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Abstracts

Periodic cyclic homology of Iwahori-Hecke algebras and noncommutative

algebraic geometry

Paul F. Baum

Iwahori-Hecke algebras play a central rôle in the representation theory of (reductive)

p-adic groups. In order to apply noncommutative geometry to this representation theory

it is essential to calculate the periodic cyclic homology of these algebras. This calculation

has been done (using results of G. Lusztig) by P. Baum and V. Nistor. This talk explains

the calculation and indicates how it can be viewed as a result in noncommutative algebraic

geometry. Based on this, one is led to conjectures within the representation theory of

p-adic groups.

Gravity in Noncommutative Spaces

Ali H. Chamseddine

We review the construction of Riemannian noncommutative geometry from the spectral

triple data. This construction is applied to the noncommutative space de�ned as the

product of a Riemannian manifold times a two point space, and it is shown that this yields

the same action as that given by the Randal-Sundrum construction of a �ve dimensional

manifold with two branes corresponding to the �xed points of Z

2

discrete symmetry. The

construction of gravitational actions invariant under the star product are described brie
y.

Non-commutative spherical manifolds and elliptic functions

A. Connes

We discuss the notion of noncommutative manifold starting from the framework of spec-

tral triples. A spectral triple (A;H;D) is given by a von Neumann algebra A represented

in a Hilbert space H, and an unbounded self-adjoint operator D in H.

The "smoothness" of an element f of A is governed by the regularity of the function

exp(itjDj)f exp(�itjDj) of the real variable t, which plays the role of the geodesic 
ow.

The density of the subalgebra of smooth (resp. Lipschitz, resp. analytic) elements re
ects

the regularity of the triple.

The basic point is that the triple encodes both the K-homology fundamental class and the

metric.

The axioms of NC-manifolds were �rst written in the most conservative manner in order

to encode ordinary Riemannian spin manifolds, the NC-torus and the standard model.

I described my recent joint work with G. Landi and M. Dubois-Violette, in which the basic

equation of degree n ful�lled by n-dimensional spectral triples led to discover that any com-

pact Riemannian spin manifold whose isometry group has rank r � 2 admits iso-spectral

deformations to noncommutative geometries, ful�lling all the "conservative" axioms.

The new examples include the NC-4-spheres S

4

�

. The noncommutative algebras A of func-

tions on spherical manifolds are solutions to the vanishing, ch

j

(e) = 0 ; j < 2, of the Chern

character in the cyclic homology of A of an idempotent e 2 M

4

(A) ; e

2

= e ; e = e

�

. (of

a unitary in the odd case). We describe the noncommutative geometry of S

4

�

as given by

a spectral triple (A;H;D) and check all axioms of noncommutative manifolds. For any
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Riemannian metric g

��

on S

4

whose volume form

p

g d

4

x is the same as the one for the

round metric, the corresponding Dirac operator gives a solution to the quartic equation

< (e�1=2)[D; e]

4

>= 


5

where <> is the projection on the commutant of 4 by 4 matrices.

We show how to construct the Dirac operator D on the noncommutative 4-spheres S

4

�

so

that the previous equation continues to hold without any change. With Michel Dubois-

Violette we gave a complete classi�cation of noncommutative three-dimensional spherical

manifolds. The corresponding algebras are labelled by three real parameters. In the generic

case the corresponding R

4

are intimately related to the Sklyanin algebras. The analysis

of these NC-spaces and of their moduli space is intimately related to the theory of elliptic

functions in the sense of Jacobi and is work in progress with Michel.

Symplectic realizations

M. Crainic

(joint work with R.L. Fernandes)

Question: When does a Poisson manifold M admit a complete symplectic realization

(i.e. S =symplectic, � : S !M complete, Poisson, submersion) ?

This is a basic question in di�erential geometry. Symplectic realizations give the possi-

bility of unravelling intricacies speci�c to Poisson manifolds by moving up to symplectic

geometry. They go back to Lie's "function groups" (1890). We give the following answer.

Answer: That happens i� the monodromy groups N

x

� T

�

x

M of M are discrete, locally

uniform with respect to x 2M .

The "monodromy groups" N

x

are well understood conceptually (they re
ect the relation

between the topology of the symplectic leaves and the geometry of the isotropy Lie algebras

of M), and are also quite computable (precise algorithms e.g., if x =regular, N

x

=groups

of variations of symplectic areas.

Method of proof: use Lie algebroids, "contravariant di�erential geometry" and M.

Crainic, R.L. Fernandez. "Integrability of Lie brackets", Annals of Math., to appear.

Some examples of quantum principal bundles

L. Dabrowski

Few examples of noncommutative principal �bre bundles (Hopf-Galois extensions, coalgebra-

Galois extensions) will be presented, including quantum group coverings of the Lorentz

group (arising from the polynomial function algebra of SL

q

(2) at roots of unity q

n

= 1),

monopole bundles on S

2

q

and instanton bundles on S

4

q

, which are of interest for mathemat-

ical physics.
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The Baum-Connes conjecture for connected and p-adic groups

S. Echterhoff

(joint work with J. Chabert, R. Nest)

Using recent results of V. La�orgue on the Baum-Connes conjecture for reductive groups

we show that all connected groups and all linear algebraic Q

p

-groups satisfy the Baum-

Connes conjecture, i.e. the assembly map

� : K

top

�

(G)! K

�

(C

r

(G))

is an isomorphism for such groups.

Baum-Connes conjecture for Sp(n,1)

P. Julg

We prove the Baum-Connes conjecture with coe�cients in any C

�

-algebra

K

top

�

(G;A)! K

�

(Ao

red

G)

for G = Sp(n; 1), which is a rank one Lie group having property T . This is equivalent to

the fact the Kasparov's element 
 2 KK

G

(C ; C ) acts as identity on K

�

(Ao

red

G) though

not equal to one. The proof uses

1. a realization of 
 by hypoelliptic operators on the boundary sphere

2. a homotopy through uniformly bounded representations constructed by M. Cowling.

Rooted trees and e�ective acions

Thomas Krajewski

We describe a solution to the exact renormalization group equation based on the Hopf

algebra introduced by Connes and Kreimer. We �rst recall some basic properties of the

trees and interpret the characters of the Hopf algebra they generate as coe�cients of formal

power series of non-linear operators satisfying a natural identity

X

t

a

t

X

t

�

X

t

b

t

X

t

=

X

t

(b � a)

t

X

t

:

Then we apply this construction to the solution of the renormalization group equations

dx

dt

= Ax +X(x; t)

that describes the scale dependence of the e�ective action. Renormalization is then

interpreted as a change of boundary conditions and yields a factorization theorem. This is

therefore extended to Feynman diagrams which are considered as indices for formal power

series of operators acting on the space of e�ective actions. Finally, we mention the rôle of

this construction in the study of non-perturbative truncations of the exact renormalization

group.

4



Ideal Feynman graphs and Dyson-Schwinger equations

Dirk Kreimer

Dyson-Schwinger equations are the quantum equations of motions of a given QFT. Their

solution is a formal series of primitives, graphs which have no sub-divergencies in the ultra-

violet. This amounts to a complete factorization into these primitives. For the linearized

Dyson-Schwinger equations, this is a factorization with respect to the shu�e product, with

the generalization to the general partial order case being straightforward.

In gauge theories, one need identities between Feynman graphs to make the factorization

unique, these identities being provided by the Wand-Takahashi/Slaunov-Taylor identities.

Radiative corrections establish an identity between corrections to the Dirac operator which

clari�es its gauge-dependence in connection with the factorization into primitives.

The dual of quantum

f

SU(1; 1)

Johan Kustermans

(joint work with Erik Koelink)

In 1991, S.L. Woronowicz showed that quantum SU(1; 1) does not exist as a locally compact

quantum group. L.I. Korogodski explained in 1994 that one should focus on quantizing a

certain extension

f

SU(1; 1) of SU(1; 1) instead. Woronowicz picked up on this idea and con-

structed quantum

f

SU(1; 1) to a large extent, but was unable to prove the Co-associativity

of the coproduct completely.

In 2001, Erik Koelink and myself constructed quantum

f

SU(1; 1) as a full blown locally

compact quantum group, thereby relying on the theory of q-hypergeometric functions and

some of the ideas of Korogodski and Woronowicz

In the �rst half of this talk we explain how quantum

f

SU(1; 1) is constructed, thereby

indicating the relevance of q-special functions. In the second half of the talk we discuss

how to get a better picture of de dual of quantum SU(1; 1) by using the Casimir operator

and its spectral decomposition, that, again, is obtained by relying on techniques from de

theory of q-hypergeometric functions.

Deformation Quantization and the Baum-Connes conjecture

N.P.Landsman

Let a groupoid H be a bundle of groupoids over the interval I; this means that there

is a surjection p : H ! I such that p � r = p � s = p (where r and s are the range and

source projections of H). It follows that H =

`

~2I

H

~

, where each H

~

= p

�1

(~) is a sub-

groupoid of H. If H is a Lie groupoid one requires that p is a smooth submersion; if H is

etale, p should be continuous and open. In either case, one can form a �eld of C

�

-algebras

(A

~

)

~2I

, de�ned by a C

�

-algebra of sections A, by taking A = C

�

(H) and A

~

= C

�

(H

~

).

The key lemma, due to B. Ramazan, is that this �eld is continuous at all points ~ where H

~

is amenable. Examples include: 1) Weyl-Moyal quantization 2) C

�

-algebras of Lie groups

3) C

�

-algebras of Lie groupoids 4) Noncommutative tori 5) Noncommutative 4-spheres

(Connes and Landi) 6) The Baum-Connes conjecture for Lie groupoids

In Examples 1, 2, 3, and 6 the �elds are trivial away from ~ = 0, and therefore continuous,

despite the possible lack of amenability, whereas continuity at ~ = 0 follows from the above
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lemma. In examples 4 and 5 the �eld is not locally trivial anywhere, but all �bres are

amenable, so that continuity follows from the lemma as well.

On Connes's spectral interpretation of zeros of L-functions

Ralf Meyer

Let K be a global �eld, and let A be its adele ring. Studying the action of the invertible

group K

�

on A , Alain Connes has obtained a spectral interpretation for the nontrivial

zeros of L-functions associated to characters of the idele class group of K. However, in his

spectral interpretation zeros o� the critical line appear only as resonances. Sharpening the

functional analysis behind his approach, we obtain a variant of his spectral interpretation

in which all zeros appear directly.

On the classi�cation of regular Lie groupoids

Ieke Moerdijk

Any regular Lie groupoid G over a manifold M �ts into an extension K ! G ! E of

a foliation groupoid E by a bundle of connected Lie groups K. If J is the foliation on M

given by (the connected components of) the orbits of G and if T is a complete transversal

for J , this extension restricts to an extension K

T

! G

T

! E

T

of an �etale groupoid by (non-

abelian) cohomology classes in a new

�

Cech cohomology for �etale groupoids. On the other

hand, given K and E and an extension K

T

! G

T

! E

T

over T , we present an obstruction

class inH

2

(M;K) to the problem of whether this extension is the restriction of an extension

K ! G ! E over M . If these obstructions vanish, all extensions K ! G ! E over M

which restrict to a given extensions over the transversal form a principal bundle under the

"group" (gr-category) of K-K bitorsors over M.

Godbillon-Vey class in adelic context

H. Moscovici

(joint work with A. Connes)

This is preliminary report on joint work in progress with A. Connes. We show that

the modular forms of all levels acted upon by the Hecke operations can be �tted with a

non-commutative geometric structure analogous to that of a codimension one foliation.

The fact that this structure has an interesting internal dynamics is illustrated by the non-

vanishing of the appropriate analogue of the Godbillon-Vey class. The latter class is de�ned

by means of the Hopf algebra of codimension one transverse geometry, which acts by a

Hopf action on the crossed product of the modular forms by the group of �nite adeles. The

invariant trace is provided by the Manin residue.
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The structure and K-theory of the Boutet de Monvel algebra

Ryszard Nest

(joint work with S. Melo, E.Schrohe)

For a compact manifold M with boundary @M , the algebra of pseudo-local operators is

described by the Boutet de Monvel calculus. The norm closure A of the algebra of bounded

pseudo-local operators �ts into the exact sequence

0! K ! A! S ! 0

where K is the algebra of compact operators and the symbol algebra S is an extension of

the algebra C(S

�

M) of continuous functions on the cosphere bundle of M by the reduced

Toeplitz algebra T. The Index map

K

0

(S)! K

1

(K)

is always surjective. The group K

1

(S) has the form

K

1

(S) = K

0

(T

�

M)�K

1

(M);

where the canonical projection onto the �rst factor is the topological index map of Boutet

de Monvel. The same decomposition holds for K

0

modulo torsion.

Conjecture by J. Bellisard

H. Oyono-Oyono

(joint work with M.T. Benameur)

Let 
 be a Cantor set equipped with an action of Z

n

and with a Z

n

-invariant measure �.

The action of Z

n

induces an action of the C

�

-algebra C(
) of complex continuous functions

on 
 and we can form the crossed product C(
)o Z

n

. The measure � induces a trace �

�

on C(
)oZ

n

and we obtain in this way a morphisms K

0

(C(
)oZ

n

)! (R). If we denote

by Z[�] the subgroup of R generated by the measure of the compact open subsets of 
, J.

Bellisard stated the following conjecture.

The image of K

0

(C(
)o Z

n

) under �

�

is equal to Z[�].

We give in this lecture a proof of this conjecture by using the measure index theorem

for foliated spaces of Alain Connes.

Bivariant Chern character and BRS cohomology

D. Perrot

The aim of this talk is two-fold. First, we provide a bivariant Chern character in terms

of heat kernel methods. It is based on the following general construction, inspired by the

work of Quillen: given a di�erential graded (Co-associative) Co-algebra C and a di�erential

graded (associative) algebra R, we choose a \connection form" � as a linear map of odd

degree C ! R. Its Chern character ch(�) is a cocycle in the complex Hom (X(C); X(R)),

roughly obtained by exponentiating the curvature of �. Let now (E; �;D) be an unbounded

Kasparov bimodule over two locally convex algebras A and B. We choose C as the di�er-

ential graded bar Co-algebra of A, R as the trivially graded tensor algebra of B (with zero

di�erential), and � as the \superconnection" � + D. Then modulo suitable completions,

the complex Hom (X(C); X(R)) computes the bivariant cyclic cohomology of A and B,
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and ch(�) actually gives a map from the entire cyclic homology of A to the periodic cyclic

homology of B

ch(�) : HE

�

(A)! HP

�

(B)

automatically incorporating the heat kernel exp(�tD

2

) as a regulator of traces. This

de�nes the bivariant Chern character of (E; �;D).

In the second part of the talk, we adapt the previous construction to Hopf algebras in

order to describe the relationship between characteristic maps �a la Connes-Moscovici and

the BRS formalism in Quantum Field Theory. More precisely, let (A; H;D) be a spectral

triple over the algebra A. We suppose that all objects are endowed with the coaction of a

Hopf algebra H whose antipode is involutive. These data give rise to a Kasparov bimodule

for A andH, and the bivariant Chern character yields a map HE

�

(A)! HP

inv

�

(H), whose

target is the invariant cyclic homology of H in the sense of Connes-Moscovici and Crainic.

This characteristic map and related constructions provide a description of anomalies and

BRS cohomology in noncommutative geometry.

Dirac index classes and the noncommutative spectral 
ow

Paolo Piazza

(joint work with E. Leichtnam)

Let � be a �nitely generated discrete group and let � !

e

N ! N be an odd dimen-

sional �-Galois covering. Let D

N

be a Dirac-type operator and let D

N

be the associ-

ated Mishchenko-Fomenko �-operator, with � = C

�

r

(�). Suppose now that we have a

1-parameter family of such operators, fD

N

(t)g

t2[0;1]

. I have �rst addressed the question

of how to de�ne a notion of noncommutative higher spectral 
ow for such a 1-parameter

family. In order to proceed we need a way of dividing the spectrum of each �-operator

in a positive and negative part. This is achieved through the notion of (noncommutative)

spectral section associated to any �-linear Dirac operator D; this is a �-linear self-adjoint

projection P having the following additional property: there exist real continuous functions

�

1

(x); �

2

(x) on the real line that are equal to 1 for large positive x and equal to 0 for large

negative x, are such that �

2

(x) = 1 8x 2 supp�

1

and Im(�

1

(D)) � Im(P ) � Im(�

2

(D)).

The notion of spectral section was introduced for the �rst time by Melrose-Piazza in the

commutative context (families of Dirac operators parametrized by a compact space X).

It is a fundamental result, due to Melrose-Piazza in the commutative case and Wu and

Leichtnam-Piazza in the noncommutative case, that a spectral section exists if and only if

Ind(D) = 0 in K

1

(C

�

r

(�)). If one spectral section exists then there are an in�nite number

of spectral sections and given two spectral sections P and Q for D there is a well-de�ned

di�erence class [P �Q] 2 K

0

(C

�

r

(�)). The notion of higher noncommutative spectral 
ow

for the 1-parameter family fD

N

(t)g is given under the assumption that Ind(D

N

(t)) = 0

for one (and thus any) t. The de�nition employs two reference spectral sections P

1

and P

0

for D

N

(1) and D

N

(0) respectively and a total spectral section fQ(t)g

t2[0;1]

for the whole

family fD

N

(t)g

t2[0;1]

:

hsf(fD

N

(t)g

t2[0;1]

;P

0

; P

1

) := [P

1

�Q(1)]� [P

0

�Q(0)] 2 K

0

(C

�

r

(�)) :

The de�nition, which is due to Dai and Zhang in the commutative context, does not

depend on the choice of fQ(t)g and can be proved to coincide with the classical one in the

numerical case.

In the talk I then described how spectral sections for the boundary operator associated

to a Dirac-type operator D

M

on an even-dimensional Galois covering � !

f

M ! M
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with boundary, can be used to de�ne Atiyah-Patodi-Singer index classes Ind(D

M

; P ) 2

K

0

(C

�

r

(�)) and how the noncommutative spectral 
ow �ts into a variational formula for

such index classes once a family fD

M

(t)g of such operators is given. I also described a

gluing formula for the index class, in K

0

(C

�

r

(�)), associated to a pair (N; r : N ! B�)

with N closed and union along a hypersurface F of two manifolds with boundary N

+

, N

�

.

Using the variational formula and the gluing formula I �nally described how it is possible

to give su�cient conditions on F and � ensuring that Novikov higher signatures are cut

and paste invariants.

K-theory and Langlands multiplicity formula

F. Pierrot

We give a generalization of Langlands' formula computing the multiplicity of the inte-

grable discrete series in L

2

(G=�), � discrete co-compact torsionless subgroup of G, valid

in particular for G a reductive group over a p-adic �eld, by very recent results for the

K-theory of group algebras.

Periodic cyclic homology of the Hecke algebra of Gl(n)

R.T. Plymen

(joint work with J. Brodzki)

Let F be an non-archimedean local �eld, so that F is a �nite extension Q

p

, or F is the

power series �eld F

q

[[x]]. Let G = Gl(n) = Gl(n; F ), let �(G) denote the smooth dual of

G, let �(
) denote the Bernstein component of �(G) and let H(
) denote the Bernstein

ideal in the Hecke algebra H(G). With the aid of Langlands parameters, we equip �(
)

with the structure of a complex manifold, and prove that the periodic cyclic homology of

H(
) is isomorphic to the de Rham cohomology of the Bernstein component �(
). We

show how the structure of the variety �(
) is related to Xi's a�rmation of a conjecture

of Lusztig for Gl(n; (C)). The smooth dual of G admits a deformation retraction onto

the tempered dual �

t

(G) and we show that this deformation retraction is a geometric

counterpart of the Baum-Connes map for Gl(n).

Noncommutative geometry of warped cones

John Roe

(joint work with Nigel Higson)

Let (X; d) be a metric space (proper and noncompact). A map � : X ! X is a

translation if sup

x2X

d(x; �(x)) < 1. For instance if � is a discrete group equipped with

a left invariant metric, then the right action of � on itself is an action by translations.

Suppose that a �nitely generated group � acts on a metric space (X; d). We want to

"warp" the metric on X so that the action becomes one by translations. Let � be the

largest metric on X such that �(x; x

0

) � d(x; x

0

) and �(x; 
x) � j
j (word length) for all


 2 �, x; x

0

2 X. Let X

�

denote X with metric �. Consider the case X = OZ (open

metric cone). The warped cone O

�

Z = X

�

associated to an action of � on Z is a slowly

growing space (diameter growth O(log r)). We show that among these warped cones are

some counterexamples to the coarse Baum-Connes conjecture. A key role in the proof is
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played by a transfer homomorphism C

�

(O

�

Z)=I ! (C

�

(OZ) 
 C

�

r

�)=I

0

(where I; I

0

are

the ideals generated by compactly supported elements); this homomorphism exists when

� has �nite asymptotic dimension in the sense of Gromov.

L

2

-Betti numbers and braid groups

Thomas Schick

De�nition: Given a discrete group � and � 2M(n�n;Z�), � gives rise by left convolu-

tion to a bounded operator � : (l

2

�)

n

! (l

2

�)

n

with kernel ker(�). We de�ne the L

2

-Betti

number b

(2)

(�) := dim

�

ker(�) = tr

�

(pr

ker�

), using the canonical trace tr

�

(

P

�

g

g) = �

1

.

This gives, via the combinatorial Laplacian of the cellular chain complex, rise to the L

2

-

Betti numbers of (a �-covering of) a �nite CW -complex.

Atiyah conjecture If � is torsion free, b

(2)

(�) 2 Z for every � as above.

The Atiyah conjecture for a group � implies the

Zero divisor conjecture If a; b 2 Z� satisfy ab = 0 and b 6= 0, then a = 0.

The following permanence property of the Atiyah conjecture is true: if in an extension

1 ! H ! G ! A ! 1 H is torsion free and satis�es the Atiyah conjecture, and A is

torsion free and elementary amenable, then G satis�es the Atiyah conjecture (result due to

Linell). By a result of the speaker, the Atiyah conjecture is true for subgroups of inverse

images of torsion free elementary amenable groups, e. g. for residually torsion free solvable

groups.

The latter result applies to the pure braid groups P

n

. To deal with the full braid groups

B

n

we factorize the projection B

n

! �

n

(with kernel P

n

) through a torsion free elementary

amenable group Q

n

(the kernel being 


N

(P

n

), a lower central series subgroup for N su�-

ciently large). To prove torsion-freeness of the quotient, pro-p-completions of the groups

in question and their Galois cohomology is used.

This factorization also implies that the Baum-Connes conjecture is true for the full braid

groups.

Quantum spaces and Cuntz-Krieger algebras

Wojciech Szymanski

A graph algebra C

�

(E) corresponding to a directed graph E is the universal C

�

-algebra

generated by partial isometries and projections indexed by the edges and the vertices of

the graph, respectively, subject to certain Cuntz-Krieger type relations. This construction

generalizes the classical one of Cuntz and Krieger.

In this talk we show that a number of q-deformed compact manifolds related to compact

quantum groups may be described through graph algebras. In particular we show that the

C

�

-algebra of continuous functions on the quantum SU(2) group and on the Podle�s spheres

are isomorphic to the C

�

-algebras of certain �nite graphs. Furthermore, the C

�

-algebras

corresponding to the odd-dimensional quantum spheres S

2n�1

q

of Vaksman and Soibelman,

as well as those corresponding to the q-deformed projective spaces are of that type too.

In all these cases isomorphisms are given by explicit formulae on generators. Building on

the Cuntz-Krieger algebra structure of C(S

2n�1

q

) we show how to construct q-deformations

of generalized lense spaces. These again turn out to be isomorphic to certain graph C

�

-

algebras.

As indication of possible future expansion of this line of investigations we show that the
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two-parameter deformation of S

3

, constructed recently by Calow and Matthes, is a Cuntz-

Krieger algebra of rank two.

Toeplitz and Weyl quantization of symmetric domains

Harald Upmeier

(joint work with J. Arazy)

In joint work with J. Arazy, University of Haifa, we study various G-covariant quanti-

zation methods for hermitian symmetric domains D = G=K for a semi-simple Lie group

G and its maximal compact subgroup K. Using the scalar holomorphic discrete series

of representations of G, realized concretely via weighted Bergman spaces of holomorphic

functions on D, one de�nes covariant functional calculi in terms of operator densities with

respect to the invariant measure on D. The most important examples are the Toeplitz

quantization, a �eld of rank-one operators related to the reproducing kernel vectors, and

the Weyl quantization, a �eld of unitary operators related to the symmetries of D. The

most interesting aspect is the so-called Berezin transform expressed in terms of the invari-

ant di�erential operators (higher Laplacians). For the Toeplitz transform we express the

eigenvalues using multivariable �-functions of Koecher-Gindikin type, whereas the more

di�cult Weyl transform involves multivariable hypergeometric functions.

Semi-regularity of locally compact quantum groups

Stefaan Vaes

In this talk, I will report on a recent joint work with S. Baaj and G. Skandalis on

bicrossed product locally compact quantum groups. First, I will recall the de�nition of a

locally compact quantum group from a joint paper with J. Kustermans and I will explain

the relation with the multiplicative unitaries of Baaj and Skandalis.

Using the bicrossed product construction, an example of a locally compact quantum

group which is not semi-regular will be obtained. This means that the reduced crossed

product of this locally compact quantum group acting on itself by left translation does not

contain any compact operator. This result is very much in contradiction with the intuition

coming from locally compact groups. The underlying C

�

-algebra of this example is the

crossed product of ideles acting on adeles by multiplication.

Equivariant cyclic homology

C. Voigt

We propose a de�nition of equivariant cyclic homology for actions of discrete groups.

This theory generalizes previous constructions studied by various authors. We discuss

in particular the resulting (bivariant) equivariant periodic cyclic homology HP

G

�

(A;B).

There are homological versions of the Green-Julg theorem HP

G

�

(C ; A)

�

=

HP

�

(AoG) for

�nite groups and its dual HP

G

�

(A; C )

�

=

HP

�

(AoG) for arbitrary discrete groups. Using

the Cuntz-Quillen approach to cyclic homology we show that HP

G

�

(A;B) is homotopy

invariant, Morita invariant and satis�es excision in both variables.
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Operator algebraic analysis of solvable lattive models

Antony Wassermann

In this talk, I started by giving a survey of the general framework of conformal �eld

theory and solvable lattice models. The basic ideas to be incorporated in this subject are

the corner transfer matrix (CTM) method of R. Baxter and the boundary conditions in

conformal �eld theory (BCFT ) due to J. Cardy. Ultimately the goal is to understand

why CFT is the scaling limit of a solvable lattice model at criticality. I explained the

philosophy of boundary data in lattice models (one adds an extra �xed string to the braid

group) together with the bulk boundary formulation of BCFT . I also outlined Baxter's

CTM method and his predictions for the limits of the CTM and its Hamiltonian. I then

gave six mathematical ways in which these ideas from physics have been made precise.

Firstly Smirnov's proof of the Cardy-Carleson formula for percolation predicted by BCFT .

Secondly loop group fusion and its use in �nding boundary data in CFT through "quantum

subgroups". Thirdly the use of Connes fusion to de�ne a spin structure on loop space in

the work of Teichner and Stolz. Fourthly the use of twisted equivariant K-theory to

explain Verlinde's fusion ring, due to Freed, Hopkins and Teleman. Fifthly a formulation

of Baxter's CTM predictions in terms of C

�

-dynamical systems and their ground states.

The last point was the realisation of these dynamical systems in terms of vertex operators

of quantum a�ne algebras for q 2 [0; 1). The classical limit at q = 0 corresponds to the

(unitary) theory of cristal bases.

Non-renormalizability of �-expanded noncommutative QED

Raimar Wulkenhaar

There are good arguments to believe that space-time is a noncommutative manifold, i.e.

a spectral triple. Within the noncommutaive geometrical framework it is straightforward to

produce action functionals for classical �eld theories, e.g. via the spectral action principle.

However, in order to make predictions for experiments, one has to develop the analogue of

a quantum �eld theory on a given spectral triple. This is an unsolved problem.

The �rst attempt is to take as the spectral triple a deformation of the commutative one

and to try whether ordinary quantum �eld theory works in the noncommutative case as

well. From the computational point of view, the best deformation to take is the noncom-

mutative R

4

. It turns out that (in general) quantum �eld theories on noncommutative R

4

are not renormalizable.

In noncommutative gauge �eld theories it is possible to quantize another set of degrees

of freedom. The traditional �eld amplitudes are then recovered by a Seiberg-Witten dif-

ferential equation. Remarkably, the super�cial divergences of the photon self-energy (in

terms of the new degrees of freedom) are renormalizable to all orders. For noncommuta-

tive quantum electrodynamics, however, this method does not give renormalizable Green's

functions, but the problem is not as severe as expected from the counting of possible versus

actually occurring divergences. This is interpreted as a hint for additional symmetries in

noncommutative gauge �eld theories, the origin of which seems to be the spectral action.

In summary, standard quantum �eld theory based on path integral quantization and the

evaluation of Feynman graphs is not the correct calculus to give renormalizable quantum

�eld theories on noncommutative R

4

. There are good chances that within Polchinskis exact

renormalization group method the renormalization of quantum �eld theories on noncom-

mmutative R

4

is possible.
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Positive scalar curvature at in�nity and K-theory of group C

�

-algebras

Guoliang Yu

Let M be a noncompact Riemannian spin manifold with uniform positive scalar curva-

ture at in�nity. Bunke constructed an index of the Dirac operator in the K-theory of the

fundamental group. We partially compute the K-theoretic index of the Dirac operator for

arithmetic manifolds. We also discuss the issue whether the K-theoretic index live in the

image of the Baum-Connes map. Much of what I discuss at the conference grew out of my

discussions with Shmuel Weinberger.

Edited by Andreas Thom and Christian Voigt
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