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Abstracts

Braid monodromy and topology of conjugate plane curves
ENRIQUE ARTAL BARTOLO
(joint work with J. Carmona and J.I. Cogolludo)

We are interesting in studying the spaces M which are obtained as the quotient by the
projective group of the space of complex plane projective curves with the same combina-
torial type (essentially, the degree of the irreducible components and topological type of
singularities). The main problems are related with existence and connectedness of such
spaces. The topology of the embedding of the curves in the projective plane P? is an
invariant of the connected components of M.

We have found examples of discrete spaces M (for sextic curves) such that the repre-
sentatives of the points in M have conjugate equations in some number field K. In order
to understand the embedding of this curves in P? we have to find invariants which go be-
yond the algebraic structure. This invariant is braid monodromy of curves; we extend the
classical definition of this invariant by allowing the projection point to be in the curve and
we find that some special braid monodromy is different for two conjugate curves having
equations in Q(v/2). Braid monodromy is an orbit in B’ by an action of By x B, (by
Hurwitz moves and conjugation) where B, is the braid group on n strings; we find these
braid monodromies to be different by means of a representation of B, onto a finite group.
Using a common result of the three authors we prove that, after adding some straight lines
to the curves, there are conjugate curves in Q(\/ 5) of degree 12 having non-homeomorphic
embeddings.

Fundamental groups of complements of plane curves and symplectic invariants
DENIS AUROUX
(joint work with S. Donaldson, L. Katzarkov and M. Yotov)

Given a compact symplectic manifold (X?", w) for which [w] is an integral cohomology
class, its topology can be studied by means of the approximately holomorphic techniques
introduced by Donaldson in the mid-90’s: fixing an almost-complex structure, a complex
line bundle L with ¢; (L) = [w] behaves like an ample line bundle, in the sense that suitable
sections of L®* for k > 0 can be used to define hyperplane sections, Lefschetz pencils, etc.

Three well-chosen sections of L®* define a projection map to CP? with generic local
models; this construction is canonical up to isotopy for k£ > 0. In the case of a symplectic
4-manifold, we obtain a branched covering whose branch curve D is symplectic, with
complex (2,3)-cusps and nodes of either orientation as only singularities. The curve D can
be studied using the braid monodromy techniques introduced by Moishezon and Teicher
in algebraic geometry.

Braid monodromy is a complete symplectic invariant: it determines D up to isotopy and,
together with the monodromy morphism 6 : 7 (CP? — D) — Sy of the covering, allows one
to recover (X, w) up to symplectomorphism. However there is no algorithm for comparing
braid monodromies.

An easier invariant is 7 (CP? — D) itself. In the symplectic case, we need to allow for
creations or cancellations of pairs of nodes, so the actual invariant is a certain quotient
G = m(CP? — D)/K, where K is generated by commutators [y,7'], where 7, ' are
conjugates of standard generators such that () and 6(+') are disjoint transpositions.



There is an exact sequence 1 — G° — G — Sy X Zg — Zs — 1, where the map
G — Sy X Zg is given by the monodromy # and by the abelianization map 0 : G — Zg4
sending generators to 1.

In the case m;(X) = 1, we have a structure theorem for the kernel G°: there exists a
natural surjective homomorphism ¢ : G° — (Z2/A)N~1, where A = {(L®*.C,Kx-C), C €
H2 (Xa Z)}

Moreover, the available examples wherefore high degree projections (k > 0), i.e. CP?,
CP'! x CP!, some Del Pezzo or K3 complete intersections, Hirzebruch surfaces, and double
covers of CP* x CP' (by work of Moishezon, Teicher, Robb, A-D-K-Y, ...), suggest a much
stronger conjecture when X is a simply connected complex surface and £ > 0: namely,
one expects that:

1) K ={1} (i.e. G =m),

2) Ker ¢ = [G° G (i.e. Ab(G®) = (Z?/N)N7T),

3) [G°, G"] is a quotient of Zy x Z.

Equivariant refined Seiberg-Witten theory
STEFAN BAUER

The monopole map can be defined for a K-oriented closed Riemannian 4-manifold. It is
used to define (joint with M. Furuta) an element in some equivariant stable cohomotopy
group, which is independent of the chosen metric. The Hurwitz homomorphism relates
this element to the integer valued Seiberg Witten invariant.

Some structural results were presented:

1. There is a connected sum theorem. In contrast to Seiberg-Witten theory or Donaldson
theory the invariants of connected sums need not vanish, but are torsion elements.

2. There is a universal invariant defined by the parametrized monopole map over the
space of all choices (metrics and connections). A fixed point map relates this universal
element to the Dif f(X)-equivariant stable cohomotopy Euler class of the H? (X; R)-bundle
over the space of metrics. This gives restrictions on the possible elements which may arise
as (universal) invariants. It also leads to an understanding of the ”chamber structure”
phenomenon for the Seiberg-Witten invariants.

3. (Report on results of M. Szymik) If X comes with a free action of a finite group G,
one gets a G-equivariant invariant. It contains all information on the (non-equivariant)
invariants of quotients X/H for subgroups H < G. M. Szymik showed that already in the
case of a group of prime order the comparison map is neither surjective nor injective. This
leads to relations amongst the Seiberg-Witten invariants of the quotients X/H on the one
hand and on the other hand (potentially) to an invariant of the action itself.

Special varieties, orbifolds, and classification theory
FREDERIC CAMPANA

We describe two structure theorems in the birational geometry of complex projective man-
ifolds, analogues of the structure theorems for Lie algebras, reducing these first to semi-
simple and solvable ones, the solvable being iterated extensions of abelian ones. The roles
of semi-simple, solvable and abelian are respectively played here by the orbifolds of general
type, special manifolds, and third: manifolds either rationally connected or with x = 0.
This decomposition is deeply linked with other aspects of classification theory: we indeed
conjecture, and show in some few cases, that special manifolds have an almost abelian
fundamental group, and are exactly the ones having zero Kobayashi metric, or a potentially



dense set of rational points over any field of definition finitely generated over Q. This
immediately leads to a natural extension of Lang’s conjectures to arbitrary X’s (and even
to orbifolds).

This decomposition gives a simple synthetic view of the structure of arbitrary X'’s, and
indicates that the natural frame of classification theory is the category of orbifolds, to
which our observations should be extended.

Orbifold fundamental groups
FABRIZIO CATANESE
(joint work with P. Frediani)

Scope of the lecture was to illustrate various applications of the notion of 79", (rest. of

a fibration). For ¥ a normal C-space, B closed analytic, with Bj,...,B, the divisorial
components of B, 7 = (m4,...,m,) € N one defines

W?Tb(Yv Ba m) = 7T1(Y - B)/ < >

v; being a geometric loop around B;.
For Y = X/G (X: manifold), we let B the branch locus and 71f the vector of multiplicities
of inertia groups, thus we get

1= m(X) =7, B,m) = G—1

The first application is for surfaces (varieties) etale quotients of products of curves, S =
Ci x Cy/G. Here, 1 — m(Cy) x m(Cy) — m(S) = G — 1 and moding out by 7 (C5) we
get the orbifold sequence of the quotient map Cy; — C;/G. This method plus the isotropic
subspace method leads to the

Theorem. Let S = C; x Cy/S, S" with m(S") = m1(5), e(S") = e(S) (e: Euler number).
Then S’ is diffeo to S and the moduli space is either irreducible, or it has 2 irreducible
components M, My with My = M;, M; N My = (). There are infinite examples of the
second alternative.

After discussing other counter-example to the Freidman-Morgan conjecture that S dif-
feo to S’ implies S, S’ belong to the same connected component of the moduli space, I
introduced the orbifold fundamental group sequence of a fibration: m (F) — m(X°%) —
7%(Y%) — 1 and explained an application

Theorem A (-,Keum,Oguiso). Let Y be a normal elliptic K3 surface, Y° the smooth
locus. Then either

(1) |m (Y?)] < 400 or

(2) There exits T —'Y etale in cod. 1, finite, T is torus.

Without the assumption “Y elliptic” then is a conjecture of D.Q.Zhang. I also mentioned

Theorem B (-,Keum,Oguiso). Let Y be as in Theorem A, S its minimal resolution, Y° =
S Ur_, E;. Then if r <15 then | (Y?)| < +o0.

I finally mentioned that one can define the orbifold fundamental group sequence of a
real variety (X, o),

1 - m(X) = 1"(X,0) = Z/2—1

and that this notion has revealed itself as very useful.



Non-compact representations of surface groups
OSCAR GARCIA-PRADA
(joint work with Steven B. Bradlow and Peter B. Gothen)

Using the L? norm of the Higgs field as a Morse function, we study the moduli spaces of
U(p, q)-Higgs bundles over a Riemann surface. We require that the genus of the surface
be at least two, but place no constraints on (p,q). A key step is the identification of
the function’s local minima as moduli spaces of holomorphic triples. We prove that these
moduli spaces of triples are non-empty and irreducible.

Because of the relation between flat bundles and fundamental group representations, we
can interpret our conclusions as results about the number of connected components in the
moduli space of semi-simple PU(p, q)-representations. The topological invariants of the flat
bundle are used to label components. These invariants are bounded by a Milnor-Wood
type inequality. For each allowed value of the invariants satisfying a certain coprimality
condition, we prove that the corresponding component is non-empty and connected. If the
coprimality condition does not hold, our results apply to the irreducible representations.

Generalized triangle inequalities in symmetric spaces and buildings with
applications to algebra

MissA KAPOVICH
(joint work with B.Leeb and J.Millson)

Everybody knows how to construct triangles with the prescribed side-lengths aq, as, a3 in
the Euclidean plane: the necessary and sufficient conditions for this are the usual triangle
inequalities o; < a; + ax. In this talk I will explain how to solve (in a unified fashion)
the analogous problem for other geometries X: non-positively curved symmetric spaces
(and their infinitesimal analogues) and Euclidean buildings. The notion of “side-length”
in this generality becomes more subtle: side-lengths are elements of the appropriate Weyl
cone A. One of the surprising results is that the “generalized triangle inequalities” for
X determine a polyhedral cone D3(X) C A3, which depends on X and on the type of
geometry only weakly: D3(X) is completely determined by the finite Coxeter group W
corresponding to X. (The polyhedra D3 provide complete solutions to algebra problems
Q1, Q2 below, solutions to the algebra problems Q3, Q4 are certain lattice points in Ds.)
The linear inequalities describing X are determined by the “Schubert calculus” (computing
the integer cohomology ring) in the associated generalized flag varieties. Our techniques
are purely geometric (with a bit of dynamics). One relates and solves these problems using
weighted configurations “at infinity” corresponding to the triangles.

Here are some algebra problems which one can solve (at least to some extent) using the
geometric results about triangles. Recall that the singular values of an m x m matrix A
are the square-roots of the eigenvalues of the matrix AA*. For a matrix A € GL(m,Q,),
the double coset

GL(m, Z,) - A-GL(m,Q,) C GL(m,Z,)

is represented by a diagonal matrix D = Diag(p®', ...,p°"). (Here Q, are the p-adic num-
bers and Z, are the p-adic integers.) The invariant factors of a matrix A are the integers
e; arranged in the decreasing order.

Let «, $ and v be m-tuples of real numbers arranged in decreasing order. In the Problem
P4 we will assume that «, 8 and v are dominant weights of GL(m, C) (i.e. they are vectors



in Z™) and that V,,, V3 and V,, are the irreducible representations of GL(m,C) with these
highest weights.

e P1. Give necessary and sufficient conditions on «, f and 7 in order that there exist
Hermitian matrices A, B and C' such that the sets of eigenvalues of A, B and C are a,
and v respectively, and

A+B+C=0.

e P2. Give necessary and sufficient conditions on «, f and 7 in order that there exist
matrices A, B and C' in GL(m, C) the logarithms of whose singular values are o, 8 and 7,
respectively, so that

ABC =1.

e P3. Give necessary and sufficient conditions on the integer vectors «, 8 and « in
order that there exist matrices A, B and C' in GL(m,Q,) with invariant factors «, 8 and
v, respectively, so that

ABC =1.

e P4. Give necessary and sufficient conditions on «, 8 and v in order that
(Vo ® Vs @ V) MmO £ 0,

These problems have a long history and their complete solution and the relation between
them were established only recently due to the efforts of several people: Klyachko, Tao
and Knutson, et al., their proofs where based on algebraic geometry and combinatorics.

Our main contribution is to the extension of the above problems to other reductive
groups. Let T be either the field R or C; for simplicity, let G' be a split reductive group
over Z (think of something like Sp(n)) and let K be a maximal compact subgroup of
G(F). Instead of working with p-adics one can consider other fields with nonarchimedian
valuations.

e Q1. Let g be the Lie algebra of G(F), and let g = € + p its Cartan decomposition.
Give necessary and sufficient conditions on «a, 3,7 € p/Ad(K) in order that there exist
elements A, B,C' € p whose projections to p/Ad(K) are «,  and 7, respectively, so that

A+B+C=0.

e Q2. Give necessary and sufficient conditions on «, 3,7 € K\G(F)/K in order that
there exist elements A, B,C' € G(F) whose projections to K\G(F)/K are o, and 7,

respectively, so that
ABC = 1.

e Q3. Same as above for A, B,C € G(Q,) and «, 5,7 € G(Z,)\G(Q,)/G(Z,).

e Q4. Let GV be the Langlands’ dual group of G. Give necessary and sufficient condi-
tions on highest weights a, £, v of irreducible representations V,,, Vi, V., of GY(C) in order
that

(Va® Va2 V,)¥ O £0.



Braid monodromy invariants of Hurwitz curves
VIKTOR S. KULIKOV
(joint work with V. Kharlamov)

Let Fy be a relatively minimal ruled rational surface, N > 1, p : Fy — P! the ruling.
R a fibre of p and Ey the exceptional section, F3 = —N. By definition, the image
H = f(¥) C Fy of a smooth map f : ¥ — Fy of oriented closed real surface ¥ is called a
Hurwitz curve of degree m if

(i) f is an embedding except for a finite number of points sy,...,s, € ¥;

(ii) for each s; there is a neighbourhood U; C Fy of f(s;) and local complex analytic
coordinates (z;,y;) s.t. H NU; is a germ of complex analytic curve and the complex
orientation on H NU; \ {f(s;)} coincides with the orientation transported from ¥ by f;
(iii) for s # s, i = 1,...,n, H and the fibre R,(f(s)) of p meet at f(s) transversally with
positive intersection number;

(iv) HN Xy = 0 and the restriction of p to H is a finite map of degree m.

A Hurwitz curve H is called cuspidal if in (ii) the intersection H NUj; is given by y? = z¥
for some k > 1. A Hurwitz curve H is called almost algebraic if there is a disc D C P!
containing the images of f(s;) and s.t. H N (p~'(D)\ Ex) can be given by P(z,w) = 0,
where P € C[z,w], deg,(P) = m. For any Hurwitz curve H C Fy, deg H = m, one can
associate a factorization A>™ = b, ...b,, where A, € B, is so called Garside’s element in
the braid group B,,, and each b; is a braid of a germ of polynomial of degree m over 0.
Such a factorization is called braid monodromy factorization (bmf). The group B, X B,
acts on the set of the factorizations of A?" of length n and the orbits under this actions
are called braid monodromy types (bmt). We proved the following results.

Theorem 1.Two cuspidal Hurwitz curves H; and Hy C Fy are H-isotopic iff bmt(H;) =

Theorem 2.For any cuspidal braid monodromy factorization 3 of A’ there is an almost
algebraic Hurwitz curve H C Fy s.t. bmf(H) = .

Similarly, if S C CP? is a singular symplectic surface, i.e., S is a J-holomorphic curve
for some almost complex structure .JJ on CP?, one can define bm f(S) w.r.t. a generic pencil
of J-lines.

Theorem 3.Two symplectic cuspidal surfaces Sy, So € CP? are symplectically isotopic iff

Holomorphic mappings of certain configuration spaces
VLADIMIR LIN

The n'" configuration space C"(X) of a space X consists of all n point subsets @Q =
{q1,..,qn} € X. It may be viewed as the regular orbit space C*(X) = £"(X)/S(n),
E"(X) df {¢=(q1,..,qn) € X" | q¢; # q; Vi # j} and S(n) is the symmetric group. C"(X)
is a complex manifold if X is so.

How to construct holomorphic self-maps of C"(X)? What can one say of the automorphism
group Aut C"(X) and its orbit space C"(X)/ Aut C"(X)?

The Aut X action in X induces the diagonal Aut X action in X"; thus, any A € Aut X
produces the automorphism {¢, ..., q,} — {Aq, ..., Ag,} of C"(X). Moreover, for any map



T:C"(X) — Aut X one may define the map

fr: C*(X) = C"(X), where fr(Q) = T(Q)Q < {T(Q)q1, -, T(Q)an}

for all Q = {q1,...,qn} C X. If Aut X is a complex Lie group' and T is holomorphic, fr is
holomorphic, too; such a map f = fr is called tame.?

For T as above, pick up a point Q* = {7, ..., ¢} € C"(X) and define

fra-: C(X) = C"(X), fro-(Q) =T(Q)Q" < {T(Q)q}, . T(Q)q:}

forall @ = {q, ..., qn} C X;such amap f = fr - is called orbit like. Its image is contained
in one (Aut X)-orbit; if the stabilizer of Q* in Aut X is trivial (or at least connected), then
the image of the induced endomorphism of the fundamental group?® (fro-).: 7 (C*(X)) —
m (C"(X)) is abelian.

C"(X) may admit “sporadic” holomorphic self-maps, which are neither tame nor orbit like.
But I believe that in “simple” cases a holomorphic map C"(X) — C"(X) must be tame if
its topology s sufficiently complicated.

One form of the latter requirement involves the fundamental groups. A continuous map
f:Y — Z of arcwise connected spaces is called non-abelian if the image of the induced
homomorphism f,: m(Y) — m(Z) is a non-abelian group.* Tt was proven in the 1970’s
that ifn > 4 and X = C or X = C* then every non-abelian holomorphic map f: C"(X) —
C"(X) is tame.” Recently I proved the following theorem:

Theorem. Let X = CP' andn > 4. Then every non-abelian holomorphic map f: C*(X) —
C™(X) is tame.

My student Yoel Feler proved that for n > 4 and any torus X = C/(aZ + bZ) (a,b € C*,
Im(a/b) # 0) every automorphism of C™(X) is tame.

These results imply:

Corollary 1. Let X be an irreducible smooth non-hyperbolic algebraic curve and n >
4. Then every automorphism of C"(X) is tame. The orbits of the natural AutC"(X)
action in C™(X) coincide with the orbits of the diagonal Aut X action, and the orbit
space C™(X)/ Aut(C™(X)) coincides with the orbit space C™(X)/ Aut X. In particular, for
X = CP' the orbit space C"(X)/ Aut(C*(X)) may be identified with the moduli space
M (0,n) of the Riemann sphere with n punctures.

Corollary 2. Let n > 4 and X be either C or C* or CP'. Then the homotopy classifica-
tion of non-abelian holomorphic mappings C"(X) — C"(X), up to a homotopy in the class
of holomorphic mappings, coincides with the homotopy classification of holomorphic map-
pings C"(X) — Aut X. Moreover, according to the classical Grauert theorem, the latter
coincides with the homotopy classification of all continuous mappings C"(X) — Aut X.

!By the classical Bochner-Montgomery theorem, this is certainly the case whenever X is a compact
complex manifold (Aut X may have infinite number of connected components or/and be discrete).

2This construction may be slightly generalized, by considering a map T' of C™(X) to the space of all
maps X — X that satisfies the following condition: #[T'(Q)Q] = n for each @ € C"(X) and the map
C"(X)>Q — T(Q)Q € C*(X) is holomorphic.

3From now on, we suppose that X is arcwise connected.

YEvery automorphism of C"(X) is non-abelian if dim¢ X > 0 and n > 3.

5T proved this for X = C in 1972; for X = C* it was proven by V. Zinde in 1977.



Corollary 3. For n > 4 the orbit space C"(CP')/ AutC"(CP') is isomorphic to the
orbit space C"(CP')/PSL (2, C) = M (0, n), where M (0, n) is the moduli space of the
n-punctured Riemann sphere.

To prove the theorem, we establish certain algebraic properties of the braid groups B, and
B, (S?), which provide us with an equivariant lifting of a non-cyclic self-mapping of the
space C"(X) to its Galois S(n) covering £"(X), and then apply the appropriate analytic
techniques to study the equivariant holomorphic self-mappings of £"(X).

The birational geometry of complex orbifold
STEVEN SHIN-YT LU

A fibration f : X — Y naturally imposes an orbifold structure on Y whose divisorial
part has the form D(f) = > .(1 — 1/m;)D; on Y. Here, m; is the minimum of the
multiplicities of the components of f*(D;) that dominates D; as opposed to the classical
gcd definition of the multiplicity. This choice of multiplicity is naturally imposed on us by
our considerations in holomorphic geometry and by the canonically associated Bogomolov
sheaf of the fibration. This latter sheaf, defined as the saturation L; of f*Ky in Q% is a
natural birational invariant of f at least in the sense that (Y, f) := x(Ly) is. This then
allows us to define the same for any meromorphic fibration or even map. By the flattening
theorem, one can always arrange, replacing f by a birationally equivalent one, to have
k(Y, f) == k(Lys). After Campana, f is said to be of general type if x(Y, f) = p := dimY,
X special if X has no meromorphic map of general type. By solving an orbifold version
of the theorems of Kawamata and Viehweg on the additivity of Kodaira dimension, we
show that any compact complex manifold X has a meromorphic fibration of general type
that is proper and holomorphic on an open subset and whose general fibres are special.
It is defined by the litaka fibration of the highest Bogomolov sheaf, the one with the
highest p which is necessarily unique by this theorem. Using this, we show that the core
cx constructed by Campana is the same fibration and hence resolves his conjecture that
cx is of general type. This also resolves in a weak sense a problem that is central to Mori’s
classification program. Furthermore, we work out the above in the very general setting of
orbifolds with arbitrary rational multiplicities and in the compact complex category.

Weak Lefschetz Theorems
(GEORGE MARINESCU

Napier and Ramachandran generalized the weak Lefschetz theorems of Nori to the case of
higher codimensional subvarieties with positive normal bundle. Their method works even
when the subvariety doesn’t move in the ambient manifold. (In the case when it moves,
the weak Lefschetz theorem was proved by Campana and Kollar). We propose here the
following differential-geometric variant.

Theorem A. Let (X,w) a complete hermitian manifold, such that the torsion operator of
w 1s bounded on X. Let E — X be a line bundle which is uniformly positive outside a
proper compact set. Assume moreover that

/ O(E)" > 0
X(<£1)

where O(F) is the curvature of E and X (< 1) is the open set where O(F) is non—degenerate
and has at most 1 negative eigenvalue. Let v : Y — X be a compact complex space, with



a fundamental system of neighbourhoods {V'}, such that dim H°(V, E¥) < oo for k >> 1.
Assume moreover that i,mi(Y) C m1(X) is a normal subgroup. Then the index of i.m(Y)
in m (X)) is finite.

The theorem can be applied to the case of Zariski open sets in Moishezon manifolds
as well as for some g-concave projective manifolds. A space Y satisfies the property in
Theorem A if, for example, O(Ny) has at least one positive eigenvalue (in case codimY =
1), or ©(Ny) is positive in the sense of Griffiths (for general codimension).

For the proof of Theorem A we cannot use the solution of the d-equation as in Napier
and Ramachandran, since w is not Kahler. We resort in turn to the following variant of
the asymptotic Morse inequalities of Demailly for covering manifolds. We denote the von
Neumann dimension of a ['-module by dimr.

Theorem B. Let p : X — X be a Galois covering of X of group I' and let E = p'E.
Denote by HO)(X Ek) the space of holomorphic sections of E* which are L? with respect

to the pull-back metrics on E* and X. Set n = dim X. Then,

dimp HY (X, E*) > k"/ O(E)" + o(k™), k — .
X(<1)
__The proof of Theorem is based on the spectral analysis of the laplacian on the covering
X, and uses technical elements borrowed from the proof of the Novikov -Shubin inequalities

(usual Morse inequalities for coverings). The results of this talk were obtained jointly with
R. Todor and I. Chiose in a paper from Nagoya Math. J., 163(2001), 145-165.

Symplectic structures of moduli space of Higgs bundles over a curve and
Hilbert scheme of points on the canonical bundle

AvLIIT MUKHERJEE
(joint work with I.Biswas)

The moduli space of triples of the form (FE, 0, s) are considered, where (F,0) is a Higgs
bundle on a fixed hyperbolic Riemann surface X, and s is a (non-zero) holomorphic section
of . Such a moduli space admits a natural map to the moduli space of Higgs bundles
simply by forgetting s. If (Y, L) is the spectral data for the Higgs bundle (E,#), then s
defines a section of the line bundle L over Y. The divisor of this section gives a point of a
Hilbert scheme parametrizing 0-dimensional subschemes of the total space of the canonical
bundle K, since Y is a curve on Kx. The main result of this work says that the pullback
of the symplectic form on the moduli space of Higgs bundles to the moduli space of triples
coincides with the pullback of the natural symplectic form on the Hilbert scheme Hilbl(K X),
using the map that sends any triple (E, 6, s) to the divisor of the corresponding section of
the line bundle on the spectral curve.

Seiberg-Witten invariants and normal surface singularities
ANDRAS NEMETHI
(joint work with Liviu Nicolaescu)

In the talk I presented a very general conjecture formulated by Liviu Nicolaescu and me
which relates the analytical invariants of a normal surface singularity to the Seiberg-Witten
invariants of the link of the singularity, provided that the link is a rational homology sphere.
The talk contained a historical presentation of the background as well.
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The conjecture can be formulated as follows. First we define in a topological way a
“canonical” spin® structure of the link. The first part of the conjecture provides a topo-
logical upper bound (expressed in terms of the Seiberg-Witten invariant of the “canonical”
spin® structure) for the geometric genus of the singularity. The second part states that for
Q-Gorenstein singularities this upper bound is optimal; in particular, it gives a topological
description of the geometric genus in terms of the link for these singularities. Finally, for
a smoothing of a Gorenstein singularity, the last part gives a topological characterization
of some smoothing invariants, like the signature and the Euler characteristic of the Milnor
fibre.

As supporting evidence for this conjecture, I discussed some cases when the validity
was verified: singularities with good C* actions, suspension hypersurface singularities, and
some rational and minimally elliptic singularities.

These results extend previous work of Artin, Laufer and S. S.-T. Yau, respectively of
Fintushel-Stern and Neumann-Wahl.

Alexander polynomials and Zariski pairs of sextic curves
Pro Duc Tar
(joint work with S.Kaplan, H.Maakestad and M.Teicher)

Following Artal Bartolo, we recall that a pair of irreducible plane curves (C, Cy) is a Zariski
pair if they have the same degree and there is a 1-1 correspondence between singular points
of C; and C5 preserving topological types but CP?\ €, is not homeomorphic to CP? \ Cs.

Let us denote Z(n) the set of all Zariski pairs of degree n, Z(n,m;) (resp. Z(n,A;)) the
set of all Zariski pairs (C}, Cy) of degree n such that 7 (CP?\ C}) % 7 (CP? \ Cy) (resp.
Al(Cl) 7é Al(CQ)) Thus Z(TL) C Z(n,m) C Z(’I’L, Al)

The equisingular families of conics, cubics, quartics and quintics are irreducible, i.e.
Z(n) = Z(n,m) = Z(n, A1) = 0 for n < 6. For degree > 6 this is not true, the first
example, is a pair of sextics (with 6 cusps) was given by Zariski.

Using results of Oka on the computation of Alexander polynomials of sextics (math.AG-
0205092), we describe the method to list up all of the Zariski pairs of degree 6 which can be
distinguished by their Alexander polynomials, i.e. the set Z(6, A;). We prove that for any
(Cy,Cy) € Z(6,A1), one of them is of torus type and the other is of non-torus type, and
the Alexander polynomial are A;(t) = t* — ¢ + 1 (for sextic of torus type) and A;(t) =1
(for sextic of non-torus type).

A characterization of Shimura curves in moduli stacks of abelian varieties and
Calabi-Yau manifolds

ECKART VIEHWEG
(joint work with Kang Zuo)

Let f : X — Y be a semi-stable family of complex abelian varieties over a curve Y of genus
g, and smooth over the complement of s points. If F1* denotes the non-flat 1,0 part of
the corresponding variation of Hodge structures, the Arakelov inequalities say that

2deg(F"?) < rank(F"°)(2¢ — 2 + s).

We study families for which this inequality becomes an equality, or equivalently families
whose Higgs field
91,0 : FI’U — FO’I (% Q%;(log S)
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is an isomorphism. As it turns out, this property is reflected in the existence of “too many”
Hodge cycles of a general fibre of f, and it forces Y to be a Shimura curve. As a byproduct
one obtains an explicit description of all possible examples.

For other semistable families of n dimensional varieties one considers the induced vari-
ation of Hodge structures of weight n and the corresponding Higgs bundle (E,6) on Y.
Then 6 is maximal, if (roughly speaking) (F,0) is the direct sum of sub Higgs bundles
(F}, 0;) of length i, for which

01 - FPY — FI @ 0} (l0g )

are isomorphisms, as soon as both sheaves are non zero. This definition is not the most
general one. Contrary to the case of abelian varieties, we exclude here the existence of
unitary parts. The maximality of the Higgs field implies that the families are rigid, and
that the special Mumford Tate group of a general fibre F'is the smallest algebraic subgroup
of SI(H™(F,Q)) which contains the image of the monodromy representation.

For K3 surfaces, X. Sun, S.I.. Tan and K. Zuo have shown, that the maximality of the
Higgs field implies that the Picard number of a general fibre is 19, and that the family is
constructed from a product of modular families of elliptic curves.

The latter also seems to be true for families of Calabi-Yau threefolds.

Artin groups and geometric monodromy
BRONISLAW WAJNRYB

Let f(x,y) = 0 be a polynomial equation which defines an algebraic curve in a neigh-

bourhood of (0,0) in C?, with an isolated singular point at (0,0). A versal deformation
of this singularity induces a fibration V' — B(e) which is locally trivial over the comple-
ment U = B(e) — X of the singular set ¥ (the discriminant) and whose fibre is a compact
orientable surface S with a boundary. The fibration induces the geometric monodromy
representation p : m (U) — M(S), where M(S) is the mapping class group of S, the
group of the isotopy classes of the orientation preserving diffeomorphisms of S pointwise
fixed on the boundary. Dennis Sullivan asked around 1975 whether y is always injective.
For simple singularities A,,, D,,, Eg, E7, Eg the group m(U) is isomorphic to Artin group
of type A,,, D,,, Eg, E'7, F respectively and p is a geometric homomorphism, it takes stan-
dard generators of Artin group onto Dehn twists in M (S). Any Artin group corresponding
to Coxeter matrix with entries 2 and 3 only has an essentially unique geometric homo-
morphism ¢ into the suitable mapping class group which coincides with p for the groups
A, Dy, Eg, E7, Eg. In 1992 Perron and Vannier proved that ¢ is injective for the groups
A, and D,. In 1997 Labruere proved that ¢ is not injective for any Artin group corre-
sponding to Dynkin diagram which is not a tree or a Dynkin diagram which is a tree with
more than 3 ends. The groups FEg, F7, Eg belong to the missing cases. In this work we
show that ¢ is not injective for all other Artin groups. In particular g is not injective
for singularities Fg, F7, Eg so the question of Sullivan has the negative answer already for
simple singularities.
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Cohomology of variations of Hodge structures over quasi-compact Kahler
manifolds and applications to algebraic geometry
Y1HU YANG
(joint work with J. Jost and K. Zuo)

Let U =Y \ S, smooth quasi-compact Kéhler surface, S is a normal crossing divisor in Y
let V be a polarized variation of Hodge structure defined over R over U, with unipotent
local monodromies around S. Let

E = @ EPa gra . pPa s BPLatl o OF (log S)
p+g=m
denote the Higgs bundle corresponding to V (afterwards, we briefly write E?7 by EP).
Using the Pioncaré-like metric on U and the Hodge metric on V, we can define an L%—

subcomplex of the above complex by taking the sheaves of local sections satisfying the
L?-integrable condition:

E@y 2 (BE® Q) (logS))@) = (B ® Q(log )@ -+ -
Then, we can prove the following

Main Theorem  There exists a natural isomorphism
* * D” *
Hpg (D([GrpAY(B)]) = T((GreAY(E)]@) )
. 0
~ H' (E(z) = (E® Qi (log S))z) -+ +).-

In another direction, one also has the theorem duo to E. Cattani, A. Kaplan and W.
Schmid (for this, see Inventiones Math., 87, 1987, 217-252).

The Main Theorem together with the Cattani-Kaplan-Schmid’s theorem and the Kahler
identity of the Laplacians for the situation of VHS gives rise to

Corollary 2.  There exists a natural isomorphism
H, (V.V) = B (Epy = (B © Q4 (log 5))zy - ++).

int
In this talk, we also give some applications to algebraic geometry.

Log Terminal Algebraic Varieties and the Fundamental Groups of Their
Smooth Loci

DE-QI ZHANG

We work over C. We are interested in algebraic varieties X with log terminal singularities,
especially the topological fundamental group 7;(X?), where for variety V, V% := V —
SingV'.

From the minimal model program we know that a minimal model will inevitably contain
some terminal singularities. Also a degenerate fibre of a family of varieties will have some
singularities. So we can not help but considering varieties with some mild singularities.

Motivation: If 7(V°) has an index-m normal subgroup, then we have a corresponding
Galois Z/(m)-cover U — V unramified over V°. So the study of V' may be reduced to that
of U whose singularities should be better. See also [Keum- Zhang, Proc. Alg. Geom. in
East Asia, Kyoto, 2001, A. Ohbuchi (ed.)]

Below, V' is Q-Fano (resp. weak Q-Fano) if the anti-canonical divisor — Ky is Q-ample
(resp. nef and big). According to the min.model program (completed in dim < 3), every

13



proj.variety is birational to either a min.terminal variety or a Fano fibration. This is the
reason why we consider Fano varieties.

Conjecture A. Let V be a log terminal Q-Fano variety. Then the topological fundamental
group 71 (V?) of the smooth locus V? of V' is finite. (see results below to support it).

Theorem B [Gurjar-Zhang (Tokyo 1994-95), Zhang (Osaka 1995), Fujiki-Kobayashi-Lu,
Keel-McKernan]. Conjecture A is true if either dimV < 2 or the Fano index r(X) >
dim X — 2.

Theorem C [Takayama|. Suppose that V' is a log terminal weak Q-Fano variety. Then
m(X) = (1).

Remark D. ”Log terminal” in Conj.A can not be weakened to ”log canonical” [Zhang, Trans
A.M.S.(1996)].

According to the Iitaka fibration theorem, every proj. variety is birational to a fibration
where a general fibre is of Kodaira dim. 0 and the base variety has dim. equal to the
Kodaira dim. of the source variety. This is a motivation for us to consider varieties V' of
Kodaira dim. 0. If further, V' is minimal and assume the abundance conjecture (proved
when dim < 3) then mKy ~ 0 for some m > 1.

Definition E [Zhang, Kyoto, 1991-93]. A log terminal proj. surface Y is log Enriques
if mKy ~ 0 for some m > 1 and if H'(Y,Oy) = 0. The I = I(X) := min{m|m >
1,mKx ~ 0} is called the index of Y.

The one below was formulated, when X is Du Val K3, in [Catanese-Keum-Oguiso, Math.
Ann. 20027].

Conjecture F. Let Y be a log Enriques surface. Then either 7;(Y?) is finite, or there is
a quasi-etale (= etale in co-dim 1) morphism X — Y with X an abelian surface.

Let Y — Y the min.resolution, D = Y D; the exceptional divisor and #D the number of
irred.comp. of D.

Theorem G (1) [Shimada-Zhang, Nagoya 2001] When Y is Du Val K3, we have 7 (Y°) =
(1) if the lattice Z[U;D;] is primitive in H?(Y,Z), if #D < 18 and if the discriminant
group (Z[J;D;]))Y/(Z]U;D;)) is generated by no more than min{#D,20 — #D} elements
(the last two conditions due to Nikulin are to guarantee the uniqueness of a primitive
lattice embedding).

(2) [Keum-Zhang JPAA 2002] When Y is either Du Val K3 or Du Val Enrigues, Conjecture
F is true if Y has a few singularities of type A,_y and no others, where p is a prime number.
(3) [Catanese-Keum-Oguiso| When Y is Du Val K3, Conjecture F is true if either Y has
an elliptic fibration, or the exceptional divisor of the minimal resolution of Y has at most
15 components.

Edited by Pho Duc Tai
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