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Introduction

The conference was organized by Carlos E. Kenig (Chicago), Herbert Koch (Dortmund)

and Daniel Tataru (Berkeley) with participants from France, Germany, Japan, Spain and

the USA. The talks represented fast recent developments ranging from aspects of modelling

and asymptotic equations, over studies of particular prominent dispersive equations, precise

asymptotics of blow up to the study of rough initial data in particular for nonlinear wave

equations including the Einstein equations.

The contributions of J.C. Saut and F. Merle give an overview on some aspects of mod-

elling and asymptotics of blow up for the Schr�odinger equation.

The organizers and the participants of this conference are grateful to the Oberwolfach

institute for providing a stimulating atmosphere and a very pleasant environment for the

conference.
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Abstracts

Global estimates in space-time for some classes of oscillatory integrals

Matania Ben-Artzi

(joint work with H. Koch and J. C. Saut)

We give global estimates for three classes of oscillatory integrals, related to nonlinear

evolution equations:

I)

I

"

(x; t)

Z

R

d

e

it(j�j

4

�"j�j

2

)+ix�

d�; " = �1; 0;

which is the fundamental solution for

i 

t

+�

2

 + "� = 0 x 2 R

d

:

Theorem 1.

a) j@

�

I

0

(x; t)j � ct

�

d+j�j

4

(1 +

jxj

t

1

4

)

�

1�j�j

3

, � 2 N

d

,

b) (short time or long time t � 1 or

jxj

t

� 1)

j@

�

I

0

(x; t)j � ct

�

d+j�j

4

(1 +

jxj

t

1

4

)

�

1�j�j

3

, � 2 N

d

,

c) (long time, large space, t � 1, jxj � t)

j@

�

I

�1

(x; t)j � ct

�

d+j�j

2

(1 + t

1

2

jxj)

j�j

, � 2 N

d

,

j@

�

I

1

(x; t)j � ct

�

1

2

(1 + jxj)

�

d�1

2

+ ct

�

d

2

+

1

6

�(

jxj

t

), � = �

[

2

p

6

9

��;

2

p

6

9

+�]

, � > 0.

II)

I

�

(x; t) =

Z

1

0

s

�

e

i(tp(s)�sx)

ds; t > 0; 0 � � � m� 2; p(s) = s

m

+ a

m�1

s

m�1

+ ::

Theorem 2.

a) Large time t � �: jI

�

(x; t)j � ct

�

1

n

.

b) Short time 0 < t � �: jI

�

(x; t)j � ct

�

�+1

m

.

III) Full estimates for

Z

R

2

e

i(tp(s)+sx)

ds; x 2 R

2

;

where p is any real polynomial of third order.

Smoothing e�ects of dispersive equations

Hiroyuki Chihara

This talk is concerned with well-posedness and smoothing e�ects of solutions to the initial

value problem for dispersive-type pseudo-di�erential equations of the form

D

t

u� a(x;D

x

)u = f(t; x) in R

1+n

;(1)

u(0; x) = u

0

(x) in R

n

;(2)

where u(t; x) is a complex-valued unknown function of (t; x) 2 R

1+n

, i =

p

�1, D

t

=

�i@=@t, D

x

= �i@=@x, and a(x;D

x

) is a pseudo-di�erential operator of order m � 2,

whose principal symbol is real-valued. Our main results are the following:
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1. If the principal symbol is real principal type, the lower order term satis�es some

integrability condition, and the Hamiltonian 
ow generated by the principal symbol

is never trapped, then the IVP (1)-(2) is L

2

-well-posed, and the local smoothing

e�ect occurs, that is, the solution u becomes (1 � �)

(m�1)=4

-smoother than u

0

and

(1��)

(m�1)=2

-smoother than f .

2. If the Hamiltonian 
ow has attractive points in the cotangent bundle T

?

R

n

, then the

micro-local smoothing e�ect fails in the conic neighborhood of the attractive points.

Ill-posedness for defocusing NLS and applications

James E. Colliander

(joint work with M. Christ and T. Tao)

I describe a construction of an approximate solution to the cubic defocusing nonlinear

Schr�odinger equation inspired by the pseudo-conformal transformation. The solution ob-

tained, �rst found by Ozawa, contains a log t term in its phase which distinguishes it from

the linear solutions as t!1. These modi�ed wave operator solutions are combined with

scaling and galilean invariance to prove ill-posedness in L

2

-based Sobolev spaces H

s

; s < 0.

A parabolic dispersion approximation to solutions of the mKdV equation via solutions of

cubic defocusing NLS allows us to transport the ill-posedness result to the mKdV setting

in the range s <

1

4

. Finally, the Miura transform transports these ill-posedness properties

to real-valued KdV in the range s < �

3

4

. The results described here complement earlier ill-

posedness examples obtained in collaborations among Birnir, Kenig, Ponce, Svanstedt and

Vega and reveal that the H

s

local well-posedness theory for the generalized KdV equations

is essentially complete.

Some recent progress on the problem of strong cosmic censorship

Mihalis Dafermos

This talk describes a characteristic initial value problem for the Einstein-Maxwell-scalar

�eld equations under the assumption of spherical symmetry. Initial data are de�ned on

an event horizon and a conjugate characteristic ray. For a suitable class of such data, the

Reissner-Nordstrom Cauchy horizon is found to be stable in the C

0

-sense and unstable in

C

1

. The initial data corresponds to that which is thought to be induced by the gravita-

tional collapse of a scalar �eld. The result is then related to the strong cosmic censorship

conjecture in general relativity.

A local well-posedness result for the quasi-linear wave equation in R

2+1

Dan Geba

In this paper we consider the following Cauchy problem
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where the metric g(u) = (g
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(u))
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is a smooth, uniformly positive de�nite matrix

and the nonlinearity N(�; @�) is quadratic in @�. Assuming that the initial data satis�es
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There are two aspects that one should consider when studying equation (1). The �rst

one is scaling, meaning that (1) is invariant under the transformation
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_
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The other aspect is a geometrical one and it has to do with the concentration of null

rays. According to Lindblad, in order to avoid focusing we have to take

s >

n+ 5

4

These considerations lead us to the following conjecture:

Conjecture The initial value problem (1) in R
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is locally well-posed in

H

s

(R

n

)�H

s�1

(R

n

), for s satisfying:

s > maxf
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4

g(2)

Recently, Klainerman and Rodnianski have proved this conjecture in the particular case

of the Einstein vacuum equations (n = 3), while Smith and Tataru have resolved it in the

case of the dimensions n = 2; 3 for general systems of quasi-linear wave equations.

We investigate the case when n = 2. Our work extends the geometric methods pioneered

by Klainerman and Klainerman-Rodnianski for the same problem in R

3+1

. The main new

ingredient of our argument is the use of two new vector�elds, the scaling vector�eld S and

the angular momentum vector�eld 
, which complement the decay information provided

by the Morawetz vector�eld K. Compared to the proof of Smith and Tataru for this

problem, this is a totally di�erent approach.

Our main result is the following:
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Long range scattering and modi�ed wave operators for the wave-Schr�odinger

system

Jean Ginibre

(joint work with G. Velo)

We study the theory of scattering for the system consisting of a Schr�odinger equation

and a wave equation with a Yukawa type coupling in space dimension 3. We prove in

particular the existence of modi�ed wave operators for that system with no size restrictions

on the asymptotic states and we determine the asymptotic behaviour in time of solutions

in the range of the wave operators. The method consists in solving the wave equation and

substituting the result into the Schr�odinger equation, which then becomes both nonlinear

and non local in time. The Schr�odinger function is parametrized in terms of an amplitude

and a phase satisfying a transport/Hamilton-Jacobi system, and the Cauchy problem for

that system, with in�nite initial time and prescribed asymptotic behaviour determined by

the asymptotic state, is solved by an energy method, thereby leading to solutions of the

original system with prescribed asymptotic behaviour in time.

Local well-posedness for NLS below L

2

: Quartic nonlinearities in one space

dimension

Axel Gr

�

unrock

The Fourier restriction norm method is applied to prove local well-posedness of the

Cauchy problem

u

t

� iu

xx

= N(u); u(0) = u

0

2 H

s

x

for

1. N(u) = juj

4

, s > �

1

8

,

2. N(u) = u

4

; u

3

u; uu

3

; u

4

, s > �

1

6

.

New tools are: A bilinear estimate for solutions of the linear Schr�odinger equation and a

trilinear re�nement of the onedimensional L

6

-Strichartz-estimate. Similar arguments apply

to the gKdV-3 equation and lead to local well-posedness of the Cauchy problem for s > �

1

6

and to global well-posedness for s � 0.

Almost global existence for quasi-linear wave equations in three space

dimensions

Markus Keel

(joint work with H. Smith and C. Sogge)

We discuss almost global existence for solutions of quadratically quasi-linear systems of

wave equations in three space dimensions. The approach here uses only the classical invari-

ance of the wave operator under translations, spatial rotations, and scaling. Using these

techniques we can handle wave equations in Minkowski space or Dirichlet-wave equations

in the exterior of a star-shaped obstacle. We can also apply our methods to systems of

quasi-linear wave equations in Minkowski space having di�erent wave speeds.
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The problem of evolution for the Einstein equations in general relativity

Sergiu Klainerman

We start by a review of the Cauchy problems for the Einstein equations in vacuum. We

formulate a few simpli�ed open problems such as the 2 + 1 reduced Einstein equations,

Wave maps, Yang Mills. We then discuss the issue of optimal well posedness, some of the

recent results for Wave maps and Yang-Mills and end with a discussion of the recent result

obtained in collaboration with I. Rodnianski concerning H

s

-well-posedness, s > 2, for the

general 3 + 1 reduced Einstein equations.

Existence and description of solutions blowing up in �nite time in the energy

space for the critical generalized KdV equation

Yvan Martel

(joint work with F. Merle)

We present new results in collaboration with Frank Merle concerning a class of solutions

that blow up in �nite time in the energy space for the generalized critical KdV equation

u

t

+ (u

xx

+ u

5

)

x

= 0. Blow up in �nite or in�nite time is �rst proved for solutions that

are close to the family of solitons and that have negative energy. This result relies partly

on a classi�cation of bounded solutions around the family of solitons. Second, imposing

an additional decay assumption on the right in space on the solution, we are able to study

directly the dynamics of the blow up. This study allows us to prove blow up in �nite time

and an upper bound on the blow up rate for a subsequence of time.

Blow up Dynamic and Upper Bound on the Blow up Rate for critical

nonlinear Schr�odinger Equation

Frank Merle

(joint work with P. Raphael)

We consider the critical nonlinear Schr�odinger equation

(NLS)

�

iu

t

= ��u� juj

4

N

u; (t; x) 2 [0; T )� R

N

u(0; x) = u

0

(x); u

0

: R

N

! C

with u

0

2 H

1

= H

1

(R

N

), in dimension N � 1. This equation is locally well-posed in H

1

.

The problem we address is the one of formation of singularities for solutions to (NLS). Note

that from the conservation of the mass and the energy (from the Hamiltonian formulation)

and Gagliardo-Nirenberg inequality, the power of the nonlinearity is the smallest one for

which blow-up may occur. We will see that this criticality makes the problem global. In

the energy space H

1

, (NLS) admits three conservation laws: L

2

-norm, Energy, Momentum,

and four fundamental symmetries: Space-time translation, Phase, Scaling and Galilean

invariances. At the critical power, special regular solutions play an important role. They

are the so called solitary waves and are of the form u(t; x) = e

i!t

W

!

(x), ! > 0, where W

!

solves

�W

!

+W

!

jW

!

j

4

N

= !W

!

:(1)

Equation (1) is a standard nonlinear elliptic equation. There is a unique positive solution

up to translation Q

!

(x). Q

!

is in addition radially symmetric. Letting Q = Q

!=1

, scaling
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properties and Pohozaev identity yield jQ

!

j

L

2

= jQj

L

2

and E(Q

!

) = 0. In particular,

none of the three conservation laws in H

1

sees the variation of size of the W

!

stationary

solutions. These two facts are deeply related to the criticality of the problem. Weinstein

used the variational characterization of the ground state solution Q to (1) to derive the

explicit constant in the Gagliardo-Nirenberg inequality

8u 2 H

1

;

1

2 +

4

N

Z

juj

4

N

+2

�

1

2

�

Z

jruj

2

��

R

juj

2

R

Q

2

�

2

N

;(2)

so that for ju

0

j

L

2

< jQj

L

2

, the solution is global in H

1

. In addition, blow up in H

1

has

been proved to be equivalent to \blow up" for the L

2

theory from concentration in L

2

.

On the other hand, for ju

0

j

L

2

� jQj

L

2

, blow up may occur. Indeed, for this special power

nonlinearity, (NLS) admits another symmetry which is not in the energy space H

1

, the so

called pseudo conformal transformation: if u(t; x) solves (NLS), then so does

v(t; x) =

1

jtj

N

2

u(

1

t

;

x

t

)e

i

jxj

2

4t

:

This additional symmetry yields for u

0

2 � = H

1

\ fxu 2 L

2

g:

d

2

dt

2

Z

jxj

2

ju(t; x)j

2

= 4

d

dt

Im(

Z

xruu)(t; x) = 16E(u

0

):(3)

Now since E(Q) = 0 and rE(Q) = �Q, there exists u

0�

2 � with ju

0�

j

L

2

= jQj

L

2

+ �

and E(u

0�

) < 0, and the corresponding solution must blow up from viriel identity (3).

The case of critical mass ju

0

j

L

2

= jQj

L

2

has been studied by Merle. The pseudo-conformal

transformation applied to the stationary solution e

it

Q(x) yields an explicit solution

S(t; x) =

1

jtj

N

2

Q(

x

t

)e

i

jxj

2

4t

�

i

t

;(4)

which blows up at T = 0. Note that jS(t)j

L

2

= jQj

L

2

. It turns out that S(t) is the

unique minimal mass blow up solution in H

1

in the following sense: let u(�1) 2 H

1

with

ju(�1)j

L

2

= jQj

L

2

, and assume that u(t) blows up at T = 0, then u(t) = S(t) up to the

symmetries of the equation.

Another fact suggested by numerical simulations, see Landman, Papanicolaou, Sulem-

Sulem, is the existence of solutions blowing up as

jru(t)j

L

2

�

s

ln(jlnjtjj)

jtj

:(5)

These appear to be stable with respect to perturbation of the initial data. In this frame,

for N = 1, Perelman proves the existence of one solution which blows up according to (5).

Note that such solutions are stable with respect to perturbation of the initial data from

numerics, but are known to be structurally unstable. Indeed, in dimension N = 2, if we

consider the next term in the physical approximation leading to (NLS), we get Zakharov

equation, and �nite time blow up solutions to Zakharov equation are known to satisfy

jru(t)j

L

2

�

C

jT�tj

:

Our approach to study blow up solutions to (NLS) is based on a qualitative description

of the solution. We focus on the case when the nonlinear dynamic plays a role and interacts
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with the dispersive part of the solution. This last part will be proved to be small in L

2

for

initial conditions which satisfy

Z

Q

2

<

Z

ju

0

j

2

<

Z

Q

2

+ �

0

and E(u

0

) < 0(6)

where �

0

is small. Indeed, under assumption (6), from the conservation laws and the

variational characterization of the ground state Q, the solution u(t; x) remains close to Q

in H

1

up to scaling and phase parameters, and also translation in the non radial case. We

then are able to de�ne a regular decomposition of the solution of the type

u(t; x) =

1

�(t)

N

2

(Q + �)(t;

x� x(t)

�(t)

)e

i
(t)

where j�(t)j

H

1

� �(�

0

) with �(�

0

)! 0 as �

0

! 0 , �(t) > 0 is a priori of order

1

jru(t)j

L

2

,


(t) 2 R, x(t) 2 R

N

.

In particular, we derive a control from above of the blow rate for such solutions. More

precisely, we claim the following assuming a spectral property on a potential related to Q

and checked in dimension N = 1.

Theorem 1. There exists �

�

> 0 and C

�

such that the following is true. Let u

0

2 H

1

such that 0 <

R

ju

0

j

2

�

R

Q

2

< �

�

; E

0

<

1

2

�

jIm(

R

ru

0

u

0

)j

ju

0

j

L

2

�

2

: Let u(t) be the corresponding

solution to (), then:

(i) u(t) blows up in �nite time T < +1 in H

1

.

(ii) Moreover, there holds for t close to T , jru(t)j

L

2

� C

�

�

ln(jln(T�t)j)

T�t

�

1

2

:

Comments on the result

1. Blow up rate: Assume that u blows up in �nite time. By scaling properties, a known

lower bound on the blow up rate is jru(t)j

L

2

�

C

�

p

T�t

:

The problem here is to control the blow up rate from above. Our result is the �rst of

this type for critical NLS. No upper bound on the blow up rate was known, not even of

exponential type. Note indeed that there is no Lyapounov functional involved in the proof

of this result, and that it is purely a dynamical one with all dynamical controls exhibited

in H

1

and not in �.

We �rst prove an upper bound on the blow up rate as jru(t)j

L

2

�

C

�

p

jE

0

j(T�t)

: This bound

is optimal for NLS in the sense that there exist blow up solutions with this blow up rate,

explicitly S(t) of (4). Note nevertheless that these solutions have strictly positive energy.

In our setting of strictly negative energy initial conditions, no solutions of this type is

known, and we indeed are able to improve the upper bound by excluding any polynomial

growth between the pseudo-conformal blow up and the scaling estimate. It says in partic-

ular that there is a large open set of initial data which blow up with a control from above

of the blow-up rate suggested by numerics. This bound is conjectured to be optimal.

We would like to point out that this improvement of blow up rate control heavily relies

on algebraic cancellations deeply related to the degeneracy of the linear operator around

Q which are unstable with respect to \critical" perturbations of the equation. Indeed,

recall for example that all strictly negative energy solutions to Zakharov equation satisfy

the lower bound jru(t)j

L

2

�

C

jT�tj

: On the other hand, we expect the �rst argument to be
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structurally stable in a certain sense.

2. Blow up result: In the situation

R

ju

0

j

2

�

R

jQj

2

+ �

0

, we show that blow up is

related to a local in space information, and we do not need the additional assumption

u

0

2 � = H

1

\ fxu 2 L

2

g.

Modi�ed wave operators for Hartree equations

Kenji Nakanishi

We study the Hartree equation of the form

2i _u��u+ V (u)u = 0;(1)

where the potential V (u) depends on the charge density as

V (u) = �jxj

��

� juj

2

;(2)

where � 2 R and � > 0 are given constants, and � denotes the spatial convolution. It

is well known that the potential has long-range e�ect when � � 1, and any nontrivial

solution can not be approximated by the free evolution for large time, but we need some

oscillating modi�er. Then modi�ed wave operators give us a class of dispersive solutions

with prescribed asymptotic behaviour at time in�nity involving such modi�cation from the

free evolution.

Existence of wave operators can be thought as \well-posedness at time in�nity". But

from this viewpoint, the available results for the modi�ed wave operators were rather

unsatisfactory, since the constructed solutions did not have as much regularity as the

prescribed asymptotic data, did not converge at time in�nity in the strong topology, and

continuous dependence on data was given only in weak senses. These discrepancies would

cause serious problems when we study the inverse of the wave operators, the scattering

operator and further developments of the scattering theory.

We show that this problem can be resolved at least in the case � > 1=2, where the

Dollard-type �rst order modi�cation su�ces. We construct modi�ed wave operators in the

weighted space (1 + jxj)

�s

L

2

such that we have strong convergence at time in�nity and

bi-continuous dependence on the data. The lower bound of the weight s > 1� �=2 is also

sharp from the scaling argument. We have not obtained the result in the lower dimensional

case n � 2 for � < 1. Ginibre and Velo had constructed modi�ed wave operators for any

� > 0 and in any dimension, but in smaller spaces with the discrepancy mentioned above.

The main ingredients of the proof are proper choice of the modi�er which does not cause

derivative loss, iteration scheme and associated energy estimates which allow us to derive

time decay essentially only from the convolution factor in the potential, and some bilinear

estimates to have cancellation between several phase modi�ers that appear in the equation

for the modi�ed �eld.
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Global solutions for the Klein-Gordon-Schr�odinger system with rough data

Hartmut Pecher

Consider the Cauchy problem for the (3 + 1)-dimensional KGS system with Yukawa

coupling

i 

t

+� = �� 

�

tt

+ (��+ 1)� = j j

2

 (0) =  

0

; �(0) = �

0

; �

t

(0) = �

1

:

This system with data ( 

0

; �

0

; �

1

) 2 H

s;2

(R

3

)�H

m;2

(R

3

)�H

m�1;2

(R

3

) is shown to have

a unique global solution, if 1 � s;m >

7

10

and s +m >

3

2

. The proof uses the Bourgain

method of splitting the data into low and high frequency parts and a bilinear re�nement

of a Strichartz type estimate.

On unique continuation for the nonlinear Schr�odinger equations

Gustavo Ponce

(joint work with C. E. Kenig and L. Vega)

This talk is concerned with uniqueness properties of solutions of nonlinear Schr�odinger

equation of the form

i@

t

u+�u+ F (u; u) = 0; (x; t) 2 R

n

� R:(1)

More precisely, we shall consider the following question :

Q : Let u

1

; u

2

be solutions of the equation (1) with (x; t) 2 R

n

� [0; 1], belonging to an

appropriate class X and such that for some domain D � R

n

; D 6= R

n

u

1

(x; 0) = u

2

(x; 0); and u

1

(x; 1) = u

2

(x; 1); 8 x 2 D:(2)

Is u

1

� u

2

?

B-Y. Zhang answered question Q in the case

n = 1; F = �juj

2

u; � 2 R; u

2

� 0; D = (�1; a) ( orD = (a;1));(3)

for some a 2 R. His proof is based on the inverse scattering theory (IST). It is not clear

to us if in the case (3) the IST can be applied to obtain the desired result for any pair of

solutions.

Other unique continuation results have been obtained under analyticity assumptions on

the data, and under appropriate assumptions on the form of the non-linearity

F = F (u; u;r

x

u;r

x

u):(4)

It is not clear that such results extend to pairs of (analytic) solutions), or under anali-

tycity assumptions on the non-linearity F , without analyticity of the data, but under the

stronger assumption that supp u(�; t) is compact for all t 2 [0; 1].

Our main result is the following.

Theorem 1. Let u

1

; u

2

2 C([0; 1] : H

s

(R

n

)), s � maxfn=2

+

; 2g be two solutions of the

equation

i@

t

u+�u+ F (u; u) = 0;(5)

where F 2 C

[s]+1

(C : C ) with

jF (u; u)j � c(juj

p

1

+ juj

p

2

); p

1

; p

2

> 1;(6)
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and

jrF (u; u)j � c(juj

p

1

�1

+ juj

p

2

�1

); p

1

; p

2

> 1;(7)

If there exists � a convex cone strictly contained in a half-space such that

u

1

(x; 0) = u

2

(x; 0); u

1

(x; 1) = u

2

(x; 1); 8 x =2 � + y

0

; y

0

2 R

n

:(8)

Then u

1

� u

2

.

Remarks

a) In the one dimensional case our assumption on the complement of � + y

0

, i.e. (� +

y

0

)

c

= D reduces to a semi-line (a;1) (or (�1; a)). Also we observe that the class of

nonlinearities F considered is very general. In particular, it does not contain any analyticity

hypothesis on F .

b) We do not know if the result of Theorem 1 is still valid for the case where �

x

0

is just

a semispace.

Time decay for solutions of the Schr�odinger equation with rough/time

dependent potentials

Igor Rodnianski

(joint work with W. Schlag)

This talk describes the joint work with W. Schlag on the dispersive and Strichartz

estimates for solutions of the Schr�odinger equation with potential. In particular, we show

that under the assumptions

sup

x

Z

R

3

jV (y)j

jx� yj

dy < 4�;

Z

R

6

jV (x)V (y)j

jx� yj

2

dy < (4�)

2

we have the dispersive estimate

k	(t)k

L

1

� ct

�

3

2

k	

0

k

L

1

:

We also settle the conjecture of Journ�e-So�er-Sogge showing Strichartz estimates for po-

tentials jV (x)j � hxi

�2�"

.

Miscelleanous problems arising in the theory of water waves

Jean-Claude Saut

The lecture will start by a long quotation of V. Zakharov emphasizing the relevance of

dispersive waves in most realistic wave phenomena, in particular in the propagation of

hydrodynamical waves.

The full water wave problem (Euler system with free-boundary) is too complicated to

expect a description of its long time dynamics and of signi�cant wave phenomena (there

have been on the other hand a lot of signi�cant contributions on solitary waves solutions

to the Euler system).

Starting with the work of Boussinesq, Korteweg and de Vries, a fruitful approach is to

derive simpler asymptotic models which keep track of a some basic physical properties of

the wave (e.g. long wave, weak nonlinearity,...). They are obtained by (mostly) formal

asymptotic expansions using a right scaling. We dress a list of the more popular, both for

surface and internal waves. They fall into two categories : long waves models ( Boussi-

nesq, Benney-Luke, Kadomstev-Petviashvili (KP I and KP II), Korteweg- de Vries (KdV),

11



Benjamin-Bona-Mahony (BBM), Benjamin- Ono,...) or "wave packets models ( nonlinear

Schrodinger, Dysthe, Benney-Roskes, Davey-Stewartson,...). Most of them occur in other

physical contexts (under similar scalings) and thus appear as normal forms of various com-

plicated dispersive wave systems. Except for a few notable examples (KdV), there are no

rigorous derivations of those models from the full Euler system.

We emphasize that some interesting mathematical properties of the models are irrelevant

with respect to the Physics of the water waves problem ( eg the "smoothing" e�ects, the

"dispersive blow-up phenomenon",...). Also the question of looking for rough solutions is

largely irrelevant in this context, except when one looks for the local well-posedness of

the Cauchy problem in the natural "energy space" where GLOBAL well-posedness can be

proven. Moreover the energy space is the right one to use in order to state the orbital

stability of "ground states" solutions. This has been achieved for instance by Kenig, Ponce

and Vega for the KdV equation and by Bourgain for the KPII equation.

The technical part of the talk is devoted to present joint works with Luc Molinet and

Nikolay Tzvetkov which display a serious obstruction to the solvability of the local Cauchy

problem for the KP II and the Benjamin- Ono equations in their respective energy space.

Namely it is proven that one cannot solve those Cauchy problems by a Picard iterative

method on the (Duhamel) integral formulation, for data in any Sobolev natural classes.

As a consequence, the 
ow map cannot be smooth. This is in strong contrast with what

happens in the KP II or the KdV equation (see above). The proof relies in particular on

a careful analysis of the interaction of small and large frequencies. On the other hand we

have been able to prove the �rst global well-posedness result for the KP I equation, by

using a rather involved compactness method for smooth enough initial data.

Models for the 2 D water wave problem

Guido Schneider

(joint work with C. E. Wayne)

The so called 2D water wave problem consists in �nding the irrotational 
ow of an invis-

cid, incompressible 
uid in an in�nitely long canal of �nite depth subject to gravitational

force and surface tension. We show that in certain limit situations the problem can be

described by the KdV-, the NLS-, or the TWI-system by proving estimates between the

associated formal approximation and exact solutions of the water wave problem.

Wave packets and Strichartz estimates for low regularity wave equations

Hart Smith

(joint work with D. Tataru)

We discuss joined work with D. Tataru in introducing wave packets adapted for quasi-

linear wave equations with data belonging to H

s

, s >

n+1

2

. For the constant coe�cient

wave equation, the wave packet construction is related to the second dyadic decomposition

of phase space. In this setting, wave packets retain their size at all times t. For quasilin-

ear equations, it is necessary to adapt the construction to take into account the failure of

plane wave surfaces to be C

2

. Nevertheless, for dimensions n � 5, we are able to obtain a

construction which satis�es an orthogonality condition su�cient to prove local existence.
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On global well-posedness of nonlinear Schr�odinger equations

Hideo Takaoka

(joint work with J. Colliander, M. Keel, G. Sta�lani and T. Tao)

We consider the problem of obtaining sharp global well-posedness results below the

energy norm for the derivative nonlinear Schr�odinger equations. The results follow from

the method of exploiting the a priori estimate on H

s

norm from almost conserved energies.

We can also apply same argument to the well-posedness of quintic nonlinear Schr�odinger

equations.

On the nonlinear Schr�odinger equation on a plane domain

Nikolay Tzvetkov

(joint work with N. Burq and P. G�erard)

We study the cubic nonlinear Schr�odinger equation (NLS) posed on a bounded domain of

R

2

with Dirichlet boundary conditions. In the case when the domain is a disc, we prove

that the Cauchy problem is ill posed in the following sense: the 
ow map is not uniformly

continuous on bounded sets of the Sobolev space H

s

, s <

1

3

, contrary to what is known on

the square (recall that the scale invariant Sobolev space for the cubic NLS in 2D is L

2

).

Vortex �laments and nonlinear Schr�odinger equations

Luis Vega

(joint work with J. Rivas and S. Guti�errez)

In the talk I gave some explicit solutions to the 
ow of curves in R

3

X

t

= X

s

�X

ss

s; t 2 R(1)

X(0; s) = X

0

(s)(2)

obtained in collaboration with J. Rivas and S. Guti�errez. This PDE was proposed by Da

Rios in 1906 as an approximation to the dynamics according to Euler equations of vortex

tubes of in�nitesimal cross section. These solutions are of selfsimilar type and can develop

corners in �nite time or more generally logarithmic spirals. Examples of lack of uniqueness

of weak solutions were also given.

Edited by Axel Gr�unrock und Herbert Koch
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