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The meeting was organised by A. Baddeley (Crawley), D. Stoyan (Freiberg) and W.

Weil (Karlsruhe). During the �ve days of the conference, 35 talks were given, 15 longer

and 20 shorter; additionally, three informal seminars were organized and a poster session.

The 47 participants came from Germany (# 26), Australia (# 3), Great Britain (# 3),

Czech Republic (# 2), Denmark (# 2), France (# 2), Spain (# 2), USA (# 2), Italy, Hong

Kong, Japan, Nederlands and Poland.

The aim of the conference was to present to newest developments in the �elds of stochas-

tic geometry and geometry-related spatial statistics and to discuss geometrically oriented

work in statistical physics. Thus the participants came from the three areas mathemat-

ics, statistics and physics. The interdisciplinary concept of the conference turned out to

be very successful; because of the di�erent languages and cultures of the three �elds a

large number of talks was necessary. The conference was characterized by intensive open

discussions between geometers, statisticians and physicists, which have lead to intensi�ed

cooperation and new insights and research projects.

The organizers and participants thank the \Mathematisches Forschungsinstitut Ober-

wolfach" to make the conference possible in the usual comfortable and inspiring setting.

The abstracts follow in alphabetical order.
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Abstracts

On Quantum Statistical Inference

Ole E. Barndorff-Nielsen

An introductory survey of quantum statistical inference, with emphasis on recent de-

velopments, was given. After reviewing the quantum physical rules for determining the

probability laws of observational outcomes and the associated key concept of quantum

instruments, a number of basic inferential concepts were discussed some of which, but

not all, have a classical counterpart. Among these concepts are quantum Fisher informa-

tion, quantum su�ciency and quantum cuts, quantum exponential models and quantum

transformation models, and exhaustivity. Part of the theory was illustrated by a spin-1/2

example, and the fact that classical Fisher information and related asymptotic inference

procedures has a central role also in quantum statistics was underlined.

Recent applications of mark correlation functions

Claus Beisbart

(joint work with Martin Kerscher (M�unchen) and Klaus R. Mecke (Stuttgart))

Marked point processes provide a useful framework to characterize and to model the spa-

tial distribution of objects jointly with their intrinsic properties, called marks. A prominent

example is the distribution of galaxies in the Universe with their luminosities or morpho-

logical types as marks. One important line of interest in this case is whether the clustering

of galaxies depends on their physical properties (\mark segregation").

After a short introduction into the theory of marked point processes we clarify the notion

of mark segregation; introducing mark locality, we distinguish between strong and weak

mark segregation. We discuss how commonly known test quantities distinguish between

the di�erent levels of mark segregation. In a second step we apply the test quantities

to a number of data sets. We �nd that in the Southern Sky Redshift Survey 2, the

luminous galaxies cluster more strongly than the dim ones. The orientations of dark

matter halos forming in cosmological N-body simulations show signi�cant alignments. Also,

the distribution of Martian craters and holes in a sandstone are investigated with mark

correlation functions.

In order to capture some of the empirically found mark correlations quantitatively, we

discuss a number of models. Mark segregation can originate from points tracing an in-

dependent random �eld. For galaxies however, this model is not realistic, since galaxies

together with their luminosities are not mark-local, contrary to the random �eld model.

A generalization, however, the Cox random �eld model, can at least qualitatively account

for the observed correlations. In order to understand some aspects of Martian craters and

holes in a sandstone, we introduce a Boolean depletion model.
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Stereology of extremes

Victor Bene

�

s

(joint work with D. Hlubinka (Prague))

In the stereological unfolding problem for spheroidal particles the aim is to predict ex-

tremal shape factor from the observation of extremal shape factor of particle sections. Both

marginal and conditional shape factor distribution (given particle size) is investigated by

means of the statistical extreme value theory. The stability of stereological transformation

with respect to belonging to a given domain of attraction is used to the evaluation of

both planar and spatial normalizing constants of some parametric models. This enables

prediction of extremal characteristics from real data.

Monte Carlo simulation: A tool of statistical physics to study phase

transitions

Kurt Binder

Phase transitions, such as the freezing of water into ice, are very common phenomena

in nature. Nevertheless, their theoretical understanding within the framework of statis-

tical thermodynamics is very di�cult: one needs to compute the partition function of N

interacting particles in the \thermodynamic limit" (N ! 1) and analyze the resulting

singularities.

Monte Carlo simulation provides a tool to solve this problem numerically, and to ob-

tain results that are \exact" apart from numerical errors. At critical points, such as the

Curie temperature of an Ising model, where the spontaneous magnetization vanishes, this

approach relies on the concept of \�nite size scaling", which allows to carry out the ex-

trapolation (N !1) using a sequence of �nite values for N . Nevertheless, there are still

simple but important problems such as the freezing transition of the two-dimensional hard

disk model uid, where the answers are inconclusive due to numerical di�culties. The

\state of the art" in the treatment of these problems will be reviewed.

The stochastic geometry of the crystallization process of polymers

Vincenzo Capasso

Crystallization of polymers is composed of two processes, nucleation (birth) and subse-

quent growth of crystallites, which are in general both stochastic in time and space. If we

assume that at points of contact between two growing crystallites they stop growing, a ran-

dom division of the relevant region in a d-dimensional space is obtained, known as a random

Johnson-Mehl tessellation. The coupling of the kinetic parameters of the birth-and-growth

process with the underlying temperature �eld induces time and space heterogeneities (and

stochasticity) of all parameters involved, thus motivating a more general analysis of the sto-

chastic geometry of the crystallization process. A full characterization of the �nal spatial

structure of the crystallization (tessellation) can be given in terms of the mean densities of

interfaces (n-facets: cells, faces, edges, vertices) of the random tessellation, at all di�erent

Hausdor� dimensions, with respect to the usual d-dimensional Lebesgue measure. It is

well known that mechanical properties of the �nal material strongly depend on the mean

densities mentioned above.
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Based on a multiple scale approach, evolution equations of the above quantities in terms

of the kinetic parameters of the process have been derived, coupled with the evolution

equations of the underlying temperature �eld.

Johnson{Mehl Tessellations: Asymptotics and Inference

Sung Nok Chiu

(joint work with Ilya Molchanov (Glasgow) and Malcolm Quine (Sydney))

Consider a set of distinct, isolated points, called seeds, in a continuous space. A seed

at x

i

will be stimulated after a time t

i

. A seed, once stimulated, immediately tries to

germinate and at the same time to prohibit other seeds from germination by generating a

spherical inhibited region the radius of which grows at a positive speed v. A seed stimulated

at time t

i

fails to germinate if and only if its location has been inhibited on or before t

i

.

The set of locations �rst inhibited by the growth of the inhibited region originated from

x

i

is called the cell of x

i

. The space will be partitioned into cells and this space-�lling

structure is called the Johnson{Mehl tessellation.

In this talk we consider the distribution of the time until the cube [0; L]

d

is totally in-

hibited. It has an extreme value distribution, provided that seed locations and stimulation

times form a spatially homogeneous Poisson process in R

d

�[0;1). In particular, for d = 1,

we explain how to obtain the exact distribution of this time by transforming the original

process to a Markov process. Moreover, we discuss the number of germinations within

[0; L]

d

. A central limit theorem for this number is shown for the case that seed locations

and stimulation times form a Poisson process and then extended to the case that the seed

locations are m-dependent.

The second part of the talk is devoted to the estimation of the speed v and the intensity

measure (on the time axis) of the Poisson process. The maximum likelihood estimation

for v, a nonparametric estimation for the intensity measure and for its density, and the

maximum likelihood estimation for the parameters of the intensity with known analytical

form are proposed and applied to real neurobiological data.

Pseudosystematic sampling on the sphere

Luis M. Cruz-Orive

(joint work with Ximo Gual-Arnau (Castell�on))

In geometric sampling, and local stereology in particular, it is often required to estimate

an integral of the form:

Q =

Z

S

2

f d! =

Z

2�

0

Z

�

0

f (�; �) sin � d� d�

where f : S

2

! R

+

is a non random function de�ned on the unit sphere S

2

and square

integrable on it. For instance, if Q represents the volume of a bounded particle which

is star convex with respect to the origin and r (�; �) is the length of the radius vector of

the particle in the direction (�; �), then f (�; �) = (1=3) r

3

(�; �). To estimate Q, some

sort of systematic design on S

2

becomes necessary on grounds of e�ciency and practical

applicability. Typically the relevant probes are of nucleator type, in which several rays

emanate from a �xed origin, (e.g.from a nucleolus within a biological cell), and they are

contained in a sectioning plane through the origin. The latter requirement considerably
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reduces the choice of design in practice. Here we concentrate on a nucleator design based

on splitting the sphere into regions of equal area, but not of identical shape; the design is

therefore 'pseudosystematic'. First we present a useful exact representation of the variance

of an unbiased estimator of Q under the mentioned design. Then we adopt a suitable

covariogram model to obtain a variance predictor from a single sample of arbitrary size,

and �nally we examine the prediction accuracy by way of simulation on a synthetic particle

model.

Surface shape analysis from MR images

Ian Dryden

Statistical shape analysis is of interest in a variety of applications. Although many

applications have been landmark-based, there is a growing number of examples where

shapes of curves and surfaces are investigated. We restrict ourselves to star-shaped objects

which can be represented by a radial function on a sphere, or a subset of the sphere.

We initially consider a Bayesian method for registration to the midline by translation

and rotation using symmetry properties of the midline neighborhood. Samples from the

posterior are obtained using a Markov chain Monte Carlo algorithm. By conditioning

on the registration, size and shape inference can be carried out by adapting the tools of

functional data analysis. The method is applied to a dataset of MR images investigating

large scale structure of the brain of schizophrenia patients, which is joint work with Antonio

Gattone (University of Chieti, Italy), Bert Park and Stuart Leask (Nottingham) and Sean

Flynn (University of British Columbia).

Random geometry of the two-dimensional Ising model

Hans-Otto Georgii

For various lattice systems of interacting spins, the phenomenon of phase transition

goes parallel with the presence of in�nite percolation clusters. This holds in particular for

the classical Ising model of ferromagnetism. We show that in this model the percolation

picture also provides information on the number of phases: There exist only two distinct

phases if and only if there is no coexistence of in�nite plus- and minus-clusters, and this

is the case for a number of planar lattices including Z

2

. This result extends and simpli�es

a famous theorem of Russo-Aizenman-Higuchi (1980) and is based on various geometric

ideas together with the use of a spatial strong Markov property and stochastic domination

techniques.

Locally scaled point processes

Ute Hahn

Point patterns observed in nature are often inhomogeneous due to inhomogeneity of the

substrate bearing the pattern. In many such cases, regions with di�erent intensity appear

to be realizations of the same point process up to a scale factor.

An approach will be presented to de�ning models for such inhomogeneous point processes

by modifying the density function of a homogenous template process. To this end, the

volume measures occurring in the de�nition of the template density are replaced with so

called locally scaled volume measures. These volume measures are de�ned with respect to
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a location dependent scaling function. If the scaling function is constant, then local scaling

coincides with global scaling by a constant factor. The proposed method can principally

be applied to any homogeneous template point process that has a scale invariant density

with respect to the Poisson point process, thus leading to a wealth of possible models.

It will also be discussed how statistics for stationary point processes such as the nearest

neighbour distance distribution or the empty space function carry over to the locally scaled

case.

Asymptotic Normality of the Euler - Poincar�e Characteristic of Boolean

Models in Large Sampling Windows

Lothar Heinrich

Having in mind Hadwiger's recursive de�nition of the Euler-Poincar�e-characteristic (E-

P-C) for sets in the convex ring we introduce the point processes 	

+

u

and 	

�

u

of exposed

positive resp. negative tangent points in direction u 2 S

1

associated with a planar germ-

grain model � = [

i�1

(�

i

+X

i

), where (�

i

)

i�1

are i.i.d. random convex, compact sets being

independent of the point process 	 =

P

i�1

�

X

i

. According to the well-known tangent

count method used in stereology we de�ne the empirical mean E-C-P

^

N

A;n

(u) (in direction

u 2 S

1

) as ratio of the di�erence 	

+

u

(W

n

) � 	

�

u

(W

n

) and the area jW

n

j of the rectan-

gular, unboundedly expanding sampling window W

n

. We prove strong consistency for

this unbiased estimator of N

A

for stationary ergodic second-order point processes 	. For

Poisson-grain models we derive a CLT under mild conditions on the primary grain. In case

of strictly bounded grains a consistent estimation of the asymptotic variance, Berry-Esseen

bounds and Edgeworth expansions in the local CLT are presented. These results are based

on corresponding advanced limit theorems for m� dependent random �elds. Analogous

results are possible in the 3D� case.

Carbon clusters and clusters of carbon clusters

Helmut Herrmann

(joint work with F. Fugaciu and A. Touzik)

Carbon can form a great variety of ordered, partially ordered and random networks

realized in 3D space, on parallel at planes, and on corrugated planes of �nite size. The

reason for this is that the four electrons of the valence shell of the carbon atoms can ar-

range to di�erent stable hybridization states. Therefore, carbon atoms can switch between

two chemical bonds, i.e. two neighbours, three bonds (trigonal planar symmetry), and

four bonds (tetrahedral symmetry). We used molecular dynamics (see contribution by U.

R�o�ler) and a density-functional based method for the calculation of the interatomic forces

and studied the transformation of graphitic and diamond-like particles into other types of

particles. The simulations were carried out at temperatures between 1500K and 2800K.

Additionally, a random process was included modelling irradiation e�ects.The shape of

the particles obtained and the topology of the network of atoms ranged from fullerenes

(regular arrangement of pentagonal and hexagonal cells on a sphere), continuous random

networks arranged on spherical or drop-like surfaces and on corrugated planes of �nite

size, concentric-shell fullerenes interconnected by atoms with four bonds, and spiraloidal

particles. Some of these particles have not been observed in nature until now. We showed

empirically that (with limited reliability) it is possible to predict the type of the �nal
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particle from the simulation conditions. During most of the simulations the intermedi-

ate structure developed after few thousands of time steps was similar to a 3D continuous

random network. It is, however, not clear which properties of these networks control the

evolution of the system and decide about the type of the �nal particle obtained after 50.000

to 100.000 time steps. Fullerenes can be deposited on a substrate. The fullerenes are then

situated on the nodes of a crystalline face-centred cubic lattice. Adding potassium atoms to

the fullerene layer the surface morphology of the fullerene �lm changes its character. From

the initial surface which is smooth on a molecular scale, a system of random but densely

arranged hillocks develops on a 20nm to 50nm scale. We tried to �nd out the physical

reason for this transformation using a kinetic Monte Carlo method (see contribution by K.

Binder). A box consisting of a face-centred cubic lattice with about 1 million of fullerene

molecules was considered where periodic boundary conditions in two direction were applied

simulating thin �lms of either 64 or 128 fullerene diameters in thickness. Potassium atoms

were distributed at random on the tetrahedral and octahedral holes of the lattice. The

number of potassium atoms was between 5% and 30% of the number of fullerene molecules.

It turned out that electrostatic forces and repulsive interactions of the electron shells of

the fullerenes are responsible for the structural changes. The simulations reproduced the

mean size of the hillocks. Additionally, we showed that the potassium concentration in the

hillocks has a stoichiometric value pointing to the formation of a special potassium fulleride

phase. This phase has metallic character. Therefore, the decomposed fulleride layer can,

e.g., be used as an array of nanometre-scale electrodes for electrochemical applications.

Stochastic modelling of particle sedimentation in uids

Christian H. Hesse

The talk starts by reviewing some non-stochastic approaches to the problem of mod-

elling particle sedimentation in uids.It then presents a stochastic model based on coupled

Ornstein-Uhlenbeck processes whose parameters depend on system-con�guration.Various

aspects including model structure,model dynamics,model �tting and support for the model

are discussed in detail.

Micro-Macro-Transition for Transport in Porous Media

Rudolf Hilfer

The talk discusses the problem of transport (e.g. uid ow or electrical conduction)

through macroscopically and microscopically heterogeneous porous media. The porous

medium is assumed to be a discretized random set. Realizations are given as three-

dimensional computertomographic images. Fluid ow is described by Stokes equations

with no-slip boundary conditions on the microscopic pore scale l. It is known that in the

macroscopic limit " =

l

L

! 0, the uid ow is described by Darcy's equation with per-

meability k(") where l is the typical pore size and L is the system size. Assuming that

the porous medium is macroscopically homogeneous (stationary, ergodic), it is generally

believed that for �xed � > 0 there exists an "

�

such that k(0) � � < k(") < k(0) + � for

all "

�

> ". The talk focusses on two questions: i) What is the numerical value of "

�

? ii)

Can "

�

(and in fact k(")) be calculated approximately from purely geometric functionals

of the porous medium? First the microscopic equations are solved numerically using two

methods: �nite di�erence techniques and lattice-Boltzmann simulations. The results are

found to be slightly di�erent and to depend on discretization. Secondly the results are
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compared to a generalized self-consistent e�ective medium theory introduced earlier under

the name \local porosity theory" (Phys. Rev. B 44, 60 (1991), Phys. Rev. B 45, 7115

(1992), Adv. Chem. Phys. XCII, 299 (1996)). Local porosity (geometry) distributions

were introduced there as empirical histograms of Minkowski functionals measured in a cell

of size L. Local porosity distributions and local percolation probabilities provide geometric

descriptors that depend explicitly on length scale and lead to approximate values for k (and

other transport properties such as electrical conductivity etc.). A certain integral of both

quantities is found to provide an estimate for "

�

that agrees with the exact microscopic

calculation not only for permeability k but also for other parameters of physical transport.

Trends in Integral Geometry

Daniel Hug

A major theme in integral geometry is the study of mean values of functionals of geo-

metric objects. In this talk, we describe several examples of recent results in this direction.

I. Steiner type formulas

We describe a local Steiner type formula for general closed sets in a Euclidean space.

Such a formula has �rst been stated by Stach�o in 1979; it seems, however, that the result

has been overlooked so far. We present the result in a more modern language, give an

explicit description for the associated curvature measures in terms of generalized curvature

functions and develop some of the properties of these curvature measures.

II. Translative and kinematic formulas

We then present general integral formulas for curvature measures of U

PR

sets (certain

locally �nite unions of sets with positive reach), due to J. Rataj and M. Z�ahle (2001), and

for the Euler characteristic of convex surfaces (D. Hug, R. Sch�atzle (2001) and D. Hug, R.

Sch�atzle, P. Mani-Levitska (2002)). The translative results involve di�erent kinds of mixed

functionals.

III. Integral geometry of tensor valuations

Finally, we explain some recent translative, kinematic and Crofton formulas for tensor

valuations. Such valuations have been suggested as descriptors for spatial patterns, see

the recent work of C. Beisbart, R. Dahlke, K. Mecke and H. Wagner (2002). A complete

system of integral formulas for tensor valuations is still not available in the literature,

partial results, which in particular cover the dimensions two and three, are contained in

contributions by R. Schneider (2000) and R. Schneider and R. Schuster (2001).

Change of scale in random sets

Dominique Jeulin

By image analysis of the microstructure of materials, or by means of models of random

sets, it is possible to access to morphological data such as correlation functions, that can be

used as an input to predict macroscopic (or e�ective) physical properties (like the thermal

conductivity, the dielectric permittivity, or the elastic moduli) of heterogeneous media.

Bounds of e�ective properties, depending on limited statistical information, can be ob-

tained from variational principles deduced from the physical problem under study. The

most famous bounds are Hashin and Shtrikman bounds, which only depend on the volume

fraction of components for a statistically isotropic and stationary randommedium.However,

many di�erent morphologies can be imagined for given volume fractions. Tighter bounds

are obtained after introduction in the variational principles of trial �elds depending on the
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microscopic properties at di�erent points.For random media with isotropic elastic compo-

nents and with an isotropic geometry, order three bounds (depending on the 3-points cor-

relation functions) were derived by Beran and Molyneux for the modulus of compressibility

K and by McCoy for the shear modulus G. These bounds are valid for multi-component

media, and more generally for elastic variables modelled by random functions.

We will illustrate this approach in the case of various two-phase random composites,

following the simpli�cations made Milton. A special construction is obtained for the union

or the intersection of multi-scale independent random sets [1]. In the case of two scales,

it shows the e�ect of random clusters on the macroscopic elastic properties. By itera-

tion, optimal multiscale random microstructure, from the point of view of the macroscopic

behaviour, are obtained. Finally we will give an introduction to uctuations of e�ective

properties with the scale of homogenization [2].

References

[1] Jeulin D., Ostoja-Starzewski, M. (eds) (2001) Mechanics of Random and Multiscale Microstructures,

CISM Lecture Notes N

�

430, Springer Verlag.

[2] Cailletaud G., Jeulin D., Rolland Ph. (1994) Size e�ect on elastic properties of random composites,

Engineering computations, vol 11, N 2, pp. 99-110.

Testing hypothesis that a point process is non-homogeneous Poisson process

versus possible dependence structure

Estate V. Khmaladze

The specialists know that to test whether a point process in R

d

is some Poisson process,

homogeneous or not, against alternative that there is dependence in distribution of points

- say, attraction and clustering or repulsion of some sort - is a di�cult problem. However,

discussion during the conference (with D.Stoyan, A Baddeley, L.Heinrich, I.Molchanov and

some other colleagues) helped to realise that methods developed for di�erent purposes, and,

namely, so called "scanning martingales", introduced and studied in Khmaladze (1988,

1993) can lead to relatively complete solution of this problem and provide us with the

process to base the whole class of statistical tests upon it.

The assumption on intensity of the Poisson process is that it is n�(�; �) belongs to

some given m-dimensional subspace of functions in R

d

(and � is the vector of its Fourier

coe�cients). Practically, m can be as high as 10-15.

The approach is to consider the di�erence between the point process and its intensity

measure with estimated parameters and to construct the scanning martingale for it. Then

this scanning martingale can be rescaled, using estimated intensity function �(�; �), to

the process converging in distribution, under hypothesis of Poissonity, to the standard

Brownian motion.

References

[1] Khmaladze, E.V. (1988) "An Innovation Approach to Goodness of Fit Tests in R

m

", Ann. Statist. 16,

1503-1517

[2] Khmaladze, E.V. (1993) "Goodness of �t problem and scanning innovation martingales", Ann. Statist.

24, 380-404
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Reconstruction of the Oriented Rose of Normal Directions

Markus Kiderlen

We consider the mean normal measure S(Z; � ) of a stationary random set Z in the

extended convex ring in R

d

. The normalization of this measure, the oriented rose of

normal directions, is the distribution of the outer unit normal at a typical boundary point

of Z.

It is well known that the family of mean normal measures S

0

(Z \L; � ) (computed in L)

determines S(Z; � ) uniquely, if L runs through all k-dimensional linear subspaces for some

�xed k 2 f2; 3; : : : ; d� 1g. It is shown that for k 6= 2 this still holds true, even if all the

planes L are assumed to belong to a pencil, i.e. contain a given line. For k = 2 some mild

additional condition is needed. Furthermore, adapting results from discrete Geometric

Tomography, we show that the knowledge of S

0

(Z \L; � ) for a �nite number m of k-planes

L does not determine S(Z; � ). On the other hand, if S(Z; � ) has �nite support, it can be

veri�ed from this information (for suitable chosen m).

Finally we suggest a new estimator for S(Z; � ) in the plane (d = 2), based on conditional

intersection counts with test lines. The estimator is the solution of a quadratic program

and { under some mild conditions on the estimation procedure { is strongly consistent.

Virtual Materials Lab: Imaging and reconstruction, visualising and modelling

complex materials

Mark A. Knackstedt

How does a contaminant move through soil? How can we accurately assess a patient's risk

of osteoporosis? Why does ink-jet printing give clean sharp lines on some paper, while it

smudges on others? Answering these questions require the ability to predict the mechanical

and transport properties of complex media from a knowledge of material microstructure.

I describe how new experimental techniques are available to image complex materials

at a micron scale in 3D. These techniques will greatly impact on our understanding of

complex materials. There is an urgent need for a parallel development of expertise in 3D

image analysis and morphological characterisation to harness the potential of these 3D

imaging methods. This will allow researchers to develop meaningful correlations between

morphological measures and physical properties of complex 3D materials.

Contact distributions of Boolean models

G

�

unter Last

(joint work with Daniel Hug (Freiburg) and Wolfgang Weil (Karlsruhe))

Contact distributions are important characteristics of random closed sets. Their empir-

ical counterparts provide a convenient and useful summary statistics of spatial data. We

discuss the basic analytic properties of the contact distributions of a stationary Boolean

model �rst in case of convex grains and then in case of a model with rather general com-

pact grains. We then introduce a general (non stationary) Boolean model and show that

all of the previous results can be extended to this case. Finally we indicate some useful

generalizations of contact distributions.
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Markov sequential spatial processes

Marie-Colette van Lieshout

A simple sequential inhibition point process (SSI) is de�ned as the output of an algorithm

that repeatedly introduces particles at random into a bounded window, discarding those

that would overlap a previously introduced particle. In this talk, we present `Markov

sequential spatial processes', i. e. point patterns that { as SSI { can be imagined to arise

as the output of a sequential algorithm and that satisfy a local dependence property, and

prove a Hammersley-Cli�ord style factorisation. Examples other than SSI include local

scaling. Cf. (Hahn, Jensen, Van Lieshout, Nielsen; 2001).

Spatial statistics in cosmology

Vicent Martinez

In cosmology, we need to compare the results of the theoretical models of structure

formation and the N-body simulations with the real observations of the galaxy distri-

bution. This comparison is mainly performed by means of statistical methods. I have

reviewed in this talk the main applications of spatial statistics to the description of the

large-scale structure of the universe. Special topics discussed in this talk were: description

of the galaxy samples, selection e�ects and biases, correlation functions, nearest neighbour

statistics, Minkowsky functionals, Fourier analysis, and structure statistics. Particular at-

tention have been devoted to the use of scaling laws, fractals, and lacunarity measures in

the description of the cosmic texture.

Networks generated by random tessellations

Joseph Mecke

A stationary random tessellation in R

d

, i. e. a homogeneous random division of the

d-dimensional Euclidean space into bounded convex polytopes, generates the networks

(skeletons) N

k

, where N

k

denotes the union of all closed k-faces (k = 0; : : : ; d).

The mean connectivity number (mean Euler characteristic per unit volume) of N

k

can

be expressed as a function of the intensities of j-faces (j = 0; : : : ; k).

The purpose of the talk is to present a special proof for known results; i. e. for the

stochastic counterpart of the well-known Euler-Schl�ai-Poncar�e formula.

Applications of integral geometry in statistical physics

Klaus Mecke

The morphology of fractals, dewetting structures and chemical reaction patterns can be

described in terms of curvature integrals (Minkowski functionals, which allow a detailed

scaling analysis, a comparison of theory an experiment, and the prediction of quantitative

physical laws. Integral geometry can also be used to derive Rosenfeld's density functional

theory which give accurate predictions of the structure of inhomogeneous hard body uids.

The application of density functional theory in spatial statistics is emphasized as a general

tool to derive generating functionals which might be useful for parameter estimation and

inference in Gibbsian systems.
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From leaching in soil to coverage in Boolean models

Ilya Molchanov

(joint work with V. Scherbakov (University of Glasgow) and S. Zuyev (University of

Strathclyde))

This work is motivated by studies of leaching of bacteria trough soils in order to predict

the pattern of leaching and chances of bacteria reaching ground water. Assuming that

bacteria perform a di�usion through soil, the relevant mathematical model could be Brow-

nian motion in a space with traps. We mention classical results in this area and highlight

special e�ects that appear when dealing with the trapping problem for the Wiener process

with the time added as an additional component.

The experiments show however that the leaching properties of bacteria at the �rst ap-

proximation resemble those of inert colloidal particles. The bacteria move when the soil

is su�ciently wet, and if they hit a dry patch of soil at a certain depth, then the bacteria

die. This suggests a model for bacteria transport that concentrates on macro properties of

soil and so allows for transparent mathematical formulation in the language of semi-linear

processes. The main result concerns �nding probabilities of bacteria moving through and

the explicit expression for the critical function that describes the (inhomogeneous) speed

of bacteria ensuring that they die eventually with probability one. It is shown how this

problem is related to the ruin problem in insurance and to the studies of the exponential

integrals of stochastic processes. The multidimensional variants of this problem would cor-

respond to �nding conditions under which the whole plain is covered by an inhomogeneous

Boolean model. The corresponding critical function is also given.

Perfect simulation and inference for spatial point processes

Jesper M�ller

(joint work with Kasper K. Berthelsen (Aalborg))

The advantages and limitations of using perfect simulation for simulation-based infer-

ence for pairwise interaction point processes are discussed. Various aspects of likelihood

inference for the Strauss process with unknown range of interaction are studied. A large

part of the talk concerns non-parametric Bayesian inference for the interaction function.

Markov chain Monte Carlo methods, particularly path sampling, play an important role.

Several empirical results and various datasets are considered.

Limits of sequences of stationary planar tessellations, generated by iterated

superposition and nesting

Werner Nagel

(joint work with Viola Weiss (Jena))

In order to increase the variety of feasible models for random stationary tessellations

(mosaics) two operations acting on tessellations are studied: superposition and nesting

(the latter is also referred to as iteration). The superposition of two planar tessellations

means the superposition of the edges of the cells of both tessellations. This generates a

new tessellation where the cells are intersections of pairs of cells of the original tessella-

tions. The iteration of tessellations is a more sophisticated operation. It means that one

tessellation is chosen as a 'frame' tessellation. The single cells of this 'frame' tessellation
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are consecutively and independently subdivided by cut-outs of tessellations of an i.i.d. se-

quence of tessellations. Thus di�erent cells of the 'frame' tessellation are intersected with

di�erent realisations of other tessellations.

In the lecture, for sequences of tessellations which are generated by iterated application

of superposition or iterated nesting respectively, the limits are investigated.

Sequences of (renormalised) superpositions of stationary planar tessellations converge

weakly to Poisson line tessellations.

For an iterated nesting the notion of stability of a distribution is adapted and necessary

conditions are formulated for those tessellations which may occur as limits.

Tessellation-based hierarchical modelling of space-time earthquake

occurrences

Yosihiko Ogata

My talk is concerned with modelling and analysis of earthquake data of occurrence times,

locations ignoring depth, and magnitudes. A space-time point-process model is speci�ed

in which earthquake intensity is modelled as a function of previous activity. Speci�c forms

of the function of locations and times are based on the established empirical laws in seis-

mology, but their parameters are known to be di�erent from place to place. Thus each

parameter is function of location (but not time) represented by linear interpolation over

Delaunay tessellation based on observed locations of earthquakes. Using a smoothness

constraint for each parameter in the model, a penalised likelihood method is considered for

�tting, where the optimal weights of the penalties are objectively tuned by an empirical

Bayesian method.

Having done that, my �nal goal is to measure the temporal deviation of the actual

seismicity rate from that of the predicted occurrence rate by the estimated model. For this

procedure I considered space-time smooth functions represented by linear interpolation

over a 3-dimensional tessellation based on observed times and locations of earthquakes,

and carry out the similar penalised likelihood method as the above procedure. There are

a number of zones where temporal deviation from the �tted model, with quiet periods

(relative quiescence), took place before large earthquakes.

I also presented statistical evidence that, after relative quiescence in the aftershock

activity, a signi�cantly higher probability of a large event is expected in the neighbourhood

(say, within 200km radius) during the �rst 6 years, than the case where the aftershocks

decayed normally. Further, physical mechanism of the relative quiescence is speculated

and illustrated by the aid of the Coulomb's Failure Function assuming a precursory slip in

the focal fault.

The Euler number of discretized sets { an appropriate choice of adjacency in

homogeneous lattices

Joachim Ohser

Two approaches for determining the Euler-Poincar�e characteristic of a set observed on

lattice points are considered in the context of image analysis { the integral geometric and

the polyhedral approach. Information about the set is assumed to be available on lattice

points only. In order to retain properties of the Euler number and to provide a good

approximation of the true Euler number of the original set in the Euclidean space, the

appropriate choice of adjacency in the lattice for the set and its background is crucial.
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Adjacencies are de�ned using tessellations of the whole space into polyhedrons. In R

3

, two

new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies.

For the Euler number of a set and its complement, a consistency relation holds. Each of

the pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair

of complementary adjacencies with respect to this relation. That is, the approximations of

the Euler numbers are consistent if the set and its background (complement) are equipped

with this pair of adjacencies. Furthermore, su�cient conditions for the correctness of the

approximations of the Euler number are given. The analysis of selected microstructures

and a simulation study illustrate how the estimated Euler number depends on the chosen

adjacency. It also shows that there is not a uniquely best pair of adjacencies with respect

to the estimation of the Euler number of a set in Euclidean space.

The set covariance and its generalizations

Jan Rataj

Given a nonempty compact subset X � R

d

, the set covariance  

X

(u) = �

d

(X\ (X�u))

is an important characteristic of X used in image analysis (�

d

is the Lebesgue measure).

It is well known that the �rst derivative of  

X

in direction v at the origin equals minus the

measure of the projection of X in direction v, if X is a full-dimensional convex body. We

generalize this result to sets X representable as �nite unions of sets with positive reach.

We also present some particular results on the information contained in the higher order

derivatives at the origin of  

X

for smooth convex bodies X.

Gauge invariance in two-dimensional foam

Nicolas Rivier

(joint work with C. Oguey (Cergy-Pontoise) and T. Aste (Canberra))

Two-dimensional foams are random tilings by topological polygons. The only random

variable is the number n of sides of a cell (topological charge 6�n). Tilings are homogeneous

overall, and globally invariant under local topological transformations, i.e. gauge invariant.

Gauge invariance yields, through maximum entropy, the mark distribution (of an n- and a

k-sided cells at a topological distance j) and an asymptotically unique distribution pn. A

Gauss theorem relates the ux of edges through a closed contour to the total topological

charge within. By di�erentiation, one obtains a strati�cation of the foam into parallel

layers, which roughen in a controlled fashion. The foam is tiled by square plaquettes, which

are the intersection of two layers in the two, \orthogonal" strati�cations. The plaquettes

are frustrated if they contain more than one cell. Frustrated plaquettes serve as a local

\order parameter" for disorder.
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Molecular Dynamics Simulations of Metallic Glasses: Chemical Fluctuations

and Polyamorphous Structures

Ulrich K. R

�

ossler

Metallic Glasses are generally alloys, i.e. multi-component systems, where uid-like

atomic con�gurations are frozen in a kinetic process that suppresses crystallization. Exper-

imental data indicate ordering phenomena in glassy materials on length scales larger than

the short-range order in the corresponding melts. In particular, chemical uctuations are

endemic in these structures. They may appear already in supercooled alloy-melts and may

result in a macroscopic decomposition into di�erent amorphous metastable \phases". Such

structures are built by di�erent amorphous packings of atoms in di�erent regions of space.

In this talk, results from molecular dynamics simulations on realistic models of metallic

glasses for binary and ternary alloy systems showing such e�ects are presented. A few

simple measures and heuristic rules for the analysis of the di�erent amorphous packings

found from simulation are introduced. Some more advanced problems of a quantitative

description of these complex amorphous structures are discussed: Chemical uctuations in

the equilibrium melts may be analysed as a Gibbs point processes, however, the complete

kinetic process leading to glass formation is not an equilibrium process in the sense of sta-

tistical physics. Generally, metallic bonds are many-body e�ects inducing interatomic po-

tentials beyond pair-potentials. Therefore, uid-like structures for metallic systems should

display many-body correlations beyond the usual (partial) pair-correlation functions.

Estimation of the pair correlation function via inverse space

Katja Schladitz

(joint work with Karsten Koch (Siegen) and Joachim Ohser (Kaiserslautern))

Let � be a stationary point process with intensity �, observed in a compact window

W . Denote by c

W

(h) := vol(W \ (W � h)) the window function and by F the Fourier

transform.

The pair correlation function g of � can be estimated by

bg(x) =

1

�

2

c

W

(x)

F

�1

(jF((� � �)1

W

)j

2

)(x)�

1

�

�

2

(x);

where � is a bounded kernel function with compact support and

�

2

:= � � �

�

with � { convolution and f

�

(x) := f(�x).

This new estimator works as good as the usual kernel estimator for g. For large data sets

and point process data given as an image, the new estimation procedure can be considerably

faster.

Fractal dimension and long memory dependence of random �elds

Martin Schlather

The Cauchy class provides 2-parameter models for the covariance function that allows for

modelling random �elds whose graphs have arbitrary fractal dimension and long memory

dependence. The Cauchy class has a non-separable extension for space-time modelling. A

contributed package for R is presented that allows for ML estimation of the parameters,

and provides simulation algorithms.
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Iterated Random Tessellations

Volker Schmidt

(joint work with Roland Maier (Ulm))

The iteration of random tessellations in R

d

is considered, where each cell of an initial

tessellation is further subdivided into smaller cells by so-called component tessellations.

We �rst show that an iterated tessellation can formally be de�ned as a point process of

closed sets, generated by an initial tessellation and a sequence of component tessellations.

Starting, for example, from Poisson-Voronoi tessellations or Poisson hyperplane tessella-

tions, the iteration of tessellations provides a method to construct more general models of

random tessellations, which still are tractable from the computational point of view.

Su�cient conditions for stationarity and isotropy of iterated tessellations are given,

where we assume in particular that the component tessellations are exchangeable. Fur-

thermore, we show how the intensities of the facet processes of stationary (and isotropic)

iterated tessellations can be expressed by quermassintensities of the facet processes of their

initial and component tessellations respectively. In connection with this, we consider the

notion of an embedded (i; k)-facet process, which consists of those i-facets of the iterated

tessellation embedded in k-facets of the initial tessellation; i � k.

We �rst derive such intensity formulae for superpositions of tessellations, and then for

independent iteration of cells. In the latter case, multiply superimposed component tes-

sellations occur, whose quermassdensities have to be computed recursively. Furthermore,

formulae are derived for the expected intrinsic volumes of the typical i-facet of iterated

tessellations.

Bernoulli thinning of iterated tessellations is also considered, where only some cells of

the initial tessellation are iterated, letting the remaining cells unchanged.

Thermodynamic formalism for asymptotic geometry of set-valued union

processes

Tomasz Schreiber

Consider a locally compact and separable metric base space E: A set-valued stochastic

process X

[t]

� E is called union in�nitely divisible i� X

[t

1

+t

2

]

coincides in distribution with

the union of independent copies of X

[t

1

]

and X

[t

2

]

: An important subclass of such processes

are those admitting the representation

X

[t]

=

[

k�N

t

X

k

;

where N

t

is a homogeneous Poisson counting process on R while X

1

; X

2

; ::: are i.i.d. copies

of a certain random set X � E; usually referred to as the grain.

If the grain X is taken thick enough, the process X

[t]

tends to �ll the base space E

rather fast as t!1: For a �xed normalised measure � on the base space E; with certain

additional conditions we show there exists an exponent  2 (0; 1) with

� E�(E nX

[t]

) = E�(X

[t]

c

) = �(t

�

) and the corresponding strong law of large numbers

holds,

� Var(�(X

[t]

c

)) = �(t

��1

) and the corresponding central limit theorem holds.

Our purpose is to provide an asymptotic description of the geometry of X

[t]

for large t:

Extremely irregular local behaviour ofX

[t]

and lack of natural a�ne structure on the family

of subsets of the base space E obviate the use of usual normalisation-based asymptotic
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analysis procedures. We adopt here a di�erent approach, originating from the area of

statistical mechanics. For � > 0; referred to as the inverse temperature, consider the set-

valued process X

[t;�]

de�ned as the Gibbsian modi�cation of X

[t]

with Hamiltonian �t�(�);

so that

dL(X

[t;�]

)

dL(X

[t]

)

[F ] :=

exp(��t�(F ))

E exp(��t�(X

[t]

))

; F � E:

The modi�ed random set X

[t;�]

has a very natural geometrical interpretation as coincid-

ing in distribution with the law of the original set X

[t]

conditioned on the event that

X

[t]

\ �

�t�

= ;; where �

�t�

is a Poisson point process on E with intensity measure �t�;

independent of X

[t]

:We show that for small � (high temperature region) the Gibbs process

X

[t;�]

represents a small perturbation of X

[t]

and it shares its strong asymptotic properties.

In particular, we have

� t

�1

H(L(X

[t;�]

)jL(X

[t]

)) = �(t

�

)

with H standing for the usual relative entropy. Moreover, the (renormalised) speci�c free

energy P (�; t) := t

�1

log E exp(�t�(X

[t]

c

)) decays as t ! 1 according to the power law

P (�; t) = �(t

�

) and, furthermore, we have E�(X

[t;�]

c

) = �(t

�

) as well. We exploit these

facts to derive moderate deviation type results for �(X

[t]

c

); stating that

� P(j�(X

[t]

c

)=E�(X

[t]

c

)� 1j > �) � exp(�C(�)t

1�

); � > 0:

Some further details about the asymptotic geometry of X

[t]

are obtained by a more re�ned

high-temperature analysis of the Gibbs processes X

[t;�]

:

With increasing � a phase transition occurs and for � larger than a certain critical value

�

0

(in the low temperature region) the process X

[t;�]

starts to exhibit totally di�erent

properties. The volume �(E nX

[t;�]

) not covered by the Gibbs process does not decay to 0

anymore and the shape of X

[t;�]

is determined by the large deviation principle with speed

t and with rate function

� I

�

(F ) := ��(F ) + T

X

(F

c

)� inf

^

F�E

[��(

^

F ) + T

X

(

^

F

c

)]; F � E;

where T

X

(A) := P(X\A 6= ;) stands for the hitting functional of the single grain X: Thus,

X

[t;�]

has to be asymptotically close to one of the minimisers of I

�

: This characterisation

is not complete, however, as I

�

can happen to admit multiple minimisers. A more detailed

analysis of certain speci�c models (Boolean germ-and-grainmodels etc) shows that the right

asymptotic shape can often be found as minimising a certain model-speci�c surface energy

(surface tension) and it coincides with an appropriate convex body referred to as Wul�

crystal in the language of statistical mechanics. A detailed analysis of the low-temperature

behaviour of X

[t;�]

yields some further large deviation type results for X

[t]

:

We conclude our talk with an example application of the developed methods to certain

classical problems of stochastic geometry. In particular, we suggest a new approach to the

asymptotic analysis of convex hulls generated by high-intensity Poisson point processes

in a multidimensional ball. The results obtained in this way include appropriate large

deviation principles, central limit theorems and strong laws of large numbers which are

valid in arbitrary dimension. We compare these results with the rich existing literature of

the subject.
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Fluid Membranes

Udo Seifert

Fluid membranes are closed two-dimensional surfaces embedded in three- dimensional

space. These so-called vesicles form spontaneously when lipid molecules are dissolved in

aqueous solution. The large variety of observed shapes can be derived from a simple

variational principle. These shapes are minima of the curvature energy which is given by

the integral of the squared mean curvature over the whole shape. While naive minimization

leads to a sphere, the physical boundary conditions of �xed volume, area and total mean

curvature render this problem non-trivial.

For higher topology the conformal invariance of this energy leads to a degeneracy of the

ground state. In fact, shapes connected by conformal transformations have been observed

in the microscope.

At �nite temperature uctuations around these shapes of minimal energy are populated

according go the usual Boltzmann (Gibbs) factor. Two examples are uctuations around

a mean spherical shape and uctuations between two energetically equivalent ellipsoids, a

prolate and an oblate.

For a review article: U. Seifert, Advances in Physics 46, 13-137 (1997).

Topological characterization of porous media for modelling ow and transport

Hans-J

�

org Vogel

Topology is critical for ow and transport in porous media. This is true both at the

pore scale, which may be represented as a binary structure, and at a larger scale de�ned by

continuous macroscopic state variables as phase density, porosity or permeability. At the

pore scale a connectivity function is introduced which is de�ned by the Euler characteristic

as a function of the pore diameter. This function is used to generate network models of the

porous structure that allow to predict bulk hydraulic properties of the material. At the

continuum scale the structure is recorded on a grey scale representing the porosity of the

material with a given resolution. Here, topology is quanti�ed by a connectivity function

de�ned by the Euler characteristic as a function of a porosity threshold. Results are

presented for the structure of natural soils measured by X-ray tomography. The signi�cance

of topology at the continuum scale is demonstrated through numerical simulations. It is

found that the e�ective permeabilities of two heterogeneous random �elds having the same

autocovariance but di�erent topology di�er considerably.

Fitting Boolean Models to Binary Images

Richard Wilson

(joint work with Ian Phillips (Queensland))

Many images obtained in materials science, mineral exploration and other areas of engi-

neering and science, consist of polygonal particles of one substance against a background

of other substances. The location, shape and size of these particles is often random within

certain constraints. For example, the particles may all be convex or they may cluster into

groups. Such images can be modelled using random closed sets. A wide class of random

set models appropriate for images with these properties is provided by germ-grain models.

In this talk, we will concentrate on examining the Boolean model and methods for �tting
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it to data. In particular, we will assume that the grains are convex stable sets and discuss

some aspects of parameter estimation. This work is currently in progress, so the talk will

focus on some of the background needed, the results so far and work still to be done.

Limit Theory for Random Packing and Deposition

Joseph E. Yukich

Consider sequential packing of unit balls in a large cube, as in the R�enyi car-parking

model, but in any dimension and with �nite input. We prove a law of large numbers

and central limit theorem for the number of packed balls in the thermodynamic limit.

We prove analogous results for numerous related applied models, including cooperative

sequential adsorption, ballistic deposition, and spatial birth-growth models.

The proofs are based on a general law of large numbers and central limit theorem for

\stabilizing" functionals of marked point processes of independent uniform points in a

large cube, which are of independent interest. \Stabilization" means, loosely, that local

modi�cations have only local e�ects.

Fractal and aggregate tessellations

Sergei Zuyev

Consider a sequence of stationary tessellations f�

n

g; n = 0; 1; : : : of R

d

consisting of cells

fC

n

(x

n

i

)g with the nuclei fx

n

i

g. An aggregate cell of level one, C

1

0

(x

0

i

), is the result of

merging the cells of �

1

whose nuclei lie in C

0

(x

0

i

). An aggregate tessellation �

n

0

consists

of the aggregate cells of level n, C

n

0

(x

0

i

), de�ned recursively by merging those cells of �

n

whose nuclei lie in C

n�1

(x

0

i

).

We �nd an expression for the probability for a point to belong to a typical aggregate

cell, and obtain bounds for the rate of its expansion. We give necessary conditions for the

limit tessellation to exist as n!1 and provide upper bounds for the Hausdor� dimension

of its fractal boundary and for the spherical contact distribution function in the case of

Poisson-Voronoi tessellations f�

n

g.

Edited by Gunter D�oge
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