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The organizers of this workshop were Detlef M�uller (Kiel), Elias M. Stein (Prineton)

and Hans Triebel (Jena).

43 other mathematiians partiipated and gave 28 talks. Their abstrats are listed in

this report in the order the talks were given. Additionally, spontaneous meetings took

plae, where new developments were disussed. The work at this onferene was mostly

devoted to reent developments in several topis of harmoni analysis as well as in the

theory of funtion spaes and their interplay.

We thank the \Mathematishes Forshungsinstitut Oberwolfah" for making this on-

ferene possible.
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Abstrats

The Cauhy problem for fully non-linear Shr�odinger equations

Carlos Kenig

In this talk I desribed reent work (joint with G. Pone, C. Rolvung and L. Vega) on

the well-posedness of the Cauhy problem, for short time, with data in Sobolev spaes in

R

n

, interseted with weighted L

2

spaes, with power weights. Our result says that, under

suitable elliptiity and asymptoti atness assumptions, for data whih generates (in a

suitable way) metris whih are lose to \non-trapping" ones, this well-posedness holds for

any n � 1.

Interpolation theory and ompat operators

Fernando Cobos

In 1960, Krasnosel'skii proved that if T is a linear operator whih satis�es the hypothesis

of the Riesz-Thorin theorem, that is, T : L

p

0

! L

q

0

and T : L

p

1

! L

q

1

are bounded, where

1 � p

0

; q

0

; p

1

; q

1

� 1, and if, in addition, q

0

< 1 and T : L

p

0

! L

q

0

is ompat, then

T : L

p

! L

q

is ompat, where 1=p = (1 � �)=p

0

+ �=p

1

, 1=q = (1� �)=q

0

+ �=q

1

and �

is any number suh that 0 < � < 1. At the beginning of the sixties with the foundation of

abstrat interpolation theory, this result led to the investigation of interpolation properties

of ompat operators between general Banah spaes. The �rst partial results were pub-

lished in 1964 by Lions and Peetre and by Calder�on, in their famous papers about the real

interpolation method and the omplex method, respetively. Many authors have worked

on this subjet sine then, and still a lot of work is being done along di�erent diretions.

As it was shown by Cwikel in 1992, ompat operators an be interpolated by the real

method. However, a similar result for the omplex method is not yet known.

The aim of this talk is to survey old and new results on this subjet, as well as some of

the tools for their proofs whih are intimately related to the struture of the interpolation

method under study.

Maximal operators related to the Ornstein-Uhlenbek semigroup with

omplex time parameter

Gianarlo Maueri and Peter Sj

�

ogren

In our two talks we have reported on two papers, one of whih is joint work also involving

J. Garia-Cuerva, S. Meda & J.L. Torrea.

Let  be the Gaussian measure on R

d

and fH

t

: t � 0g the Ornstein-Uhlenbek semigroup

on (R

d

; ), whose generator is �

1

2

4+ x � r. For eah p in [1;1) let E

p

� C be the losure

of the region of holomorphy of fH

t

: t � 0g on L

p

(). We examine the boundedness on

L

q

() of the maximal operator

H

�

p

f(x) = sup

z2E

p

jH

z

f(x)j:

We prove that, for 1 < p < 2, H

�

p

is of strong type q for p < q < p

0

and of weak type p

0

.

However, H

�

p

is not of weak type p and not of strong type p

0

.
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Here the strong type p

0

estimate fails beause of the behaviour of the semigroup H

z

for

z near the subset i�Z of �E

p

. Indeed, if one modi�es the de�nition of H

�

p

by deleting from

E

p

an "-neighbourhood of i�Z, the resulting operator is of strong type p

0

.

A similar statement holds for the weak type p estimate, with another disrete subset of

�E

p

.

Osillatory integral operators with degenerate phases

Allan Greenleaf

(joint work with Andreas Seeger)

Consider an osillatory integral operator

T

�

f(x) =

Z

R

d

e

i��(x;y)

a(x; y)f(y)dy;

with phase � 2 C

1

R

(R

d

� R

d

) and amplitude a 2 C

1

0

(R

d

� R

d

), and in partiular the

deay properties of kT

�

k

L

2

!L

2

under various geometri assumptions on �. Let �

L

(x; y) =

(x;r

x

�(x; y)) and �

R

(x; y) = (y;�r

y

�(x; y)) be the projetions to the left and right from

the assoiated anonial relation, whih we assume drop rank by at most one everywhere.

Theorem

(i). If both �

L

and �

R

have at most simple usp (S

1;1;0

) singularities, or more generally

are of �nite type � 2, then

kT

�

k

L

2

!L

2

� �

�

d�1

2

�

1

4

:

(ii). If one of �

L

or �

R

has at most swallowtail (S

1;1;1;0

) singularities, or more generally

is of �nite type � 3, then

kT

�

k

L

2

!L

2

� �

�

d�1

2

�

1

8

:

Part (i) sharpens and extends a result of A. Comeh and S. Cuagna. As an appliation,

onsider averaging operators A

j

f(x) =

R

R

f(x�

j

(t))�(t)dt, � 2 C

1

0

, with 

1

(t) = (t; t

2

; t

4

)

and 

2

(t) = (t; t

3

; t

4

) in R

3

and 

3

(t) = (t; t

2

; t

3

; t

4

) in R

4

, so that A

j

: L

2

! L

2

1

4

by van der

Corput. Then, averages over arbitrary smooth (non translation-invariant) perturbations

of the translation-invariant families fx� 

j

(t)g

x2R

d satisfy the same estimate.

Maximal funtions on the disrete Heisenberg group

Stephen Wainger

We disussed a reent Theorem of A. Magyar, E. M. Stein and myself onerning a maximal

funtion on the disrete Heisenberg group, H

d

. As a setH

d

= fhjh = (m; k) = (m

1

; m

2

; k)g

with m

j

2 Z

d

and k 2 Z. We introdue a multipliation by setting (m; k) � (n; l) =

(m+ n; k + l +m

2

� n

1

). For f de�ned on H

d

and (m; k) in H

d

, put

M

N

f(m; k) =

1

(2N + 1)

2d

X

f((n; 0) � (m; k)):

Then we have the following result.

Theorem:(A. Magyar, E.M. Stein, S. Wainger)

k sup

N

jM

n

f jk

`

2

(H

d

)

� A(d)kfk

`

2

(H

d

)

:

Appliations to Ergodi theory are given.
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Envelopes in funtion spaes

Dorothee D. Haroske

We present our reently developed onept of envelopes in funtion spaes { a relatively

simple tool for the study of spaes, say, of Sobolev typeH

s

p

, or Besov type B

s

p;q

. Arising from

the famous Sobolev embedding theorem it is, for instane, well-known that B

n=p

p;q

,! L

1

if, and only if, 0 < p < 1, 0 < q � 1; a natural question thus is in what sense the

unboundedness of funtions belonging to H

s

p

with 1 < p < 1, and B

s

p;q

with 1 < q �

1, respetively, an be quali�ed. Conentrating on this partiular feature we introdue

the onept of growth envelope funtions E

X

G

= sup

kf jXk�1

f

�

(t), t > 0, `measuring' the

unboundedness of funtions belonging to some funtion spae X � L

1

lo

by means of the

non-inreasing rearrangement f

�

(t). Surprisingly enough one �nds rather simple and �nal

answers haraterising spaes like B

s

p;q

and H

s

p

; in fat, the results ontain an even �ner

desription of this feature than measured by E

X

G

merely. It turns out that in rearrangement-

invariant spaes there is a onnetion between E

X

G

and the fundamental funtion '

X

; we

derive further properties and give some examples : One veri�es for the Lorentz spaes

E

G

(L

pq

) = (t

�1=p

; q), where E

G

(X) is the so-alled growth envelope of a spae X. More

interesting, however, are the results for B

s

p;q

or H

s

p

.

Likewise we investigate limiting situations when questions of (un)boundedness of funtions

are replaed by enquiries about (almost) Lipshitz ontinuity; for X ,! C it makes sense

to replae f

�

(t) by

!(f;t)

t

, where !(f; t) is the modulus of ontinuity. Now the ontinuity

envelope funtion E

X

C

and the ontinuity envelope E

C

are introdued ompletely parallel to

E

X

G

and E

G

, respetively, and similar questions are studied.

Apart from natural appliations to inequalities, these sharp assertions imply not only new

(and so far �nal) results on unboundedness and Lipshitz-ontinuity; besides there are also

interesting onnetions between growth and ontinuity envelopes and lift operators, as well

as with related problems of ompatness and, say, approximation numbers.

The �

b

-omplex on deoupled domains

Alexander J. Nagel

This is a report on joint work with E.M. Stein. Our objetive is to study the relative

fundamental solutions for the operator �

b

= �

b

�

�

b

+ �

�

b

�

b

on domains 
 � C

n+1

of the

form f(z

1

; : : : ; z

n

; z

n+1

) 2 C

n+1

jIm(z

n+1

) >

P

n

j=1

P

j

(z

j

)g where eah P

j

is a subharmoni,

non-harmoni polynomial. We show that the singularities and regularity properties of

the solutions involve di�erent phenomena that arise in the ases of stritly pseudoonvex

domains, domains of �nite type in C

2

, or domains in whih the eigenvalues of the Levi form

degenerate at omparable rates. Instead of being variants of Calder�on-Zygmund singular

integral operators or frational integral operators, the relative fundamental solution in the

deoupled ase is best viewed as a \quotient" of produt type operators. This helps to

explain the failure of maximal subellipti estimates.

The following is an example of the kind of result we obtain: if 
 � C

3

is deoupled and

if f �z

1

; �z

2

g is the standard basis for the tangential (0; 1) vetor �elds, onsider the operator

�

b

= z

1

z

1

+ z

2

z

2

. Let S denote the orthogonal projetions from L

2

(�
) to the null spae

of �

b

.

Theorem: There is a relative fundamental solution K so that �

b

K = K�

b

= I � S.

Also
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(1) The operators Z

1

�

Z

1

K and Z

2

�

Z

2

K are bounded on L

p

(�
), 1 < p <1.

(2) The operators

�

Z

1

Z

1

K and

�

Z

2

Z

2

K need not be bounded on L

2

(�
).

(3) If B

1

and B

2

are smooth funtions on �
 and if jB

1

(p)j4P

1

(p) � C4P

2

(p) and

jB

2

(p)j4P

2

(p) � C4P

1

(p) then [B

1

�

Z

1

Z

1

+ B

2

�

Z

2

Z

2

℄K is bounded on L

p

(�
) for

1 < p <1.

A restrition theorem for twisted sub-Laplaians

Mihael Kempe

For n 2 N onsider the 2n+1-dimensional Heisenberg Group H

n

. Its Lie algebra is spanned

by vetor �elds P

j

; Q

j

and U (j = 1; : : : ; n) ful�lling the anonial relations [P

j

; Q

j

℄ = U .

By a Fourier transform in the entral variable of H

n

, the onvolution on L

1

(H

n

) indues

a non-ommutative onvolution produt on L

1

(R

2n

), the so-alled twisted onvolution.

To P

j

; Q

j

there orrespond vetor �elds

e

P

j

;

f

Q

j

on R

2n

(and these are given by twisted

onvolution with a ertain kernel).

We onsider di�erential operators given by L

S

:= �hZ; SZi where S denotes a real

symmetri 2n � 2n-matrix and Z = (

e

Q

1

; : : : ;

e

Q

n

;

e

P

1

; : : : ;

e

P

n

). L

S

is alled a twisted sub-

Laplaian, if S is positive de�nite. Thangavelu proved a \restrition theorem" for the

speial ase L := L

Id

, namely

k1

[�;�+1℄

(L)k

L

p

!L

2

� C�

�(p)

;

where �(p) := n

�

1

p

�

1

2

�

�

1

2

and 1 � p � 2

2n

2n+2

. Although the exponent �(p) is always

optimal, the range of p for whih the above inequality holds an be improved to 1 � p <

2

2n+1

2n+3

, and it also holds for all L

S

instead of L, if S is positive de�nite. This result is analog

to the well-known restrition theorem for the Fourier transform by Tomas and Stein.

As usual it an also be used to obtain better onvergene of the orresponding Riesz

means.

Old and new results on BMO(R

n

)

Gerard Bourdaud

We onsider the following subspaes of BMO(R

n

): VMO = UC \ BMO, CMO = C

0

,

BMO

0

= BMO



(BMO



is the set of ompatly supported funtions in BMO). We also

onsider the orresponding subspaes of bmo(R

n

).

1. We give various haraterizations of these spaes. For instane, we have the following

properties:

(1) BMO

0

= R((L

1

0

)

n+1

)

(2) CMO = R((C

0

)

n+1

)

(Here R = (Id; R

1

; : : : ; R

n

), where R

j

are the Riesz transforms; and L

1

0

is the losure of

L

1



in L

1

.)

Assertion (1) is likely new. Assertion (2) was laimed in the 70's, but the proof seems

to have not been published. The two proofs rely upon a \kind of" L

1

! BMO ontinuity

of the ommutator [v; R℄ for v 2 BMO.

2. With the help of Jones, Iwanie, Thamithian and Russ we point out some inexati-

tudes on CMO and VMO whih appeared in the reent literature. The following assertions

turn to be FALSE:

(3) VMO(R

n

) is the losure of BUC(R

n

)

5



(4) for any f 2 CMO(R

n

), the following limit does exist:

lim

t!0

1

jB(0; t)j

Z

B(0;t)

f(x)dx:

3. In ollaboration with Sikel and Lanza de Cristoforis, we study the funtional alulus in

the above subspaes X of BMO. That is: what funtions f de�ne a superposition operator

Tf(g) := f Æ g on X; for what f is Tf ontinuous? di�erentiable? in the BMO(R

n

).

Our results omplete the former by Fominykh and Chevalier. For instane, we have the

following \degeneray" result:

If f is not an aÆne funtion, then:

(i) Tf is not ontinuous on VMO or on bmo.

(ii) Tf is not di�erentiable on D(R

n

) endowed with the bmo(R

n

).

Papers appeared or to appear:

� Funtional alulus on BMO and related spaes (with Sikel and Lanza de C.)

J.F.A. 2002

� Remarques sur ertains sous-espaes de BMO(R

n

) et bmo(R

n

) Ann. Institut Fourier

2002.

Singular integrals on exponential growth groups

Waldemar Hebish

The talk extends our earlier joint work with Tim Steger. We propose a simple abstrat

version of Calder�on-Zygmund theory, whih is appliable to spaes with exponential volume

growth. In partiular, we have an analog of Calder�on-Zygmund deomposition on all

amenable Lie groups.

We apply theory to the Riesz transforms on amenable Lie groups: Let G = U � R nN ,

where N is R

Q

or C

Q

, U is a subgroup of the orthogonal (unitary) group on N and the

multipliation is given by (u

1

; a

1

; n

1

)(u

2

; a

2

; n

2

) = (u

1

u

2

; a

1

+ a

2

; u

2

e

sa

2

n

1

+ n

2

), s being a

salar. Let X

1

; : : : ; X

n

be right invariant vetor �elds on G. Put L = �

P

n

j=1

X

2

j

.

Then the operators R

j

= X

j

L

�

1

2

are bounded on L

p

(G), 1 < p � 2 and of weak type

(1; 1). We have also boundedness for p > 2, but then we use stronger assumptions: U

trivial, L of speial form (oming from a symmetri spae). Also under the strengthened

assumptions, if X

1

orresponds to the derivative with respet to a, then R

�

1

= L

�

1

2

X

1

is

not of weak type (1; 1) (the other R

�

j

are of weak type (1; 1)).

Sharp estimates for the boundedness of Bergman projetors

Gustavo Garrig

�

os

Let D = R

n

+ i
 be the tube domain over the light-one 
 � R

n

. Let P : L

2

(D) !

A

2

(D) be the Bergman projetor, and onsider the mixed norm Lebesgue spae L

p;q

(D) =

L

q

(
;L

p

(R

n

)). We study the following problem: Given p 2 (1;1), �nd the sharp range of

q 2 (1;1) suh that P admits a bounded extension from L

p;q

into A

p;q

. When n = 3, the

best known answer to this question is given in the following drawing:

It illustrates the regions of boundedness, unboundedness, and the open gap where for

the moment no answer is known. Boundedness in the hexagonal region was shown in a

paper by B�ekoll�e, Bonami, Peloso and Rii from 1998, using the Planherel theorem and

a suitable disretization of the multiplier to obtain a sharp result for p = 2. In this talk we

present sharp results for 2 � p � 4, obtained by the author in ollaboration with B�ekoll�e,
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1/2

1/4

1/6

1/21/41/8

1/p

1/q

Bonami and Rii. The tehniques this time are based on a Littlewod-Paley deomposition

adapted to the geometry of the one, and the use of almost orthogonality results related

to the Bohner-Riesz multiplier in 2 dimensions. We also present some neessary and

suÆient onditions for the ases 4 < p � 6, in terms of inequalities of Bohner-Riesz type.

This researh has been partially supported by the European Commission, TMR Network

\Harmoni Analysis: 1998-2002".

The Bergman projetion on Siegel domains over polyhedral ones

Fulvio Rii

(joint work with P. Ciatti)

For a onvex proper open one � in R

n

, let D

�

= R

n

+ i� be the assoiated tube domain

in C

n

.

Given a Hermitian form �: C

m

� C

m

! C

n

that is �-positive, let also

D

�;�

= f(z; w) : Imw � �(z; z) 2 �g � C

m+n

be the assoiated type II Siegel domain.

For eah of these domains, the Bergman spae A

p

(D) is the spae of L

p

-integrable

holomorphi funtions on D. The orthogonal projetion of L

2

(D) onto A

2

(D) is alled the

Bergman projetion.

The general question is if the Bergman projetion extends to a bounded operator from

L

p

(D) to A

p

(D) for p 6= 2. If n = 1, i.e. if � = R

+

, the answer is positive if and only if

1 < p <1.

Reent results (see e.g. G. Garrig�os' abstrat) prove that for tube domains over irular

ones the answer is positive only for a more restrited range of values of p.

We prove that if � is a polyhedral one (i.e. the onvex hull of a �nite number of half-

lines) then the Bergman projetion is bounded if and only if 1 < p < 1, both for tube

domains and type II domains.

The proof is based on a areful analysis of the Fourier multipliers (e

�y��

1

�

�

(�))=�

�

�

(�),

on R

n

, where �

�

is the dual one of � and

�

�

�

(�) =

Z

�

e

�y��

dy

is its harateristi funtion.
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Stability and Energy funtionals on K�ahler geometry

Duong H. Phong

In the early 1980's, it was onjetured by S.T. Yau that the existene of K�ahler-Einstein

metris should be equivalent to stability in the sense of geometri invariant theory. This

notion of stability has proven diÆult to exploit on geometri PDE's, sine it is global

and depends on the omplex struture. In reent joint work with J. Sturm, we disuss its

relation to lower bounds for energy funtionals in K�ahler geometry, as well as to notions of

stability in real analysis. Central to our onsiderations is a new semi norm k �k

℄

on H

0

(Gr)

log kfk

2

℄

=

m+ 1

(m + 2)(d� 1)

1

D

Z

Z

log

(!

m

Gr

^ ��

jf(z)j

2

jPl(z)j

2d

)

!

m+1

Gr

!

m

GR

+

d�m� 2

(m + 2)(d� 1)

1

D

Z

Gr

log

jf(z)j

2

jPl(z)j

2d

!

m

Gr

(Here Z is the Chow variety), and a non-linear Radon transform, mapping the Mabuhi

energy of a variety X to the Mabuhi energy of the regular part Z, of its Chow variety.

Symboli alulus for pseudodi�erential operators with periodi symbols

Karlheinz Gr

�

ohenig

We prove non-ommutative versions of Wiener's Lemma on absolutely onvergent Fourier

series (a) for the ase of twisted onvolution and (b) for rotation algebras. Equivalently,

these results an be seen as a symboli alulus for pseudodi�erential operators with peri-

odi symbols. Suh operators our frequently in time-frequeny analysis and the theory

of Gabor frames. As an appliation we provide the solution of some open problems about

Gabor frames, among them the problem of Feihtinger and Janssen that is known in the

literature as the \irrational ase".

A theory of Gabor multipliers

Hans Georg Feihtinger

Let � C R

d

�



R

d

be a lattie in phase spae, e.g. � = aZ

d

� bZ

d

. For l = (t; !) we write

�(l)g for M

!

T

t

g(z) := e

2�i!z

g(t� z) (=TF-shift). The pair (g;�) generates a Gabor frame

if (�(l)g)

l2�

is a frame for L

2

(R

d

). It is alled a tight Gabor frame if

f =

X

l2�

hf; �(l)gi�(l)g 8f 2 L

2

:

A Gabor multiplier is an operator of the form

G

m

f :=

X

l2�

m

l

hf; �(l)gi�(l)g

for some sequene (m

l

)

l2�

on �.

Atoms should be taken from S

0

(R

d

) = ff 2 L

2

; V

g

0

f 2 L

1

(R

2d

)g, where V

g

0

f(t; !) =

hf;M

!

T

t

g

0

i is the short time Fourier transform with Gaussian window.

Then m 2 `

1

=`

2

=`

1

implies G

m

trae lass/HS/ bounded.

Moreover the orresponding operators depend ontinuously in the respetive norms on

their ingredients (window in S

0

, but even the lattie �!)
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Singular maximal funtions and Radon transforms near L

1

Andreas Seeger

(joint work with Terene Tao, James Wright)

We onsider a lass of maximal funtions whih are known to give L

p

-bounded operators

and for whih the weak-type (1-1) inequality is unknown. This lass inludes maximal

funtions assoiated to parabola in the plane and the launary spherial maximal funtion

in R

d

. We prove a weak-type L log logL inequality, i.e.

meas

�

fx : jTf(x)j > �g

�

.

Z

�

�

jf(x)j

�

�

dx

with �(s) = s log log(10 + s).

The proofs are based on stopping time arguments involving quantities of \length" and

\thikness". We also obtain a related result on singular Radon transforms.

On parametries of semi-linear ellipti boundary problems

Jon Johnsen

The talk onerns a parametrix formula for semi-linear ellipti boundary problems, estab-

lished by the speaker in reent years. The formula shows how a given solution depends

on the data, whene one an read o� its regularity direnly. In a broader ontext, with

derivatives in the L

p

-sense, this question may be tehnially rather demanding to answer

by bootstrap methods (e.g. in ases with a large integrability gap between the \initial" and

\�nal" spaes for the solution). It is explained how to dedue the formula, whih gives a

purely analytial way to obtain suh regularity properties (in fat with weaker assuptions

on the data). The onstrution has been ompleted for non-linerarities of produt type,

but there remain fundamental questions for those of omposition type, like f(u), where

one is lead to pseudo-di�erential operators in a H�ormander lass S

0

1;Æ

with Æ > 1.

Restrition and deay for at urves and hypersurfaes

Sarah N. Ziesler

In this talk I desribe reent work with A. Carbery on restrition theorems for hypersurfaes

�(t) = (t; (t)) in R

n

(t 2 R

n�1

,  : R

n�1

! R) with the aÆne urvature K

�

(t)

1

n+1

=

(detHess(t))

1

n+1

, introdued as a mitigating fator. Our work shows that, for n � 3,

there is no universal restrition theorem for hypersurfaes with non-negative urvature, in

ontrast with the ase n = 2, where Sj�olin proved a universal restition theorem for all

onvex urves. We also disuss deay estimates for the Fourier transform of the density

K

1

2

�

supported on the surfae and give results on the relationship between restrition and

deay.
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A non-linear Fourier transform

Cristoph Thiele

(joint work with C. Masalu, T. Tao)

De�ne the partial Fourier integrals of a funtion F on the real line by

h(�; k) =

Z

�

�1

F (x)e

ikx

dx:

The Fourier transform of F is the limit of these partial sums as � ! 1. If we write

g = exp h, then we have the following ODE for g:

�

�

g(�; k) = F (�)e

ik�

g(�; k); g(�1; k) = 1:

This exponentiated Fourier transform an be generalized to the matrix ase, e.g.

�

�

G(x; k) =

�

0 F (�)e

ik�

F (�)e

ik�

0

�

G(�; k); G(�1; k) = id:

The oeÆient matrix is in the Lie algebra of SU(1; 1) and thus the solution is of the form

�

a(�;k) b(�;k)

b(�;k) a(�;k)

�

. It is known that

R

log ja(1; k)jdk = C

R

jF j

2

for some universal C. This is

a version of Planherel's identity. We onjeture

Z

sup

x

log ja(�; k)jdk � C

Z

jF j

2

:

We an prove a variant of this where e

ik�

is replaed by haraters of the Cantor group:



n

= 1, (!(�; k) =

P

n2Z



x

n

k

�n

where x =

P

x

n

d

n

, k =

P

k

n

d

n

.

On the absene of positive eigenvalues of Shr�odinger operators with rough

potentials

Alexandru D. Ionesu

(joint work with D. Jerison)

We onsider the problem of proving the absene of positive eigenvalues of Shr�odinger

operators for a ertain lass of rough potentials in R

n

. Let H = �4 + V denote a

Shr�odinger operator. Assume that V 2 L

n

2

lo

(R

n

) if n � 3 and V 2 L

k

lo

(R

n

), k > 1, if

n = 2. Assume also that for some exponent q 2 [

n

2

;1℄ (or q 2 (1;1℄ if n = 2) we have

lim

R!1

kV k

L

q

(jxj2[R;2R℄)

�R

1�

n

2q

= 0:

Then the operator H has no positive eigenvalues. The ase q =1 is a well-known theorem

of Kato. Our proof is based on establishing a Carleman inequality of the form

kW

m

uk

`

1

(L

p

0

(q)

)

� CkW

m

jxj

1�

n

2q

(4+ 1)uk

`

1

(L

p(q)

)

for a ertain sequene of weights W

m

, m!1. This inequality holds uniformly as m!1

and p(q) and p

0

(q) are dual exponents with the property that

1

p(q)

�

1

p

0

(q)

=

1

q

.
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Funtion spaes in presene of symmetries: ompatness of embedings, deay

and smoothness of funtions

Leszek Skrzypzak

We are interested Sobolev embeddings of funtion spaes of Besov and Triebel-Lizorkin

type onsisted of distributions invariant with respet to the ation of a ompat group of

isometries of an underlying spae. The underlying spae means in this ontext the Eu-

lidean spae or a Riemannian manifolds with bounded geometry. The following problems

are regarded:

� haraterization of Besov and Triebel-Lizorkin spaes on manifolds with bounded

geometry via heat semi-group,

� ompatness of Sobolev and Trudinger-Strihartz embeddings,

� improved smoothness properties of Sobolev embeddings on ompat manifolds,

� entropy numbers of embeddings of radial funtions on R

n

,

� loal smoothness and deay of funtions,

� smoothing properties and ompatness of Riesz-Bessel potentials on symmetri

spaes of nonompat type.

A omplex analyti view point on the 2d Euler equations

Nets Katz

For the 2d Euler equation of uid motion, two basi problems remain open.

(1) Do the Sobolev norms of any solution with smooth initial data grow as fast as

double exponential in time?

(2) Does a solution with initial vortiity in H

1

\ L

1

remain in H

1

?

These properties are on the ase of what an be proved trivially by Littlewood Paley theory.

We present an expliit model in whih both might be studied.

Produt BMO and seond order ommutators

Mihael Laey

Given a funtion b on the plane M

b

f = b � f is the operator of multipliation by b. H

1

and H

2

are 1-dimensional Hilbert transforms performed in the 2 anonial diretions of the

plane. A theorem of Sarah Ferguson and Cora Sadosky onerns the ommutator

k[[M

b

; H

1

℄; H

2

℄k

L

2

!L

2

' kbk

BMO(C

+

�C

+

)

What is most important is that the BMO norm is that of the dual of produt H

1

(C

+

�C

+

),

as indiated by S.-Y. Chang and R. Fe�erman.

This theorem, as in the one dimensional ase, admits equivaltent formulations in terms

of Hankel operators and weak fatorization of produt H

1

.
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A multilinear generalization of the Cauhy-Shwarz inequality

Anthony Carbery

For a nonnegative measurable funtion K de�ned on a produt X

1

�� � ��X

n

of measurable

spaes, let

Q(K) =

�

Z

K(s

1

; x

0

2

; : : : ; x

0

n

)K(s

1

; s

2

; : : : ; x

1

n

) � � �K(x

n

1

; : : : ; s

n

)d(s; x)

�

1

n+1

Then j

R

K(x

1

; : : : ; x

n

)

Q

n

i=1

f

i

(x

i

)dx

i

j � Q(K)

Q

n

i=1

kf

i

k

n+1

.

We give a proof of this result, whih generalizes a lemma of Katz and Tao.

Tailored funtion spaes on fratals

Mihele Brihi

We have onsidered a generalization of the idea of d-sets and (d;  )-sets as follows.

Let h : (0; 1) ! R be a positive and ontinuous monotone funtion. Then a non-empty

ompat set � � R

n

is alled h-set if there exists a �nite Radon measure � with supp� = �

and �(B(; r)) � h(r), 8 2 � and all r 2 (0; 1). It turns out that, given h as above, there

exists an example of h-set in R

n

if, and only if, h(2

�k�l

)=h(2

�l

) & 2

�kn

8k; l 2 N

0

. Here

\&" means \up to an equivalent funtion

e

h" the estimate holds with the usual � symbol.

The main theorem we have proved reads as follows.

Let � be an h-set ful�lling a ertain geometrial ondition (ball ondition). Then, for

0 < p <1 and 0 < q � min(1; p)

TrB

h

p

pq

(R

n

) = L

p

(�):

Here h

p

is the sequene h

p

= fh(2

�j

)

1

p

2

n

p

j

g

j2N

0

and the related generalized Besov spaes

an be de�ned in analogy to the lassial ones.

Afterwards, omitting details, one de�nes B

s

pq

(�) or even B

�

pq

(�) (for a given \positive"

sequene f�

j

g) as

B

s

pq

(�) = Tr

�

B

2

js

h

p

pq

(R

n

) for 0 < p; q � 1:

Here 2

js

h

p

means the sequene f2

js

h(2

�j

)

1

p

2

n

p

j

g. One Besov-type spaes are de�ned, one

an provide some more diret haraterizations and exploit their de�nition for appliations

to PDE's.

Riesz transform, Littlewood-Paley-Stein funtions and heat kernels on

non-ompat Riemannian manifolds

Thierry Coulhon

(joint work with Xuan Thinh Duong)

Robert Strihartz has asked in 1983 for whih omplete non-ompat Riemannian manifolds

M and whih p 2℄1;+1[ one has

C

�1

p

k�

1=2

fk

p

� kjrf jk

p

� C

p

k�

1=2

fk

p

; 8 f 2 C

1

0

(M):

The seond inequality above means that the Riesz transform is bounded on L

p

(M). If

true, it implies the �rst inequality for the onjugate exponent of p. We proved in [2℄ that

the Riesz transform is bounded on L

p

(M), 1 < p � 2, and has weak type (1; 1) if:

1. V (x; 2r) � C V (x; r); 8 x 2M; r > 0
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2. p

t

(x; x) �

C

V (x;

p

t)

; 8 x 2M; t > 0:

Here V (x; r) is the Riemannian volume of the geodesi ball of enter x 2M and radius

r > 0, and p

t

(x; y), t > 0, x; y 2M is the heat kernel onM . The example of two Eulidean

planes glued by a ylinder shows that the above statement is false for p > 2. On Visek

manifolds (see [1℄), the even weaker inequality k�

1=2

fk

p

� C

p

kjrf jk

p

is false for p < 2�".

In [5℄, we prove that the multipliative inequality kjrf jk

2

p

� C

p

k�fk

p

kfk

p

is valid on any

omplete Riemannian manifold for 1 < p � 2, and for p > 2 on every omplete Riemannian

manifold satisfying

3. jre

�t�

f j � Ce

�t�

(jrf j); 8 f 2 C

1

0

(M); 8 t > 0:

This relies heavily on the use of Littlewood-Paley-Stein funtions and on the work of

P-A. Meyer. The Riesz transform itself is bounded on L

p

(M) for p > 2 if 1 and 2 above are

satis�ed, and in addition the heat kernel on funtion suitably dominates the heat kernel

on 1-forms (whih generalizes the results of Bakry). Finally, we were reently able to reah

the same onlusion under the weaker set of assumptions 1, 2, 3.

Referenes

[1℄ Barlow M., Coulhon T., Grigor'yan A., Manifolds and graphs with slow heat kernel deay, Inven-

tiones Math., 144, 609-649, 2001.

[2℄ Coulhon T., Duong X.T., Riesz transforms for 1 � p � 2, T.A.M.S., 351, 1151-1169, 1999.

[3℄ Coulhon T., Duong X.T., Riesz transforms for p > 2, C.R.A.S. Paris, 332, 11, s�erie I, 975-980,

2001.

[4℄ Coulhon T., Duong X.T., Li X.D., Littlewood-Paley-Stein funtions on omplete Riemannian man-

ifolds for 1 � p � 2, to appear in Studia Math..

[5℄ Coulhon T., Duong X.T., Riesz transform and related inequalities on non-ompat Riemannian

manifolds, preprint.

Rigidity of nilpotent Lie groups

Hans Martin Reimann

Carnot groups N are nilpotent Lie groups, whih are equipped with a generalized ontat

struture, a non integrable subbundle HN of the tangent bundle TN . A (generalized)

ontat mapping on a Carnot group is a di�eomorphism, whih preserves HN . The group

N is rigid, if the Lie algebra of in�nitesimal generators for ontat mappings is �nite

dimensional.

The rigid nilpotent Lie groups whih appear in the Iwasawa deomposition of paraboli

subgroups of simple Lie groups have been lassi�ed by Yamaguhi.

H-type groups are shown to be rigid if dim(enter) � 3, global results for ontat

mappings on rigid nilpotent groups are disussed.

On 1-quasionformal maps of Carnot groups

Mihael Cowling

(joint work with Lua Capogna)

A Carnot group G is a onneted, simply onneted nilpotent Lie group, whose Lie algebra

g is strati�ed, that is, g = g

1

� g

2

� � � � � g

r

, where [g

1

; g

j

℄ = g

j+1

; further, g arries an

inner produt suh that the various g

j

are mutually orthogonal.

The identi�ation of g with the set

~

g of left-invariant vetor �elds on G leads to the

de�nition of the horizontal tangent spae HT (G): HT

p

(G) = f

~

X

p

: X 2 g

1

g; this arries

an invariant subriemannian metri. Suppose that U is an open subset ofG. A di�erentiable
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map f : U ! G is said to be onformal if df maps HT (U) to HT (G), and the restrition

of df to eah HT

p

(U) is a multiple of an orthogonal map.

The inner produt on g indues a Carnot{Caratheodory metri on G: we de�ne d(x; y) to

be the in�mum of the lengths of all urves from x to y whose tangent vetors are horizontal.

A homeomorphism f : U ! G is said to be �-quasionformal if it is �-quasionformal

relative to this metri (i.e., as the radius of balls beome smaller, the ratio of the outer

radius to the inner radius of their images beomes at most �). Capogna showed that if f is

1-quasionformal, then the �rst omponent of f is smooth. Our result extends this to all

f . In partiular, onformal and 1-quasionformal maps oinide, and both are smooth.

Edited by Mihael Kempe
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