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This meeting was organized by J.-M Bismut, J. Briining, and R. Melrose; it was attended
by 35 scientists from 8 countries. The conference must be considered very successful in
view of the importance of the results communicated and the fruitfulness of the ensuing
discussions, even though many interesting mathematicians were not able to come this
time, for a variety of reasons.

As usual, the topics of discussion were manifold but, nevertheless, centering around a few
major themes. A quite substantial number of talks dealt with questions of spectral theory
and L?-invariants on various singular spaces, like compact singular spaces (Grieser: com-
pact semialgebraic sets, Shioya: Alexandrov spaces, Bar, Weingart: compact manifolds),
complete noncompact Riemannian manifolds (Briining: manifolds with cusps, Carron:
manifolds with flat ends, Eyssidieux: Galois coverings of complex projective manifolds,
Leichtnam: Etale groupoids, Miiller: locally symmetric spaces with finite volume, Piazza:
Galois coverings of compact manifolds), or smooth spaces with singular metrics (Callias).

Another focus of active interest was the analytic torsion which was addressed in the talks
of Bismut (holomorphic and de Rham torsion forms), Goette (the family case), Kohler
(quaternionic analytic torsion), Ma (analytic torsion on manifolds with boundary), and
Yoshikawa (relation between equivariant analytic torsion and modular forms).

The importance of the notion of gerbes for the subject was demonstrated in talks by
Bunke and Melrose.

Finally, there was some interest in algebras of operators and functions (Brasselet on func-

tion algebras with computable Hochschild homology, Schrohe on K-theory of the Boutet
de Monvel algebra) and in various questions related to geometric quantization (Alexeev on
group valued moment maps, Braverman on certain noncompact Kahler manifolds, Szenes
on counting lattice points in polytopes).
The meeting showed clearly that geometric analysis on singular spaces is an important
and still vigorously expanding subject which should be the object of future Oberwolfach
meetings, too. The present team of organizers feels, however, that after conducting quite
a few meetings it may be time to leave this task to others.



Abstracts

On the quantization of group valued moment maps
ANTON ALEKSEEV

Let g be a finite dimensional Lie algebra. The Duflo map Sg — Ug establishes an alge-
bra isomorphism between the invariant polynomials (S¢)? and the center of the universal
enveloping algebra Z(Ug). Let h C g be a Lie subalgebra. In general, the Duflo maps for
g and A do not intertwine the natural embeddings Sh — S¢g and Uh — Ug.

Let g be a quadratic Lie algebra, that is, a Lie algebra with an ad-invariant scalar product
B, and let h be a Lie subalgebra such that the restriction of B on A be nondegenerate. We
show that there exists a natural extensions of the Duflo map @, : Sg® Ag — Ug ® Cl(g),
where Cl(g) is the Clifford algebra corresponding to B, such that @, and @, are intertwined
by the natural embeddings induced by A — g.

We use this result to give an extension to quadratic Lie algebras of the recent result of
Huang-Pandzic and of Kostant on the Vogan conjecture for Dirac cohomology.

Small Eigenvalues of the Yamabe Operator
CHRISTIAN BAR

We define a differential topological invariant of compact manifolds by counting the small
eigenvalues of the Yamabe operator for suitable Riemannian metrics. We bound this
invariant from above and from below by the a-genus. For simply connected manifolds it
turns out to be computable in terms of the a-genus and one sees that it can distinguish
certain exotic spheres. Hence it is not a homeomorphism invariant.

As methods we use a spectral comparison principle due to Gallot and Meyer, refined
Kato inequalities, a surgery result for the Yamabe spectrum, and bordism theory. As a
geometric application we show that if a compact spin manifold has sufficiently large A-
genus, then it has a “neck of bounded size” for all metrics. This is not true if one drops
the assumption of the A-genus as one can e. g. see in the example of the torus.

Algebras of functions on singular spaces
JEAN-PAUL BRASSELET

The Hochschild homology of the algebra C'*°(M) of smooth functions on a compact smooth
manifold M has been proved to be isomorphic to the de Rham complex of differential forms
on the manifold (A. Connes). In order to generalize such a result for singular varieties,
one has to determine what are ”good” functions and ”good” forms on a singular variety.
One idea comes from the concept of shadow forms, i.e. differential forms defined on the
smooth part of the singular space X admitting poles of given order on the strata of a
suitable stratification of X. The cohomology of the complex of shadow forms is isomorphic
to intersection homology of X for a suitable perversity, related to the orders of the poles.
Another idea comes from the Teleman’s localization technique: ”the Hochschild complex
of C*(M), M smooth, is localized along the main diagonal”. This procedure explains the
local character of the Hochschild homology of the algebra C'°(M) and is adapted to the
computation of Hochschild homology of algebras which are significative for singular spaces:



- the algebra of smooth functions on R" which are bounded at infinity as well as all their
derivative,

- the algebra of functions with suitable controlled properties on cones over smooth mani-
folds,

- the algebra of Whitney functions on X closed in R".

The results of this lecture come from joint works with A. Legrand, N. Teleman and M.
Pflaum.

Background cohomology of a holomorphic vector bundle over a tamed Kahler
manifold

MAXIM BRAVERMAN

Let M be a complete Kahler manifold endowed with a circle group action. Let W be
an equivariant holomorphic vector bundle over M. The manifold M is called tamed if
it is endowed with an invariant proper function ¢ : M — R satisfying certain technical
conditions.

We introduce an invariant of the triple (M, W, @) called the background cohomology.
By definition it is the cohomology of certain deformation of the Dolbeault complex of M
with coefficients in W. We show that the background cohomology is rather stable with
respect to ¢ and behaves very much like a cohomology of a holomorphic bundle over a
compact manifold. In particular, we prove that it is semi-continuous in families. We also
prove analogues of Kodaira and Andreotti-Grauert vanishing theorems. We discuss some
application of these results to geometric quantization of non-compact Kahler manifolds.

Dirac systems
JOCHEN BRUNING
(joint work with Werner Ballmann and Gilles Carron)

The spectral theory of geometric operators on noncompact manifolds differs drastically
from the compact case, mainly through the possible presence of essential spectrum. To
achieve significant results, the geometric singularity has to be translated into a functional
analytic model of the operators involved which allows a detailed study. In this talk, we
describe such a model for singularities of the type U := (0,ey) X N), where 0 < gy < 00
and N is compact, equipped with a metric of the form g := dz? & gn(x), with a smooth
family, gy, of metrics on N; we will apply the model to complete manifolds with finite
volume and pinched negative curvature near infinity.

The model we propose consists of the following data:

1)we are given a C''-Hilbert bundle, 7 : H — (0, g,), together with a continuous metric
connection 0;

2) in addition, there is a family, A(x), of self-adjoint operators in H, := 7' (x) with do-
main H!, such that H' is a C'-Hilbert bundle, too, and both A and the natural embedding
become C'-morphisms;

3) there is a C''-field of endomorphisms, v, with the properties

V=" =—y,
[0,7] =0,
vA+ Ay =0.



Then it is readily seen that all first order geometric differential operators, D, can be written
in the form

D=~(0+A),
on L*(H) for a suitably chosen Hilbert bundle with the above properties.

If one studies simple examples of ends in complete Riemannian manifolds like cylinders
or hyperbolic cusps, then one is lead to conjecture that the coefficient A in the correspond-
ing Dirac systems converges at infinity, in a suitable sense, modulo a finite dimensional
perturbation. It is rather difficult to make this intuition precise in some generality but
we can do it in the case of manifolds with cusps. This leads to several abstract structural
assumptions on the operator coefficient which imply precise descriptions of the essential
spectrum and convenient index formulas in the Fredholm case. The operators under con-
sideration will not be Fredholm in general, though, but they will be extended Fredholm
operators in the sense of Carron. Correspondingly, we can derive formulas for the extended
index under the additional structural assumptions.

Families with corners, eta forms, and Deligne cohomology
ULRICH BUNKE

Given a geometric family, then under certain conditions the K-theoretic index of the

associated family of Dirac operators can be refined to a Deligne cohomology class. Low di-
mensional examples of these refinements are the eta invariant, the determinant line bundle
and the index gerbe. The refinement on level k exists iff the index of the family is trivial
on the k£ — 1-skeleton of the parameter space. The refinement still depends on choices, but
if the parameter space is compact, then the set of all possible Deligne cohomology valued
refinements is finite.
Deligne cohomology as well as geometric families admit the notion of transgression. Com-
patibility of the refinement with transgression was shown for the index gerbe, i.e. in level
2. This generalizes the result in level 1, i.e. the holonomy formula for the determinant line
bundle.

Spectral invariants in the presence of singularities
CONSTANTINE CALLIAS

As a model of a differential operator with singularities on an algebraic set, let H be the
differential operator —A,, + k(z)/|p(x)|* on R™, where p is a homogeneous polynomial,
k is a positive smooth function of compact support and « is an integer > 2. We prove
the existence of an asymptotic expansion of the distributional trace of the heat operator,
Tr pe™t for ¢ € C°(R™), as t — 0+, with respect to the “power - logarithm” asymp-
totic forms t*log’, k € C, j € Z,. This extends the results on operators with irregular
singularities that were the object of the article in Math. Res. Lett. 2, 129-146 (1995),
whose methods are applied to this case as well. The proof relies on an analysis of classical
heat expansions as we approach the singularities together with a differential calculus of
functions with “power - logarithm” asymptotic expansions in several variables. Explicit
computations that demonstrate the power of this calculus are presented. Applications to
calculations of indices, determinants and spectral invariants that provide crucial informa-
tion for inverse spectral problems are also discussed. In particular, the hamiltonian of a
many-body system of particles interacting via a two-body singular interaction is a special
case of the model operators above and the trace of the heat operator (in a finite volume)



is the partition function of such as system. Guided by the examples of two-body systems
and weak interactions we conjecture that the high - temperature asymptotic expansion of
the partition function of the many-body system determines the short - distance asymptotic
expansion of a spherically symmetric interaction.

L? cohomology of manifold with flats ends
GILLES CARRON

Let (M™, g) be a complete Riemannian manifold. We denote by H*(M, g) or H*(M) its
space of L?-harmonic k-forms, that is to say the space of L? k—forms which are closed and
coclosed:
HE(M) = {a € L*(A*T* M), da = 6a = 0},

where

d : CP(AFT*M) — O (AFHT* M)
is the exterior differentiation operator and

§ : CP(AFT*M) — CS°(AFT* M)
its formal adjoint. The operator (d+§) is elliptic hence the elements of H*(M) are smooth
and the L? condition is only a decay condition at infinity.

If M is compact without boundary, then these spaces have finite dimension, and we have
the theorem of Hodge-de Rham : the spaces H¥(M) are isomorphic to the real cohomology
groups of M. For noncompact manifolds, there is no such general interpretation. In
(1982, [D]), J. Dodziuk asked the following question: according to Vesentini ([V]), if M
is flat outside a compact set, the spaces H¥(M) are finite dimensional. Do they admit a
topological interpretation 7

We give the following complete answer to this question. Let (M", g) be a complete
Riemannian Manifold with one flat end E. Then

(1) If the volume growth of geodesic balls is at most quadratic, i.e. if
| B,
vol B,(r) _

2 b

lim

r—00 r

then we have
H*(M, g) ~Im (HE(M) — H*(M)) .
(2) Iflim, o %M = 00, then the boundary of E has a finite covering diffeomorphic

to the product S*=! x T, where T is a flat (n — v)-torus ; let 7 : T — OF be the
induced immersion, then

H* (M, g) ~ H*(M \ E, ker %),

where H¥(M \ E, ker *) is the cohomology associated to the complex of differential
forms on M \ E which are zero when pulled back to T :

HY(M \ E, ker %) =
{a€C>(AFT*(M\E)), da=0, pi*a=0}/{da,a€C®(A*~1T*(M\E)),n*a=0}. :

This theorem was already known for asymptotically euclidean manifolds, i.e. when each
end is simply connected ([C1, M]).

This theorem is obtained as an application of the analysis we have developped in ([C2])
and of the work of Eschenburg and Schroeder which describes the endstructure of flat
manifolds ([E-S], see also [G-P-Z]). The preprint is available at: www.math.sciences.univ-
nantes.fr/carron
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Lo-invariants for coherent analytic sheaves
PHILIPPE EYSSIDIEUX

After the pioneering work of Gromov (J.Diff. Geom 1992), several algebraic geometers
(most notably Campana and Kolldr) recognized the fruitfulness of the following problem:

Let X be a complex projective manifold, 7 : X — X be an infinite Galois covering of
X and L be a holomorphic line bundle on X. Study the Hilbert space of L, holomorphic
sections of 7*L (L, with respect to Gal(X /X )-equivariant metrics).

Cohomological techniques for coherent analytic sheaves are well known from the classical
work by Oka, Cartan and Serre in the 1950s to provide efficient techniques to study linear
series. It is therefore very natural to construct a cohomological formalism for studying
these L»- linear series.

Let ()E' ,0) be a complex analytic space endowed with a properly discontinuous action
of a discrete group I'. Let Cp(f( ) be the category of T'-equivariant coherent analytic
sheaves on X. Let A be the von Neumann algebra which is the commutant of the right
regular representation of T'. Let 7 : X — )2'/1" := X be the quotient map. For any
F € Ob(Cr(X)) we construct a sheaf of A-modules on X lyr, F' C 7, F, requiring that
s € F(m ' (U) should be ‘L, along the fibers *. The functor F' — lm,F is then exact.
Setting H(q2) (X, F) := HY(X,loym, F)« gives rise to a cohomological é-functor from Cr(X)
to (A-modules).

The category of hilbertian A-modules defined by Murray-von Neumann (on which a real
valued dimension function is defined) can be embedded in an abelian category E(A), as
shown by Farber. This category is a subcategory of (A-modules). Denote by Cr(X), the
full subcategory of Cp(f( ) consisting of I'-cocompactly supported sheaves. We construct
a lift RTyy : D*(Cr(X),) — D'(E(A)) of the preceding d-functor, hereby proving an
analogue of Cartan’s theorem A.

Consider an equivariant proper morphism f : Z — X, then we have RF(Z)(Z ) =
RT(5)(X, Rf..) (Leray spectral sequence). We also have an analogue of Atiyah’s Ly-index
theorem which states that > (—1)

dimp Hjy, (X,F)) = >, dim HY(X,F) (here HY is the equivariant cohomology).
This work was published in Math. Ann. (2000);simultaneously, independent work on
this topic was done by Campana and Demailly.



Higher torsion invariants
SEBASTIAN GOETTE

We compare two generalisations of Franz-Reidemeister torsion to the family case of families.

The higher analytic torsion form of Bismut and Lott arises in a Grothendieck-Riemann-
Roch theorem for flat bundles. Let ' — M be a flat vector bundle over the total space of
a proper submersion p: M — B, then the fibrewise cohomology H = H*(M/B;F) — B
is again a flat vector bundle. The analytic torsion 7 compares two natural characteristic
forms associated with F' and H. If both bundles carry parallel metrics, this form gives rise
to a cohomology class T (M/B; F) € H**">?(B;R), the higher analytic torsion.

On the other hand, if dim M > 2 dim B, there exists a function h: M — R whose fibrewise
singularities are either of Morse type, or cubical and unfolded over B, and whose unsta-
ble tangent bundle is trivialised. If F' admits a parallel metric and is fibrewise acyclic,
Igusa’s higher Franz-Reidemeister torsion T(M/B; F) measures the variation of the fibre-
wise Thom-Smale complex over generic points in B.

Extending previous joint work with Bismut, we show that if h has no cubical singular-
ities, then 7T (M/B; F) can be expressed in terms of a torsion class T'(M/B; F, h) similar
to Igusa’s, and a characteristic class °J of the vertical tangent bundle along the fibrewise
singularities. This leads us to conjecture a general relation between the torsion classes of
Igusa and Bismut-Lott.

As an application, we use the higher analytic torsion to detect infinite families of smooth
bundles M; — B with diffeomorphic fibres that are homeomorphic but not diffeomorphic
as bundles.

Weyl’s law for semialgebraic sets
DANIEL GRIESER

A semialgebraic set is a subset of RY which can be described by a finite number of poly-
nomial equations and inequalities. Let X be a compact semi-algebraic set. Such a set is
stratifyable. We assume that X has an open dense stratum () of dimension n. We equip
Q2 with the Riemannian metric induced by restriction from the ambient space. We prove
Weyl’s law for €2, i.e.
N(X) = cpvol, (A" + O(A?7),

where ¢, is the 'usual’ constant, that is (27)~" times the volume of the unit ball in R,
and €, is some positive number. Here, N()\) is the number of eigenvalues of the Laplacian
on €2, with Dirichlet or Neumann boundary conditions. That is,

N(A) = sup{dimV : /u2 < )\/ |Vul?},
0 0

where V' varies over subspaces of H}(Q) or H'(Q), respectively. Similar but weaker results
have been obtained previously by various authors, among them Nagase, Pati, Li-Tian, and
Gromov.

For the proof we use the classical domain decomposition method, which relies on the
minimax principle for N()\). In order to make this work, we divide Q into one large piece,



a smooth manifold with boundary of volume close to vol,(£2), and many small pieces of
diameter roughly A~'/? which may be singular. The Weyl asymptotics then follows from
a Poincaré inequality for the small pieces. This inequality can be proved for ’standard
cusps’, i.e. cusps defined inductively (over dimension) using monomials. By a theorem of
A. Parusinski X has a decomposition into such standard cusps.

Quaternion analytic torsion
KA1 KOHLER
(joint work with Gregor Weingart)

Analytic torsions were introduced by Ray and Singer as real numbers constructed using
certain Z—graduated complexes of elliptic differential operators acting on forms with coeffi-
cients in vector bundles on compact manifolds. The real analytic torsion was defined for the
de Rham-operator associated to flat Hermitian vector bundles on Riemannian manifolds.
The complex Ray-Singer torsion was defined for the Dolbeault-operator acting on anti-
holomorphic differential forms with coefficients in a holomorphic Hermitian vector bundle
on a compact complex manifold.

Thus it seems natural to investigate torsions for other Z—graded complexes occurring in
geometry. We give a definition of an (equivariant) quaternionic torsion for quaternionic
Kéhler manifolds M, with coefficients in the antiselfdual vector bundles WW. This is done
by decomposing the action of a natural Dirac operator on Salamon’s complex on these
manifolds

0 — Sym*HeW — Sym""'HQLYE*@W

— ... — Sym™"*HL™E'eWwW — 0

for a parameter £ € Ny even and TM ®gr C = H ® E. The Laplace operator defining the
torsion is the square of this Dirac operator. Also we compute the equivariant quaternionic
torsion for all known quaternionic Kahler manifolds of positive curvature, i.e. for the
quaternionic symmetric spaces of the compact type, with respect to the action of any
element of the associated Lie group and any equivariant antiselfdual vector bundle.

Finally we comment briefly on the special case of hyperkahler manifolds, in which the
quaternionic torsion can be expressed in terms of a Dolbeault-operator.

APS Index theory for etale groupoids
ERrRIC LEICHTNAM
(joint work with Paolo Piazza)

Connes has proved a cohomological form of the index theorem for leafwise elliptic operators
on a closed foliated manifold (X, F). He considered the etale groupoid G, associated with
a complete transversal 7' where GT. denotes the set of paths of the holonomy groupoid of
(X, F) whose extremeties lie on 7.

Gorokhosvky and Lott have given a heat superconnection proof of Connes’ theorem by
combining techniques of Bismut (the family index theorem) and Lott (the superconnection
proof of the Connes-Moscovici higher index theorem for coverings). The advantage of the
approach of Gorokhosvky and Lott lies in the fact that it provides an explicit representative
of the Chern character of the index.

In this work, we use the constructions of Gorokhosvky and Lott to state and prove
an Atiyah-Patodi-Singer type index theorem for a class of etale groupoids G and proper



G —manifolds with boundary. We assume that the boundary Dirac operator is invertible
and that the etale groupoid is (in some sense) of polynomial growth so that we are able
to prove the convergence of the higher eta invariant. We also give an application to the
foliation case.

Analytic torsion for manifolds with boundary
XIAONAN MA
(joint work with Jochen Briin ing)

It is interesting in itself to understand various index theorems from the point of view of
local index theory, and it also helps us to understand other geometric invariants such as
the n-invariant or the analytic torsion. Let us briefly recall the definition of the Ray-Singer
metric: Let F' be a flat vector bundle on a compact manifold, and let det H(X, F') be the
determinant of the (absolute) cohomology of F'. The Ray-Singer metric on the complex line
det H(X, F) is the product of the standard Ls-metric on det H(X, F') and the Ray-Singer
analytic torsion.

In this talk, we prove at first a local index version of the theorem of Gauss-Bonnet-Chern
for manifolds with boundary, equipped with a general Riemannian metric (which needn’t
have a product structure near its boundary).

As a natural continuation of the above local index theorem, we establish the anomaly
formula for Ray-Singer metrics associated with a flat vector bundle on a compact manifold
with boundary. We do not assume that metrics on the flat vector bundle are flat nor that
the Riemannian metrics have product structure near the boundary. Thus we generalize
the corresponding result of Bismut-Zhang to manifolds with boundary.

Pseudodifferential algebras and index on manifolds with boundary
SERGIU MOROIANU
(joint work with Robert Lauter)

Let M be a compact manifold with boundary together with a boundary fibration X —
Y of closed manifolds with fiber F. Let z : X — [0,00) be a boundary-defining function,
y and z local coordinates on Y, respectively on F. The double-edge and the fibered cusp
Lie algebras are the Lie sub-algebras of V(X) spanned over C*(X) by z20,, 2?0y, 20,,
respectively by x20,,z0,,0,. They induce algebras of differential operators “Diff(X),
*Diff(X). There exist algebras of pseudodifferential operators W4, (X), ¥4(X) containing
deDiff(X) and ®Diff(X), respectively, as all the differential operators. We compute the
Hochschild homologies of these algebras and of some ideals and quotients. The results are
certain geometric cohomology spaces, different in the double-edge and fibered-cusp cases.
As a corollary we deduce the existence of unique traces on these algebras. The traces can
be identified in terms of double zeta-functions in the spirit of the Wodzicki residue. In this
setting we give an index formula for fully elliptic operators:

Index(A) = AS(A) + Try([log =, B]]A),

where the first term is a local expression in the symbol of A vanishing rapidly at the
boundary, while the second is concentrated on the boundary.



We specialize to A € *Diff! (X, E®FE) elliptic, Y = S', D a family of invertible operators
on 0X — S! with values in F and A near X of the form A = 220,1, + 6, where
5 —izVy, D*
T D ixVaa ’
d, is the unit vector filed along S' and Vj, = Vg, + T Tr(Lj g¥) is a correction to the
connection on F.

Theorem. Let lim, 7(d,) be the limit as  — 0 of the eta invariant of ¢, (the adiabatic
limit). Then

Index(A) = AS(A) — %liman((sx).

On the discrete spectrum of the Laplacian on locally symmetric spaces of
finite volume

WERNER MULLER

Let X = G/K be a Riemannian symmetric space of non-positive curvature and let ' C G
be a discrete subgroup with vol(I'\G) < co. Let A be the Laplacian of X. Regarded as
operator A : C*(I'\X) — L*(T'\X), A is essentially selfadjoint. It follows from the work
of Langlands on Eisenstein series that the spectrum of A consists of a pure point spectrum
Spec,,(A) and an absolutely continuous spectrum Spec,.(A). For arithmetic quotients
'\ X, the point spectrum has deep connections with number theory. There are a number
of conjectures centered around the intrinsic and fine structure of the point spectrum. Due
to the presence of a large continuous spectrum, eigenvalues tend to be highly unstable
and, therefore, are difficult to study. We are concerned with the existence problem. Let
0= X <A1 <Ay <--- be the possible eigenvalues of A and let

Nr(A) = #{i | i < A}
the eigenvalue counting function. The following conjecture is due to Sarnak and the author.
Conjecture: If rkG > 1, then Np(\) satisfies Weyl’s law, i.e.,
vol(T'\ X) n/2

M Tz

as A = oo. Here n = dim X.

Using the trace formula, Selberg has shown that this holds for the principal congruence
subgroups I'(N) of SL(2,Z). Efrat has established the conjecture for the Hilbert modular
groups. St. Miller proved that it holds for SL(3,Z). Our main result is the following
theorem.

Theorem Let I' C SL(n,R) be a congruence subgroup. Then Weyl’s law holds for T'.

More generally, we may take any number field F' and the algebraic group G over QQ obtained
from SL,, by restriction of scalars from F' to Q. Then Weyl’s law holds for every congruence
subgroup of G(Q).
The proof of this theorem relies on the following results:

(1) The Arthur trace formula,

(2) the theory of Eisenstein series,

(3) the theory of Rankin-Selberg L-functions,

(4) the description of the residual spectrum for GL, by Moeglin and Waldspurger.
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On the cut and paste invariance of Novikov’s higher signatures.
PaoLo Pi1azza
(joint work with Eric Leichtnam)

Let M be a compact orientable manifold (without boundary) and let L(M) the Hirze-
bruch L-genus of M. It is well known that the integer o(M) :=< L(M),[M] > satisfies
the following properties:

(i) it is a homotopy invariant.

(ii) it is a cut-and-paste invariant.

By cut-and-paste invariance is meant the following: if
My =My Uy M, My = My Upg,) M-,
with OM, = F = —0M_, ¢; € Diffeo(F), then o(M;) = o(M>).
Let I' be a finitely generated discrete group. One might wonder whether these two

properties are still true for Novikov’s higher signatures o((M,r), [c]) associated to a pair
(M,r: M — BT') and to the cohomology classes [c] in H*(BI',R):

a((M,r),[c]) ;=< L(M)Ur*[c];[M] > .

The first property is known as the Novikov conjecture and is still open for an arbitrary
[ as above (although established for several classes of groups); the second property is in
general false. Nevertheless, one can give sufficient conditions on I' and on F' ensuring that
the cut-and-paste invariance property does hold. In order to understand how it is possible
to do so we work with the index class associated to the signature operator on the covering
defined by (M,r : M — BT'). This is a class Ind(D(y,y) € K.(C;T'). We show that if
(My,ry : M — BT) is cut-and-paste equivalent to (M, ry : M — BT') then

Ind(D(Ml,rl)) - Ind(D(MQ,TQ)) = th(DF(e)) in K*(C:F)

On the right hand side, the higher noncommutative spectral flow of a suitable S'-family
of operators on F' appears. Let m = [(dimM + 1)/2] and assume that the m — th Novikov-
Shubin invariant of (F,ri|p — BT) is equal to co™; under this assumption on F' we show
that hsf(Dp(f)) = 0 in K, (C;T') ® Q. Thus, in this case, Ind(D, »,)) = Ind(D(asy 1)) for
two cut-and-paste equivalent pairs.

If in addition I' is such that the Baum-Connes map K,(BT') — K.(C}(T')) is ratio-
nally injective then from the equality of the two index classes we get the equality of the
higher signatures. Summarizing: o((My,r1),[c]) = o((Ms,rs),[c]) for two cut-and-paste
equivalent pairs satisfying the two assumptions above.

This result was first proved by Leichtnam-Lott-Piazza for Gromov-hyperbolic groups by
working in the noncommutative de Rham homology of the Connes-Moscovici algebra. It
was then proved in the above more general form by Leichtnam-Liick-Kreck using algebraic
surgery. The proof presented in this talk is a purely analytic treatment of the latter result.
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A geometric description of equivariant K-homology
THOMAS SCHICK
(joint work with Paul Baum and Nigel Higson)

Equivariant homology theories play a more and more important role in modern geomet-
ric topology. In particular, they feature in various isomorphism conjectures. We study
equivariant K-homology, the left hand side of the Baum-Connes conjecture.

K-theory has a very geometric description in terms of vector bundles (under appropriate
conditions also its equivariant version). Contrarily, definitions of equivariant homology are
given in terms of Kasparov’s KK-theory, or using homotopy theory (done by Liick-Oliver),
and are not very intuitive.

After a motivational introduction to the Baum-Connes conjecture, a very geometric and
concrete definition of equivariant K-homology for proper actions of discrete groups is the
main part of the talk. The cycles are simply (certain) differential operators on equivariant
manifolds. We sketch the problems and the solution to prove that this coincides with
the previous definition. This implies certain finiteness properties for the K-theory of the
C*-algebra of groups for which the Baum-Connes conjecture is true.

One application is a geometric description of an equivariant Chern character, computing
(complexified) equivariant K-homology in terms of equivariant homology.

K-theory of Boutet de Monvel’s algebra
ELMAR SCHROHE
(joint work with S. Melo and R. Nest)

We considered the algebra A of all operators of order and class zero in Boutet de Monvel’s
calculus on a compact manifold X with boundary. A is known to be a Fréchet-*-subalgebra
of L(H), where H is the Hilbert space L?(X) @® H~'/2(0X). Tts closure A therefore is a
C*-algebra. We studied its K-theory.

Assuming that all connected components of X have nonempty boundary, we show that
Ki(A) ~ K(C(X)) @ kery, where y : K¢(Co(T*X)) — Z is the topological in-
dex and T*X denotes the cotangent bundle of the interior. Also Ko(A) is topologi-
cally determined. In case the boundary has torsion free K-theory, we get Ky(A) ~
Ko(C (X)) ® K1 (Co(T*X)).

Geometry and analysis on Alexandrov spaces
TAKASHI SHIOYA

It is interesting to study the spectral properties of Alexandrov spaces under perturbations
with respect to the Gromov-Hausdorff topology. We have a natural C° Riemannian metric
defined outside the measure zero singular set of an Alexandrov space, and this induces
the (1,2)-Sobolev space. The Laplacian is defined as the generator of the energy form.
A remarkable property is that the Poincaré inequality holds on each metric ball, where
the Poincaré constant is estimated independently of the space and depends only on the
dimension and the lower curvature and volume bounds. This is essential to obtain the
continuity of the spectral structure of an Alexandrov space with respect to the Gromov-
Hausdorff topology under lower curvature and volume bound.
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Trigonometric partial fraction decompositions and applications
ANDRAS SZENES
(joint work with Michele Vergne)

Questions of classical enumerative geometry may be analyzed using localization tech-
niques. One of the first such methods was Bott’s residue formula for characteristic num-
bers of complex manifolds. Recently, starting with the work of Witten on nonabelian
localization, and then from the papers of Jeffrey and Kirwan a new principle emerged: the
manifold is obtained as a quotient by a group action, but the characteristic numbers are
still obtained from contributions at the fixed points of this action. In the simplest case of
a torus action, this principle gives a new and efficient way to compute volumes of convex
polytopes. We describe joint work with Michele Vergne, which contains an extension of
this method, allowing one to compute the number of lattice points in polytopes. The result
is based on a refined partial fractions decomposition for trigonometric rational functions.
This type of decomposition can be successfully applied to other problems, for example to
the computation of the coefficients of Verlinde polynomials.

Adibatic Limit and Szegd projections
GRIGORE RAUL TATARU

Given a Riemannian manifold (X, ¢g), compact without boundary, an adapted complex
structure can be introduced on 7% X near the O-section such that the coball bundles B} X =
{g(x,&) < €%} are strictly pseudoconvex for € small.

Our objective is to prove that the fibre integration map:

HBX) = S(C(S7X)) 5 u —> Tu(z) :/ u(, )dE € C(X)
Sz, X

is an isomorphism for € small enough; above H (B! X) stands for the space of holomorphic
functions on the interior of B! X smooth up to the boundary identified with the range of the
Szegb projection on S!X. T is known to be an isomorphism for X = R" (Hérmander) and
X = S™ (Lebeau) and Fredholm in general (Boutet de Monvel-Guillemin); also a variant
of the map, integration over the balls B, X instead of the spheres S?, X, was proved to be
an isomorphism for € small (Epstein-Melrose).

The proof is based on studying the behavior of the Szegé projections S, on S'X as € N\ 0;
it is shown that they can be understood as an element of an algebra ¥, of operators on
S*X x [0,€p). A general element of this algebra, A € ¥* . (S*X), ‘restricts’ for each € > 0
to be a standard Heisenberg operator on S*X; its limit at € = 0 is a family N(A) of
translation invariant Heisenberg operators N(A), on T, X x S;X, z € X.

Since the limit at € = 0 is just the R™ case and T is an isomorphism there, the same
holds for small e.
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Calculation of the Heat Kernel Coefficients
GREGOR WEINGART

By the work of Minakshisundaram—Pleijel the heat kernel of a selfadjoint differential
operator L of Laplace type on sections of a vector bundle £ has an asymptotic expansion

]_ dist2(z,y)
ki (z,y) ~ weT A Y thay(n,y)
VAt >0

with coefficients a,(z,y) which carry important geometric information about the operator
L. If we trivialize the bundle E using radial parallel transport we can compare L with the
standard euclidian Laplacian A and get as a more or less formal consequence of the above
asymptotic expansion the intertwining property of the heat kernel coefficients

S e)w = 2 C

u=0

D A @) 0l | @)

where the ay_,(z,y) = ar_,(7,y)j(zr,y) are the coefficients rescaled by the Jacobian
j(z,y) of the exponential map in x with respect to the Riemannian metric defined by the
principal symbol of L.

Without loss of generality we can simplify the problem notationally and consider a trivial
vector bundle V' x F on a euclidian vector space V' and a differential operator L of Laplace
type acting on sections of V' x FE besides the euclidian Laplacian A. If we assume in
addition that the exponential map in the origin for the symbol metric of L is the identity
map of V' we can use the intertwining property of the heat kernel coefficients @, to get the
formula

Theorem: (Polterovich’s inversion formula)

()0 =3 (—i)(fl)% (L a)(0) v > k>0

=0

where |x|? is the distance function to the origin with respect to both the euclidian and the
symbol metric. Note that the coefficients @, are not well-defined but in a neighborhood of
the origin and in fact the intertwining property is strong enough to fix their infinite order
jets in 0 completely. These jets are elements of (the completion of) Sym V* ® E and the
corresponding formal power series jet™ a(z) = >_ -, jet™a, 2 is given by:

Theorem: (Inversion formula)
jet®a(z) = e (22) N oy e L e )F

where oo (€L eZA) € SymV ® End E' is the total symbol of the differential operator
e *L'e*” in the origin, f is the musical isomorphism and N is the number operator of
Sym V*. Looking closely at this formula we note that quite remarkably the coefficient of
2* in the formal power series e *Fe** must be a differential operator of order < k in the
origin, because otherwise (22)™" is undefined and the inversion formula makes no sense.
However the origin is a rather singular point for this operator as its principal symbol of
order 2k vanishes exactly at the points where the symbol metric agrees with the euclidian

metric.
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K3 Surfaces with Involution,
Equivariant Analytic Torsion, and
Automorphic Forms on the Moduli Space

KEN-ICHI YOSHIKAWA

Let Lks be the the even unimodular lattice of signature (3,19). Then, it is isometric
to the 2nd integral cohomology lattice of a K3 surface. Let M C Lks be a primitive
2-elementary hyperbolic sublattice with rank r(M).

Let (X, ¢) be a K3 surface with involution. Then, the pair (X)) is called a 2-elementary
K3 surface of type M if the following conditions are satisfied:

(1) ¢ is anti-symplectic, i.e., Vn € HY(X,Q%), t*n = —n.

(2) The invariant part of H*(X,Z) w.r.t. the ¢ action is isometric to M.

Let (X, ) be a 2-elementary K3 surface of type M. Let Zy C Aut(X) be the subgroup
generated by ¢. Let X* be the fixed point set of +. Then, X* is either empty or the disjoint
union of compact Riemann surfaces. Let X* = ). C; be the irreducible decomposition.

Let v be an t-invariant Kéhler metric on X. Let 17, (X, 7)(¢) be the equivariant analytic
torsion of (X,7). Let 7(C;,v|c,) be the analytic torsion of (Cj,7|c,). For the triplet
(X,,7), we introduce the quantity:

14—r(M)

™™ (X, ,y) = Vol(X, 27) T 17, (X, ) (0 H\/ol Z,— e )T(Cy,y

Vol(X, 5&
8 vzl /e,

Then, 7a7(X, t,7) is independent of the choice of v. Regard 73, as a function on the
moduli space of 2-elementary K3 surfaces of type M, denoted by MY,.

Since MY, is an arithmetic quotient of a symmetric bounded domain of type IV with a
divisor Dy removed, one can consider automorphic forms on M, := M8, U Dy, In fact,
we consider automorphic forms on M, with values in some line bundle A4, on M;,. An
automorphic form of weight p with values in A%, is called an automorphic form of weight
(p,q). The Petersson norm on A}, is denoted by || - ||.

Ci)

Theorem For some m € N, there exists an automorphic form @7, of weight ((r(M) —
6)m, 4m) with zero divisor mDy, such that 75, = || 7} || 2=

Edited by Jochen Briining
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