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This meeting was organized by M. van den Bergh (Diepenbeek), D. Happel (Chemnitz),

L. Small (La Jolla) and T. Sta�ord (Ann Arbor). There were 41 participants from 10

countries (Belgium, Canada, Denmark, France, Germany, Israel, Norway, Russia, UK and

the US) and 22 lectures were presented during the �ve day period.

This meeting examined the applications of ideas and techniques from algebraic geometry

to noncommutative algebra. While algebraic geometry has pervaded essentially all aspects

of mathematics, its in
uence on noncommutative algebra is more recent. Therefore, a

major objective was to bring together researchers from di�erent geometrically in
uenced

parts of noncommutative algebra, in order to make the various groups more aware of the

others' work, and to thus stimulate cross-fertilization. Areas of concentration, which were

represented were noncommutative algebraic geometry, representation theory of quivers,

symplectic algebras, etc. The abstracts included in this report re
ect this breadth of

material.
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Abstracts

Triangulated categories as a subject of noncommutative geometry

Alexei Bondal

Serious technical problems with proving that a given functor between derived categories

yields an equivalence of triangulated categories appeals to a better understanding of the

structure of triangulated categories. We propose a \stringy" interpretation of the extended

axiomatics of triangulated categories, which goes as follows. Consider a 2-category E� in

the category of categories Cat with objects (n) being Z considered as the category of the

poset Z with the natural ordering of the elements. Let �

n

: Z! Z be the shift p 7! p + 1

in the nth Z. 1{morphisms (n) ! (m) in E� are increasing functions f : Z ! Z which

satisfy �

m

m

f = f�

n

n

. The category E� is 2{full in Cat.

A multi-triangulated category is a 2{functor E�

op

! Cat satisfying conditions similar to

those of Segal's delooping machine. More generally, we can introduce the \space argument"

F in the derived categories D(F ; E), where F is a Frobenius category and E is exact. In

the particular case when F is the category of graded modules over k[x]=x

n

this yields the

multi-triangulated structure described above. The axioms on the functor E�

op

! Cat are

analogous to properties of sheaves with respect to a Grothendieck topology on F .

Flops and derived categories

Tom Bridgeland

It is well-known that any surface of non-negative Kodaira dimension has a unique non-

singular minimal model obtained by blowing down all (�1) curves. The corresponding

statement is false for threefolds: the minimal model may have singularities and even when

it is non-singular it will not in general be unique. I discussed how non-commutative algebra

may help with these problems. I gave a simple example where although the minimal model

is singular there is a natural sense in which a certain stack or non-commutative variety

is a non-singular minimal model. I then discussed a theorem which shows that distinct

non-singular minimal models of a given threefold have equivalent derived categories. The

proof proceeds by describing certain birational operations called 
ops via a moduli space

construction.

Parabolic bundles and the Deligne-Simpson problem

Willian Crawley-Boevey

The talk centred on two conjectures. The �rst conjecture concerns parabolic bundles on the

Riemann sphere. The question is, what is the possible numerical data of an indecomposable

parabolic bundle - the degree and rank of the bundle and the dimensions of the vector spaces

in the �ltrations. The conjectural answer is that the rank and dimensions should form a

root for an appropriate Kac-Moody Lie algebra.

The Deligne-Simpson problem asks for a characterization of the k-tuples of conjugacy

classes in the general linear group with the property that one can �nd a matrix in each

class in such a way that the product is the identity, and such that the matrices have no

common invariant subspace. The second conjecture is an explicit answer for this problem

in terms of root systems.
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The main tool for studying the Deligne-Simpson problem is the middle convolution func-

tor of Katz, simpli�ed by Dettweiler and Reiter. It gives a proof of the second conjecture

in the rigid case. By considering logarithmic connections and using the Riemann-Hilbert

correspondence, we can use it to prove the �rst conjecture in many cases.

Noncommutative coordinate rings and stacks

Daniel Chan

(joint work with Colin Ingalls)

Let s; t : Y

!

!

X be a �nite 
at groupoid scheme with X a quasi-projective variety and

let S be its coarse moduli scheme. We associate to the groupoid scheme a coherent sheaf

of algebras O

X=Y

on S which we call the noncommutative coordinate ring of the groupoid

scheme. We show that when X is a smooth curve and the groupoid action is generically

free, the noncommutative coordinate rings which can occur are, up to Morita equivalence,

the hereditary orders on smooth curves. This gives a bijective correspondence between

smooth one dimensional Deligne-Mumford stacks which are generically schemes and Morita

equivalence classes of hereditary orders on smooth curves.

The classi�cation of �nite dimensional triangular Hopf algebras over an

algebraically closed �eld of characteristic 0

Shlomo Gelaki

In 1998, P. Etingof and myself proved that a semi-simple triangular Hopf algebra H over

C is obtained from the group algebra C [G] of a unique �nite group G by twisting its co-

multiplication in the sense of Drinfeld. The proof of this theorem relies in an essential way

on a theorem of Deligne on Tannakian categories. Later on, we used this and the theory of

Movshev on twisting in �nite groups to completely classify such Hopf algebras H in terms

of certain quadruples (G;A; V; u) of group-theoretical data.

However, for non-semisimple �nite dimensional triangular Hopf algebras H over C ,

Deligne Theorem cannot be applied. Nevertheless, in 1999 I classi�ed minimal basic H.

Such Hopf algebras H and the semisimple ones have the Chevalley property in common. In

2001, N. Andruskiewitsch, P. Etingof and myself proved that H has the Chevalley property

if and only if it is obtained from a certain modi�cation of the supergroup algebra C [G] of a

�nite supergroup G by twisting its co-multiplication. Later on, Etingof and myself used it to

completely classify such Hopf algebras H in terms of certain septuples (G;W;A; Y; B; V; u)

of group-theoretical data.

Very recently, Deligne has generalized his theorem on Tannakian categories to the super-

case. This remarkable generalized theorem, combined with our results, thus lead to the

complete and explicit classi�cation of all �nite dimensional triangular Hopf algebras over

C , and also allowed us to answer some questions about triangular Hopf algebras and

symmetric rigid tensor categories.
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Symplectic re
ection algebras

Victor Ginzburg

To any �nite group G of automorphisms of a symplectic vector space V we associate a new

multi-parameter deformation, H

k

, of the smash product of G with the polynomial algebra

on V . The algebra H

k

, called a symplectic re
ection algebra, is related to the coordinate

ring of a universal Poisson deformation of the quotient singularity V=G. If G is the Weyl

group of a root system in a vector space h and V = h � h

�

, then the algebras H

k

are

`rational' degenerations of Cherednik's double a�ne Hecke algebra.

Let G = S

n

, the Weyl group of g = gl

n

. We construct a 1-parameter deforma-

tion of the Harish-Chandra homomorphism from D(g)

g

, the algebra of invariant poly-

nomial di�erential operators on gl

n

, to the algebra of S

n

-invariant di�erential operators

with rational coe�cients on C

n

. The second order Laplacian on g goes, under the de-

formed homomorphism, to the Calogero-Moser di�erential operator with rational poten-

tial. Our crucial idea is to reinterpret the deformed homomorphism as a homomorphism:

D(g)

g

! fspherical subalgebra in H

k

g, where H

k

is the symplectic re
ection algebra as-

sociated to S

n

. This way, the deformed Harish-Chandra homomorphism becomes nothing

but a description of the spherical subalgebra in terms of `quantum' Hamiltonian reduction.

In the classical limit k !1, our construction gives an isomorphism between the spher-

ical subalgebra in H

1

and the coordinate ring of the Calogero-Moser space. We prove

that all simple H

1

-modules have dimension n!, and are parametrised by points of the

Calogero-Moser space. The algebra H

1

is isomorphic to the endomorphism algebra of a

distinguished rank n! vector bundle on this space.

Prime ideals generated by quantum minors

Kenneth R. Goodearl

Classical studies of determinantal varieties led to the result that determinantal ideals

{ ideals generated by all the minors of a given size { are prime ideals in the coordinate

ring of n� n matrices. The analogous fact for quantum determinantal ideals was recently

established by Lenagan and the speaker. In the classical setting, ideals generated by

minors �tting certain combinatorial patterns, such as the ladder determinantal ideals,

have also received much attention. Quantum analogs of such ideals, corresponding to

many di�erent patterns, must be understood in order to fully describe the prime spectrum

of the coordinate ring of quantum matrices. We discuss recent progress in this direction

by Lenagan and the speaker. In particular, in the 3 � 3 case it is now established that

every prime ideal invariant under all winding automorphisms can be generated by a set of

quantum minors, and explicit generating sets have been determined.

Poisson Orders and Symplectic Re
ection Algebras

Iain Gordon

(joint work with K. A. Brown)

We introduce a class of k-algebras, called Poisson orders. Such an algebra is an a�ne

noetherian k-algebra, say A, which is �nite over a central subalgebra Z, and equipped with

a k-linear map from Z to the k-derivations of A. Examples include enveloping algebras of

Lie algebras in positive characteristic, quantum groups at roots of unity and symplectic

re
ection algebras. We study the geometry of Max(Z), and in particular strati�cations
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which are induced by the derivations. The coarsest strati�cation is by rank, and the �nest

by symplectic leaves. We present a theorem which shows that the representation theory of

A is constant along the the symplectic leaves of Z (in the case they are algebraic).

We study in more detail the example of a symplectic re
ection algebra. As initial

data we have a symplectic vector space V , a �nite subgroup � of the linear symplectic

automorphisms of V , a complex parameter t, and an Ad�-invariant function c from the

symplectic re
ections of � to C , written H

0;c

. Writing this as H

t;c

we prove that in the

case t = 0, H

0;c

is a Poisson order. We show there are a �nite number of symplectic leaves

in M

c

= Max(Cent(H

0;c

)), all of which are necessarily algebraic, and apply the above

analysis. A particularly important question is whether there are values of c for which M

c

is smooth. This is equivalent to M

c

being symplectic. To attack this problem we introduce

baby Verma modules and give examples of groups � where M

c

is never the case. On the

other hand, if M

c

is smooth we present a relationship between the geometry of M

c

and the

irreducible representations of �.

Nilpotent class representations and the irreducible components of Lusztig's

nilpotent variety

Lutz Hille

Let Q be a quiver without loops. We denote the quantized version of the enveloping

algebra of the negative part of the corresponding Kac-Moody-Lie algebra by U

�

. Lusztig

has de�ned varieties R(�(Q); d)

0

, also called Lusztig's nilpotent varieties, consisting of

nilpotent representations of the pre-projective algebra �(Q) of Q of dimension vector d.

It was shown by Kashiwara and Saito that the irreducible components of the various

R(�(Q); d)

0

, where d runs through all possible dimension vectors of Q, form the crystal of

U

�

.

The principal aim of this talk is to compute the number of irreducible components of

R(�(Q); d)

0

using so-called nilpotent class representations (nc-representations) of Q with

dimensions vector d. Informally, a nc-representation assigns to Q and d certain nilpotent

classes, so that the generic nc-representations are in natural bijection with the irreducible

components of R(�(Q); d)

0

.

Furthermore we mention certain applications: the number of irreducible components in

the intersection of a nilpotent class with the strictly upper-triangular matrices (in the gen-

eral linear group) can be computed using nc-representations. Finally we relateR(�(Q); d)

0

for Q a�ne and d the imaginary root to the exceptional locus in the Kleinian singularity.

Representation theory of cyclics by means of Grassmannians

Birge Huisgen-Zimmermann

Given a �nite dimensional algebra A over an algebraically closed �eld, we introduce

and explore Grassmannians parametrizing the isomorphism types of representations with

�xed square-free top (the cyclics, in case A is basic) and determine �bre structure (here

a remarkably transparent pattern emerges), as well as �bre dimensions. The �bres of

the representation map that accompanies any such Grassmannian { they are the orbits

under the operation of the automorphism group Aut of a projective cover of the top {

are intimately related to the GL-orbits and their closures in the classical module varieties,

but more accessible in the Grassmannian setting, due to the presence of a big unipotent

radical in the acting group Aut. In particular, the points of the Grassmannian orbit
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closures (accessible via an Aut-stable a�ne cover of the Grassmannian, which can be

readily obtained from quiver and relations of A) correspond to degenerations in the classical

sense. This leads to an overview of the \top-stable" degenerations of cyclics, complete with

hierarchy of immediate successors in the degeneration order. One can roughly summarize

the picture by saying that the Grassmannian is \as close as possible" to a geometric

quotient of the pertinent subvariety of the classical module variety modulo its GL-action.

In particular, such a geometric quotient exists if and only if the Grassmannian has a

geometric quotient modulo its Aut-action, if and only if all Aut-orbits of the latter are

reduced to points, i.e., precisely when the Grassmannian coincides with the geometric

quotient of the classical variety, a situation can be characterized in terms of quiver and

relations.

Two of the principal applications address the problems of when the category of all �nite

direct sums of cyclics (resp., that of all �nite direct sums of local modules) has �nite

representation type and of classifying the pertinent cyclics (locals) in the representation-

�nite case.

Birational classi�cation of orders over surfaces

Colin Ingalls

We classify orders over surfaces up to birational and Morita equivalence. We use the

geometric rami�cation data of a maximal order on a surface to de�ne a class of terminal

orders. We compute all possible �etale local structures of terminal orders. We use the

ideas of Mori's minimal model program for log surfaces to show that terminal orders with

non-negative Kodaira dimension have unique minimal models up to Morita equivalence.

We describe the possible centres and rami�cation divisors of the minimal models of orders

of negative Kodaira dimension.

Homological identities for di�erential graded algebras

Peter J�rgensen

Consider the following classical theorems:

(1): The Auslander-Buchsbaum theorem depthM = depthA � pdM for a noetherian

local commutative ring A and a �nitely generated A-module M with pdM <1.

(2): The additivity formula hd

k

P = hd

k

G + hd

k

X for a path connected topologi-

cal monoid G and a G-Serre �bration G �! P �! X, where k is a �eld so that

H

�

(G; k), H

�

(P ; k), and H

�

(X; k) are �nite dimensional over k, and where hd

k

X =

supf i j H

i

(X; k) 6= 0 g.

The talk shows that both are special cases of an Auslander-Buchsbaum theorem for

di�erential graded algebras (DGAs). (1) arises from viewing A as a DGA, while (2) arises

from the DGA C

�

(G; k).
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Sheets and the Topology of Prim U(g) : g semisimple

Anthony Joseph

(joint work with W. Borho)

Let g be a complex semisimple Lie algebra. We de�ne and describe the sheets in the

primitive spectrum Prim U(g) of its enveloping algebra U(g) and compare this to the sheets

in the co-adjoint orbit space g

�

=G. The results can be brie
y summarized as follows.

Each sheet S in Prim U(g) has a dense open subset S

0

such that the Goldie rank takes

a value � n

S

on S with equality on S

0

and such that S

0

is an unbranched covering of an

irreducible algebraic variety of dimension � rkg of degree d

S

2 f1; 2; 3g. The �bres of the

map S 7! n

S

are �nite.

It is conjectured that if S is a sheet for which n

S

= 1, then S is homeomorphic to a

closed subvariety of a sheet in g

�

=G. This is partly settled using a relative Dixmier map;

di�cult unresolved points being the construction of enough completely prime primitive

ideals, well-de�neness (in types D; E) and injectivity. Finally to each sheet S one may

associate a simple Weyl group module V

S

. It is conjectured that S is a union of at most

dim V

S

algebraic varieties.

Twisted homogeneous coordinate rings over a commutative ring

Dennis S. Keeler

Let X be a scheme, proper over a commutative noetherian ring A. We introduce the

concept of an ample sequence of invertible sheaves on X and generalize the most important

equivalent criteria for ampleness of an invertible sheaf. We also prove the Theorem of the

Base for X and generalize Serre's Vanishing Theorem. We then generalize results for

twisted homogeneous coordinate rings which were previously known only when X was

projective over an algebraically closed �eld. Speci�cally, we show that the concepts of

left and right �-ampleness are equivalent and that the associated twisted homogeneous

coordinate ring must be noetherian.

Derived equivalences and higher structures on the Hochschild complex

Bernhard Keller

The Hochschild cohomology groups of an (associative, unital) algebra A over a �eld

k may be interpreted as morphism spaces in the derived category of A-bimodules. This

interpretation shows that Hochschild cohomology is preserved under derived equivalence

as an algebra, a result due to D. Happel and J. Rickard. We show that the Gerstenhaber

bracket on the Hochschild complex is also preserved by proving the following stronger

statement: If X is a complex of A-B-bimodules whose associated total derived functor is

an equivalence from the derived category of A to that ofB, there is a canonical isomorphism

�

X

in the homotopy category of B

1

-algebras from the Hochschild complex of A to that

of B.
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The McKay Correspondence in Dimension 3

Alastair King

For a �nite subgroupG of SL(V ), the McKay correspondence relates the geometry/topology

of the non-commutative space (or stack) V

G

= Spec(k[V ] � G) to that of a commutative

space Y , which is a crepant (morally: minimal) resolution of the quotient V=G. This

is classical in the case dimV = 2, where an observation of McKay was interpreted by

Gonzalez-Sprinberg & Verdier. By looking closely at this classical case in parallel with the

generalisation to dimV = 3 by Bridgeland, King & Reid, we see how much remains to be

understood.

Frobenius-Schur indicators for representations of semisimple Hopf algebras

Susan Montgomery

(joint work with Y. Kashina, G. Mason)

Let H be a �nite-dimensional semisimple Hopf algebra over an algebraically closed �eld

k of characteristic not 2; if char k > 0, assume also that H is co-semisimple. Let V be a

simple (left)H-module with character �, and let � be an integral ofH with "(�) = 1. Then

the indicator of V is de�ned to be

P

�(�

1

�

2

). This specializes to the usual Frobenius-Schur

indicator when H = kG for G a �nite group, and as in the classical situation determines

whether or not V is self-dual, and whether, in the self-dual case, V has a non-degenerate

bilinear H-invariant symmetric or skew form, depending on whether the indicator is non-

zero, is +1, or �1, respectively . These facts are work of [M - Linchenko, JART 2000]. In

the present talk we explicitly compute the indicator for representations of Hopf algebras

which are abelian extensions, that is (in our case) of the form

(kG)

�

� H ! kL

where G;L are groups. We are particularly concerned with when the indicator is 0 for

all non-zero simple modules (this will be the case when dim H is odd), or, at the other

extreme, when it is always one. In particular, we prove that this is the case for D(S

n

), the

Drinfeld double of the symmetric group.

Quantum groups and cohomology of quiver moduli

Markus Reineke

This talk is a report on the preprint math.QA/0204059. Methods of Harder and Narasimhan

from the theory of moduli of vector bundles are applied to moduli of quiver representations.

Using the Hall algebra approach to quantum groups, an analog of the Harder-Narasimhan

recursion is constructed inside the quantized enveloping algebra of a Kac-Moody algebra.

This leads to a canonical orthogonal system, the HN system, in this algebra. Using a reso-

lution of the recursion, an explicit formula for the HN system is given. As an application,

explicit formulas for Betti numbers of the cohomology of quiver moduli are derived, gener-

alizing several results on the cohomology of quotients in 'linear algebra type' situations.
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Hereditary categories

Idun Reiten

The general setting for the talk was Ext{�nite (connected) hereditary abelian categories H

over a �eld k (which in the �rst part was assumed to be algebraically closed). Additional

interesting conditions are having a tilting object, almost split sequences, or Serre duality.

In the noetherian case these having a tilting object are mod � for a �nite dimensional

hereditary k{algebra � or coh(X) for a weighted projective line X in the sense of Geigle{

Lenzing, as proved by Lenzing. Happel has shown that any H with a tilting object is

derived equivalent to one of the noetherian ones. (A generalization to arbitrary �elds is

given in work with Happel.) Further we discussed the classi�cation of the noetherian H

with Serre duality from work with Van den Bergh [JAMS, April 2002]. We also mentioned

work with Kleiner on connections with existence of almost split sequences for co-modules

over path co-algebras.

In the second part we talked about recent work with Lenzing on noetherian H with

Serre duality over an arbitrary �eld k. For a locally �nite quiver Q where all paths are

�nite there is a naturally associated H = H

Q

with Serre duality and no nonzero projective

objects. Then H

Q

is noetherian if and only if the underlying (valued) graph of Q has an

additive function. We gave various characterizations of these noetherian H

Q

amongst all

noetherianH with Serre duality and no nonzero projective object. Some of these equivalent

conditions are for example that there is no cycle of nonzero maps between indecomposable

objects of in�nite length, or that each such object is exceptional.

Continued fractions, tilting modules and the construction of large

indecomposable algebraically compact modules

Claus M. Ringel

One conjectures that a �nite-dimensional k-algebra (k a �eld) is tame if and only if any

non-zero algebraically compact module has an indecomposable direct summand. A com-

plete classi�cation of the indecomposable algebraically compact modules is known only in

special cases; in addition to the well-known classes of �nite dimensional, generic, Pr�ufer

and adic modules, only indecomposable algebraically compact modules have been con-

structed which are given by combinatorial data (N-word, Z-words, related to paths in the

quiver), namely in the case of special biserial algebras. The lecture has outlined a new

kind of construction, valid for tubular algebras with 3 simple modules, starting with the

continued fraction expansion of a positive non-rational real number and forming direct

limits of suitable embeddings and inverse limits of suitable projections. The method is

based on the observation that for these algebras the tilting modules correspond to Farey

triples and provides a construction of all the exceptional modules parallel to the iterated

mediant description of the positive rational numbers. For any real number w we obtain in

this way a large rigid system of in�nite dimensional modules with slope w. Its cardinality

depends on the given base �eld k.
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Noncommutative Mukai equivalence

Aidan Schofield

Let C be a smooth projective curve and E a vector bundle such that End(E) = k. Let

E

?

= fF 2 Coh(C) j Hom(E; F ) = 0 = Ext(E; F )g the full subcategory of quasi-coherent

sheaves on C right perpendicular to E.

Theorem E

?

= ModR for a suitable ring R. Under the equivalence, the vector bundles

of rank r in E

?

correspond to the representations of rank r of R.

This is proved by noting that if p 2 C and S

p

is the simple sheaf at p, then the func-

tor Ext(S

p

;�)j

E

? is exact and faithful and is also representable. All of these follow

by considering a short exact sequence 0 ! E

p

! E ! S

p

! 0 from which it fol-

lows that Ext

C

(S

p

;�) ' Hom

C

(E

p

;�) on E

?

and since there is an induction functor

" QCoh(C) ! E

?

, Hom

E

?(E

p

";�) ' Hom

C

(E

p

;�) ' Ext

C

(S

p

;�) on E

?

. We take R

p

to be End(E

p

").

Irreducible components of varieties of modules

Jan Schroer

(joint work with William Crawley-Boevey)

Let k be an algebraically closed �eld, and let A be a �nitely generated k-algebra (asso-

ciative, with 1). By mod

d

A

(k) we denote the variety of d-dimensional A-modules. Given

irreducible components C

1

� mod

d

1

A

(k) and C

2

� mod

d

2

A

(k) let

ext

1

A

(C

1

; C

2

) = minfdimExt

1

A

(M

1

;M

2

) j (M

1

;M

2

) 2 C

1

� C

2

g:

For irreducible components C

i

� mod

d

i

A

(k), 1 � i � t, we consider all modules of dimension

d = d

1

+ � � �+ d

t

, which are of the form M

1

� � � � �M

t

with the M

i

in C

i

, and we denote

by C

1

� � � � � C

t

the corresponding irreducible subset of mod

d

A

(k). The following theorem

generalizes results of Kac and Scho�eld on representations of quivers.

Theorem. If C

i

� mod

d

i

A

(k), 1 � i � t, are irreducible components and d = d

1

+� � �+d

t

,

then C

1

� � � � � C

t

is an irreducible component of mod

d

A

(k) if and only if ext

1

A

(C

i

; C

j

) = 0

for all i 6= j.

Homological Properties of Noetherian A�ne Hopf Algebras

Wu Quanshui

(joint work with James Zhang)

Many Hopf algebras, for example, enveloping algebras of �nite dimensional restricted

Lie algebras in positive characteristic, group algebras of �nitely generated abelian-by-�nite

groups, quantised enveloping algebras of �nite dimensional semisimple Lie algebras at roots

of unity and quantised function algebras of simply connected semisimple Lie groups at roots

of unity, are Noetherian a�ne PI Hopf algebras.

We show that

Theorem 1: Every Noetherian a�ne PI Hopf algebra has �nite injective dimension.

This answers a question of K. A. Brown (Contemp. Math. 229, 1998).
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Theorem 2: Let H be an involutory Hopf algebra over a �eld of characteristic 0. If H is

either a semi-prime Noetherian a�ne PI algebra or is a �nite module over its a�ne centre,

then it is Auslander regular, Cohen-Macaulay and is a �nite direct sum of prime rings.

This partially answers another question of K. A. Brown (Contemp. Math. 229, 1998)

Perverse sheaves and dualizing complexes over noncommutative ringed

schemes

Amnon Yekutieli

(joint work with James J. Zhang)

In this talk I will discuss an attempt at Grothendieck Duality on noncommutative spaces.

Since in the case of a�ne noncommutative spaces (i.e. rings) Grothendieck Duality is pretty

well understood, and on the other hand we don't even know what is a noncommutative

space in general, we consider an intermediate case: a noncommutative space Y that's an

a�ne �bration over a commutative scheme X. That's a fancy way to say that Y = (X;A)

where A is a sheaf of quasi coherent noncommutative rings on X. We call (X;A) a quasi

coherent ringed scheme. As usual in such circumstances, we encounter the problem of

gluing. On each a�ne open set U in X we have a rigid dualizing complex for Aj

U

from

the ring construction, and these are compatible on intersections. But how to glue these

complexes globally? One should note that Cousin complexes, the solution devised by

Grothendieck for gluing dualizing complexes, will not work in the noncommutative world

due to well known obstructions. Instead we choose to use perverse sheaves. This is a

gluing method invented by Bernstein-Beilinson-Deligne-Gabber in the context of geometry

of singular spaces. We discovered that the Auslander condition of dualizing complexes

over noncommutative rings (a very algebraic property) is exactly what is needed to de�ne

perverse modules over a noncommutative ring. And furthermore using a few nice features

of the theory, we can also extend the de�nition from rings to noncommutative ringed

schemes. Finally it turns out that rigid dualizing complexes are themselves perverse sheaves

of bimodules (namely on the product X

2

), so we can glue the local pieces together. I will

explain what are dualizing complexes and what they are good for (concentrating on the

noncommutative side). Then I'll discuss perverse sheaves, the Auslander condition and

how they interact. I'll �nish by sketching our construction.

Conformal algebras of small Gelfand{Kirillov dimension

Efim Zelmanov

Let F be an algebraically closed �eld of zero characteristic. A conformal algebra C is

a module over a polynomial algebra F [@], equipped with a countable system of binary

bilinear operations 0

n

; n � 0, such that for arbitrary a; b 2 C, n � 0(1); @(a �

n

bj =

@a �

n

b + a �

n

@b; (2)(@a)(n) + na(n � 1) = 0(3), there exists an integer N = N(a; b) � 1

such that a �

k

b = 0 for n � N .

For any conformal algebra C there exists a (universal) coe�cient algebra Coe� (C)

such that C can be realized as a conformal algebra of formal distributions over Coe� (C),

a ,!

P

i2Z

a(i)z

�i�1

; a(i) 2 Coe�(C). We say that C is associative (Lie) if Coe� (C) is an

associative (Lie) algebra.

D'Andrea and Kac developed a structure theory of associative and Lie conformal algebras

of �nite type (that is

F [@]

C is a �nitely generated module).
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Let W = ht; t

�1

; d=dti be the algebra of di�erential generators, A 2 M

n

(F ), A 
 J

k

=

P

i2Z

�

A 
 t

i

�

d

dt

�

k

�

z

�i�1

. The formal distributions of the type A 
 J

k

are pairwise local.

Let M

n

(W ) denote the associative conformal algebra of formal distributions generated by

A 
 J

k

's. If P = diag

�

f

1

�

d

dt

�

: : : ; f

n

�

d

dt

�

�

, f

i

6= 0, then M

n

(W )P denotes the conformal

algebra that corresponds to the left ideal generated by P .

An element of an associative conformal algebra C is called an identity if e �

k

e = 0; U �

s; e �

0

a = a for an arbitrary element a 2 C.

Theorem (A. Retakh) Let C be a simple �nitely generated associative conformal unital

algebra of GKdim1. Then C

�

=

M

n

(W ).

An element e 2 C is called an idempotent if e �

k

e = 0; U � 1; e �

0

e = e.

Every idempotent gived rise to a Peirce decomposition; idempotents lift modulo nilpotent

ideals etc.

Theorem Let C be a simple �nitely generated associative conformal algebra of GKdim1,

containing an idempotent. Then P

�

=

M

n

(W )P , where P = (1; f

2

; : : : ; f

n

).

Theorem Let C be a Lie conformal �nitely, generated algebra of GKdim1 which contains

cur(sl

2

). Then

�

=

(M

n

(W )P )

(�)

or C

�

=

a conformal algebra of their symmetric elements

of M

n

(W )P with respect to an involution.

Involutions in M

n

(W )P we classi�ed by Boyallian, Kac, Liberati.

A-in�nity Algebras

James Zhang

(joint work with Lu, Palmieri and Wu)

Let A be a connected graded locally �nite A

1

-algebra and let A

#

be the dual A

1

-algebra

de�ned to be �

inZ

Ext

A

(k; k) where k is the trivial module over A. Let D

per+k

(A) denote

the full triangulated subcategory of D(A) generated by A and k.

Theorem: Let A be as above and let E = A

#

.

(a) (A

#

)

#

�

=

A.

(b) D

per+k

(A) and D

per+k

(E) are contravariant equivalent.

(c) Suppose

A

k is a small object in D(A) and k

E

is a generator for D(E). Then D(A)

is equivalent to D(E).

This generalizes a result of Beilinson-Ginsburg-Soergel about Koszul algebras.

Edited by Lutz Hille
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