre and for which the

rami�cation indices are odd. The case of �etale coverings had been considered by Esnault-

Kahn-Viehweg and Kahn. Our main contribution lies in showing how to reduce from the
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tame case to the �etale. This we do by de�ning Z over Y such that the normalisation

T of T

0

:= Z �

Y

X is �etale over Z. To obtain the right properties for T=Z we use our

knowledge of the local structure of tame coverings. The di�erence between the total Hasse-

Witt invariants of the sbs for X=Y (pulled back to Z) and that of the sbs for T=Z is a

product of expressions involving only linear invariants, namely Chern classes of auxiliary

bundles which appear in a (necessary) factorisation of the normalisation map T ! T

0

. In

fact this di�erence can be understood as follows: the di�erence of the sbs (for X=Y and

T=Z) is metabolic as a symmetric complex and hence its invariant can be expressed in

terms of Chern classes of the complex Lagrangian it contains. That is we view sbs inside

the derived category etc.

From Galois module classes to Steinitz classes

McCulloh, Leon

LetG be a �nite group of order n and exponent e. Corresponding to a tame Galois extension

L=K of number �elds with an isomorphism Gal(L=K) ' G, one has associated the Galois

module class cl

O

K

G

(O

L

) (resp., the Steinitz class cl

O

K

(O

L

)) in the class group cl(O

K

G)

(resp., cl(O

K

)). For �xed number �eld K, the set of Galois module (resp., Steinitz) classes

realized in cl(O

K

G) (resp., cl(O

K

)) as L=K ranges over all tame Galois extensions with

isomorphism Gal(L=K) ' G is denoted by R(O

K

G) (resp., R

t

(O

K

; G)). We show

Theorem a)

R

t

(O

K

; G) �

Y

mje

Y

�s2

�

G

jsj=m

N(K(�s)=K)

n

m

m�1

2

unless the Sylow 2-subgroups of G are non-trivially cyclic, in which case

b)

R

t

(O

K

;G)

2

�

Y

mje

Y

�s2

�

G

jsj=m

N(K(�s)=K)

n

m

(m�1)

;

where N(K(�s)=K) = N

K(�s)=K

(cl(O

K(�s)

)) � cl(O

K

).

Further explaining,

�

G is the set of conjugacy classes of G endowed with a \cyclotomic"

action of 
(= Gal(K

c

=K)) via � : 
 ! Gal(K(�

e

)=K) ,! (Z=eZ)

�

- explicitly, for s 2 G

and corresponding �s 2

�

G and ! 2 
, s

!

= s

�

�1

(!)

and �s

!

= s

!

, where �

!

e

= �

�(!)

e

. Finally,

K(�s) = (K

c

)




�s

, where 


�s

is the 
-stabilizer of �s.

The result is obtained from a known inclusion of R(O

K

G) via res

G

1

: cl(O

K

G)! cl(O

K

).

Computing equivariant Euler characteristics on curves

K

�

ock, Bernhard

Let X be a smooth projective curve over an algebraically closed �eld k and G a �nite sub-

group of Aut(X=k). We gave a new approach to known formulas (by Ellingsrud/L�nsted,

Nakajima and Kani) for the equivariant Euler characteristic of a locally free ZariskiG-sheaf

on X. The basic idea is to use the coherent Lefschetz trace formula in conjunction with the

classical Riemann-Roch formula. Applying the same method to a constructible G-sheaf F

of F

l

-vector spaces on the �etale site X

�et

, i.e. replacing these formulas by the �etale Lef-

schetz trace formula and the Grothendieck- Ogg-Shafarevich formula respectively, we then

proved an equivariant Grothendieck-Ogg-Shafarevich formula, a formula which explicitly
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computes the equivariant Euler characteristic �

�et

(G;X;F) of F in the Grothendieck group

G

0

(F

l

[G]) of all �nitely generated F

l

[G]-modules (if the order of G is prime to the char-

acteristic of k). As a corollary we obtained that the sum of the wild conductors of F is

divisible by the order of G.

Fitting ideals of the minus class group of CM �elds

Kurihara, Masato

In this talk, for a �nite abelian �eld F over Q, I de�ned the Stickelberger ideal �

F

by

a slightly di�erent method from Sinnott's, and proposed a conjecture that the Fitting

ideal of the minus part of the ideal class group Pic(O

F

) would be equal to �

�

F

except

2-components. I gave a theorem which says that this conjecture 
Z

p

is true over the

cyclotomic Z

p

-extension F

1

. I also gave a theorem (a weaker statement then the above

theorem) for a general CM �eld F over a totally real �eld k, and gave an application on

the structure of the �-component of the p-component of the class group of F for some odd

character � of Gal(F=k).

Galois module structure of units in real biquadratic extensions of Q

Mazur, Marcin

(joint work with S. Ullom)

Let N=Q be a biquadratic, real number �eld, U the group of units of N and V = U=f�1g.

We investigate the structure of V as a module over the group ring of the Galois group

� = Gal(N=Q). Building on earlier work of S.Kuroda and T.Kubota we observe that the

Z�-module V can be essentially of 4 di�erent isomorphism types. We prove that each

type occurs in�nitely often among �elds N with exactly r rami�ed primes, for each r � 3.

In particular, there exist real quadratic �elds with Minkowski unit and arbitrary many

rami�ed primes. We describe a family of examples where the �eld N (with exactly 3

rami�ed primes) has a Minkowski unit exactly when the central class �eld of N is di�erent

from its genus �eld.

We investigate the �elds of the form N = Q(

p

p;

p

q) with p; q primes. We observe that

in the most interesting case, when p � 1(8) and q � 1(4) and

�

p

q

�

= 1 the investigation

of the Galois module V is related to the governing �elds of Cohn and Lagarias. We give

an explicit description of the minimal governing �eld for the divisibility by 8 of the class

number of Q(

p

pq), where q � 3(4) is �xed and p � 1(4) varies.

On the Rubin-Stark Conjecture in characteristic p

Popescu, Christian

We stated a re�ned version (\over Z") of Stark's Main Conjecture, in the case of abelian

L-functions of arbitrary order of vanishing at s = 0. This statement is in general weaker

than a similar conjecture formulated by Rubin in 1994.

In the case of characteristic p function �elds, we indicated how one can prove this conjec-

ture, for all extensions K=k, where K is contained in the compositum k

p1

of the maximal

pro-p abelian extension k

p

and the maximal constant �eld extension k

1

of k.
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We stated a theorem which establishes the equivalence between Rubin's Conjecture and

the Conjecture mentioned above for all extensions K=k, with K � k

p1

. This way, a proof

for Rubin's conjecture for all K=k with K � k

p1

was obtained.

The Coates-Sinnott conjecture

Snaith, Victor

In 1967 Brumer conjectured that if L=K is a Galois extension of number �elds with abelian

group G and K totally real

�

L=K;S

(1) � ann

Z[G]

(�(L)) � ann

Z[G]

(TorsK

0

(O

L;S

0

))

where, for n = 1; 2; : : : and each character �, �(�

L=K;S

(n)) = L(1 � n; �

�1

) { the Artin

L-function with Euler factors associated to the set of primes S removed. Here S is a �nite

set of primes of K including those which ramify in L=K and S

0

is the set of primes of L

above S. In 1974 Coates-Sinnott suggested, at least for cyclotomic extensions, to replace

n = 1 by 1 � r for r = �1;�3;�5; : : : and �(L) = TorsK

1

(O

L;S

0

); T orsK

0

(O

L;S

0

) by

TorsK

1�2r

(O

L;S

0

); K

�2r

(O

L;S

0

). Of course, in 1890 Stickelberger published a proof of the

case n = 1 for cyclotomic �elds. Coates-Sinnott, apart from a small numerical factor,

proved the cyclotomic case for r = �1.

Work of Voevodsky-Suslin implies that we may replace K-groups by �etale cohomology. Let

l be a prime and (m; l) = 1. Let X

l

= Spec(Z[�

ml

s+1

][1=ml]); X

+

l

= Spec(Z[�

ml

s+1

]

+

[1=ml])

denote the spectrum of the S

ml

-integers of Q(�

ml

s+1

);Q(�

ml

s+1

)

+

, respectively. Here S

ml

equals the set of primes dividing ml.

Theorem Let l be an odd prime. Let l; m and X

+

l

be as above and let �

Q(�

ml

s+1

)

+

=Q

(1�r)

denote the higher Stickelberger element associated to the primes dividing ml and the

Dirichlet L-function. Then, for r = �1;�3;�5; : : : and any positive integer s:

(i) There exists a chain of annihilator ideal relations for �etale cohomology of the form

ft

m

0

j t 2 ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

1

�et

(X

+

l

;Q

l

=Z

l

(1� r)))g

� �

Q(�

ml

s+1

)

+

=Q

(1� r)ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

0

�et

(X

+

l

;Q

l

=Z

l

(1� r)))

� ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

1

�et

(X

+

l

;Q

l

=Z

l

(1� r))):

(ii) If l does not divide m� 1 then the �nal in (i)

ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

1

�et

(X

+

l

;Q

l

=Z

l

(1� r)))

may be replaced by

F

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

1

�et

(X

+

l

;Q

l

=Z

l

(1� r))):

Here m

0

is the minimal number of generators of the Z

l

[G(Q(�

ml

s+1

)

+

=Q)]-module

H

1

�et

(X

+

l

;Q

l

=Z

l

(1� r)) and F

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(M) denotes the Fitting ideal of M .

Theorem Let l be an odd prime. Let l; m and X

+

l

be as above. Let H

1

cyclo

(X

+

l

;Z

l

(1� r))

denote the cyclotomic elements of Beilinson-Soul�e. Then, for r = �2;�4;�6; : : : and any

positive integer s:

9



(i) There exists a chain of annihilator ideal relations for �etale cohomology of the form

ft

m

0

j t 2 ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

2

�et

(X

+

l

;Z

l

(1� r)))g

� ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(

H

1

�et

(X

+

l

;Z

l

(1�r))

H

1

cyclo

(X

+

l

;Z

l

(1�r))

)

� ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

2

�et

(X

+

l

;Z

l

(1� r)):

(ii) If l does not divide m� 1 then in (i) the �nal

ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

2

�et

(X

+

l

;Z

l

(1� r)))

may be replaced by

F

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

2

�et

(X

+

l

;Z

l

(1� r))):

Here m

0

is the minimal number of generators of the Z

l

[G(Q(�

ml

s+1

)

+

=Q)]-module

H

2

�et

(X

+

l

;Z

l

(1� r)).

From this result I showed how to construct from the Stark regulator associated to the

Borel regulator for higher K-groups a fractional ideal of the rational group-ring whose

intersection with the Z

l

-group-ring lies in

ann

Z

l

[G(Q(�

ml

s+1

)

+

=Q)]

(H

2

�et

(X

+

l

;Z

l

(1� r)):

Abelian Stark Conjectures in Z

p

-extensions

Solomon, David

Let K=k be an abelian extension of totally real number �elds with Galois group G. Assume

(for simplicity) that K=k is rami�ed at 2 or more �nite primes of k. Then the Stark

conjecture for complex characters of G can be formulated together in terms of the value of

a function �

K=k

: C! CG as follows

C(K=k) : �

K=k

(1) =

2

r

p

d

k

R

K=k

(�) for some � 2 �

r

QG

Q
 E(K):

(Here, R

K=k

is a group-ring-valued regulator inspired by Rubin's work.)

Let p be an odd prime number. \Removing the Euler factors above p" from �

K=k

(s)

gives a function �

K=k;(p)

: C ! CG. Interpolating this at m � 0; m � 1(p � 1) gives

�

K=k;p

: Z

p

! C

p

G, a p-adic analogue of �

K=k

. (Holomorphic if, for example, the rami�ed

primes in K=k do not divide p, which we assume from now on.) We have conjectured

that an analogue of the equation in C(K=k) should hold simultaneously for �

K=k;(p)

(1) and

�

K=k;p

(1) using the same �. (Call this C

+

(K=k; p).)

If p is also unrami�ed in k, we consider C(K

n

=k), where K

n

is the n-th layer in the

cyclotomic Z

p

-extension over K = K

0

. Assuming this conjecture holds for all n � 1,

norm-compatability of � and R imply that � := (�

n

)

n

must lie in lim

 

�

r

QG

n

Q 
 E(K

n

)

(limit with respect to norm maps). We investigate the stronger hypothesis

P1(K=k; p) : � is an element of �

r

QG1

QE(K)

(where E(K) = lim

 

E(K

n

) and G

1

= Gal(K

1

=k)).

Combining P1 with C

+

(K

n

=k; p); 8n � 1, implies

10



P2(K=k; p) : �

K

n

=k;p

(1) =

2

r

p

d

K

R

K

n

=k

(e

n

�

n

(�)); 8n � 1;

where e

n

= 1 �

1

p

P

�2Gal(K

n

=K

n�1

)

� 2 QG

n

, �

n

is the natural map from �

r

QG

1

QE(K) to

�

r

QG

1

QE(K

n

).

Next we use a generalisation of the t-th Coates-Wiles-homomorphism to de�ne regulators

R

t;n

: �

r

QG

1

QE(K)! C

p

G

n

; 8n � 1; 8t 2 Z:

We show in particular that P2(K=k; p) implies a \Higher Stark conjecture" at s = m for

any m 2 Z as follows:

�

K

n

=k;p

(m) =

2

r

p

d

k

< d

k

>

1�m

R

1�m;n

(�):

(For m = 1 this is simply P2(K=k; p).)

Group actions on polynomial rings

Symonds, Peter

(joint work with D. Karagueuzian)

We consider a �nite group G acting by linear substitutions on a polynomial ring S in n

variables over a �nite �eld k of characteristic p with q elements.

We want to understand S as a kG-module in as explicit a manner as possible.

The maximal p group that acts faithfully is U

n

, the group of upper triangular matrices

with 1's on the diagonal. The ring of invariants S

U

n

= k[d

1

; : : : ; d

n

], deg(d

i

) = q

i�1

. If G

is any p-group acting we may assume that G � U

n

and:

Theorem As graded kG-modules

S '

M

J�I

k[d

i

; i 2 I [ fng n J ]


k

�

X

J

(I);

where

�

X

J

(I) is a �nite dimensional kG-module (and G acts trivially on k[d

i

]) and I =

f1; : : : ; n� 1g.

Corollary S, as a kG-module, only contains a �nite number of isomorphism classes of

indecomposable summands (any G, not necessarily a p-group).

Corollary For any G, the invariants S

G

are generated as a ring by the elements in degrees

less than or equal to

q

n

�1

q�1

(nq � n� 1).

Galois invariants for curves in positive characteristic

Taylor, Martin

(joint work with T. Chinburg and G. Pappas)

Let � : X ! Y be a tame G-cover of smooth projective curves over k = F

sep

p

; suppose

there is a curve Y

0

over F

p

such that Y = Y

0

�

F

p

k; and let F be a coherent G�X sheaf.

Then R�(X;F) is an element in the derived category of bounded kG-complexes; moreover,

since the G-action is tame, it may be presented by a perfect complex P

�

= P

0

@

! P

1

of

length 2.

11



The projective Euler characteristic �R�(F) = (P

0

)� (P

1

) 2 K

0

(kG) may be calculated by

Lefschetz-Riemann-Roch. In the case when F = O

X

, this Euler characteristic can also be

determined by the p-adic absolute values of the �-constants associated to the cover X=Y

(T. Chinburg). In this talk we considered the extension class in Ext

2

kG

(H

1

; H

0

) given by

the exact sequence

0 �! H

0

�! P

0

�! P

1

�! H

1

�! 0 (�)

when F = O

X

;


X

and H

i

= H

i

(X;F).

By some relatively straightforward algebra, one reduces to the case when G is a cyclic

group of order p; so that the cover X=Y is an �etale cover of degree p.

Theorem If Y

0

is an elliptic curve, then the (p� 1)st power of the extension class of (�),

with F = 


X

, is given by the Hasse invariant (in F

�

p

) of the curve Y

0

.

More generally, when g(Y

0

) > 1, the (p�1)st power of this extension class was determined

by the pairing

Hom(�

1

(Y );F

p

)�H

0

(


Y

0

) �! H

1

(X;O

Y

)�H

0

(


Y

) �! H

1

(


Y

) = k:

Equivariant Iwasawa theory

Weiss, Alfred

(joint work with J. Ritter)

Let l be an odd prime, K=k a �nite Galois extension of totally real number �elds, and S

a su�ciently large �nite set of primes of k containing l1. Put G

1

= Gal(K

1

=k), where

K

1

=K is the cyclotomic Z

l

-extension, andX

1

= Gal(M

1

=K

1

), whereM

1

is the maximal

abelian l-extension of K

1

which is unrami�ed outside S. A natural goal for \equivariant

Iwasawa theory" is a description of X

1

as Z

l

[[G

1

]]-module.

We construct a special class f

S

in the Grothendieck group K

0

T (Z

l

[[G

1

]]) of �nitely gen-

erated torsion Z

l

[[G

1

]]-modules with �nite projective dimension over Z

l

[[G

1

]]. This f

S

has the property that, under the localisation map K

0

T (Z

l

[[G

1

]])! K

0

T ((Z

l

[[G

1

]])

}

), its

image coincides with the class [(X

1

)

}

], for every non-zero prime ideal } of Z

l

[[G

1

]]. Since

X

1

has in�nite projective dimension we consider f

S

as a \smoothing" of X

1

.

When G

1

is abelian, we can use the Deligne-Ribet power series G

�;S

(T ) to de�ne a unique

element �

S

of the total quotient ring of fractions Q of Z

l

[[G

1

]] by requiring �(�

S

) =

G

�;S

(0) for all l-adic characters � of G

1

. Since K

1

(Q) = Q

�

we consider �

S

in K

1

(Q).

Our main result is

Theorem If \� = 0" then the map @ : K

1

(Q) ! K

0

T (Z

l

[[G

1

]]) of the localization

sequence takes �

S

to f

S

.

This re�nes (and depends on) the Main Conjecture of Iwasawa theory which was proved

by Wiles. Generalizing to arbitrary � is a re�ned goal for \equivariant Iwasawa theory".

Edited by Werner Bley
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