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The conference was organized by David Eisenbud (Berkeley), Joe Harris (Cambridge)

and Frank-Olaf Schreyer (Saarbr�ucken) and attended by about 45 participants from USA,

France, UK, Italia, Japan, Norway, Poland and Germany. There were 18 hours of lectures

with a maximum number of four talks per day, allowing plenty of time for questions and

many informal discussions among smaller groups. The atmosphere of the meeting seemed

particularly lively, perhaps because it was attended by a group of strong young mathemati-

cians. The conference was centered around the three main topics syzygies, toric geometry

and moduli spaces of curves. In the area of syzygies Claire Voisin presented her outstand-

ing result on Green's conjecture in her talk "On syzygies of K3 surfaces and canonical

curves". The interaction between the three main topics was demonstrated in talks given

by Gavril Farkas on "Divisors on M

g;g+1

and the minimal resolution conjecture for points

on canonical curves" and Shoetsu Ogata "On the ideals de�ning projective toric varieties".
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Abstracts

On syzygies of K3 surfaces and canonical curves

Claire Voisin

For V a vector space, and B a graded SV =

L
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V -module, denote by K
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If X is a variety, L a line bundle on X, let K

p;q

(X;L) := K

p;q

(B; V ), V := H

0

(X;L),

B :=

L

q

H

0

(X;L


q

). As a generalization of Petri's and Noether's theorems, Green con-

jectured, that for X a smooth curve

Cli� (X) > � , K

l;2

(X;K

X

) = 0 8l � �

where

Cli� (X) := min

L

h

0

(L)�2, h

1

(L)�2

�

d� 2r j degL = d, h

0

(L) = r + 1

	

If X is a generic curve, Brill-Noether theory and duality allow to rewrite the conjecture

as:

Conjecture. K

k;1

(X;K

X

) = 0; X generic of genus g = 2k or 2k + 1.

We show that this is true for curves X which are hyperplane sections of a K3 surface S,

assuming L := O

S

(X) generates PicS, and g (X) = 2k. This follows from:

Theorem. For S a K3 surface as above, L � Z = PicS and L

2

= 2g � 2, g = 2k, one has

K

k;1

(S; L) = 0

This theorem has the following consequence:

Corollary. Green's conjecture is true for generic curves of �xed gonality in the range

g (X)

3

� gon (X) �

g (X)

2

+ 1

Combined with a recent result of Teixidor, which deals with the case gon (X) �

g

3

, this

shows, that Green's conjecture is true for generic curves of �xed gonality, except may be

generic curves of odd genus (which are of gonality k + 2, g = 2k + 1).
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Log canonical thresholds and the birational geometry of hypersurfaces

Mircea Mustata

The talk is based on joint work with Tommaso de Fernex and Lawrence Ein.

Log canonical thresholds are very useful in Mori theory, but they appear in various

other settings: they measure the growth of the number of solutions of f 2 Z [x

1

; :::; x

n

] in

(Z=p

m

Z)

n

, or the growth of the dimension of the jet schemes. We use this last characteri-

zation to give a bound for the log canonical threshold of a homogeneous a�ne hypersurface

with �xed dimension of the singular locus.

An other result gives a lower bound for the multiplicity of a zero-dimensional scheme in

terms of the log canonical threshold.

Birational cobordisms, factorization of birational maps and strati�ed toroidal

varieties

Jaroslaw Wlodarczyk

We discuss the proof of the Weak Factorization Theorem, which states that any birational

map between smooth complete algebraic varieties over an algebraically closed �eld can be

factored into a sequence of blow-ups and blow-downs at smooth centres. The main tool

used in the proof is a Morse like theory inspired by Morelli's theory of combinatorial

cobordisms. In the above theory the Morse function is replaced by a K

�

-action (where

K is a base �eld). The critical points of the Morse function correspond to �xed point

components of the action. The homotopy type changes when we "pass through" the critical

points. Analogously, in the algebraic setting "passing through" the �xed points of the K

�

-

action induces some simple birational transformations like blow-ups, blow-downs and 
ips,

which are analogous to spherical modi�cations. Constructing a smooth cobordism for a

given map provides a decomposition into "weighted" blow-ups and blow-downs. In order

to obtain a factorization into blow-ups and blow-downs at smooth centres we desingularize

geometric quotients of open a�ne �xed-point free subsets. This is achieved by applying

a theory of strati�ed toroidal varieties, generalizing the theory of toroidal embeddings by

Kempf, Knudsen, Mumford and Saint-Donat.

Moduli spaces of curves and the minimal model program:

E�ective divisors on M

0;n

Brendan Hasset

(joint work with Yuri Tschinkel)

The most obvious divisors onM

0;n

are the boundary divisors, but S. Keel and P. Vermeire

have shown, that these do not generate the full e�ective cone for n � 6. We compute the

e�ective divisors on M

0;6

by classifying "coextremal rays", which correspond to Q -Fano

�brations on M

0;6

. The simplest example arises from the forgetting map M

0;6

!M

0;5

, but

many more were not previously known.
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Brauer Groups of algebraic surfaces

A.J. de Jong

Let K be a �eld and let Br (K) denote its Brauer group. The period or exponent of an

element � 2 Br (K) is its order in the torsion group Br (K). The index of � is the degree

of the division algebra D over K representing � in Br (K) (i.e. index (�) =

p

dim

K

(D)).

Fact: the period divides the index.

Theorem. Let k =

�

k be an algebraically closed �eld and let K � k be a �nitely generated

�eld extension of transcendence degree 2. Any element of period prime to char (k) has

period = index.

In the talk we explained the proof of this theorem for unrami�ed classes � 2 Br (K).

An unrami�ed class comes from an Azumaya algebra A over O

X

, where X is a projective

nonsingular model of K=k. Whence the title of the talk.

We wish to mention here the following question. If K=k is as above, but now of trans-

cendence degree n, is it true that always index j period

n�1

?

The case n = 1 is Tsen's theorem and n = 2 is the theorem above (for special �'s).

A geometric Littlewood-Richardson rule

Ravi Vakil

Littlewood-Richardson numbers are structure coe�cients for Schur polynomials, or equi-

valently structure coe�cients of the cohomology of the Grassmannian. A "Littlewood-

Richardson rule" is a combinatorial interpretation of these numbers. We describe a geo-

metric Littlewood-Richardson rule, in terms of "checker games". Consequences include, in

no particular order:

1. the �rst e�ective solution to all Schubert problems (i.e. to any accuracy).

2. an a�rmative answer to the classical question "Can solutions to all Schubert problems

be real, i.e. de�ned over R?", and variations to other �elds (e.g. �nite �elds and those

satisfying the implicit function theorem)

3. transversality of general translates in characteristic p (hence Schubert problems are

enumerative)

4. almost all Schubert problems (over any base) have Galois/monodromy group alter-

nating or full

5. bijection to tableaux and (Knutson-Tao) puzzles, hence the �rst geometric interpre-

tation of these objects

6. applications to similar questions based in geometry, e.g. K-theory (proof of conjec-

tures of Buch and Tao), equivariant cohomology, and possibly quantum cohomology

7. an approach to the analogous open question for Schubert polynomials (� intersec-

tion theory on the 
ag variety) and for other classical groups (e.g. orthogonal and

symplectic Grassmannian).
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Flips, Moduli and Derived Categories

Dan Abramovich

(visiting Hebrew University)

Let f : X ! Y be a birational contraction satisfying

B.1: �bres of f have dim � 1

B.2: Rf

�

O

X

= O

Y

Bridgeland de�ned a moduli space of perverse point sheaves M (X=Y ) with main com-

ponent W = W (X=Y ) birational to Y . Bridgeland also proved that the Fourier-Mukai

type transform D (W )! D (X) is an equivalence for X ! Y a 3-fold 
opping contraction

with X smooth. Chen, and the speaker, extended this to some threefold contractions with

X singular. This gives a series of examples where the 
op X

+

! Y (or 
ip) is a moduli

space. The talk explains some of the ingredients in the proofs.

Zero-dimensional schemes & families of singular curves

Christoph Lossen

(joint work with G.-M. Greuel and E. Shustin)

We consider the following (classical) problem: Let V = V

d

(S

1

; :::; S

r

) be the variety

(ESF) of irreducible, reduced, plane curves of degree d with exactly r singularities of

(analytic resp. topological) types S

1

; :::; S

r

. Is V non-empty (=existence problem), resp.

T -smooth (=smooth and of the expected dimension), resp. irreducible?

I presented our general approach to these questions, being based on the study of the co-

homology of ideal sheaves of zero-dimensional schemes. Following these lines, we obtained

the su�cient conditions:

�

P

r

i=1

� (S

i

) �

1

9

(d

2

� 2d+ 9) ) V

d

(S

1

; :::; S

r

) 6= ;

�

P

r

i=1


 (S

i

) � (d+ 3)

2

) V

d

(S

1

; :::; S

r

) T -smooth

�

25

2

�#(nodes) + 18 �#(cusps) +

P

r

i=1

(�

0

(S

i

) + 2)

2

� d

2

) V

d

(S

1

; :::; S

r

) irreducible

where � is the Milnor number, �

0

the Tjurina number (resp. �-modality, for topological

types) and 
 � (�

0

+ 1)

2

. These conditions are asymptotically proper (existence), expected

to be so (T -smoothness), or have at least the best asymptotics of all known universal

conditions (irreducibility). In the case of curves with only n nodes and k cusps, the T -

smoothness condition 4n+ 9k � (d+ 3)

2

is even optimal up to linear terms.

Finally I discussed two series of reducible ESF of cuspidal curves, resp. curves with

only ordinary singularities, whose components cannot be distinguished by considering the

fundamental group of the complements.

Divisors on M

g;g+1

and the minimal resolution conjecture for points on

canonical curves

Gavril Farkas

(joint work with M. Mustat��a and M. Popa)

We do global calculations on moduli spaces of pointed curves to prove the Minimal

Resolution Conjecture (MRC) for points on any non-hyperelliptic canonically embedded

curve. We also show that MRC always fails for curves embedded in projective space by

line bundles of high degree.
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Our results have surprising connections with moduli spaces of stable bundles on curves

and with geometric divisors on moduli spaces of pointed curves. If Q

C

denotes the normal

bundle of a curve C embedded in its Jacobian, we show that the vector bundles

V

i

Q

C

always have a theta divisor, which is identi�ed with the di�erence variety C

g�i�1

� C

i

�

Pic

g�2i�1

(C). This answers positively a conjecture of R. Lazarsfeld.

Are minimal degree rational curves determined by their tangent vectors ?

Stefan Kebekus

(joint work with S. Kov�acs)

Let X be a projective variety which is covered by rational curves, e.g. a Fano manifold

over C . In this setup, characterization and classi�cation problems lead to the natural

question: "Given two points on X, how many minimal degree rational curves are there,

which contain those points ?" A recent answer to this question led to a number of new

results in classi�cation theory. As an in�nitesimal analogue, we may ask "How many

minimal degree rational curves are there on X, which contain a prescribed tangent vector?"

After a review of the earlier results, we give a condition, which guarantees, that every

tangent vector at a general point of X is contained in at most one rational curve of minimal

degree. As an immediate application we obtain irreducibility criteria for the space of

minimal rational curves.

On the ideals de�ning projective toric varieties

Shoetsu Ogata

(staying at Universit�at Erlangen-N�urnberg)

Let X be a projective toric variety of dim n and let L be a very ample line bundle on X,

whose global sections de�ne an embedding of X as a projectively normal variety. Then it

is known that the de�ning ideal of X is generated by elements of degree � n+ 1 and that

this bound is the best possible.

On the other hand, Sturmfels conjectured that the ideal de�ning a nonsingular toric

variety is generated by only quadrics, when the variety is embedded as a projectively

normal variety. Before he gave the conjecture, Koelman obtained a criterion for projective

toric surfaces, when its de�ning ideal needs an element of degree 3 as its generator. The

class of toric surfaces whose de�ning ideals need a generator of degree 3 is consisting of

special singular toric surfaces. We obtain a generalization of the criterion to n � 3. The

criterion is stated in terms of integral convex polytopes de�ned by global sections of an

ample line bundle on the variety.

A toric variety X of dimension n has an action of an algebraic torus T

�

=

(C

�

)

n

. Let

M = Hom

gp

(T; C

�

) be the group of characters. We denote e (m) as the character of T

de�ned by m 2 M

�

=

Z

n

. Then we have

� (X;L)

�

=

M

m2P\M

C e (m)

where P = Conv fu

0

; u

1

; :::; u

r

g � M

R

�

=

R

n

is an integral convex polytope of dimension

n, that is, it is the convex hull of a �nite set of points in M .
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Theorem. Let (X;L) be a pair of a projective toric variety X of dimension n and a

normally generated ample line bundle L on X. Let P be the integral convex polytope of

dimension n corresponding to (X;L). Then the de�ning ideal of X in P (� (X;L)) needs a

generator of degree n+ 1 if and only if

#

@P \M = n + 1 and IntP \M 6= ;.

Generalized Lefschetz hyperplane theorem and rationally connected �brations

Jason Starr

(joint work with Tom Graber, Joe Harris and Barry Mazur)

One formulation of the Lefschetz hyperplane theorem for �

1

(as formulated by Goresky-

MacPherson) is the following:

Given a quasiprojective, normal variety B � P

n

and a generically �nite morphism

� : X ! B with no rational section for a general curve C � B parametrized by the family

H := f[H \B] : H � P

n

linear, codim (H) = dimB � 1g, the pullback X �

B

C ! C has

no section.

Could this be true, if we drop the condition, that � be generically �nite? Clearly not as

formulated; however we prove the following theorem:

Theorem (GHM{). Given a normal, projective variety B and an integer n � 0, there is

a family of maps H

n

= f[f : C ! B]g with each C a smooth, projective curve such that,

for any dominant, projective morphism � : X ! B of generic �bre dimension � n, there

is no "pseudo-section" of � { i.e. no subvariety Z � X whose general �bre over B is

irreducible and rationally connected { i� for a very general [f : C ! B] 2 H

n

the pullback

X �

B

C ! C has no section.

We use this theorem to construct a family � : X ! B of Enriques surfaces over a smooth

curve having no sections, thus providing a counterexample to a question posed by Serre.

Brauer group, torsors and diophantine equations

J.-L. Colliot-Th

�

el

�

ene

This is a survey talk on recent developments around the Brauer-Manin obstruction to

the Hasse principle. Topics covered:

1. De�nition of the Brauer-Manin obstruction

2. The \main theorem of descent" over open varieties over a number �eld k

3. Application to the equation

� (t� �)

b

(t� 
)

c

= N

K=Q

�

X

n

i=1

!

i

x

i

�

with � 2 Q

�

, �; 
 2 Q , b; c 2 N and K =

L

n

i=1

Q!

i

(work of Heath-Brown, Skorobogatov, Harari, myself)

4. Fibrations; when does one �nd a �bre with points in all completions of the base

ground �eld k (a number �eld); what Schinzel's hypothesis (H) predicts; the example

P (t) = N

K=k

�

X

n

i=1

!

i

x

i

�

with P (t) 2 k [t] and K =

L

n

i=1

k!

i
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5. Pencils of principal homogeneous spaces under an abelian variety: Swinnerton-Dyer's

method (using the conjectured �niteness of Tate-Shafarevich groups)

6. Applications: (Swinnerton-Dyer)

� The diophantine equation aX

4

+ bY

4

+ cZ

4

+ dT

4

= 0, where abcd is a square

� The diophantine equation

P

n

i=0

a

i

X

3

i

= 0, n � 3

Multiplier ideals and jet schemes

Lawrence Ein

(joint work with Lazarsfeld & Mustat��a)

Let X be a smooth complex variety and Y � X be a closed subscheme. Let Y

m

=

Mor

C

(SpecC [t] =t

m+1

; Y ) be the m-th jet scheme of Y . Let C be an irreducible component

of Y

m

. We show that C determines an algebraic discrete valuation ring in the function �eld

of X. In general, we describe the various irreducible components of Y

m

in terms of a log

resolution of the (X; Y ).

Hard Lefschetz theorem for non rational polytopes

K. Karu

Given a simple polytope P , let f

i

be the number of i-dimensional faces of P . The

necessary and su�cient conditions that f

i

must satisfy are well-known. R. Stanley's proof

of necessity goes as follows: to the polytope P one can associate a quasi-smooth projective

toric variety X

P

. The face numbers are uniquely determined by the Betti numbers of the

cohomology of X

P

. Now the conditions on the face numbers correspond to conditions on

cohomology of X

P

, such as h

0

= 1, Poincare duality, Hard Lefschetz theorem. We discuss

generalization of these ideas to non-simple nonrational polytopes. In particular we prove

the Hard Lefschetz theorem for such polytopes.

Hilbert schemes over exterior algebras

Irena Peeva

(joint work with M. Stillman)

Hartshorne proved that the Hilbert scheme, that parametrizes all subschemes of P

n

k

with a �xed Hilbert polynomial, is connected. We show that the Hilbert scheme, that

parametrizes all ideals with a �xed Hilbert function in an exterior algebra, is connected.

Our construction is entirely di�erent than Hartshorne's, and it provides a new proof of

Hartshorne's result. More precisely, we show that every two ideals with the same Hilbert

function are connected by a sequence of Gr�obner deformations.
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Quantum Chow rings of Deligne-Mumford stacks

Tom Graber

(joint work with D. Abramovich and A. Vistoli)

We give an algebro-geometric construction of a quantum Chow ring of a smooth Deligne-

Mumford stack with projective coarse moduli scheme. The main ingredient in the con-

struction is Abramovich-Vistoli's moduli space of twisted stable maps. By specializing the

quantum parameter we recover the "stringy Chow ring" or the orbifold cohomology ring,

which is conjecturally related to the cohomology of crepant resolution of the coarse moduli

space of the stack.

Regularity on abelian varieties

Mihnea Popa

(joint work with G. Pareschi)

I introduce a notion of regularity for arbitrary sheaves on abelian varieties, de�ned by

the Fourier-Mukai functor. In a particular case, depending on the choice of a polarization,

this strengthens the usual notion of Castelnuovo-Mumford regularity.

M -regularity applies to a large number of questions, ranging from the equations of curves

and symmetric products in Jacobians, to linear series and de�ning equations for abelian

varieties, and to e�ective statements for adjoint line bundles on more general irregular

varieties. It can also be used to bound Seshadri constants on abelian varieties, or to a

study of moduli spaces of vector bundles.

Edited by Janko Boehm
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