Mathematisches Forschungsinstitut Oberwolfach

Report No. 38/2002

Algebraische K-Theorie

August 4th - August 10th, 2002

The meeting was organized by Daniel R. Grayson (Urbana-Champaign), Bruno Kahn (Paris) and Uwe Jannsen (Regensburg). During the meeting, twenty talks were given on topics ranging from the algebraic K-theory of general rings to the motivic cohomology and K-theory of schemes, both of geometric and arithmetic nature.

Abstracts

The obstruction to excision in K-theory and in cyclic homology

Guillermo Cortiñas

This is a report on the contents of the paper [1].

Let $f:A\to B$ be a ring homomorphism of not necessarily unital rings and $I \triangleleft A$ an ideal which is mapped by f isomorphically to an ideal of B. The obstruction to excision in K-theory is the failure of the map between relative K-groups $K_*(A:I)\to K_*(B:f(I))$ to be an isomorphism; it is measured by the birelative groups $K_*(A,B:I)$. We show that these are rationally isomorphic to the corresponding birelative groups for cyclic homology up to a dimension shift. In the particular case when A and B are \mathbb{Q} -algebras we obtain an integral isomorphism.

The main theorem was conjectured in [5], where it was called the KABI conjecture. Our proof combines results of Wodzicki [7] and Suslin-Wodzicki [6] with Cuntz-Quillen's proof of the excision theorem in periodic cohomology [4], as well as our own infinitesimal methods [2],[3].

References

- [1] G. Cortiñas, The obstruction to excision in K-theory and in cyclic homology, http://arXiv.org/abs/math.KT/0111096
- [2] G. Cortiñas, Infinitesimal K-theory, J. reine angew. Math. 503 (1998) 129-160.
- [3] G. Cortiñas, Periodic cyclic homology as sheaf cohomology, K-theory 20 (2000) 175-200.
- [4] J. Cuntz, D. Quillen, Excision in periodic bivariant cyclic cohomology, Invent. Math. 27 (1997), 67-98.
- [5] S. Geller, L. Reid, C. Weibel, *The cyclic homology and K-theory of curves*, Bull. Amer. Math. Soc. **15** (1986) 205-208.
- [6] A. Suslin, M. Wodzicki, Excision in algebraic K-theory, Ann. of Math. 136 (1992) 51-122.
- [7] M. Wodzicki, Excision in cyclic homology and in rational algebraic K-theory, Ann. of Math. 129 (1989) 591-639

The homotopy limit problem for algebraic K-theory at the prime 2

Andreas Rosenschon

(joint work with Paul Arne Østvær)

Let k be a field of characteristic $\neq 2$, and let k^s be a separable closure. Denote by vcd(k) the 2-cohomological dimension of $k(\mu_4)$ and by G_k the absolute Galois group of k. We show that the natural map

$$\mathcal{K}/2(k) \longrightarrow \mathcal{K}/2(k^s)^{hG_k}$$

is a weak equivalence on $\sup(vcd(k)-2,-1)$ -connected covers.

Relative K-groups and class field theory for arithmetic surfaces

ALEXANDER SCHMIDT

In the talk we explained the ingredients and methods of proof of the following result: THEOREM: Let X be an arithmetic surface, i.e. a two-dimensional regular connected scheme, flat and proper over $\operatorname{Spec}\mathbb{Z}$, and let Y be the support of a divisor on X. Then there exists a natural isomorphism of finite abelian groups

$$\operatorname{rec}: CH_0(X,Y) \longrightarrow \tilde{\pi}_1^t(X,Y)^{ab}$$

Here $\tilde{\pi}_1^t(X,Y)^{ab}$ is the abelianized modified tame fundamental group which classifies finite abelian étale coverings of U=X-Y that are at most tamely ramified along Y and in which every real point splits completely. $CH_0(X,Y)$ is the relative Chow-group of zero cycles.

Regulators and Arakelov motivic complexes

ALEXANDER GONCHAROV

Let X be a regular complex projective variety. Denote by $\mathcal{Z}^{\bullet}(X, n)$ the weight n higher Chow group complex of Bloch. Let $C^{\bullet}_{\mathcal{D}}(X, n)$ be the Deligne complex of weight n, defined by Deligne as a subcomplex of the Dolbeaux (bi-)complex of currents. We constructed a homomorphism of complexes

$$\mathcal{Z}^{\bullet}(X,n) \longrightarrow C_{\mathcal{D}}^{\bullet}(X,n)$$

The cone of this homomorphism, shifted by -1 is, by definition, the weight n Arakelov motivic complex of X, denoted as $C^{\bullet}_{\mathcal{A}}(X,n)$. Its cohomology is closely related to the arithmetic (Arakelov) Chow groups of Gillet-Soulé.

Homology stability for unitary groups

WILBERD VAN DER KALLEN (joint work with B. Mirzaii)

THEOREM : $H_i(U_{2n}^{\epsilon}(R,\Lambda),\mathbb{Z}) \cong H_i(U_{2n+2}^{\epsilon}(R,\Lambda),\mathbb{Z})$ for $n \geq 2i + usr(R) + 3$.

Here Λ is a form parameter, $\epsilon = \pm 1$, and the unitary group $U_{2n}^{\epsilon}(R, \Lambda)$ is the automorphism group of an orthogonal direct sum of n hyperbolic planes. For instance, it could be the symplectic group $\operatorname{Sp}_{2n}(R)$ or the orthogonal group $\operatorname{O}_{2n}(R)$ with respect to the form of maximal Witt index. The unitary stable range usr(R) is defined to be the least $M \geq 1$ so that

- (1) For any $r \in R$ the elementary group $\mathcal{E}_{2m+2}^{\epsilon}(R,\Lambda)$ acts transitively on unimodular vectors v of a certain length;
- (2) (Bass's stable range condition) For every $v \in \mathbb{R}^n$ with $n \geq m+1$ and v unimodular, there is $w \in e_1 + \operatorname{span}(e_2, ..., e_m + 1)$ such that (v, w) is unimodular.

The proof of the theorem uses a "nerve theorem" concerning connectedness of a poset covered by subposets that are indexed by a poset. It confirms a conjecture of Charney concerning high connectivity of a poset of unimodular sequences that span isotropic summands of \mathbb{R}^{2n} .

Weil-étale cohomology

THOMAS GEISSER

For a smooth variety X over a finite field \mathbb{F}_q , we discuss a new Grothendieck topology introduced by Lichtenbaum, called Weil-étale topology. There is a morphism of topoi $\gamma: \mathcal{T}_W \to \mathcal{T}_{et}$ from the Weil-étale topos to the étale topos, and we calculate the derived complex $\mathbf{R}\gamma_*\mathcal{F}$ for a Weil-étale sheaf \mathcal{F} . In case \mathcal{G} is a complex of étale sheaves, the calculation simplifies to $\mathbf{R}\gamma_*\gamma^*\mathcal{G} \cong \mathbf{R}\gamma_*\mathbb{Z}\otimes\mathcal{G}$. We also give a calculation of $\mathbf{R}\gamma_*\mathbb{Z}$, it is a 2-term complex with $\gamma_* \mathbb{Z} = \mathbb{Z}$ and $\mathbb{R}^1 \gamma_* \mathbb{Z} = \mathbb{Q}$.

Applying this with \mathcal{G} the motivic complex, one sees logical connections between the following conjectures (this is based on ideas of Bruno Kahn):

Fix a smooth projective variety X over \mathbb{F}_q and an integer n. Denote by \bar{X} the base change of X to the algebraic closure of \mathbb{F}_q .

L(X,n): $H_W^i(X,\mathbb{Z}(n))$ is finitely generated for all i

C(X,n): $H_W^i(X,\mathbb{Z}(n)) \otimes \mathbb{Z}_l \cong H_{cont}^i(X,\mathbb{Z}_l(n))$ for all i and all primes l T(X,n): \bullet $CH^n(X) \otimes \mathbb{Q}_l \to H_{cont}^{2n}(X,\mathbb{Q}_l(n))$ is surjective

- $H^{2n}_{cont}(\bar{X}, \mathbb{Q}_l(n))$ is semisimple at 1 for the Frobenius action
- numerical and rational equivalence agree on $A^n(X) \otimes \mathbb{Q}$

Then C(X,n) and $C(X,\dim(X)-n) \Rightarrow L(X,n) \Rightarrow T(X,n)$. Conversely, if T(X,n) hold for all X and n then so do C(X,n) and L(X,n). Moreover, provided C(X,n) and $C(X,\dim(X)-1)$ n) both hold, there are formulae (expected by Lichtenbaum) for special values of the L-function of X.

Thomason's localization theorem for non-commutative rings Amnon Neeman

Thomason's key lemma, in his Grothendieck Festschrift paper, asserts the following: Let X be a scheme, U an open subscheme. The bounded derived category of vector bundles on U is, up to splitting idempotents, the quotient of the bounded derived category of vector bundles on X. In a 1992 paper I proved that the key lemma may be viewed as a special case of a formal statement about triangulated categories. In recent work with Ranicki, we applied this to deduce a localization theorem in the K-theory of non-commutative rings.

\mathbb{A}^1 -representability of hermitian K-theory and Witt groups and Morel's conjectures on \mathbb{A}^1 -homotopy groups of spheres

JENS HORNBOSTEL

We show that hermitian K-theory and Balmer Witt groups are representable both in the unstable and stable \mathbb{A}^1 -homotopy category. In particular, Witt groups can be nicely expressed as homotopy groups of a topological space. The proof of the stable \mathbb{A}^1 representability of hermitian K-theory relies on a motivic version of real Bott periodicity.

Consequences include new results related to the projective line, blow ups and homotopy purity. Moreover, this should become part of a proof of Morel's conjecture on certain \mathbb{A}^1 -homotopy groups of spheres, saying in particular that the endomorphism ring of the motivic sphere spectrum should be isomorphic to the Grothendieck-Witt group of the base field.

Equivariant K-theory for actions of diagonalizable group schemes

Gabriele Vezzosi (joint work with A. Vistoli)

Let S be a separated connected noetherian base scheme, G a diagonalizable group scheme of finite type over S acting on a regular noetherian separated algebraic space X over S. If X_r denotes the locus in X where the dimension of the stabilizers is r, then we prove that the injections $\{X_r \hookrightarrow X\}_{r>0}$ induce an injection of rings

$$K_*(X,G) \longrightarrow \prod_r K_*(X_r,G)$$

whose image is a fiber product of the rings $\{K_*(X_r,G)\}_r$ whose structure maps are pullbacks and specialization maps. This theorem on reconstruction from the strata can be applied to give a very refined localization theorem and to the study of the K-theory (equivariant and non-equivariant) of smooth toric varieties.

K-theory of smooth toric varieties

Angelo Vistoli (joint work with G. Vezzosi)

We give formulas for the equivariant K-theory ring of a smooth toric variety, both as a subring of rings representations and by generators and relations. We also introduce a class of toric varieties, called combinatorially complete, for which the Merkurjev spectral sequence, linking equivariant and ordinary K-theory, degenerates, giving a presentation of the ordinary K-theory ring of these varieties.

Vector bundles on $S^2\mathbb{P}^2$

CHARLES WEIBEL

If k is a field of characteristic zero, we show that $K_0(S^2\mathbb{P}^2) \cong \mathbb{Z}^6$ injects into $K_0(\mathbb{P}^2 \times \mathbb{P}^2) \cong \mathbb{Z}^9$ and up to a factor of 2, the image equals the invariant subring under the action of the symmetric group Σ_2 .

The main technical calculation is the K-theory of $\Lambda = k[t_1, t_2, z]/(t_1t_2 = z^2)$, which is a 2-dimensional normal domain. This is done by blowing up the regular sequence (t_1, t_2) and applying theorems of Cortiñas and Thomason. A Zariski descent calculation shows that $K_0(S^2\mathbb{P}^2) = K_0(S^2\mathbb{P}^2 \times \mathbb{A}^n)$, so that $K_0(S^2\mathbb{P}^2)$ equals the homotopy K-group $KH_0(S^2\mathbb{P}^2)$.

Localization in hermitian K-theory

Marco Schlichting

(joint work with Jens Hornbostel)

If A is a ring with involution in which 2 is invertible, and $S \subset A$ is a multiplicative set of nonzero divisors, then there is a homotopy fibration

$$_{\epsilon}\mathcal{U}(\mathcal{T}_S) \longrightarrow_{\epsilon} \mathcal{K}^h(A) \longrightarrow_{\epsilon} \mathcal{K}^h(S^{-1}A)$$

where ${}_{\epsilon}\mathcal{K}^h$ stands for Karoubi's ϵ -hermitian K-theory space, ${}_{\epsilon}\mathcal{U}(\mathcal{T}_S) = \Omega_{\epsilon}W(\mathcal{T}_S)$ with ${}_{\epsilon}W(\mathcal{T}_S)$ the hermitian analogue of Quillen's Q-construction applied to the exact category \mathcal{T}_S of finitely generated S-torsion modules of projective dimension at most 1 and duality $\operatorname{Ext}_A^1(-,A):\mathcal{T}_S^{op}\longrightarrow \mathcal{T}_S$.

In case that $f \in A$ such that A and A/(f) are both regular and $S = \{F^n\}$ we have that ${}_{\epsilon}\mathcal{U}(\mathcal{T}_S) \simeq_{\epsilon} \mathcal{U}(A/(f))$ (the latter being Karoubi's U-theory). In case that A is a Dedekind domain and $S = A - \{0\}$, we have ${}_{\epsilon}\mathcal{U}_i(\mathcal{T}_S) \cong \bigoplus_{\mathfrak{p}} {}_{\epsilon}\mathcal{U}_i(A/\mathfrak{p})$. If R is a ring, there is a homotopy fibration

$$_{\epsilon}\mathcal{U}(R) \longrightarrow \mathcal{K}(R) \longrightarrow_{\epsilon} \mathcal{K}^{h}(R)$$

where the second map is the hyperbolic map.

Isovariant étale descent and Riemann-Roch for algebraic stacks

Roy Joshua

We extend Thomason's descent spectral sequence to algebraic stacks that are finitely presented over a nice base scheme. Applications to Riemann-Roch for Artin stacks and definition of finer cohomology theories for algebraic stacks are also discussed.

Twisting quadratic bundles

Boas Erez

(joint work with M. J. Taylor and P. Cassou-Nogues)

Let G be a finite group and let $X \to Y$ be a G-cover of schemes over $\mathbb{Z}[1/2]$. Assume $X \to Y$ is tame with odd ramification and suppose we are given a quadratic bundle E over Y and an orthogonal representation $\rho: G \to O(E)$. We discuss work in which we show

- (1) how to define a quadratic bundle E_{ρ} (the twist)
- (2) how to relate the cohomological invariants of E_{ρ} to those of E and ρ .

The novel feature is the appearance of a class involving the action of inertia and the action on the restriction of E to the generic point of the branch divisor. In a sense this class is an equivariant decomposition of the ramification class which appeared first in the work of Serre and Esnault-Kahn-Viehweg.

Galois structure of Zariski cohomology on curves

Bernhard Köck

Let X be a smooth projective curve over an algebraically closed field k, G a finite subgroup of the automorphism group $\operatorname{Aut}(X/k)$ and $\mathcal E$ a G-equivariant locally free sheaf on X. We gave a formula for the equivariant Euler characteristic $\chi(G,X,\mathcal E):=[H^0(X,\mathcal E)]-[H^1(X,\mathcal E)]$ (considered as an element of the Grothendieck group $G_0(k[G])$ of all f. g. k[G]-modules) in terms of the degree and rank of $\mathcal E$, the genus of the quotient curve Y:=X/G and certain local ramification data associated with the canonical projection $\pi:X\to Y$. Furthermore, if π is weakly ramified, we used this formula to express $\chi(G,X,\mathcal O_X(D))$ as an integral linear combination of the classes of certain explicitly defined projective k[G]-modules (in the Grothendieck group $K_0(k[G])$ of all f. g. projective k[G]-modules), under a certain assumption on the equivariant divisor D on X. This result generalizes a theorem of Nakajima from the tamely to the weakly ramified case. Finally, we applied this result to explicitly determine the k[G]-module structure of the space $H^0(X,\Omega_X(S))$ of global meromorphic differentials which are logarithmic along a G-stable non-empty finite set S of points on X containing all ramified points. This latter result generalizes a result of Kani again from the tamely to the weakly ramified case.

On arithmetic resolution for étale cohomology

KIRILL ZAINOULLINE

Let X be a smooth affine variety over a field k. Let $x = \{x_1, ..., x_n\}$ be a finite subset of pionts of X. Let $U = \operatorname{Spec}\mathcal{O}_{X,x}$ be the local scheme at x and K = k(X) the generic point. Let \mathcal{G} be a bounded complex of locally constant constructible sheaves of $\mathbb{Z}/n\mathbb{Z}$ -modules on the étale site of X, with $(n, \operatorname{char}(k)) = 1$. Then the Gersten-type complex for étale hypercohomology with supports

$$0 \to H^q(U,\mathcal{G}) \to H^q(K,\mathcal{G}) \to \coprod_{u \in U^{(1)}} H_u^{q+1}(U,\mathcal{G}) \to \coprod_{u \in U^{(2)}} H_u^{q+2}(U,\mathcal{G}) \to \dots$$

is exact.

This generalizes previously known results concerning Gersten resolution for étale cohomology.

Syntomic regulators on the algebraic K-theory of fields and curves ROB DE JEU

Syntomic regulators are defined on the K-theory of a large class of varieties over the spectrum of a discrete valuation ring R (with field of fractions K of characteristic 0). We compute the syntomic regulator on certain subgroups of the K-groups of fields and curves. For number fields, this means that on a large part of $K_{2n-1}^{(n)}$, for $n \geq 2$, the syntomic regulator is given by Coleman's p-adic polylogarithm, and conjecturally this should be the case for the whole of $K_{2n-1}^{(n)}$. For a curve C over a number field $k \subset K$ and a fixed element $\alpha \in K_4^{(3)}(k)$ of certain type (conjecturally, everything) the syntomic regulator of this element followed by pairing with a global 1-form ω on C and the trace to K can be expressed as a Coleman integral over C (involving ω and the ingredients of α) at least for almost all completions K of k. For a finite number of completions, other technical assumptions may be necessary.

Semitopological spectral sequence

CHRISTIAN HÄSEMEYER

(joint work with E. Friedlander and M. Walker)

A spectral sequence $E_2^{p,q}(sst) = L^{-q}H^{p-q}(X) \Rightarrow K_{-p-q}^{sst}(X)$ is defined for any smooth quasiprojective variety X over the complex numbers, and we give natural transformations of spectral sequences and abutments from the motivic spectral sequence to the semitopological above to the Atiyah-Hirzebruch spectral sequence of the analytic space associated to X. Here L^*H^* denotes the morphic cohomology of Friedlander and Lawson and K^{sst} the singular semitopological K-theory of Friedlander and Walker. We also give some applications of this result.

Algebraic K-theory and trace invariants

Lars Hesselholt

Let V_0 be a discrete valuation ring with quotient field K_0 of characteristic 0 and perfect residue field k_0 of odd characteristic p. Let X be a smooth V_0 -scheme, and let i (resp. j) denote the inclusion of the special (resp. generic) fiber. We show—in collaboration with Thomas Geisser—that there is a natural exact sequence of sheaves of pro-abelian groups on the small étale site of Y,

$$0 \to i^* R^q j_* \mathbb{Z}/p\mathbb{Z}(q) \to i^* \bar{W}.\Omega^q_{(X,M)} \xrightarrow{1-F} i^* \bar{W}.\Omega^q_{(X,M)} \to 0.$$

Here $W.\Omega^*_{(X,M)} = W.\Omega^*_X(\log Y)$ is the de Rham-Witt complex of X with the log structure given by the special fiber, and

$$\bar{W}_n \Omega_{(X,M)}^q = W_n \Omega_{(X,M)}^q / p W_n \Omega_{(X,M)}^q$$

is the reduction modulo p. (The quotient of $i^*W_n\Omega_{(X,M)}^*$ by the log-differential graded ideal generated by $W_n(\mathfrak{m}_0\mathcal{O}_X)$ is the de Rham-Witt complex $W_n\Omega_{(Y,M_Y)}^*$ of Y with the induced log structure.)

Let V be the henselian local ring of X at a generic point of Y, and suppose that the quotient field K contains the p^v th roots of unity. Then we use the exact sequence above—in combination with results on topological cyclic homology obtained in collaboration with Ib Madsen—to show that the canonical map

$$K_*^M(K) \otimes_{\mathbb{Z}} S_{\mathbb{Z}/p^v}(\mu_{p^v}) \xrightarrow{\sim} K_*(K, \mathbb{Z}/p^v),$$

which takes $\zeta \in \mu_{p^v}$ to the corresponding Bott element $b_{\zeta} \in K_2(K, \mathbb{Z}/p^v)$, is an isomorphism. This is the value of the Quillen K-groups predicted by the Beilinson-Licthenbaum conjectures (which refine the Licthenbaum-Quillen conjecture).

Perfect forms and the K-theory of $\mathbb Z$

HERBERT GANGL

(joint work with P. Elbaz-Vincent and C. Soulé)

For N=5 and N=6, we compute the Voronoi cell complex attached to real N-dimensional quadratic forms – which is provided by the so-called perfect forms – and we obtain the homology of $GL_N(\mathbb{Z})$ with trivial coefficients, up to small primes. We also prove that $K_5(\mathbb{Z})=\mathbb{Z}$ and $K_6(\mathbb{Z})$ has only 3-torsion.

Participants

Prof. Dr. Paul Balmer

balmer@math.ethz.ch Departement Mathematik ETH-Zentrum Rämistr. 101 CH-8092 Zürich

Prof. Dr. Guillermo Cortinas

gcorti@dm.uba.ar
Dto. de Matematica - FCEYN
Universidad de Buenos Aires
Ciudad Universitaria
Pabellon 1
1428 Buenos Aires - ARGENTINA

Prof. Dr. Boas Erez

erez@math.u-bordeaux.fr
Mathematiques et Informatique
Universite Bordeaux I
351, cours de la Liberation
F-33405 Talence Cedex

Prof. Dr. Eric M. Friedlander

eric@math.nwu.edu
Dept. of Mathematics
Lunt Hall
Northwestern University
2033 Sheridan Road
Evanston, IL 60208-2730 - USA

Prof. Dr. Ofer Gabber

gabber@ihes.fr
Institut des Hautes Etudes
Scientifiques
Le Bois Marie
35, route de Chartres
F-91440 Bures-sur-Yvette

Dr. Herbert Gangl

herbert@mpim-bonn.mpg.de Max-Planck-Institut für Mathematik Vivatsgasse 7 D-53111 Bonn

Prof. Dr. Thomas Geisser

geisser@math.usc.edu
Department of Mathematics
University of Southern California
DRB 1042 W 36th Place
Los Angeles, Ca 90089-1113 - USA

Dr. Stefan Gille

gilles@math.uni-muenster.de Mathematisches Institut Universität Münster Einsteinstr. 62 D-48149 Münster

Prof. Dr. Henri Gillet

gillet@math.uic.edu
henri@math.uic.edu
Dept. of Mathematics, Statistics
and Computer Science, M/C 249
University of Illinois at Chicago
851 S. Morgan Street
Chicago, IL 60607-7045 - USA

Prof. Dr. Alexander Goncharov

sasha@math.brown.edu
Department of Mathematics
Brown University
Providence, RI 02912 - USA

Prof. Dr. Daniel R. Grayson

dan@math.uiuc.edu
Department of Mathematics
University of Illinois
273 Altgeld Hall MC-382
1409 West Green Street
Urbana, IL 61801-2975 - USA

Christian Haesemeyer

chh@math.northwestern.edu Northwestern University Department of Mathematics Evanston IL 60201 - USA

Prof. Dr. Hinda Hamraoui

hindahinda@hotmail.com
Dep. de Math. et Informatique
Faculte des Sciences Ain Chock
Universite Hassan II, BP 5366
Maarif, Route El Jadida, Km 8
Casablanca - MAROCCO

Prof. Dr. Masaki Hanamura

hanamura@math.kyushu-u.ac.jp Department of Mathematics Kyushu University Hakosaki Fukuoka 812 - JAPAN

Prof. Dr. Lars Hesselholt

larsh@math.mit.edu
Department of Mathematics
Massachusetts Institute of
Technology
Cambridge, MA 02139-4307 - USA

Dr. Jens Hornbostel

jens.hornbostel@mathematik.uni-regens Naturwissenschaftliche Fakultät I Mathematik Universität Re D-93040 Regensburg

Dr. Thomas Hüttemann

huette@maths.abdn.ac.uk
Department of Mathematical Sciences
University of Aberdeen
King's College
Aberdeen AB24 3UE - SCOTLAND

Prof. Dr. Uwe Jannsen

uwe.jannsen@mathematik.uni-regensburg.de Fakultät für Mathematik Universität Regensburg Universitätsstr. 31 D-93053 Regensburg

Dr. Rob de Jeu

rob.de-jeu@durham.ac.uk
Dept. of Mathematical Sciences
University of Durham
Science Laboratories
South Road
GB-Durham DH1 3LE

Prof. Dr. Roy Joshua

joshua@math.ohio-state.edu Department of Mathematics Ohio State University 231 West 18th Avenue Columbus, OH 43210-1174 - USA

Prof. Dr. Bruno Kahn

kahn@math.jussieu.fr U. F. R. de Mathematiques Case 7012 Universite de Paris VII 2, Place Jussieu F-75251 Paris Cedex 05

${\tt jens.hornbostel@mathematik.uni-regensburg.de~Dr.~Wilberd~L.J.~van~der~Kallen}$

vdkallen@math.uu.nl Mathematisch Instituut Universiteit Utrecht Budapestlaan 6, de Uithof P. O. Box 80.010 NL-3508 TA Utrecht

Dr. Nikita Karpenko

karpenko@euler.univ-artois.fr Laboratoire de Mathematiques Faculte Jean Perrin rue Jean Souvraz - SP 18 F-62320 Lens Cedex

Prof. Dr. Kevin P. Knudson

knudson@math.msstate.edu
Dept. of Math. and Statistics
Mississippi State University
P.O.Drawer MA
Mississippi State, MS 39762 - USA

Dr. Bernhard Köck

bk@maths.soton.ac.uk Faculty of Mathematical Studies University of Southampton Highfield GB-Southampton, SO17 1BJ

Prof. Dr. Aderemi O. Kuku

kuku@ictp.trieste.it International Centre for Theoretical Physics, International Atomic Energy Agency, UNESCO P. O. B. 586 Miramare I-34100 Trieste

Prof. Dr. Jerry Lodder

jlodder@nmsu.edu Dept. of Math. Sciences New Mexico State University Las Cruces, NM 88003-0001 - USA

Dr. Amnon Neeman

amnon.neeman@anu.edu.au Centre for Mathematics a.i.Appl. Mathematical Sciences Institute Australian National University Canberra ACT 0200 - AUSTRALIA

Prof. Dr. Alexander Nenashev

nenashev@math.usask.ca Dep. of Math. a. Statistics University of Saskatchewan McLean Hall 106 Wiggins Road Saskatoon S7N 5E6 - CANADA

Prof. Dr. Wieslawa Niziol

niziol@math.utah.edu Dept. of Mathematics University of Utah 1155 S.1400 E. JWB 233 Salt Lake City, UT 84112-0090 - USA

Dr. Emmanuel Peyre

Emmanuel.Peyre@ujf-grenoble.fr Institut Fourier BP 74 F-38402 Saint Martin d'Heres Cedex

Prof. Dr. Andreas Rosenschon

axr@math.duke.edu
Dept. of Mathematics
Duke University
P.O.Box 90320
Durham, NC 27708-0320 - USA

Marco Schlichting

mschlich@math.uiuc.edu
Department of Mathematics
University of Illinois
273 Altgeld Hall MC-382
1409 West Green Street
Urbana, IL 61801-2975 - USA

Dr. Alexander Schmidt

schmidt@mathi.uni-heidelberg.de Mathematisches Institut Universität Heidelberg Im Neuenheimer Feld 288 D-69120 Heidelberg

Prof. Dr. Michael Spieß

mks@maths.nott.ac.uk School of Mathematical Sciences University of Nottingham University Park GB-Nottingham NG7 2RD

Dr. Tamas Szamuely

szamuely@renyi.hu Alfred Renyi Institute of Mathematics Hungarian Academy of Sciences P.O.Box 127 H-1364 Budapest

Prof. Dr. Gabriele Vezzosi

vezzosi@dm.unibo.it Dipartimento di Matematica Universita degli Studi di Bologna Piazza di Porta S. Donato, 5 I-40127 Bologna

Prof. Dr. Angelo Vistoli

vistoli@dm.unibo.it Dipartimento di Matematica Universita degli Studi di Bologna Piazza di Porta S. Donato, 5 I-40127 Bologna

Prof. Dr. Charles A. Weibel

weibel@math.rutgers.edu
Dept. of Mathematics
Rutgers University
Busch Campus, Hill Center
New Brunswick, NJ 08903 - USA

Prof. Dr. Serge A. Yagunov

yagunov@pdmi.ras.ru St. Petersburg Branch of Mathematical Institute of Russian Academy of Science Fontanka 27 191011 St. Petersburg - RUSSIA

Prof. Dr. Kirill Zainoulline

kirill@pdmi.ras.ru v/o Ingrid Peeters IHES 35, Route de Chartres F-91440 Bures-Sur-Yvette