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The onferene was organised by Gero Frieseke (Warwik), Tristan Riviere (Zuerih)

and Gianni DalMaso (Trieste).

There were a total of 30 presentations, overing a wide range of topis inluding gra-

dient ows, mass transportation, geometri analysis, minimal surfaes, Lipshitz maps,

singularities, atomisti systems, quantum mehanis and water waves.

The stimulating disussions and the marvellous working onditions provided by the In-

stitute of Oberwolfah reated a lively sienti� atmosphere.

In partiular, the partiipation of many young researhers and mathematiians from dif-

ferent �elds suh as applied analysis, geometry and partial di�erential equations shows that

alulus of variations is a growing and ative topi with onnetions to many mathematial

disiplines.

The abstrats are listed in the order they have been entered in the book of abstrats.
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Abstrats

Surfae Energies in Lattie Systems

F. Theil

We study the minimum energy on�gurations of ubi two-dimensional latties. The

energy is given by the sum over nearest and seond nearest neighbour interation potentials.

E =

X

x;x

0

2L

V

x;x

0

(jy(x)� y(x

0

)j)(1)

V

x;x

0

= 0 if jx� x

0

j >

p

2;(2)

where L � Z

2

. The presene of surfaes leads to the reation of boundary layers and the

onentration of energy on the boundary. We show that in a suitable limit (the equilib-

rium lengths of the springs are roughly omparable) the minimisers of half spae systems

are asymptotially one-periodi in the tangential diretion and the minimum energy is de-

termined by the solution of a �nite dimensional nonlinear equation. Sine the half spae

system is in�nite-dimensional and the energy is nononvex, this result is an important step

towards a qualitative and quantitative understanding of atomisti systems with surfae

energies.

Geometri Struture of Null Sets in the Plane (and some appliations)

G. Alberti

This talk summarises (part of) a joint researh with Marianna Cs�ornyei and David Preiss

(University College London). Although our results are not diretly related to the alulus

of variations, the purpose of this talk is to highlight an elementary geometri fat that lies

behind most of our proofs and that might be useful elsewhere.

Statement: every Borel set E � R

2

, jEj = � an be overed by horizontal and vertial

stripes (' �-neighbourhood of graphs of 1-Lipshitz funtions x = x(y) or y = y(x)) so

that the sum of the heights is less than C

p

� { C a universal onstant.

Variations of this lemma have been used to prove the existene of a (weakly de�ned)

tangent �eld to null sets and singular measures in the plane, onstruting Lipshitz maps

that take a given set of positive measure onto a disk (following earlier proofs of D. Preiss

and J. Hatou�sek) and Lipshitz maps that are almost nowhere di�erentiable with respet

to given singular measures in the plane. The lemma is obtained by disretization from

a geometri version of lassial Erd}os-Szekeres Theorem. Unfortunately, it is not known

if some equivalent statements holds in higher dimension (in fat, we have some partial

ounterexample).
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Comparison between the Classial and Intrinsi Reti�ability in Carnot

Groups

F. S. Cassano

We ompare in the setting of the Carnot groups, endowed with its Carnot-Carath�eodory

metri, the lassial and a new intrinsi notion of reti�ability. We prove that the lassial

de�nition does not �t the geometry of the Carnot groups while the intrinsi one does.

Moreover, we prove that the lassial one always implies the intrinsi one and the onverse

fails.

An optimization problem in mass transportation

G. Buttazzo

Given a onneted open regular bounded subset 
 of R

n

and two probability measures

f

+

and f

�

on 
, for every distane d on 
 we onsider the Monge-Kantorovih ost

F (d) = inf

�

Z Z


�


	(d(x; y))d�(x; y) : � transport plan of f

+

onto f

�

�

where 	 : R ! R is a given ontinuous inreasing funtion with 	(0) = 0. The distane d

is taken in the admissible lass of Riemannian distanes of the form

d

a

(x; y) = inf

�

Z

1

0

a()j

0

jdt : (0) = x; (1) = y

�

where the oeÆient a(x) varies in the lass

A(�; �;m) =

�

� � a(x) � �;

Z




a(x)dx � m

�

;

with �; �;m positive onstraints. It is shown that the maximization problem

max fF (d

a

) : a 2 A(�; �;m)g

admits a solution. The proof is based on density result of isotropi Riemannian metris in

the lass of all Finsler metris.

Fast di�usion to self-similarity: omplete spetrum, long time asymptotis,

and numerology

R. MCann

(joint work with J. Denzler)

The omplete spetrum is determined for the operation

H = �m�

m�1

�+ x � r

on the losure of C



(R

n

) in the Hilbert spae norm

k	k

2

:=

Z

R

n

jr	j

2

d�:

Here the Barenblatt pro�le � is the stationary attrator of the resaled di�usion equations

�u

�t

= �(u

m

) +r � (xu)
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in the fast superritial regime m 2℄

n�2

n

; 1[. If m �

n

n+2

, the same di�usion dynamis

represent steepest desent of an entropy E(u) on probability measures with respet to

Wasserstein distane d

2

. Formally, H = Hess

�

E on the spetral gap H � � = 2�n(1�m)

found below suggests the sharp rate of asymptoti onvergene:

lim

t!1

log d

2

(u(t); �)

t

� �� < 0

from any entred initial data 0 � u(0; x) 2 L

1

(R

n

). Further eigenfuntions { all hyper-

geometri polynomials { and the presene of ontinuous spetrum suggest the long time

asymptotis of u(t) while yielding insight into the relations between the symmetries of R

n

and the ow. Muh of the strange numerology of the spetrum is explained in terms of the

number of the moments of �.

Winding behaviour of �nite-time singularities of the harmoni map ow

P. Topping

The harmoni map ow u : D

2

� [0;1) ! N ,! R

N

from the 2-dis to a ompat

Riemannian manifold is liable to blow up in �nite time.

At a singular point (x; T ) 2 D � [0;1), \bubbling" ours when we blow up the ow

restrited to times t

n

" T

We show:

(1) The bubbling is, informally, non unique; it depends on the sequene t

n

" T hosen.

(2) The bubbling an be \winding" in the sense that bubbling onvergene may fail

when the ow is lifted to the universal over of N .

(3) The map u(T ) 2 W

1;2

(D;N) an be disontinuous.

(4) The polynomial rate of blow-up an, in ertain ases, be determined.

Convergene of the Yamabe ow for \large" energies

M. Struwe

(joint work with H. Shwetlik)

In joint work with Hartmut Shwetlik we show sub-onvergene of the Yamabe ow on

any smooth, ompat 3-manifold (M;G

0

) without boundary, provided the initial average

salar urvature s

0

and the Yamabe invariant Y

0

= Y (M;G

0

) satisfy the ondition

0 < Y

0

< s

0

� (Y

n=2

0

+ S

n=2

�

)

2=n

;

where s

�

= Y (S

n

; G

S

n

) and n = 3. The proof uses a Kazdan-Warner type estimate to rule

out onentration, as in the 2-dimensional ase, treated in [1℄. If n = 3, or if 3 � n � 6 and

if (M;G

0

) is loally onformally at, this key estimate may be dedued from the positive

mass theorem.

[1℄ M. Struwe. Curvature ows on surfaes. To appear in Annali. S. Norm. Sup. Pisa

(2002).
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Deformations and degenerations of Einstein metris

R. Mazzeo

I desribe two projets: the �rst, with B. Yang, involves the study of Einstein metris

with isolated onial singularities. Spei�ally, we prove analogues of various theorems due

to Hardt, Simon et al. for minimal surfaes in this ontext. The goals inlude studying

desingularisations of these singularities, and a �niteness theorem for the moduli spae of

Einstein's on a ompat 4-fold (smooth) under ertain onditions.

The other projet, with F. Paard, is a \boundary" gluing result for asymptotially

hyperboli Einstein metris. This produes many new examples and shows (modulo the

Poinar�e onjeture) that every salar-positive 3-mfd. bounds an asymptotially hyperboli

4-mfd.

On the total variation of the Jaobian

P. Marellini

(joint work with I. Fonsea and N. Fuso)


 is an open set of R

n

. We denote by detDu the Jaobian determinant of a map

u : 
 ! R

n

(n � 2). We also denote by Det Du, apitalised, the distributional Jaobian

determinant, where it exists. Given u 2 L

1

(
;R

n

) \W

1;p

(
;R

n

) for some p > n� 1 the

total variation TV (
) of the Jaobian determinant is de�ned by

TV (u;
) = inf

�

lim inf

k!1

Z




j detDu

k

(x)j dx : u

k

W

1;p

* u; u

k

2 W

1;n

(
;R

n

)

�

:

In a work in ollaboration with Irene Fonsea (CMU, Pittsburgh) and Niola Fuso (Uni-

versity of Napoli) we proved some general n-dimensional results and we give some examples.

Here are two examples:

Example 1: Let u : 
 n f0g ! R

n

(
 open, with 0 2 
) be de�ned by u(x) =

(w(x) � w(0))=jw(x) � w(0)j, where w is a Lipshitz-ontinuous map, lassially

di�erentiable at x = 0 with detDw(0) 6= 0. Then TV (u;
) = jB

1

j = w

n

.

Example 2 (The \eight" urve): Let  = 

+

[

�

� R

2

be the union of two irles

of radius 1, with entres respetively at (+1; 0) and (�1; 0). Let h; � 2 Z. Let v :

[0; 2�℄!  = 

+

[

�

be the urve whose image turns jhj times in 

�

and j�j times

in 

+

aording to the parametri representation v(�) = (�1; 0)+ (os 2h�; sin 2h�)

if 0 � � � �; v(�) = (1; 0) = (os 2��; sin 2��) if � � � � 2� let u(x) = v(x=jxj).

Then TV (u;B

1

) = (jhj+ j�j)�, while jDet Duj(B

1

) = jh� �j�.

Appliations of Sans

R. Hardt

(joint work with T. Rivi�ere)

Smooth maps between Riemannian manifoldsM

m

; N

n

often fail to be dense inW

1;p

(M;N)

in both the strong and weak topologies. The energy drop in a weakly onvergent sequene

has a loal topologial point (alled bubbling) attributable to �

[p℄

(N).

Following the W

1;2

(B

3

; S

2

) ase studied by Bethuel and Giaquinta, Modia, Sou�ek, one

may, for an individual map, look for a \topologial singularity" of dimension m � [p℄ � 1

whose absene or presene determines the strong approximability by smooth maps. For
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the weak limit of smooth maps one expets this singularity to our as the \boundary"

of a \bubbling hain" of dimension m � [p℄. Here we desribe preisely, for m � 1 �

p < n, the singularity and bubbling aused by �

m�1

(N)
 Q . Unlike in the W

1;2

(B

3

; S

2

)

ase, we �nd that in general (as in the W

1;3

(B

4

; S

2

) ase) the bubbling is not given by

a urrent. We introdue a generalization, alled sans to handle suh bubbles. We again

obtain a san riteria for strong approximability. Here the bubbled sans orrespond to

oriented/reti�able sets of �nite lengths with integer multipliity funtion � that is L

�

for

some 0 < � � 1. We show that the optimal onstant � is 1 for �

n

(N

n

),

3

4

for �

3

(S

2

), and

is estimable, for any rational homotopy invariant, in terms of a diagram derivable from

Novikov-Sullivan data.

Remarks on Jesse Douglas

M. Miallef

(joint work with J. Gray)

This was an informal talk given in the evening on Wednesday, July 3, 2002, the 105th

anniversary of the birthday of Jesse Douglas. A key problem in minimal surfae theory is

the determination of a parametrization r : [0; 2�℄ ! R

n

of a simple losed urve � � R

n

,

so that the harmoni extension F : B ! R

n

of r is onformal; B = unit disk in R

2

. In

this talk, I explained how Douglas formulated this problem as an integral equation for r.

Douglas never published this work, the result is merely stated in abstrats of meetings of

the Amerian Mathematial Soiety during 1926-1929. More important, Douglas eventu-

ally realised that this integral equation was the Euler-Lagrange equation for his famous

A-funtional, whih he used to solve the Plateau problem. This formulation of the onfor-

mality of F as a variational problem for r was a major breakthrough in minimal surfae

theory; its development by Courant and others ontinues to play an important role in

minimal surfae theory to the present day. This bears out Carath�eodory's itation for the

award of the Fields Medal in 1936 to Douglas: Douglas's method for solving the Plateau

problem is `entirely original' and `of great signi�ane'.

A brief aount of the life of Jesse Douglas was also presented. The talk was followed

by many interesting and valuable omments from the audiene, espeially Professor Stefan

Hildebrandt.

Time ontinuous optimal transportation problems

Yann Brenier

The usual Monge-Kantorovih formulation of optimal transportation problems is shown

to be equivalent to a \Continuum Mehanis" type formulation where the time variable

is expliitly introdued and used. This formulation is far more exible that the usual one

and inludes the (simpli�ed) Moser onstrution for the solution of the Jaobian equation.

Many generalizations of the time ontinuous formulations are possible, inluding optimal

transportation of urrents, relaxed geodesis on groups of volume preserving di�eomor-

phisms, generalized harmoni maps et.
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Ellipti approximation of urvature-sensitive image segmentation energies

A. Braides

(joint work with R. Marh)

In 1990 Mumford and Nitzberg proposed to improve the elebrated Mumford Shah

variational approah to image segmentation by replaing the length of the segmentation

set by a term involving also the urvature (the \Elastia" funtional). In their formulation

a segmentation (U;K) is given by a set K (union of H

2

-urves) and a funtion u : 
nK !

minimising

min

�

Z


nK

jruj

2

dx +

Z

K

(1 + �

2

) dH

1

+

Z


nK

ju� gj

2

dx

�

(all onstant are set to 1), where K

0

is the set of end points of the urves in K. The

problem above an be proved to be approximable by ellipti problem of the type

R




(v

2

jruj

2

+

1

2

M

�

(v) � w

2

(1 + div(

Dv

jDvj

)

2

) +

1

4�

M

�

(w)(

1

"

+ "div(

Dw

jDwj

)

2

)) +

R


nK

ju� gj

2

dx

where u 2 H

1

(
), v; w 2 H

2

(
). M

�

(z) denotes the "Modia-Mortola" energy density

energy density modi�ed by a singular perturbation term:

M

�

(v) =

W (�)

�

+ 2�jrvj

2

+

(v � 1)

2

p

�

: W is double-well potential with zeros at 0; 1:

The main issue is the term

R




M

�

(w)(

1

"

+ "div(

Dw

jDW j

)

2

) dx whih is shown to behave as

R

�E

(

1

"

+ "�

2

) dH

1

, whose minima are irles of radius ".

Ellipti problems in vortex theory

G. Tarantello

We disuss the role of ellipti problems of Liouville-type in the study of vorties in various

gauge �eld theories, suh as Chern-Simons theory, Eletroweak theory et. The feature of

suh ellipti problems are aptured essentially by the following ellipti equations:

(3) ��u = �e

u

� 4�

N

X

j=1

Æ

P

j

+ f

over a 2-manifold M without boundary. The points fP

1

; : : : ; P

N

g are given in M , f 2

L

1

(M) and � > 0 is a given parameter. We disuss a onentration ompatness onerning

(3), and its onsequenes towards existene results as � varies.

Cross-tie patterns and limiting minimization problems in a model for

miromagnetism

S. Serfaty

(joint work with F. Alouges and T. Rivi�ere)

We desribe a joint work with Franois Alouges and Tristan Rivi�ere, in whih we study

the family of funtionals

Z




"jruj

2

+

1

"

Z

R

2

jHj

2

+

1

"

Z




juj

2
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where u is a map: 
 ! S

2

(magnetization in physis). H is given by r�

�1

div(u�




),

the demagnetizing �eld. 
 is a bounded simply onneted domain of R

2

. We study the

asymptotis " ! 0. Families of uniformly bounded energy onverge (after extration) to

divergene-free vetor �elds of unit norm, whih have line singularities along whih the

limiting u jumps. We prove a lower bound for the energy in terms of the angle of those

jumps; whih is optimal. This lower bound an be ahieved by a one-dimensional pro�le for

jumps less than �=2 and by two-dimensional pro�les alled \ross-tie", whih we onstrut,

for jumps between �=2 and � in angle.

Struture of entropy solutions

F. Otto

(joint work with Camillo De Lellis)

Consider the variational problem:

E

"

(w

"

) = "

Z




jrw

"

j

2

+

1

"

Z




(1� jw

"

j

2

)

2

; 
 � R

2

m

"

: 
 ! R

2

onstraint to r � m

"

= 0. Let m be a strong limit of a sequene fm

"

g

">0

with bdd fE

"

(m

"

)g

">0

. The limit satis�es jmj

2

= 1 a.e., r � u = 0 distributionally. It is

expeted to have line singularities. But in general m 62 BV (
). We nevertheless prove

that m has the struture as if it were in BV (
). The main tool is the ontrol of r� [�(m)℄

as a (signed) Radon measure, where � belongs to a ertain lass of nonlinear transforms

(\entropies").

Two-dimensional parametri variational problems

S. Hilderbrandt

(joint work with H. van der Mosel)

Let F : R

n

� R

N

; N =

1

2

n(n� 1), be a parametri integrand i.e.

(4) F (x; tz) = tF (x; z) for t < 0

whih satis�es

m

1

jZj � F (x; z) � m

2

jzj with onstants m

1

; m

2

> 0; and(5)

F (x; z) is onvex in z:(6)

Then the integral F(X) :=

R

B

F (X;X

u

_ X

v

) du dv is well de�ned on the lass C(�) of

surfaes X : B ! R

n

, B = f(u; v) 2 R

2

: u

2

+ v

2

< 1g suh that X 2 H

1;2

(B;R

N

) whih

map �B monotonially (with degree 1) onto a losed reti�able Jordan urve � in R

n

.

Theorem 1. There is a solution X 2 C(�) of the minimisation problem "F ! min in

C(�)" whih is a.e. onformally parametrized and H�older ontinuous in B with exponent

� = m

1

=m

2

. Moreover, X 2 C

�

(B;R

n

) for some � 2 (0; 1) if � satis�es a hord-ar

ondition.

Theorem 2. This minimiser is of lassH

2;2

lo

(B;R

n

)\C

1;�

(B;R

n

) if there exists a "perfet

dominane funtion" G(x; p) of F . Moreover, we also have X 2 H

2;2

(B;R

n

)\C

1;�

(B;R

n

)

if � 2 C

3

.
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Theorem 3. If F is of the form F = kA + F

�

, where A(z) = jzj is the area integrand

and F

�

satis�es (4), (5) (with onstants m

�

1

, m

�

2

) and the standard parametri elliptiity

ondition

jzjF

�

z

i

z

j

(x; z)�

i

�

j

� �

�

(j�j

2

� jzj

�2

hz; �i

2

)

with �

�

> 0, then F possesses a perfet dominane funtion, provided that k < k

0

:=

2[m

�

2

�minf�

�

; m

�

1

g℄.

The onept of a dominane funtion was introdued by C.B. Morrey. The proof of

Theorem 3 is based on a onstrution of dominane funtions given by Morrey. Theorem 1

is derived by onsidering the penalized funtionals F

"

:= F + "D, " > 0, where D is the

Dirihlet integral D(X) =

1

2

R

B

jrXj

2

du dv. Theorem 2 follows by onsidering the weak

Euler equation ÆG(X; �) = 0 where G(X) =

R

B

G(X;rX) du dv.

Rigidity in nonlinear elastiity and the derivation of plate theories

S. M

�

uller

(joint work with G. Frieseke and R.D. James)

The energy funtional of nonlinear plate theory is a urvature funtional for surfaes �rst

proposed on physial grounds by Kirhho� in 1850. We show that it arises as a �-limit of

three-dimensional nonlinear elastiity theory as the thikness of a plate goes to 0. A key

ingredient in the proof is a sharp rigidity estimate for maps v 2 W

1;2

(U;R

n

), U � R

n

a

bounded Lipshitz domain. We show that there exists R 2 SO(n) suh that

Z

U

jrv � Rj

2

dx � C(U)

Z

U

dist

2

(rv; SO(n)):

A �-onvergene approah to generalised Sobolev inequalities

A. Garroni

Well known onentration phenomena arise in problems with lak of ompatness due

to the ritial growth. The most famous example is given by the Sobolev inequality. The

same kind of phenomena appear in a more general situation, as has been proved by Fluher

and M�uller. They study the behaviour of `almost' maximizers for the funtional

Z




f("u)

"

2

�

dx for u = 0 �
 s.t.

Z




jruj

2

dx � 1

with " > 0, 0 � f(t) � jtj

2n

n�2

. They prove onentration by means of a generalised version

of the onentration-ompatness alternative of P.L. Lions. We approah this problem

using the �-onvergene. This permits us to read easily the onentration diretly by the

struture of the �-limit. The loalization of onentration points an be also obtained by

the seond order expansion in �-onvergene.
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Quasiminimal Partitions and Uniform Reti�ability

S

�

everine Rigot

A quasiminimal partition is a Caioppoli partition of R

n

for whih one ontrols the

variation of a surfae like energy under relatively ompat perturbations that preserve the

measure of eah omponent. Roughly speaking, one knows that this variation is negligible

ompared to the initial surfae energy.

We prove quantitative and uniform reti�ability properties for the set of interfaes of

quasiminimal partitions, namely uniform reti�ability in the terminology of G. David and

S. Semmes. To this aim the main issue is to handle properly the volume onstraint. Using

ideas and onstrutions inspired by a previous work of Almgren about minimal partitions

with presribed measure, one an get a new quasiminimality ondition without volume

onstraint anywhere and whih is muh easier to work with. Then the regularity properties

follow by fairly standard omparison and overing arguments.

Surfae water waves as saddle points of the energy

E. S

�

er

�

e

(joint work with B. Bu�oni and J.F. Toland)

By applying the mountain-pass lemma to an energy funtional, we establish the existene

of two-dimensional water waves on the surfae of an in�nitely deep oean in a onstant

gravity �eld. The formulation used, whih is due to K.I. Babenko, (and later to others,

independently), has as its independent variable an amplitude funtion whih gives the

surfae elevation, its nonlinear term is purely quadrati but nonloal (it involves the Hilbert

transform C). The waves are found as ritial points of the funtional

I(w) =

Z

�

��

wCw

0

� �

Z

�

��

w

2

(1 + Cw

0

); w 2 W

1;2

2�

:

Sine this funtional is rather degenerate, we have to trunate it, penalize it, and regularize

it. To prove the onvergene of the ritial points, in the limit of vanishing regularization,

to a nontrivial wave, we use the Morse index, in the spirit of a work by Amann and Zehnder.

Vortex energy for rotating Bose-Einstein ondensates

A. Aftalion

(joint work with T. Rivi�ere and R. Junard)

We �nd an asymptoti expansion for the energy desribing a Bose Einstein ondensate

in terms of the rotational veloity 
 and a small parameter ". This simpli�ed energy allows

us to understand why in the present experiments the vortex line line is not straight along

the axis of rotation but bending.
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A relative Morse index for the Dira-Fok funtional

E. Paturel

We prove the existene of in�nitely many stationary solutions of the Dira-Fok model

desribing atoms and moleules, under the assumption: N < Z + 1 and max(Z;N) < Z



where N is the eletron number, Z the total positive harge, � the eletromagneti oupling

onstant (�

1

137

) and Z



=

2

�(

2

�

+

�

2

)

. This work is an improvement of an artile of Esteban

and S�er�e, where the laim was proved under more restritive assumptions on N . The stress

is put on the onstrution of a relative Morse index for the funtional, whih allows us to

ontrol the energy of the mean �eld operator.

Douglas ondition for Willmore surfaes of presribed genus

Ernst Kuwert

Let �

p

be the in�mum of the Willmore funtional among oriented, immersed surfaes of

genus p in R

n

. By a result of L. Simon, for eah p 2 N there is a partition p = p

1

+ : : :+ p

r

with p

i

� 1 suh that eah of the �

p

i

is attained and moreover one has the equation

e

p

= e

p

1

+ : : :+ e

p

r

; (e

p

= �

p

� 4�):

By extending the ase r � 2 we obtain the following

Theorem. For any p 2 N

0

the in�mum �

p

is attained.

Simon's work redues the problem to proving e

p

1

+p

2

< e

p

1

+ e

p

2

.

Removability of point singularities of Willmore surfaes

R. Sh

�

atzle

We prove that single, unit-density point singularities an be removed. In partiular,

this implies that blowup limits of Willmore ows with energy � 8� are smooth at in�nity.

As onsequenes we determine 8� as the optimal energy level suh that Willmore ows

of spheres below this level exist globally and onverge to round spheres, and we obtain

ompatness results for Gilmore tori.

Det vs det

I. Fonsea

(joint work with P. Marellini and N Fuso)

It is well known that u 2 W

1;N

(
 : R

N

) !

R




j detDuj is W

1;N

{sequentially weakly

lower semiontinuous, where 
 � R

N

is an open set. However, many variational problems

lead us to onsider the ase where the setting is now in W

1;p

(
;R

N

) for some p < N . Two

questions naturally arise:

Q1. What are the \minimal regularity" assumptions on u guaranteeing that

DetDu = detD where DetDu =

N

X

j=1

�

�x

j

(u

1

(adjDu)

j

1

)?

Q2. What is the \weakest notion" of onvergene under whih

u

n

2 W

1;N

lo

(
;R

N

); u

n

* u) DetDu

n

= detDu

n

* DetDu?
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The understanding of these questions is relevant to the study of vortiity for Ginzburg-

Landau equations, avitation of nonlinear elasti rubber-like materials, singularities of

harmoni mappings with values on the sphere, et. When addressing Q2 it is tempting to

introdue the relaxed funtional TV (u;
), the total variation of the Jaobian determinant

given by

TV (u;
) := infflim

Z




j detDu

n

j : u * u W

1;p

; u

n

2 W

1;N

lo

g:

Jointly with N. Fuso and P. Marellini, it was shown that if p > N�1 and TV (u;
) < +1,

then TV (u; �), DetDu are �nite Radon measures, detDu 2 L

1

(
),

TV (u; �) = j detrujL

n

j
 + �

s

; DetDu = detDuL

n

j
 + �

s

;

where �

s

, �

s

are �nite Radon measures, singular with respet to L

n

j
, and j�

s

j � �

s

. The

proof of this result is strongly hinged on a theorem obtain in ollaboration with G. Leoni

and J. Maly, stating that if u

n

2 W

1;N

, u 2 BV , u

n

! u L

1

, fu

n

g bounded inW

1;N�1

, and

if detDu

n

�

* � for some Radon measure �, then

d�

dL

N

= detDu.This result is sharp, in that

there are examples asserting that one annot, in general, assume that fu

n

g is bounded in

W

1;p

, p < N � 1 and unbounded in W

1;N�1

, and also one annot, in general, assume that

u

n

2 W

1;p

nW

1;N

for some p < N .

Three dimensional water waves by variational and dynamial methods

R. Pego

We desribe travelling waves in models of wave propagation on water of �nite depth, for

three models:

(1) the KP - equation

(2) the Benney Luke equation (an isotropi model for long wave of small amplitude)

(3) the exat Euler equations for water waves

When surfae tension is strong, the equation for travelling waves is ellipti. Finite

energy solitary waves had been found for KP by onentration-ompatness methods, and

we ahieve the same for BL and demonstrate �-onvergene to KP in the appropriate

saling limit. The problem for the exat Euler equations is open.

When surfae tension is zero, looking for fast waves yields problems best addressed

through spatial dynamis. For BL and the Euler equations this yields an ill-posed system,

but for BL we prove (as for KP) there is an in�nite-dimensional family of travelling waves

that orresponds to a entre manifold of in�nite dimension and odimension. The exat

equations admit formally a onserved \energy" for spatial dynamis, but the existene of

a entre manifold for nonlinear waves remains open.
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Harnak inequalities on sale irregular fratals

Umberto Moso

Following Barlow-Hambly (1997) we onstrut a family of homogeneous non self-similar

Sierpinski urves in R

D

, D � 2. Eah urve K(�) of the family depends on an \environ-

ment" sequene � = (�

1

; �

2

; : : :), where eah �

i

takes its value in a �nite set of \sales", A.

The main saling exponents assoiated with a 2 A are

�

a

> 1; N

a

� 2; �

a

> 1

for length, volume (mass), energy, respetively. The asymptoti frequeny of a 2 A in

� 2 A

N

is desribed by probabilities 0 � p

a

� 1,

P

a2A

p

a

= 1, on A:

p

a

= lim

n!1

h

(�)

a

(n); h

(�)

a

(n) =

1

n

n

X

i=1

1

�

i

:

Under the assumption

(7) jh

(�)

a

(n)� p

a

j �

g(n)

n

; n � 1;

where g is a regular inreasing funtion on the real line, g(0) = 1, we are able to arry

out an \e�etive" desription of K

(�)

inspired by homogenization theory. We replae the

ompliated �ne struture of K

(�)

by an intrinsi quasi-metri struture within K

(�)

and

we estimate the saling laws for volume and spetral gap on balls B

R

of d. The e�etive

quasi-metri d is of the kind d(x; y) = jx� yj

Æ

, where Æ > 0 is an index of the rami�ations

in K

(�)

, whih is hosen to be

Æ =

1

2

P

a

p

a

log(N

a

�

a

)

P

a

p

a

log�

a

We then prove the volume estimate vol(B

R

) � R

�

e

G(R)

where

� = 2

P

a

p

a

log(N

a

)

P

a

p

a

log(N

a

�

a

)

and the \universal" spetral gap saling �

1

(B

R

) � R

�2

e(�G(R)), whereG(R) � g( log(1=R)).

By assuming fastest onvergene, i.e. g(s) = O(1), we then prove Harnak inequality on

balls B

R

and Green funtion estimates on onentri balls B

r

� B

R

of the kind

g

B

R

(x

0

; x)j

x2�B

r

�

1

2� �

(R

2��

� r

2��

):
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Singularities of minimal submanifolds

L. Simon

This talk foussed on a PDE method for �nding singular minimal surfaes of odimen-

sion 1. One begins with the equation

Mu :=

n

X

i=1

D

i

 

D

i

u

p

1 + jruj

2

!

=

m

u

p

1 + jDuj

2

;

where m is an integer � 1 and n � 2. In the ase where we atually use the (n+1)-variable

version of this equation, so that u = u(x; y) with x 2 R

n

and y 2 R a \weak linearization"

proess was introdued to demonstrate the existene of a rih lass of solutions of the form

u(x; y) =

p

mr + v(x; y), where jv(x; y)j � CR

Q

, r = jxj, R =

p

r

2

+ y

2

.

Strit onvexity and the existene of optimal transports

B. Kirhheim

(joint work with L. Ambrosio and A. Pratteli)

We onsider the Monge problem. Given two (absolutely ontinuous) probabilities �

1

,�

2

in the n-dimensional spae and a norm k�k on that spae, try to �nd a mapping � : R

n

! R

n

that maps the �rst measure onto the seond (�

1

(�

�1

(A)) = �

2

(A) for all A) and minimizes

the average d-distane the points are moved, i.e.

Z

k�(x)� xkd�

1

(x)! min:

The existene of suh an optimal transport map in ase of a norm having a suÆiently

urved unit ball was established by several authors, inluding Ca�arelli, Evans, Feldmann,

Gangbo, MCann, Trudinger and Wang. In joint work with L.Ambrosio and Aldo Pratteli

we an prove the existene of an optimal transport also for general norms in the plane and

rystaline norms (orresponding to polyhedral unit balls) in any dimension.

Edited by Florian Theil
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