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Whereas the topic of preconditioning for the iterative solution of linear systems has been

an important research area for already more than 20 years, it has still not reached the same

attraction for eigenvalue problems. Recently, however, the research on preconditioning for

eigenvalue problems has become very active. This is mainly due to an increased interest

in preconditioning techniques in application areas such as:

� dynamics of electromagnetic �elds;

� electronic structure calculations;

� band structure calculations in photonic crystals;

� vibrations and buckling in mechanics, structural dynamics;

� neutron 
ow simulations in nuclear reactors.

In these areas eigenvalue problems for partial di�erential operators are to be solved. Clas-

sical multigrid methods, as designed for the solution of the corresponding boundary value

problems, can be used as preconditioners. Preconditioned eigensolvers result in conceptu-

ally simple, easy{to{implement and computationally cheap schemes, as grid{independent

convergence transfers to the multigrid{preconditioned eigensolvers.

The investigation of \Preconditioning for eigenvalue problems" (convergence acceleration

for iterative eigenvalue methods is probably a better term) involves research in several

di�erent areas, ranging from classical linear algebra to modern numerical treatment of

partial di�erential equations.

Advances in the theory of preconditioned eigensolvers also stimulate research on some

nontrivial problems of operator theory, e.g., the ultimate understanding of preconditioned

iterative methods will most likely have to be based on a theory of polynomials of two

noncommuting operators, which is presently not available.

Major new developments in this area, which have taken place in recent years include the

following:

� sharp nonasymptotic convergence estimates for the preconditioned gradient method

were obtained;
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� inexact Jacobi-Davidson techniques were developed that allow adaptation of the clas-

sical shift-and-invert methods, e.g., Rayleigh quotient iterations, to the use of precon-

ditioning;

� the Davidson method, popular in quantum chemistry, was analyzed in the general

framework of preconditioned eigensolvers;

� multigrid, domain decomposition and incomplete factorization based preconditioning

was developed for eigenproblems.

The main topic of the workshop was the exchange of new ideas concerning several ap-

proaches to the analysis of \preconditioned eigensolvers" and their further development.

Part of the meeting was dedicated to preconditioned eigensolvers for mesh discretiza-

tions of eigenproblems for self-adjoint and coercive elliptic partial di�erential operators.

Recent results show that these eigenproblems can be solved with optimal complexity by

using multigrid/multilevel preconditioners as developed for the solution of boundary value

problems. As a topic of special interest a preconditioned conjugate-gradient-like method

for symmetric eigenvalue problems has been discussed. Though hard theoretical problems

remain to be solved, stimulating debates on these solvers emerged in several sessions.

As preconditioning for eigenproblems is not restricted to symmetric positive de�nite

problems, further sessions were devoted to preconditioning strategies, to the convergence

analysis, to eigenvalue cluster robustness, and last, but not least, to the convergence ac-

celeration for eigensolvers applied to quadratic eigenproblems.

Most talks were followed by extensive discussions, which were in some cases extended to

evening sessions. In general, the given talks re
ected that major new developments have

taken place in recent years. The workshop has given us the chance to indicate new and

fruitful directions, to present the state of the art in the area, and to exchange ideas and

approaches for further development. Some joint projects have emerged at the workshop -

not only on the (convergence) theory of preconditioned eigensolvers, but also on algorithmic

improvements in application areas.

To summarize, the workshop con�rmed that \preconditioning for eigenproblems" is a

rapidly growing area with a considerable impact on several challenging applications.
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Abstracts

E�cient computation of eigenpairs of a quadratic operator eigenvalue problem

Thomas Apel

The stress distribution at the top of a polyhedral corner or at a crack tip has the typical

r

�

-singularity. Mathematically, the exponent � is an eigenvalue of a quadratic operator

eigenvalue problem. The �nite element method is su�ciently 
exible to solve the problem

numerically, such that also anisotropic or composite materials can be treated.

Optimal approximation results were derived in [2] on the basis of new local interpolation

error estimates. Locally graded meshes were used to treat the corner singularities in the

eigenfunctions.

By the �nite element approximation, the operator eigenvalue problem is transformed

into a quadratic matrix eigenvalue problem. In [1], we suggested to solve this problem

with the Skew-Hamiltonian Implicitly Restarted Arnoldi method. Numerical experiments

are documented at the end of the talk.

References:

[1] Th. Apel, V. Mehrmann, D. Watkins: Structured eigenvalue methods for the compu-

tation of corner singularities in 3D anisotropic elastic structures. Preprint SFB393/01-25,

TU Chemnitz, 2001.

[2] Th. Apel, A.-M. S�andig, S. I. Solov'ev: Computation of 3D vertex singularities for

linear elasticity: Error estimates for a �nite element method on graded meshes. Preprint

SFB393/01-33, TU Chemnitz, 2001.

Numerical Methods for spectral problems in energy spaces on composed

manifolds

Eugene G. D'yakonov

A review of recently obtained results for special types of spectral problems in energy spaces

is given (see [1{7] and references therein).

The energy spaces are special Hilbert spaces and can be regarded as generalizations of

classical Sobolev spaces H

1

(
); they deal not with a domain 
 � R

d

but with a compact

set (multistructure) X � [

k

�

k=1

�

Q

k

� R

d

consisting of blocks (substructures) of di�erent

dimensionality.

The problems under consideration are reduced to ones in the operator form Mu = sLu

with L = L

�

� I and a symmetric and compact operator M > 0; for such problems, the

classical Hilbert-Schmidt theorem applies.

Concerning the approximation properties of the energy spaces by spline (�nite element)

subspaces, it is possible to prove that they are essentially the same as those of Sobolev

spaces. Moreover, the analogy takes place even in constructing Rayleigh-Ritz approxima-

tions and e�cient iterative methods for the arising algebraic problems Mu = sLu in an

Euclidean space H with very large dimH � N ; s

1

� s

2

� � � � � s

N

; we are interested

in �nding, say p << N , of the �rst eigenvalues s

1

� s

2

� � � � � s

p

and corresponding

subspaces.

Construction of model operators (preconditioners) B is discussed with special attention

to the case when the grid operators L and B are spectrally equivalent uniformly with

respect to several important parameters. Model operators make use of multigrid splittings

of the spline space with proper estimation of the angles between subspaces.

3



Natural generalizations of the well-known preconditioned subspace iterations (forMu =

sLu) are described; they yield the Rayleigh-Ritz approximations (s

(n)

1

� � � � � s

(n)

p

and

the corresponding p-dimensional subspace S

(n)

p

with a basis u

(n)

i

; i 2 [1; p]) in an iteration

subspace H

(n)

� H (dimH

(n)

2 [p; 3p� 1]). The new iteration subspace H

(n+1)

contains

S

(n)

p

, the modi�ed residual vectors w

(n)

i

� B

�1

r

(n)

i

; i = 1; : : : ; p and p � 1 vectors z

(n)

i

�

B

�1

Lu

(n)

i

; i = 1; : : : ; p � 1 (dimH

(n+1)

2 [p; 3p � 1], dimH

(n+1)

2 [p; 2p] if B = L).

. Monotonic convergence of all s

(n)

i

; i � p; n ! 1 takes place with estimates of the

best known type in theory of preconditioned subspace iterations in the case of in�nite

precision computations. Some estimates dealing with �nite precision computations are

obtained. The iterations are very attractive from the point of view of parallel computations

in situations when solving of given systems with the chosen preconditioner B can be done

e�ectively on separate processors.
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[1] E. G. D'yakonov.Optimization in Solving Elliptic Problems. Boca Raton: CRC Press,
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[2] E. G. D'yakonov. On the Dirichlet boundary condition in spectral problems for grid

elliptic operators, Moscow Univ., Computational Mathematics and Cybernetics, 1997, N.

4, P. 16{22.

[3] E. G. D'yakonov. The Bakhvalov-Kolmogorov principle and asymptotically optimal

algorithms for stationary problems in weakened Sobolev spaces. Doklady Mathematics,

1999, Vol. 60, P. 363{366.

[4] E. G. D'yakonov. The limit subdomain decomposition of some spectral problems in

strengthened Sobolev spaces. Di�erential Equations, 2000, Vol. 36, N 7, P.874{883.

[5] E. G. D'yakonov. Strengthened and weakened energy spaces and their applications.

Journal of Computational, Civil and Structural Engineering. 2000, Vol. 1, N. 1, P. 42{63.

[6] E. G. D'yakonov. Elliptic problems with large jumps in coe�cients and asymptoti-

cally optimal algorithms for their approximate solution. Computational Mathematics and

Cybernetics, 2000, N.1, P. 1-12.
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Preconditioning for large scale eigenvalue problems in electronic structure

calculations

Jean-Luc Fattebert

Ab initio electronic structure calculations in Density Functional Theory require the solution

of an eigenvalue problem with a nonlinear operator at every step of the molecular dynamics

process. The large number of eigenfunctions required in large scale applications is a major

computational di�culty.

Iterative eigensolvers based on block inexact inverse iterations, using multigrid precon-

ditioning, appear to be quite e�cient in the context of �nite di�erence discretizations.

This method, also called preconditioned block steepest descent, can be used to search for

the eigensubspace of the electronic wavefunctions represented by a basis of non-orthogonal

functions. In this case, the scaling of the algorithm can be improved by limiting the

spread of these functions to localized regions. Numerical results on large physical systems

illustrate the e�ciency and limits of the method.
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The mystery of fast convergence of the locally optimal block PCG eigensolver

Andrew Knyazev

Numerical solution of extremely large and ill conditioned eigenvalue problems is attracting

a growing attention recently as such problems are of major importance in applications.

They arise typically as discretization of continuous models described by systems of par-

tial di�erential equations. For such problems, preconditioned matrix-free eigensolvers are

especially e�ective as the sti�ness and the mass matrices do not need to be assembled,

but instead can be only accessed through functions of the corresponding vector-matrix

products.

While the mainstream research in the area introduces preconditioning in eigenvalue

solvers using preconditioned inner iterations for solving linear systems with shift-and-

invert matrices, our approach is to incorporate preconditioning directly into Krylov-based

iterations. This results in simple, robust, and e�cient algorithms, in many preliminary

numerical comparisons superior to inner-outer schemes commonly used at present, e.g., to

the celebrated inexact Jacobi-Davidson methods.

Searching for the optimal eigensolver, we describe the Locally Optimal Block Precondi-

tioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems, based

on a local Rayleigh-Ritz optimization of a three-term recurrence. LOBPCG can be viewed

as a nonlinear conjugate gradient method of minimization of the Rayleigh quotient, which

takes advantage of the optimality of the Rayleigh-Ritz procedure.

Numerical results establish that our LOBPCG method may practically be as e�cient as

the best possible algorithm on the whole class of preconditioned eigensolvers. We discuss

several competitors, namely, some inner-outer iterative preconditioned eigensolvers. Direct

numerical comparisons with two of them, the inexact Jacobi-Davidson methods JDCG and

JDQR, show that our LOBPCG method is faster. A rigorous theoretical explanation of

excellent convergence of the LOBPCG remains challenging and needs innovative mathe-

matical ideas. The best presently known theoretical convergence rate estimate is proved

in 2001 in an extensive four-parts paper, but it still does not capture some important

convergence properties of the LOBPCG.

A MATLAB code of the LOBPCG method and the Preconditioned Eigensolvers Bench-

marking are available at http://www-math.cudenver.edu/ aknyazev/software/CG/

The talk is partially based on the papers:

[1] A.V. Knyazev, "Toward the Optimal Preconditioned Eigensolver: Locally Optimal

Block Preconditioned Conjugate Gradient Method." SIAM Journal on Scienti�c Comput-

ing 23 (2001), no. 2, pp. 517-541.

[2] Andrew Knyazev and Klaus Neymeyr, " A geometric theory for preconditioned inverse

iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems."

To appear in Linear Algebra and Its Applications, 2002.

[3] Andrew Knyazev and Klaus Neymeyr, " E�cient solution of symmetric eigenvalue

problems using multigrid preconditioners in the locally optimal block conjugate gradient

method." To appear in Copper Mountain Multigrid issue of ETNA, 2002.
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The inexact rational Krylov space method for large nonlinear eigenvalue

problems

Karl Meerbergen

Applications in chemistry and engineering sometimes give rise to large scale (usually sparse)

eigenvalue problems. The most popular method for solving Hermitian problems in engi-

neering is probably the spectral transformation Lanczos method. In this talk, we will

discuss three di�erent aspects of the method.

First, the method computes the eigenvalues near a point, called the pole, fairly easily.

When a relatively large number of eigenvalues is wanted, it is desirable to alter the pole.

changing poles, however, may lead to a loss of e�ciency in the method. We suggest and

discuss the use of the rational Krylov (Lanczos) method instead, which is more e�cient in

this situation.

Second, the method requires the solution of linear systems. Usually direct methods are

employed, but iterative methods are considered as well. The Lanczos method requires

linear systems to be solved fairly accurately. This is not necessarily the case with the

rational Krylov method. We discuss how the Cayley transform can be used to make the

use of iterative linear system solvers more e�ective.

Finally, we consider the case where the Lanczos method uses a semi-inner product.

Rounding errors may turn this into an inde�nite inner product which may lead to break-

down of the method. We propose the combination of the pseudo-Lanczos method and an

implicit restart using nested Lanczos to reduce the instabilities that may arise.

On a \Schur" form for quadratic matrix polynomials

Christian Mehl

Quadratic matrix polynomials appear in the context of the quadratic eigenvalue problem.

In this talk, we discuss an approach that can be considered as a �rst step towards a Schur-

like form for quadratic matrix polynomials. A step-wise algorithm that computes this form

will be presented. However, this algorithm involves nonunitary similarity transformations

and requires the solution of a system of nonlinear equations in each step.

`Preconditioning' for variable parameter structured quadratic eigenvalue

problems

Volker Mehrmann

Numerical methods for the solution of large scale structured quadratic eigenvalue prob-

lems that depend on a parameter are discussed. To determine a desired small number

of eigenvalues in the interior of the spectrum and the associated eigenvectors or invariant

subspaces, `preconditioning' tasks, such as structure preserving spectral transformations,

have been performed to achieve reasonably good convergence to physically meaningful

results. We describe the use of the structure preserving Skew-Hamiltonian isotropic im-

plicitly restarted Arnoldi method (SHIRA) together with a new extraction procedure for

invariant subspaces as `preconditioner' for the Jacobi-Davidson method.

As an application we discuss gyroscopic systems. An approach is presented, that �rst

solves the eigenvalue problem for the undamped system using the structure preserving

method followed by the quadratic Jacobi-Davidson as a correction iteration.
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Preconditioning in eigenvalue computations

Klaus Neymeyr

In this introductory talk we start with a critical discussion of several ideas motivating the

concept of preconditioning for eigenvalue problems. Mainly eigenvalue problems for mesh

discretizations of coercive, self-adjoint and elliptic di�erential operators are considered,

for which multigrid/level and domain decomposition preconditioners are available. New

convergence estimates for a basic preconditioned eigensolver are presented. A theoretical

framework for a larger class of preconditioned eigensolvers is suggested, which can serve

as a basis for the analysis of preconditioned eigensolvers for more general eigenproblems.

Finally, several open problems are pointed out. As a topic of special importance for

our workshop some links are worked out between preconditioning for symmetric positive

de�nite eigenproblems and those for nonsymmetric matrices.

Convergence of inexact Rayleigh quotient iterations and of the

Jacobi-Davidson method

Yvan Notay

We consider the computation of the smallest eigenvalue and associated eigenvector of a

an Hermitian positive de�nite pencil.

Rayleigh quotient iterations (RQI) are known to converge cubically and we �rst analyze

how this convergence is a�ected when the arising linear systems are solved only approxi-

mately. We obtain an upper bound on the convergence factor which we show to be sharp

for a wide set of error vectors, indicating that the analysis takes properly the errors into

account.

We next consider the Jacobi-Davidson method. It acts as an inexact RQI method in

which the use of iterative solvers is made easier because the arising linear systems involve

a projected matrix that is better conditioned than the shifted matrix arising in classical

RQI. We show that our general convergence result straightforwardly applies in this context

and permits to trace the convergence of the eigenpair in function of the number of inner

iterations performed at each step. We also establish a relation between the residual norm

reduction during the course of inner iterations and the norm of the residual associated to

the next approximate eigenpair. From a practical point of view, this allows to set up a

proper stopping strategy, exiting precisely at the moment where further progress would be

useless with respect to the convergence of the outer process. beginitemize

References:

[1] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial

symmetric eigenproblem, Numer. Lin. Alg. Appl., 9 (2002), pp. 21{44.

[2] Y. Notay, Convergence analysis of inexact Rayleigh quotient iterations, Tech. Rep.

GANMN 01{02, Universit�e Libre de Bruxelles, Brussels, Belgium, 2001.

http://homepages.ulb.ac.be/~ynotay/.
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Cluster Robustness of Preconditioned Gradient Subspace Iteration

Eigensolvers

Evgueni Ovtchinnikov

The role of preconditioning in iterative methods is to accelerate the convergence of itera-

tions without increasing considerably the computational cost per iteration. In the case of

parameter-dependent problems preconditioning often serves as an antidote to the negative

in
uence of certain parameters, such as the mesh size parameter of a discretized problem.

Nowadays, various preconditioning techniques are available which make the convergence

of iterative methods for solving linear systems, such as the steepest descent or conjugate

gradient methods, robust with respect to the parameters of the problem, i.e. una�ected

by those parameters in their whole range of legitimate values. The case of eigenvalue

problems is somewhat more di�cult, as the convergence of respective iterative methods

(often referred to as eigensolvers) generally depends on the distances between consecutive

eigenvalues, which, in turn, may depend on the parameters. For some methods, how-

ever, there appears to be no dependence on those distances. A familiar example is the

inverse subspace iteration method, for which convergence estimates are available that do

not involve distances between the computed eigenvalues. Hence one may conclude that

the inverse subspace iterations are cluster robust, i.e. their convergence is not adversely

a�ected by the presence of clustered (i.e. closely situated) eigenvalues. The same kind of

robustness so far has not been theoretically established for methods involving precondi-

tioning (referred to as preconditioned eigensolvers). The present talk uses a novel approach

of studying the convergence of groups of eigenvalues, rather than individual ones, to �ll

the above gap in the convergence theory of preconditioned eigensolvers. The main result is

new non-asymptotic convergence estimates for a class of methods combining the subspace

iteration technique with the preconditioned steepest descent (here referred to as precondi-

tioned gradient subspace iteration eigensolvers). The new estimates are cluster robust and,

furthermore, lead to the smallest proven upper estimates for the asymptotic convergence

factors for computed eigenvalues.

Real Symmetric Matrices with multiple Eigenvalues

Beresford Parlett

We describe "avoidance of crossing" and its explanation by von Neumann and Wigner.

We show Lax's criterion for degeneracy and discover matrices whose determinants give

the discriminant of a given matrix. This yields a simple proof of the bound given by

Ilyushechkin on the number of terms in the expansion of the discriminant as a sum of

squares. We present the 3� 3 case in detail.

Rational Krylov for nonlinear eigenvalues

Axel Ruhe

This is a rather intricate algorithm that I described in a volume dedicated to my academic

mother Vera Nikolaevna Kublanovskaya on the occasion of her 80 th birthday on September

21, 2000.

An eigenvalue problem that is nonlinear in the eigenvalue parameter is solved by succes-

sive linearizations with Lagrange interpolation. Each such generalized linear eigenproblem

is solved with a rational Krylov approach. An interesting di�erence, compared to linear
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eigenproblems, is that now both the numerator and the denominator of the rational func-

tion are of interest. The numerators are the matrix evaluated at a sequence of shifts which

are updated in each iteration step, in order to converge to the latent roots one by one.

When the shift is at a latent root, the solution of a standard eigenvalue problem gives the

corresponding latent vector. The denominators are chosen at poles and are changed much

more seldom, since each new pole needs a new matrix factorization.

I will describe the algorithm and give some examples from nonlinear mechanical sys-

tems. It has been implemented by Patrik Hager in his thesis in Structural Mechanics at

Chalmers.

Sylvester type preconditioner for eigenvalue computations

Miloud Sadkane

(joint work with M. Robb�e from Louvain-la-Neuve.)

We discuss an algorithm for approximating invariant subspaces of a large not necessarily

diagonalizable matrix A. The construction of the algorithm is rather simple. From a

rectangular matrix X, the idea is to augment the subspace SpanfX;AXg by a rectangular

matrix K(X) that, if computed exactly, it renders the space SpanfX+K(X)g invariant by

A. The matrix K(X) is constructed from a linearization of an algebraic Riccati equation,

i.e. a Sylvester equation, and can be seen as a block version of the the correction used

in the Jacobi-Davidson method. The approximation of the operator K may lead to a

convergence with quasi-quadratic rate. This is con�rmed by the numerical experiments

where K is constructed with multigrid techniques.

Preconditioners for Jacobi-Davidson

Gerard Sleijpen

We discuss approaches for an e�cient handling of the correction equation in the Jacobi-

Davidson method. The correction equation is e�ective in the space orthogonal to the

current eigenvector approximation. The operator in the correction equation is composed

from three factors that allow for a sparse representation. If the given matrix eigenproblem

is sparse then one often aims for the construction of a preconditioner for that matrix. We

discuss how to restrict this preconditioner e�ectively to the space orthogonal to the current

eigenvector.

In case of excellent preconditioners, the obvious approach may introduce instabilities

that may hamper convergence. For preconditioners of multilevel type, we show how such

instabilities can be avoided. We explain also that such preconditioners can e�ciently and

e�ectively be updated when better approximations to the eigenvalues of interest become

available. The approach also leads to good initial guesses for the eigenvectors.

We argue that explicit right preconditioning can have advantages when, for instance,

using domain decomposition.

In order to avoid misconvergence one has to make the right selection for the approxima-

tions, and this aspect is discussed as well.
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Fixed Polynomial Approximate Shift Invert Preconditioning for Large

Eigenvalue Problems

Sorensen

A technique is developed for approximating the shift invert spectral transformation with

a �xed degree polynomial operator. A given preconditioner for an iterative linear solver

is used to construct the transformation in an automatic way. The �xed polynomial is

obtained by applying the iterative method (e.g. GMRES, BiCGstab, or QMR) to a single

linear system solved to a speci�ed accuracy and then taking the (preconditioned) matrix

polynomial de�ned by the solver as an approximate inverse.

The advantage of such a scheme is that the resulting polynomial operator is �xed

throughout. Thus, the Krylov theory is retained without requiring the highly accurate

solves that would be needed if an iterative solve were to be performed anew at each step

to approximate the shift invert spectral transformation. Initial experiments indicate that

a fairly low degree polynomial approximation will often su�ce. Experimental results indi-

cate that the degree will depend on the quality of the initial linear system preconditioner.

If the quality of the linear system preconditioner is independent of dimension, then the

number of matrix-vector products required to solve a problem will remain nearly constant

as the dimension increases. Thus, in some cases, linear scaling may be achieved.

One of the primary motivations for this approach is to extend the range of problems

that a given Krylov method might be able to solve (such as the implicitly restarted Arnoldi

method in ARPACK). The e�ectiveness of this approach to Preconditioning for eigenvalue

problems was demonstrated using ARPACK to solve a large 2-D Laplacian and also to

conduct a linear stability analysis for an ocean circulation model. The latter was a fairly

di�cult nonsymmetric problem and a simple ILU preconditioner was su�cient to obtain

near linear scaling with this problem.

Structure-Preserving Spectral Transformations

of Hamiltonian Eigenvalue Problems

David S. Watkins

The study of singularities in stress �elds of anisotropic elastic structures leads to large

Hamiltonian eigenvalue problems. In the interest of e�ciency and stability, such problems

should be solved by methods that exploit either the Hamiltonian structure itself or some

related structure. On the other hand, it is often necessary to apply a spectral transfor-

mation to expose the eigenvalues of interest. Any such transformation should respect the

structure. In this talk a variety of spectral transformations that transform the problem to

either a symplectic, a skew-Hamiltonian, or a Hamiltonian form are discussed. For each of

these structures, implicitly-restarted Krylov subspace methods that exploit the structure

are developed.

Edited by Klaus Neymeyr
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