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1. Overview

This Mini-Workshop was organized by A. Suciu (Boston) and S. Yuzvinsky (Eugene).

While continuing a sequence of conferences and workshops on arrangements in recent years,

it was the �rst meeting, ever, devoted entirely to cohomology jumping loci.

The main focus was on the varieties of jumping loci for cohomology with coe�cients in

rank one local systems, and the related resonance varieties, arising from complex hyper-

plane arrangements. These varieties have emerged as central objects of study, providing

deep and varied information about the topology of the complement of an arrangement.

Given the multifaceted nature of the topic, the meeting brought together people with

a variety of backgrounds, including algebra, topology, discrete geometry, and singularity

theory. Almost half the participants were recent Ph.D.'s, most of them on their �rst

visit to Oberwolfach. In addition to experts and young people in the �eld, there were

several participants with complementary expertise. In all, there were 13 people attending

the workshop (including the organizers), coming from the United States, Canada, France,

Japan, Spain, Sweden, and Switzerland. The lively atmosphere and the free-
ow of ideas

led to signi�cant progress in solving long-standing open problems, and to fruitful insights

on how to attack new problems.

2. Characteristic and Resonance Varieties

IfM is the complement of an arrangement of n hyperplanes, then the fundamental group

G = �

1

(M) has abelianization H

1

(G)

�

=

Z

n

, and the representation variety of G is the

algebraic torus Hom(G; C

�

)

�

=

(C

�

)

n

. The jumping loci for k-dimensional cohomology|

also known as the characteristic varieties|are the subvarieties

V

k

d

= ft 2 (C

�

)

n

j dim

C

H

k

(M; C

t

) � dg; d � 1:

The irreducible components of V

k

d

are subtori of the character torus, possibly translated by

roots of unity. Counting certain torsion points on the character torus, according to their

depth with respect to the strati�cation by the characteristic varieties, yields information

about the homology of �nite abelian covers of the complement, and the homology of the

Milnor �ber.

Closely related to the characteristic varieties are the resonance varieties, which arise

from the theory of graded modules over an exterior algebra E (over the �eld C ). There
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the action of an element a 2 E

1

converts an E-module A into a cochain complex. The

cohomology of this complex serves as a measure of the non-regularity of a. The resonance

varieties of the module A are the jumping loci for this cohomology:

R

k

d

= fa 2 E

1

j dim

C

H

k

(A; �a) � dg; d � 1:

If A = H

�

(M; C ) is the cohomology ring of the complement of an arrangement (the so-

called Orlik-Solomon algebra), the resonance varieties are linear approximations of the

characteristic varieties, and a purely combinatorial description of R

1

d

is known. This de-

scription is useful in studying the free resolution of A over E, as well as the lower central

series quotients of G and G=G

00

. Understanding the cohomology jumping loci V

k

d

and

R

k

d

in dimensions k > 1, as well as the cohomology jumping loci over �elds of positive

characteristic, are some of the most challenging problems in this area.

Another challenging problem is that of distinguishing the homotopy types of comple-

ments of hyperplane arrangements that are combinatorially equivalent. Since the comple-

ments are formal, rational homotopy theory cannot pick up such a di�erence. On the other

hand, there is an example (not yet well-understood), that suggests Massey products over

Z

p

may detect such homotopy types. Higher-order resonance varieties, de�ned by means

of certain Massey products, should prove useful in solving such problems.

3. Format of the Mini-Workshop

The Mini-Workshop at Oberwolfach provided a lively forum for discussing a host of

questions related to the structure and applications of cohomology jumping loci. The day-

by-day schedule was kept very 
exible, and was agreed upon on short notice, making it

possible to shape the program on-site, and in response to the interests expressed by the

participants. The borderlines between problem sessions and formal lectures were often

blurred, and almost no time constraints were imposed on the speakers. Some lectures

ran up to two hours or came in several parts, while others were informal twenty-minute

discussions of an open problem|a format which proved to be very popular with both the

speakers and the audience.

Spending a concentrated and highly intense week in a relatively small group allowed

for in-depth and continuing conversations, in particular with new acquaintances. These

opportunities (di�cult to �nd at larger meetings) were enhanced by the diversity of back-

grounds of the participants. This speaks to the fact that the usual, more rigid conference

climate was superseded by an open and creative workshop atmosphere.

There was general agreement that the Mini-Workshop created an e�ective and stimu-

lating research atmosphere. Many people expressed the sentiment that this was the most

useful and pleasant meeting they ever attended.

During the week of the workshop, marked progress was made in solving old and new

problems, both directly and indirectly related to cohomology jumping loci. The work initi-

ated at Oberwolfach is continuing now in several research groups. The intense interactions

at the meeting gave rise to new projects, which should start bearing fruit soon.

A record of the activities of the Oberwolfach Mini-Workshop on Cohomology Jumping

Loci is included below. This record consists of abstracts of some of the more formal talks, as

well as summaries of several of the less formal problem sessions. A web-based version of the

Problem Sessions is being made available at http://www.matematik.su.se/events/cjl2002.
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4. Abstracts of Talks

Essential Coordinate Components

Jos

�

e Ignacio Cogolludo-Agust

�

�n

Consider C a plane a�ne curve with r irreducible components. Denote by X its comple-

ment in C

2

. Consider its characteristic variety, V

1

(C), as a union of translated subtori

of Spec(C [H

1

(X;Z)]). For a distinguished basis of H

1

(X;Z) given by meridians of each

component, it makes sense to distinguish coordinate and non-coordinate components of

V

1

(C).

The existence of coordinate components might be due to the existence of components of

characteristic varieties of subarrangements of C. Such components are called non-essential.

In addition, there might be certain coordinate components that don't appear in any sub-

arrangement of C. Such components are called essential coordinate components. Their

existence is unknown for line arrangements.

We present an example of two rational arrangements with the same number and type

of singularities but non-homeomorphic complements. The obstruction is given by the

existence of essential coordinate components in one arrangement that is lacking in the other.

Such an example seems to correlate essential coordinate components with the position of

singularities.

Triples of arrangements and local systems

Characteristic varieties and links at in�nity

Daniel C. Cohen

We discuss several topics relating to the question of determining the extent to which

the characteristic varieties of the complement of a complex hyperplane arrangement are

determined by combinatorial data.

First, we extend a well known result relating the constant coe�cient cohomology of

the complements of arrangements in a deletion-restriction triple to certain nontrivial local

coe�cient systems. This extension is used to produce in�nite families fA

r

g of arrangements

whose �rst characteristic varieties V

1

1

(A

r

) have components translated by characters of

order r, and a combinatorial explanation of the existence of these translated components.

Next, we relate the characteristic varieties of a central arrangement A to those of the

links at in�nity of various decones of A. The resulting \virtual characteristic varieties"

W

1

d

(A) provide combinatorial \upper bounds" for the characteristic varieties: There is a

containment V

1

d

(A) � W

1

d

(A). This puts combinatorial constraints on which translated

subtori of the character torus can arise as components of V

1

d

(A).

Alexander Invariants and Monodromy of Polynomial Functions

Alexandru Dimca

Let X be an a�ne complex hypersurface given by a polynomial equation f = 0 in the

a�ne space C

n

. The Alexander invariants of X describe the topology of the complement

C

n

nX. I will discuss relations between these invariants and the monodromy associated to

the function f : C

n

! C , based on joint work with A. N�emethi.

3



Resonance varieties in positive characteristic

Michael Falk

Using a combinatorial characterization of resonant pairs of weights, we are able to give

a precise description of the resonance variety R

d

(A; K ), for any su�ciently large, e.g.,

algebraically closed �eld K . In particular, we con�rm the conjecture that irreducible com-

ponents of R

d

(A; K ) are linear.

Components ofR

d

(A; K ) are determined by neighbourly partitions ofA. Such a partition

� determines a subspace P

k

of P

n

, and a rational mapping P

k

! P

n

1

� � � � � P

n

k

, given

by the collection of projections corresponding to the blocks of �. The variety of poles of

this mapping is a union of linear spaces. Each component C of the pole variety consists

entirely of weights of �xed depth, determined by the codimension of the component, in the

resonance variety, and a component of R

d

(A; K ) is a trivial bundle over C with �ber equal

to the annihilator of a generic weight on C.

Free resolutions and resonance varieties

Henry K. Schenck

Let X be the complement of a hyperplane arrangement. Components of the cohomology

jump loci of the cohomology ring E=I of X give rise to linear �rst syzygies in the resolution

of E=I over E. The number of linear �rst syzygies,

dim

k

Tor

E

2

(E=I; k)

3

;

is also the rank of the third lower central series quotient �

3

. Passing to the initial ideal

of I, results of Aramova, Herzog, and Hibi on the exterior Stanley-Reisner ring give very

good bounds on �

3

.

Torsion in the homology of the Milnor �ber of a multi-arrangement

Alexander I. Suciu

In a recent paper with Daniel Matei (IMRN 2002:9), we give a formula that computes the

mod q �rst Betti number of a �nite abelian cover,

^

X, of a �nite CW-complex X, directly

from the strati�cation of the character variety Hom(�

1

(X); K

�

) by the cohomology jumping

loci V

1

d

(X; K ), provided the �eld K is su�ciently large, and q = char K does not divide the

order of the cover. If the variety V

1

1

(X; C ) contains a subtorus, translated by a q-th root

of unity, then this formula can be used to detect q-torsion in H

1

(

^

X;Z).

Using this method, we give an example of a multi-arrangement A (obtained by deleting

a plane from the re
ection B

3

arrangement, and taking the remaining planes with suitable

multiplicities), for which the Milnor �ber F (A) has 2-torsion in �rst homology.

It remains an open question whether a bona-�de hyperplane arrangement A can have

torsion in the homology of its Milnor �ber, or whether the Betti numbers b

i

(F (A))|let

alone the integral homology groups H

i

(F (A);Z)|are combinatorially determined. For

more on this last question, see the next talk.
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Virtual jumping loci

Alexander I. Suciu

The characteristic varieties of a complex hyperplane arrangement, A, consist of torsion-

translated subtori of the character torus, (C

�

)

jAj

. The components of V

1

d

(A) passing

through the origin admit a combinatorial interpretation, in terms of the intersection lattice.

No such interpretation is known for the other components, except in some special cases.

As a step towards a better understanding of the translated tori in the jumping loci, we

introduce the virtual characteristic varieties of an arrangement, W

1

d

(A). These varieties

are closely related (though in general not equal) to V

1

d

(A). They are unions of a�ne

subgroups of the character torus, of the form W

1

d

(A) =

S

�

i

� T

i

, where T

i

are subtori of

(C

�

)

jAj

and �

i

are �nite (abelian) subgroups.

From the intersection lattice, we may easily compute the invariant factors of the trans-

lation groups �

i

, thereby obtaining certain a priori information about the possible orders

of translation of the components of V

1

d

(A). This information has practical uses in the de-

tection of translated tori in V

1

d

(A), and may provide clues as to whether such components

are combinatorially determined.

The Poincar�e series of the coordinate ring of the complement of a hyperplane

arrangement

Hiroaki Terao

(joint work with Hiroki Horiuchi)

Let � be a �nite set of nonzero linear forms in several variables with coe�cients in a

�eld K of characteristic zero. Consider the K-algebra R(�) of rational functions on V

which are regular outside

S

�2�

ker�. It is the coordinate ring of the complement of the

hyperplane arrangement. Then the ring R(�) is naturally doubly �ltered by the degrees

of denominators and of numerators.

An explicit combinatorial formula for the Poincar�e series in two variables of the associ-

ated bigraded vector space R(�) is given. The details are posted at math.CO/0202296.
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5. Problem Sessions

Does Resonance Propagate?

Daniel C. Cohen

Let A be an arrangement of hyperplanes in C

`

, with complement M , and let L be a

(complex rank one) local system on M . Assume that A contains ` linearly independent

hyperplanes.

For a generic or \nonresonant" local system L, the local coe�cient Betti numbers

b

p

(M ;L) = dim

C

H

p

(M ;L) are minimal. Explicitly, b

p

(M ;L) = 0 for p 6= ` and b

`

(M ;L) =

j�(M)j, where �(M) is the Euler characteristic.

Suppose L is a resonant local system, and that p 6= ` is minimal so that b

p

(M ;L) 6= 0.

Question. Does resonance propagate? If p < ` is minimal so that b

p

(M ;L) 6= 0, is it the

case that b

q

(M ;L) 6= 0 for p � q � `� 1 and b

`

(M ;L) > j�(M)j?

Discussion. If b

0

(M ;L) 6= 0, then the rank one local system L is trivial, and the answer

to the above question is yes.

If p = `�1 is minimal so that b

p

(M ;L) 6= 0, then an Euler characteristic argument shows

that b

`

(M ;L) = j�(M)j + b

`�1

(M ;L) > j�(M)j. So the answer to the above question is

yes in this instance as well.

If p = `�2 is minimal so that b

p

(M ;L) 6= 0, let S be a (`�1)-dimensional a�ne subspace

in C

`

that is transverse to A. Then one can show (for instance, using strati�ed Morse

theory) that the inclusion S\M !M induces an isomorphism H

i

(M ;L)! H

i

(S\M ;L)

for i � `� 2, and that there is a short exact sequence

0! H

`�1

(M ;L)! H

`�1

(S \M ;L)! H

`

(M;S \M ;L)! H

`

(M ;L)! 0:

By an Euler characteristic argument as above, we have b

`�1

(S\M ;L) > j�(S\M)j. Using

this, together with the above exact sequence, one can show that b

`�1

(M ;L) 6= 0.

More generally, one can similarly show that if b

p

(M ;L) 6= 0 for some p � ` � 2, then

b

p+1

(M ;L) 6= 0. Thus, resonance does propagate, at least to some extent.

A 30-line Hessian-like �bered K(�; 1) arrangement

Michael Falk

Suppose A is a projective line arrangement that supports resonant weights. Then,

according to Libgober and Yuzvinsky, following Arapura, there is a pencil of degree d

plane curves that includes

S

A in the union of its singular �bers. If

S

A exhausts the

union of singular �bers,, then the pencil de�nes a �bration of the complement of A by

punctured surfaces, hence A is a K(�; 1) arrangement. The converse is also true: if

S

A

consists of singular degree d curves which lie in a pencil, then A supports resonant weights.

The correspondence between resonant weights and pencils is very explicit; each can be

computed from the other.

Such �bered K(�; 1) arrangements are few and far between: at this point there are three

in�nite families and one sporadic example known. The sporadic example is the Hessian

arrangement, which consists of four singular �bers in a pencil of cubic curves, each of which

consists of three lines in general position. This is the only example with more than three

singular �bers.
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The structure of such a pencil is governed by the Hurwitz formula, relating the degree d

to the Euler characteristics of the singular curves. The formula allows for the existence of a

pencil of degree six curves, with precisely �ve singular �bers, each of which is a union of six

lines in general position. The union of the singular �bers thus forms a K(�; 1) arrangement

of 30 lines, partitioned into �ve blocks of six lines each. There are 36 base points each of

multiplicity �ve in A, and 5 � 15 = 75 points of multiplicity two in A. The problem is to

�nd such an arrangement.

Zeta functions of Orlik-Solomon algebras

Alexander I. Suciu

Let A be an algebra over Z, with underlying group free abelian, of �nite rank. Grunewald,

Segal, and Smith de�ned the zeta function of A as

�

A

(s) =

1

X

k=1

a

k

(A)k

�s

;

where a

k

(A) is the number of index k subalgebras of A. Similarly, �

/

A

(s) =

P

1

k=1

a

/

k

(A)k

�s

,

where a

/

k

(A) is the number of index k ideals of A.

Now assume A = A

�

is a graded, graded-commutative, associative algebra, generated in

degree 1. Set �

�

A

(s) =

P

1

k=1

a

�

k

(A)k

�s

, where a

�

k

(A) is the number of index k subalgebras

of A, generated in degree 1.

Problem. Let A be a complex hyperplane arrangement, with complement M , and let

A = H

�

(M ;Z) be its Orlik-Solomon algebra. Compute the zeta functions �

A

(s), �

/

A

(s),

and �

�

A

(s) in terms of the intersection lattice of A.

An analogous, but easier problem can be stated for the truncated Orlik-Solomon algebra

A = A=A

�3

.

Conjecture. Let R

1

d

(A; F

p

) be the resonance varieties of A over the �eld F

p

. Then:

]fB

�

< A

�

j [A

1

: B

1

] = p; [A

2

: B

2

] = p

d

g =

](R

1

d

(A; F

p

) nR

1

d+1

(A; F

p

))

p� 1

:

This formula would compute the local zeta functions �

�

A;p

(s)|and thus, by Euler factor-

ization, the zeta function �

�

A

(s)|in terms of the resonance varieties of A (or A) in positive

characteristic. In turn, these varieties can be determined explicitly in terms of the inter-

section lattice, by work of M. Falk, announced at the Oberwolfach Mini-Workshop. Thus,

the Conjecture would solve the above Problem for the graded zeta function of A.
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Three problems on jumping loci and spectral sequences

Sergey Yuzvinsky

In a paper from 1995, the author introduced a spectral sequence converging to the coho-

mology of the Orlik-Solomon algebra and used it to show that this cohomology vanishes in

middle dimensions for a generic di�erential. This spectral sequence seems to be analogous

to the Leray spectral sequence for the embedding M ,! C

n

of the arrangement comple-

ment and a rank 1 local system L on M . The latter spectral sequence converges to the

cohomology of L and, as A. Dimca remarked, it can be used to prove the vanishing of this

cohomology for a generic L (a result due to T. Kohno).

This discussion justi�es the following three problems.

Problem 1: Relate the author's spectral sequence to the resonance varieties.

Problem 2: Relate the Leray spectral sequence to the characteristic varieties.

Problem 3: Relate the two types of varieties to each other using the above spectral

sequences.

Edited by Alexander I. Suciu
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