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The workshop was organized by Fedor A. Bogomolov (New York), J�urgen Jost (Leipzig),

Mina Tei
her (Ramat-Gan) and Mi
hael Zaidenberg (Saint-Martin-d'Heres) and attended

by about forty parti
ipants from Europe, North Ameri
a, China, Israel, Japan and Singa-

pore.

The oÆ
ial program 
onsisted of 18 le
tures, the talks 
overed a wide range of new

resear
hs of "Fundamental groups in Geometry". There were plenty of time for questions

and many informal dis
ussions among smaller groups.

The organizers and parti
ipants thank the "Mathematis
hes Fors
hungsinstitut Ober-

wolfa
h" to make the 
onferen
e possible in the usual 
omfortable and inspiring setting.
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Abstra
ts

Braid monodromy and topology of 
onjugate plane 
urves

Enrique Artal Bartolo

(joint work with J. Carmona and J.I. Cogolludo)

We are interesting in studying the spa
es M whi
h are obtained as the quotient by the

proje
tive group of the spa
e of 
omplex plane proje
tive 
urves with the same 
ombina-

torial type (essentially, the degree of the irredu
ible 
omponents and topologi
al type of

singularities). The main problems are related with existen
e and 
onne
tedness of su
h

spa
es. The topology of the embedding of the 
urves in the proje
tive plane P

2

is an

invariant of the 
onne
ted 
omponents of M.

We have found examples of dis
rete spa
es M (for sexti
 
urves) su
h that the repre-

sentatives of the points in M have 
onjugate equations in some number �eld K . In order

to understand the embedding of this 
urves in P

2

we have to �nd invariants whi
h go be-

yond the algebrai
 stru
ture. This invariant is braid monodromy of 
urves; we extend the


lassi
al de�nition of this invariant by allowing the proje
tion point to be in the 
urve and

we �nd that some spe
ial braid monodromy is di�erent for two 
onjugate 
urves having

equations in Q(

p

2). Braid monodromy is an orbit in B

r

d

by an a
tion of B

d

� B

r

(by

Hurwitz moves and 
onjugation) where B

n

is the braid group on n strings; we �nd these

braid monodromies to be di�erent by means of a representation of B

d

onto a �nite group.

Using a 
ommon result of the three authors we prove that, after adding some straight lines

to the 
urves, there are 
onjugate 
urves in Q (

p

2) of degree 12 having non-homeomorphi


embeddings.

Fundamental groups of 
omplements of plane 
urves and symple
ti
 invariants

Denis Auroux

(joint work with S. Donaldson, L. Katzarkov and M. Yotov)

Given a 
ompa
t symple
ti
 manifold (X

2n

; !) for whi
h [!℄ is an integral 
ohomology


lass, its topology 
an be studied by means of the approximately holomorphi
 te
hniques

introdu
ed by Donaldson in the mid-90's: �xing an almost-
omplex stru
ture, a 
omplex

line bundle L with 


1

(L) = [!℄ behaves like an ample line bundle, in the sense that suitable

se
tions of L


k

for k � 0 
an be used to de�ne hyperplane se
tions, Lefs
hetz pen
ils, et
.

Three well-
hosen se
tions of L


k

de�ne a proje
tion map to C P

2

with generi
 lo
al

models; this 
onstru
tion is 
anoni
al up to isotopy for k � 0. In the 
ase of a symple
ti


4-manifold, we obtain a bran
hed 
overing whose bran
h 
urve D is symple
ti
, with


omplex (2,3)-
usps and nodes of either orientation as only singularities. The 
urve D 
an

be studied using the braid monodromy te
hniques introdu
ed by Moishezon and Tei
her

in algebrai
 geometry.

Braid monodromy is a 
omplete symple
ti
 invariant: it determines D up to isotopy and,

together with the monodromy morphism � : �

1

(C P

2

�D)! S

N

of the 
overing, allows one

to re
over (X;!) up to symple
tomorphism. However there is no algorithm for 
omparing

braid monodromies.

An easier invariant is �

1

(C P

2

� D) itself. In the symple
ti
 
ase, we need to allow for


reations or 
an
ellations of pairs of nodes, so the a
tual invariant is a 
ertain quotient

G = �

1

(C P

2

� D)=K, where K is generated by 
ommutators [
; 


0

℄, where 
, 


0

are


onjugates of standard generators su
h that �(
) and �(


0

) are disjoint transpositions.
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There is an exa
t sequen
e 1 ! G

0

! G ! S

N

� Z

d

! Z

2

! 1, where the map

G ! S

N

� Z

d

is given by the monodromy � and by the abelianization map Æ : G ! Z

d

sending generators to 1.

In the 
ase �

1

(X) = 1, we have a stru
ture theorem for the kernel G

0

: there exists a

natural surje
tive homomorphism � : G

0

! (Z

2

=�)

N�1

, where � = f(L


k

�C;K

X

�C); C 2

H

2

(X;Z)g.

Moreover, the available examples wherefore high degree proje
tions (k � 0), i.e. C P

2

,

C P

1

� C P

1

, some Del Pezzo or K3 
omplete interse
tions, Hirzebru
h surfa
es, and double


overs of C P

1

� C P

1

(by work of Moishezon, Tei
her, Robb, A-D-K-Y, ...), suggest a mu
h

stronger 
onje
ture when X is a simply 
onne
ted 
omplex surfa
e and k � 0: namely,

one expe
ts that:

1) K = f1g (i.e. G = �

1

),

2) Ker� = [G

0

; G

0

℄ (i.e. Ab(G

0

) = (Z

2

=�)

N�1

),

3) [G

0

; G

0

℄ is a quotient of Z

2

� Z

2

.

Equivariant re�ned Seiberg-Witten theory

Stefan Bauer

The monopole map 
an be de�ned for a K-oriented 
losed Riemannian 4-manifold. It is

used to de�ne (joint with M. Furuta) an element in some equivariant stable 
ohomotopy

group, whi
h is independent of the 
hosen metri
. The Hurwitz homomorphism relates

this element to the integer valued Seiberg Witten invariant.

Some stru
tural results were presented:

1. There is a 
onne
ted sum theorem. In 
ontrast to Seiberg-Witten theory or Donaldson

theory the invariants of 
onne
ted sums need not vanish, but are torsion elements.

2. There is a universal invariant de�ned by the parametrized monopole map over the

spa
e of all 
hoi
es (metri
s and 
onne
tions). A �xed point map relates this universal

element to theDiff(X)-equivariant stable 
ohomotopy Euler 
lass of theH

2

+

(X;R)-bundle

over the spa
e of metri
s. This gives restri
tions on the possible elements whi
h may arise

as (universal) invariants. It also leads to an understanding of the "
hamber stru
ture"

phenomenon for the Seiberg-Witten invariants.

3. (Report on results of M. Szymik) If X 
omes with a free a
tion of a �nite group G,

one gets a G-equivariant invariant. It 
ontains all information on the (non-equivariant)

invariants of quotients X=H for subgroups H < G. M. Szymik showed that already in the


ase of a group of prime order the 
omparison map is neither surje
tive nor inje
tive. This

leads to relations amongst the Seiberg-Witten invariants of the quotients X=H on the one

hand and on the other hand (potentially) to an invariant of the a
tion itself.

Spe
ial varieties, orbifolds, and 
lassi�
ation theory

Frederi
 Campana

We des
ribe two stru
ture theorems in the birational geometry of 
omplex proje
tive man-

ifolds, analogues of the stru
ture theorems for Lie algebras, redu
ing these �rst to semi-

simple and solvable ones, the solvable being iterated extensions of abelian ones. The roles

of semi-simple, solvable and abelian are respe
tively played here by the orbifolds of general

type, spe
ial manifolds, and third: manifolds either rationally 
onne
ted or with � = 0.

This de
omposition is deeply linked with other aspe
ts of 
lassi�
ation theory: we indeed


onje
ture, and show in some few 
ases, that spe
ial manifolds have an almost abelian

fundamental group, and are exa
tly the ones having zero Kobayashi metri
, or a potentially
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dense set of rational points over any �eld of de�nition �nitely generated over Q . This

immediately leads to a natural extension of Lang's 
onje
tures to arbitrary X's (and even

to orbifolds).

This de
omposition gives a simple syntheti
 view of the stru
ture of arbitrary X's, and

indi
ates that the natural frame of 
lassi�
ation theory is the 
ategory of orbifolds, to

whi
h our observations should be extended.

Orbifold fundamental groups

Fabrizio Catanese

(joint work with P. Frediani)

S
ope of the le
ture was to illustrate various appli
ations of the notion of �

orb

1

, (rest. of

a �bration). For Y a normal C -spa
e, B 
losed analyti
, with B

1

,...,B

r

the divisorial


omponents of B,

�!

m = (m

1

; : : : ; m

r

) 2 N

r

+

one de�nes

�

orb

1

(Y;B;

�!

m) := �

1

(Y � B)=� 


i

�

m

i




i

being a geometri
 loop around B

i

.

For Y = X=G (X: manifold), we letB the bran
h lo
us and

�!

m the ve
tor of multipli
ities

of inertia groups, thus we get

1! �

1

(X)! �

orb

1

(Y;B;

�!

m)! G! 1

The �rst appli
ation is for surfa
es (varieties) etale quotients of produ
ts of 
urves, S =

C

1

� C

2

=G. Here, 1! �

1

(C

1

)� �

1

(C

2

)! �

1

(S)! G! 1 and moding out by �

1

(C

2

) we

get the orbifold sequen
e of the quotient map C

1

! C

1

=G. This method plus the isotropi


subspa
e method leads to the

Theorem. Let S = C

1

� C

2

=S, S

0

with �

1

(S

0

)

�

=

�

1

(S), e(S

0

) = e(S) (e: Euler number).

Then S

0

is di�eo to S and the moduli spa
e is either irredu
ible, or it has 2 irredu
ible


omponents M

1

, M

2

with M

2

=M

1

, M

1

\M

2

= ;. There are in�nite examples of the

se
ond alternative.

After dis
ussing other 
ounter-example to the Freidman-Morgan 
onje
ture that S dif-

feo to S

0

implies S, S

0

belong to the same 
onne
ted 
omponent of the moduli spa
e, I

introdu
ed the orbifold fundamental group sequen
e of a �bration: �

1

(F ) ! �

1

(X

0

) !

�

orb

1

(Y

0

)! 1 and explained an appli
ation

Theorem A (-,Keum,Oguiso). Let Y be a normal ellipti
 K3 surfa
e, Y

0

the smooth

lo
us. Then either

(1) j�

1

(Y

0

)j < +1 or

(2) There exits T ! Y etale in 
od. 1, �nite, T is torus.

Without the assumption \Y ellipti
" then is a 
onje
ture of D.Q.Zhang. I also mentioned

Theorem B (-,Keum,Oguiso). Let Y be as in Theorem A, S its minimal resolution, Y

0

=

S [

r

i=1

E

i

. Then if r � 15 then j�

1

(Y

0

)j < +1.

I �nally mentioned that one 
an de�ne the orbifold fundamental group sequen
e of a

real variety (X; �),

1! �

1

(X)! �

orb

1

((X; �))! Z=2! 1

and that this notion has revealed itself as very useful.
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Non-
ompa
t representations of surfa
e groups

Os
ar Gar


�

�a-Prada

(joint work with Steven B. Bradlow and Peter B. Gothen)

Using the L

2

norm of the Higgs �eld as a Morse fun
tion, we study the moduli spa
es of

U(p; q)-Higgs bundles over a Riemann surfa
e. We require that the genus of the surfa
e

be at least two, but pla
e no 
onstraints on (p; q). A key step is the identi�
ation of

the fun
tion's lo
al minima as moduli spa
es of holomorphi
 triples. We prove that these

moduli spa
es of triples are non-empty and irredu
ible.

Be
ause of the relation between 
at bundles and fundamental group representations, we


an interpret our 
on
lusions as results about the number of 
onne
ted 
omponents in the

moduli spa
e of semi-simple PU(p; q)-representations. The topologi
al invariants of the 
at

bundle are used to label 
omponents. These invariants are bounded by a Milnor{Wood

type inequality. For ea
h allowed value of the invariants satisfying a 
ertain 
oprimality


ondition, we prove that the 
orresponding 
omponent is non-empty and 
onne
ted. If the


oprimality 
ondition does not hold, our results apply to the irredu
ible representations.

Generalized triangle inequalities in symmetri
 spa
es and buildings with

appli
ations to algebra

Misha Kapovi
h

(joint work with B.Leeb and J.Millson)

Everybody knows how to 
onstru
t triangles with the pres
ribed side-lengths �

1

, �

2

, �

3

in

the Eu
lidean plane: the ne
essary and suÆ
ient 
onditions for this are the usual triangle

inequalities �

i

� �

j

+ �

k

. In this talk I will explain how to solve (in a uni�ed fashion)

the analogous problem for other geometries X: non-positively 
urved symmetri
 spa
es

(and their in�nitesimal analogues) and Eu
lidean buildings. The notion of \side-length"

in this generality be
omes more subtle: side-lengths are elements of the appropriate Weyl


one �. One of the surprising results is that the \generalized triangle inequalities" for

X determine a polyhedral 
one D

3

(X) � �

3

, whi
h depends on X and on the type of

geometry only weakly: D

3

(X) is 
ompletely determined by the �nite Coxeter group W


orresponding to X. (The polyhedra D

3

provide 
omplete solutions to algebra problems

Q1, Q2 below, solutions to the algebra problems Q3, Q4 are 
ertain latti
e points in D

3

.)

The linear inequalities des
ribing X are determined by the \S
hubert 
al
ulus" (
omputing

the integer 
ohomology ring) in the asso
iated generalized 
ag varieties. Our te
hniques

are purely geometri
 (with a bit of dynami
s). One relates and solves these problems using

weighted 
on�gurations \at in�nity" 
orresponding to the triangles.

Here are some algebra problems whi
h one 
an solve (at least to some extent) using the

geometri
 results about triangles. Re
all that the singular values of an m � m matrix A

are the square-roots of the eigenvalues of the matrix AA

�

. For a matrix A 2 GL(m;Q

p

),

the double 
oset

GL(m;Z

p

) � A �GL(m;Q

p

) � GL(m;Z

p

)

is represented by a diagonal matrix D = Diag(p

e

1

; :::; p

e

m

). (Here Q

p

are the p-adi
 num-

bers and Z

p

are the p-adi
 integers.) The invariant fa
tors of a matrix A are the integers

e

i

arranged in the de
reasing order.

Let �, � and 
 be m-tuples of real numbers arranged in de
reasing order. In the Problem

P4 we will assume that �, � and 
 are dominant weights of GL(m; C ) (i.e. they are ve
tors

5



in Z

m

) and that V

�

, V

�

and V




are the irredu
ible representations of GL(m; C ) with these

highest weights.

� P1. Give ne
essary and suÆ
ient 
onditions on �, � and 
 in order that there exist

Hermitian matri
es A, B and C su
h that the sets of eigenvalues of A, B and C are �, �

and 
 respe
tively, and

A+B + C = 0:

� P2. Give ne
essary and suÆ
ient 
onditions on �, � and 
 in order that there exist

matri
es A, B and C in GL(m; C ) the logarithms of whose singular values are �; � and 
,

respe
tively, so that

ABC = 1:

� P3. Give ne
essary and suÆ
ient 
onditions on the integer ve
tors �, � and 
 in

order that there exist matri
es A, B and C in GL(m;Q

p

) with invariant fa
tors �; � and


, respe
tively, so that

ABC = 1:

� P4. Give ne
essary and suÆ
ient 
onditions on �, � and 
 in order that

(V

�


 V

�


 V




)

GL(m;C )

6= 0:

These problems have a long history and their 
omplete solution and the relation between

them were established only re
ently due to the e�orts of several people: Klya
hko, Tao

and Knutson, et al., their proofs where based on algebrai
 geometry and 
ombinatori
s.

Our main 
ontribution is to the extension of the above problems to other redu
tive

groups. Let F be either the �eld R or C ; for simpli
ity, let G be a split redu
tive group

over Z (think of something like Sp(n)) and let K be a maximal 
ompa
t subgroup of

G(F). Instead of working with p-adi
s one 
an 
onsider other �elds with nonar
himedian

valuations.

� Q1. Let g be the Lie algebra of G(F), and let g = k + p its Cartan de
omposition.

Give ne
essary and suÆ
ient 
onditions on �; �; 
 2 p=Ad(K) in order that there exist

elements A;B;C 2 p whose proje
tions to p=Ad(K) are �; � and 
, respe
tively, so that

A+B + C = 0:

� Q2. Give ne
essary and suÆ
ient 
onditions on �; �; 
 2 KnG(F)=K in order that

there exist elements A;B;C 2 G(F) whose proje
tions to KnG(F)=K are �; � and 
,

respe
tively, so that

ABC = 1:

� Q3. Same as above for A;B;C 2 G(Q

p

) and �; �; 
 2 G(Z

p

)nG(Q

p

)=G(Z

p

).

� Q4. Let G

_

be the Langlands' dual group of G. Give ne
essary and suÆ
ient 
ondi-

tions on highest weights �; �; 
 of irredu
ible representations V

�

, V

�

, V




of G

_

(C ) in order

that

(V

�


 V

�


 V




)

G

_

(C )

6= 0:
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Braid monodromy invariants of Hurwitz 
urves

Viktor S. Kulikov

(joint work with V. Kharlamov)

Let F

N

be a relatively minimal ruled rational surfa
e, N � 1, p : F

N

! P

1

the ruling.

R a �bre of p and E

N

the ex
eptional se
tion, E

2

N

= �N . By de�nition, the image

H = f(�) � F

N

of a smooth map f : �! F

N

of oriented 
losed real surfa
e � is 
alled a

Hurwitz 
urve of degree m if

(i) f is an embedding ex
ept for a �nite number of points s

1

; : : : ; s

n

2 �;

(ii) for ea
h s

i

there is a neighbourhood U

i

� F

N

of f(s

i

) and lo
al 
omplex analyti



oordinates (x

i

; y

i

) s.t. H \ U

i

is a germ of 
omplex analyti
 
urve and the 
omplex

orientation on H \ U

i

n ff(s

i

)g 
oin
ides with the orientation transported from � by f ;

(iii) for s 6= s

i

, i = 1; : : : ; n, H and the �bre R

p

(f(s)) of p meet at f(s) transversally with

positive interse
tion number;

(iv) H \ �

N

= ; and the restri
tion of p to H is a �nite map of degree m.

A Hurwitz 
urve H is 
alled 
uspidal if in (ii) the interse
tion H \U

i

is given by y

2

i

= x

k

i

for some k � 1. A Hurwitz 
urve H is 
alled almost algebrai
 if there is a dis
 D � P

1


ontaining the images of f(s

i

) and s.t. H \ (p

�1

(D) n E

N

) 
an be given by P (z; w) = 0,

where P 2 C [z; w℄, deg

w

(P ) = m. For any Hurwitz 
urve H � F

N

, degH = m, one 
an

asso
iate a fa
torization �

2n

m

= b

1

: : : b

n

, where �

m

2 B

m

is so 
alled Garside's element in

the braid group B

m

, and ea
h b

i

is a braid of a germ of polynomial of degree m over 0.

Su
h a fa
torization is 
alled braid monodromy fa
torization (bmf). The group B

n

� B

m

a
ts on the set of the fa
torizations of �

2n

m

of length n and the orbits under this a
tions

are 
alled braid monodromy types (bmt). We proved the following results.

Theorem 1.Two 
uspidal Hurwitz 
urves H

1

and H

2

� F

N

are H-isotopi
 i� bmt(H

1

) =

bmt(H

2

).

Theorem 2.For any 
uspidal braid monodromy fa
torization � of �

2n

m

there is an almost

algebrai
 Hurwitz 
urve H � F

N

s.t. bmf(H) = �.

Similarly, if S � C P

2

is a singular symple
ti
 surfa
e, i.e., S is a J-holomorphi
 
urve

for some almost 
omplex stru
ture J on C P

2

, one 
an de�ne bmf(S) w.r.t. a generi
 pen
il

of J-lines.

Theorem 3.Two symple
ti
 
uspidal surfa
es S

1

; S

2

2 C P

2

are symple
ti
ally isotopi
 i�

bmt(S

1

) = bmt(S

2

).

Holomorphi
 mappings of 
ertain 
on�guration spa
es

Vladimir Lin

The n

th


on�guration spa
e C

n

(X) of a spa
e X 
onsists of all n point subsets Q =

fq

1

; :::; q

n

g � X. It may be viewed as the regular orbit spa
e C

n

(X) = E

n

(X)=S(n),

E

n

(X)

def

== fq = (q

1

; :::; q

n

) 2 X

n

j q

i

6= q

j

8 i 6= jg and S(n) is the symmetri
 group. C

n

(X)

is a 
omplex manifold if X is so.

How to 
onstru
t holomorphi
 self-maps of C

n

(X)? What 
an one say of the automorphism

group Aut C

n

(X) and its orbit spa
e C

n

(X)=Aut C

n

(X)?

The AutX a
tion in X indu
es the diagonal AutX a
tion in X

n

; thus, any A 2 AutX

produ
es the automorphism fq

1

; :::; q

n

g 7! fAq

1

; :::; Aq

n

g of C

n

(X). Moreover, for any map

7



T : C

n

(X)! AutX one may de�ne the map

f

T

: C

n

(X)! C

n

(X) ; where f

T

(Q) = T (Q)Q

def

== fT (Q)q

1

; :::; T (Q)q

n

g

for all Q = fq

1

; :::; q

n

g � X. If AutX is a 
omplex Lie group

1

and T is holomorphi
, f

T

is

holomorphi
, too; su
h a map f = f

T

is 
alled tame.

2

For T as above, pi
k up a point Q

�

= fq

�

1

; :::; q

�

n

g 2 C

n

(X) and de�ne

f

T;Q

�

: C

n

(X)! C

n

(X) ; f

T;Q

�

(Q) = T (Q)Q

�

def

== fT (Q)q

�

1

; :::; T (Q)q

�

n

g

for allQ = fq

1

; :::; q

n

g � X; su
h a map f = f

T;Q

�

is 
alled orbit like. Its image is 
ontained

in one (AutX)-orbit; if the stabilizer of Q

�

in AutX is trivial (or at least 
onne
ted), then

the image of the indu
ed endomorphism of the fundamental group

3

(f

T;O

�

)

�

: �

1

(C

n

(X))!

�

1

(C

n

(X)) is abelian.

C

n

(X) may admit \sporadi
" holomorphi
 self-maps, whi
h are neither tame nor orbit like.

But I believe that in \simple" 
ases a holomorphi
 map C

n

(X)! C

n

(X) must be tame if

its topology is suÆ
iently 
ompli
ated.

One form of the latter requirement involves the fundamental groups. A 
ontinuous map

f : Y ! Z of ar
wise 
onne
ted spa
es is 
alled non-abelian if the image of the indu
ed

homomorphism f

�

: �

1

(Y ) ! �

1

(Z) is a non-abelian group.

4

It was proven in the 1970's

that if n > 4 and X = C or X = C

�

then every non-abelian holomorphi
 map f : C

n

(X)!

C

n

(X) is tame.

5

Re
ently I proved the following theorem:

Theorem. LetX = C P

1

and n > 4. Then every non-abelian holomorphi
 map f : C

n

(X)!

C

n

(X) is tame.

My student Yoel Feler proved that for n > 4 and any torus X = C =(aZ + bZ) (a; b 2 C

�

,

Im(a=b) 6= 0) every automorphism of C

n

(X) is tame.

These results imply:

Corollary 1. Let X be an irredu
ible smooth non-hyperboli
 algebrai
 
urve and n >

4. Then every automorphism of C

n

(X) is tame. The orbits of the natural Aut C

n

(X)

a
tion in C

n

(X) 
oin
ide with the orbits of the diagonal AutX a
tion, and the orbit

spa
e C

n

(X)=Aut(C

n

(X)) 
oin
ides with the orbit spa
e C

n

(X)=AutX. In parti
ular, for

X = C P

1

the orbit spa
e C

n

(X)=Aut(C

n

(X)) may be identi�ed with the moduli spa
e

M(0; n) of the Riemann sphere with n pun
tures.

Corollary 2. Let n > 4 and X be either C or C

�

or C P

1

. Then the homotopy 
lassi�
a-

tion of non-abelian holomorphi
 mappings C

n

(X)! C

n

(X), up to a homotopy in the 
lass

of holomorphi
 mappings, 
oin
ides with the homotopy 
lassi�
ation of holomorphi
 map-

pings C

n

(X) ! AutX. Moreover, a

ording to the 
lassi
al Grauert theorem, the latter


oin
ides with the homotopy 
lassi�
ation of all 
ontinuous mappings C

n

(X)! AutX.

1

By the 
lassi
al Bo
hner-Montgomery theorem, this is 
ertainly the 
ase whenever X is a 
ompa
t


omplex manifold (AutX may have in�nite number of 
onne
ted 
omponents or/and be dis
rete).

2

This 
onstru
tion may be slightly generalized, by 
onsidering a map T of C

n

(X) to the spa
e of all

maps X ! X that satis�es the following 
ondition: #[T (Q)Q℄ = n for ea
h Q 2 C

n

(X) and the map

C

n

(X) 3 Q 7! T (Q)Q 2 C

n

(X) is holomorphi
.

3

From now on, we suppose that X is ar
wise 
onne
ted.

4

Every automorphism of C

n

(X) is non-abelian if dim

C

X > 0 and n � 3.

5

I proved this for X = C in 1972; for X = C

�

it was proven by V. Zinde in 1977.
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Corollary 3. For n > 4 the orbit spa
e C

n

(C P

1

)=Aut C

n

(C P

1

) is isomorphi
 to the

orbit spa
e C

n

(C P

1

)=PSL (2; C )

�

=

M(0; n), where M(0; n) is the moduli spa
e of the

n-pun
tured Riemann sphere.

To prove the theorem, we establish 
ertain algebrai
 properties of the braid groups B

n

and

B

n

(S

2

), whi
h provide us with an equivariant lifting of a non-
y
li
 self-mapping of the

spa
e C

n

(X) to its Galois S(n) 
overing E

n

(X), and then apply the appropriate analyti


te
hniques to study the equivariant holomorphi
 self-mappings of E

n

(X).

The birational geometry of 
omplex orbifold

Steven Shin-Yi Lu

A �bration f : X ! Y naturally imposes an orbifold stru
ture on Y whose divisorial

part has the form D(f) =

P

i

(1 � 1=m

i

)D

i

on Y . Here, m

i

is the minimum of the

multipli
ities of the 
omponents of f

�

(D

i

) that dominates D

i

as opposed to the 
lassi
al

g
d de�nition of the multipli
ity. This 
hoi
e of multipli
ity is naturally imposed on us by

our 
onsiderations in holomorphi
 geometry and by the 
anoni
ally asso
iated Bogomolov

sheaf of the �bration. This latter sheaf, de�ned as the saturation L

f

of f

�

K

Y

in 


p

X

, is a

natural birational invariant of f at least in the sense that �(Y; f) := �(L

f

) is. This then

allows us to de�ne the same for any meromorphi
 �bration or even map. By the 
attening

theorem, one 
an always arrange, repla
ing f by a birationally equivalent one, to have

�(Y; f) := �(L

f

). After Campana, f is said to be of general type if �(Y; f) = p := dimY ,

X spe
ial if X has no meromorphi
 map of general type. By solving an orbifold version

of the theorems of Kawamata and Viehweg on the additivity of Kodaira dimension, we

show that any 
ompa
t 
omplex manifold X has a meromorphi
 �bration of general type

that is proper and holomorphi
 on an open subset and whose general �bres are spe
ial.

It is de�ned by the Iitaka �bration of the highest Bogomolov sheaf, the one with the

highest p whi
h is ne
essarily unique by this theorem. Using this, we show that the 
ore




X


onstru
ted by Campana is the same �bration and hen
e resolves his 
onje
ture that




X

is of general type. This also resolves in a weak sense a problem that is 
entral to Mori's


lassi�
ation program. Furthermore, we work out the above in the very general setting of

orbifolds with arbitrary rational multipli
ities and in the 
ompa
t 
omplex 
ategory.

Weak Lefs
hetz Theorems

George Marines
u

Napier and Rama
handran generalized the weak Lefs
hetz theorems of Nori to the 
ase of

higher 
odimensional subvarieties with positive normal bundle. Their method works even

when the subvariety doesn't move in the ambient manifold. (In the 
ase when it moves,

the weak Lefs
hetz theorem was proved by Campana and Koll�ar). We propose here the

following di�erential-geometri
 variant.

Theorem A. Let (X;!) a 
omplete hermitian manifold, su
h that the torsion operator of

! is bounded on X. Let E �! X be a line bundle whi
h is uniformly positive outside a

proper 
ompa
t set. Assume moreover that

Z

X(61)

�(E)

n

> 0

where �(E) is the 
urvature of E and X(6 1) is the open set where �(E) is non{degenerate

and has at most 1 negative eigenvalue. Let i : Y ,! X be a 
ompa
t 
omplex spa
e, with

9



a fundamental system of neighbourhoods fV g, su
h that dimH

0

(V;E

k

) < 1 for k >> 1.

Assume moreover that i

�

�

1

(Y ) � �

1

(X) is a normal subgroup. Then the index of i

�

�

1

(Y )

in �

1

(X) is �nite.

The theorem 
an be applied to the 
ase of Zariski open sets in Moishezon manifolds

as well as for some q-
on
ave proje
tive manifolds. A spa
e Y satis�es the property in

Theorem A if, for example, �(N

Y

) has at least one positive eigenvalue (in 
ase 
odimY =

1), or �(N

Y

) is positive in the sense of GriÆths (for general 
odimension).

For the proof of Theorem A we 
annot use the solution of the �-equation as in Napier

and Rama
handran, sin
e ! is not K�ahler. We resort in turn to the following variant of

the asymptoti
 Morse inequalities of Demailly for 
overing manifolds. We denote the von

Neumann dimension of a �-module by dim

�

.

Theorem B. Let p :

e

X �! X be a Galois 
overing of X of group � and let

e

E = p

�

E.

Denote by H

0

(2)

(

e

X;

e

E

k

) the spa
e of holomorphi
 se
tions of

e

E

k

whi
h are L

2

with respe
t

to the pull-ba
k metri
s on

e

E

k

and

e

X. Set n = dimX. Then,

dim

�

H

0

(2)

(

e

X;

e

E

k

) > k

n

Z

X(61)

�(E)

n

+ o(k

n

); k �!1:

The proof of Theorem is based on the spe
tral analysis of the lapla
ian on the 
overing

e

X, and uses te
hni
al elements borrowed from the proof of the Novikov -Shubin inequalities

(usual Morse inequalities for 
overings). The results of this talk were obtained jointly with

R. Todor and I. Chiose in a paper from Nagoya Math. J., 163(2001), 145 -165.

Symple
ti
 stru
tures of moduli spa
e of Higgs bundles over a 
urve and

Hilbert s
heme of points on the 
anoni
al bundle

Avijit Mukherjee

(joint work with I.Biswas)

The moduli spa
e of triples of the form (E; �; s) are 
onsidered, where (E; �) is a Higgs

bundle on a �xed hyperboli
 Riemann surfa
e X, and s is a (non-zero) holomorphi
 se
tion

of E. Su
h a moduli spa
e admits a natural map to the moduli spa
e of Higgs bundles

simply by forgetting s. If (Y; L) is the spe
tral data for the Higgs bundle (E; �), then s

de�nes a se
tion of the line bundle L over Y . The divisor of this se
tion gives a point of a

Hilbert s
heme parametrizing 0-dimensional subs
hemes of the total spa
e of the 
anoni
al

bundle K

X

, sin
e Y is a 
urve on K

X

. The main result of this work says that the pullba
k

of the symple
ti
 form on the moduli spa
e of Higgs bundles to the moduli spa
e of triples


oin
ides with the pullba
k of the natural symple
ti
 form on the Hilbert s
heme Hilb

l

(K

X

),

using the map that sends any triple (E; �; s) to the divisor of the 
orresponding se
tion of

the line bundle on the spe
tral 
urve.

Seiberg-Witten invariants and normal surfa
e singularities

Andras Nemethi

(joint work with Liviu Ni
olaes
u)

In the talk I presented a very general 
onje
ture formulated by Liviu Ni
olaes
u and me

whi
h relates the analyti
al invariants of a normal surfa
e singularity to the Seiberg-Witten

invariants of the link of the singularity, provided that the link is a rational homology sphere.

The talk 
ontained a histori
al presentation of the ba
kground as well.
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The 
onje
ture 
an be formulated as follows. First we de�ne in a topologi
al way a

\
anoni
al" spin




stru
ture of the link. The �rst part of the 
onje
ture provides a topo-

logi
al upper bound (expressed in terms of the Seiberg-Witten invariant of the \
anoni
al"

spin




stru
ture) for the geometri
 genus of the singularity. The se
ond part states that for

Q -Gorenstein singularities this upper bound is optimal; in parti
ular, it gives a topologi
al

des
ription of the geometri
 genus in terms of the link for these singularities. Finally, for

a smoothing of a Gorenstein singularity, the last part gives a topologi
al 
hara
terization

of some smoothing invariants, like the signature and the Euler 
hara
teristi
 of the Milnor

�bre.

As supporting eviden
e for this 
onje
ture, I dis
ussed some 
ases when the validity

was veri�ed: singularities with good C

�

a
tions, suspension hypersurfa
e singularities, and

some rational and minimally ellipti
 singularities.

These results extend previous work of Artin, Laufer and S. S.-T. Yau, respe
tively of

Fintushel-Stern and Neumann-Wahl.

Alexander polynomials and Zariski pairs of sexti
 
urves

Pho Du
 Tai

(joint work with S.Kaplan, H.Maakestad and M.Tei
her)

Following Artal Bartolo, we re
all that a pair of irredu
ible plane 
urves (C

1

; C

2

) is a Zariski

pair if they have the same degree and there is a 1-1 
orresponden
e between singular points

of C

1

and C

2

preserving topologi
al types but C P

2

nC

1

is not homeomorphi
 to C P

2

nC

2

.

Let us denote Z(n) the set of all Zariski pairs of degree n, Z(n; �

1

) (resp. Z(n;�

1

)) the

set of all Zariski pairs (C

1

; C

2

) of degree n su
h that �

1

(C P

2

n C

1

) 6

�

=

�

1

(C P

2

n C

2

) (resp.

�

1

(C

1

) 6= �

1

(C

2

)). Thus Z(n) � Z(n; �

1

) � Z(n;�

1

).

The equisingular families of 
oni
s, 
ubi
s, quarti
s and quinti
s are irredu
ible, i.e.

Z(n) = Z(n; �

1

) = Z(n;�

1

) = ; for n < 6. For degree � 6 this is not true, the �rst

example, is a pair of sexti
s (with 6 
usps) was given by Zariski.

Using results of Oka on the 
omputation of Alexander polynomials of sexti
s (math.AG-

0205092), we des
ribe the method to list up all of the Zariski pairs of degree 6 whi
h 
an be

distinguished by their Alexander polynomials, i.e. the set Z(6;�

1

). We prove that for any

(C

1

; C

2

) 2 Z(6;�

1

), one of them is of torus type and the other is of non-torus type, and

the Alexander polynomial are �

1

(t) = t

2

� t + 1 (for sexti
 of torus type) and �

1

(t) = 1

(for sexti
 of non-torus type).

A 
hara
terization of Shimura 
urves in moduli sta
ks of abelian varieties and

Calabi-Yau manifolds

E
kart Viehweg

(joint work with Kang Zuo)

Let f : X ! Y be a semi-stable family of 
omplex abelian varieties over a 
urve Y of genus

q, and smooth over the 
omplement of s points. If F

1;0

denotes the non-
at 1; 0 part of

the 
orresponding variation of Hodge stru
tures, the Arakelov inequalities say that

2 deg(F

1;0

) � rank(F

1;0

)(2q � 2 + s):

We study families for whi
h this inequality be
omes an equality, or equivalently families

whose Higgs �eld

�

1;0

: F

1;0

! F

0;1


 


1

Y

(logS)
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is an isomorphism. As it turns out, this property is re
e
ted in the existen
e of \too many"

Hodge 
y
les of a general �bre of f , and it for
es Y to be a Shimura 
urve. As a byprodu
t

one obtains an expli
it des
ription of all possible examples.

For other semistable families of n dimensional varieties one 
onsiders the indu
ed vari-

ation of Hodge stru
tures of weight n and the 
orresponding Higgs bundle (E; �) on Y .

Then � is maximal, if (roughly speaking) (E; �) is the dire
t sum of sub Higgs bundles

(F

i

; �

i

) of length i, for whi
h

�

p;q

i

: F

p;q

i

! F

p�1;q+1

i


 


1

Y

(logS)

are isomorphisms, as soon as both sheaves are non zero. This de�nition is not the most

general one. Contrary to the 
ase of abelian varieties, we ex
lude here the existen
e of

unitary parts. The maximality of the Higgs �eld implies that the families are rigid, and

that the spe
ial Mumford Tate group of a general �bre F is the smallest algebrai
 subgroup

of Sl(H

n

(F;Q)) whi
h 
ontains the image of the monodromy representation.

For K3 surfa
es, X. Sun, S.L. Tan and K. Zuo have shown, that the maximality of the

Higgs �eld implies that the Pi
ard number of a general �bre is 19, and that the family is


onstru
ted from a produ
t of modular families of ellipti
 
urves.

The latter also seems to be true for families of Calabi-Yau threefolds.

Artin groups and geometri
 monodromy

Bronislaw Wajnryb

Let f(x; y) = 0 be a polynomial equation whi
h de�nes an algebrai
 
urve in a neigh-

bourhood of (0; 0) in C

2

, with an isolated singular point at (0; 0). A versal deformation

of this singularity indu
es a �bration V ! B(�) whi
h is lo
ally trivial over the 
omple-

ment U = B(�)� � of the singular set � (the dis
riminant) and whose �bre is a 
ompa
t

orientable surfa
e S with a boundary. The �bration indu
es the geometri
 monodromy

representation � : �

1

(U) ! M(S), where M(S) is the mapping 
lass group of S, the

group of the isotopy 
lasses of the orientation preserving di�eomorphisms of S pointwise

�xed on the boundary. Dennis Sullivan asked around 1975 whether � is always inje
tive.

For simple singularities A

n

; D

n

; E

6

; E

7

; E

8

the group �

1

(U) is isomorphi
 to Artin group

of type A

n

; D

n

; E

6

; E

7

; E

8

respe
tively and � is a geometri
 homomorphism, it takes stan-

dard generators of Artin group onto Dehn twists inM(S). Any Artin group 
orresponding

to Coxeter matrix with entries 2 and 3 only has an essentially unique geometri
 homo-

morphism � into the suitable mapping 
lass group whi
h 
oin
ides with � for the groups

A

n

; D

n

; E

6

; E

7

; E

8

. In 1992 Perron and Vannier proved that � is inje
tive for the groups

A

n

and D

n

. In 1997 Labruere proved that � is not inje
tive for any Artin group 
orre-

sponding to Dynkin diagram whi
h is not a tree or a Dynkin diagram whi
h is a tree with

more than 3 ends. The groups E

6

; E

7

; E

8

belong to the missing 
ases. In this work we

show that � is not inje
tive for all other Artin groups. In parti
ular � is not inje
tive

for singularities E

6

; E

7

; E

8

so the question of Sullivan has the negative answer already for

simple singularities.
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Cohomology of variations of Hodge stru
tures over quasi-
ompa
t K�ahler

manifolds and appli
ations to algebrai
 geometry

Yihu Yang

(joint work with J. Jost and K. Zuo)

Let U = Y n S; smooth quasi-
ompa
t K�ahler surfa
e, S is a normal 
rossing divisor in Y ;

let V be a polarized variation of Hodge stru
ture de�ned over R over U , with unipotent

lo
al monodromies around S. Let

E =

M

p+q=m

E

p;q

; �

p;q

: E

p;q

! E

p�1;q+1


 


1

Y

(logS)

denote the Higgs bundle 
orresponding to V (afterwards, we brie
y write E

p;q

by E

p

).

Using the Pion
ar�e-like metri
 on U and the Hodge metri
 on V, we 
an de�ne an L

2

�

sub
omplex of the above 
omplex by taking the sheaves of lo
al se
tions satisfying the

L

2

-integrable 
ondition:

E

(2)

�

! (E 
 


1

Y

(logS))

(2)

�

! (E 
 


2

Y

(logS))

(2)

� � � :

Then, we 
an prove the following

Main Theorem There exists a natural isomorphism

H

�

DR

(�([Gr

�

F

A

0

(E)℄

(2)

)

D

00

! �([Gr

�

F

A

1

(E)℄

(2)

) � � � )

' H

�

(E

(2)

�

! (E 
 


1

Y

(logS))

(2)

� � � ):

In another dire
tion, one also has the theorem duo to E. Cattani, A. Kaplan and W.

S
hmid (for this, see Inventiones Math., 87, 1987, 217-252).

The Main Theorem together with the Cattani-Kaplan-S
hmid's theorem and the K�ahler

identity of the Lapla
ians for the situation of VHS gives rise to

Corollary 2. There exists a natural isomorphism

H

�

int

(Y;V) ' H

�

(E

(2)

�

! (E 
 


1

Y

(logS))

(2)

� � � ):

In this talk, we also give some appli
ations to algebrai
 geometry.

Log Terminal Algebrai
 Varieties and the Fundamental Groups of Their

Smooth Lo
i

De-Qi Zhang

We work over C . We are interested in algebrai
 varieties X with log terminal singularities,

espe
ially the topologi
al fundamental group �

1

(X

0

), where for variety V , V

0

:= V �

SingV .

From the minimal model program we know that a minimal model will inevitably 
ontain

some terminal singularities. Also a degenerate �bre of a family of varieties will have some

singularities. So we 
an not help but 
onsidering varieties with some mild singularities.

Motivation: If �

1

(V

0

) has an index-m normal subgroup, then we have a 
orresponding

Galois Z=(m)-
over U ! V unrami�ed over V

0

. So the study of V may be redu
ed to that

of U whose singularities should be better. See also [Keum- Zhang, Pro
. Alg. Geom. in

East Asia, Kyoto, 2001, A. Ohbu
hi (ed.)℄

Below, V is Q -Fano (resp. weak Q -Fano) if the anti-
anoni
al divisor �K

V

is Q -ample

(resp. nef and big). A

ording to the min.model program (
ompleted in dim � 3), every
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proj.variety is birational to either a min.terminal variety or a Fano �bration. This is the

reason why we 
onsider Fano varieties.

Conje
ture A. Let V be a log terminal Q -Fano variety. Then the topologi
al fundamental

group �

1

(V

0

) of the smooth lo
us V

0

of V is �nite. (see results below to support it).

Theorem B [Gurjar-Zhang (Tokyo 1994-95), Zhang (Osaka 1995), Fujiki-Kobayashi-Lu,

Keel-M
Kernan℄. Conje
ture A is true if either dimV � 2 or the Fano index r(X) >

dimX � 2.

Theorem C [Takayama℄. Suppose that V is a log terminal weak Q-Fano variety. Then

�

1

(X) = (1).

Remark D. "Log terminal" in Conj.A 
an not be weakened to "log 
anoni
al" [Zhang,Trans

A.M.S.(1996)℄.

A

ording to the Iitaka �bration theorem, every proj. variety is birational to a �bration

where a general �bre is of Kodaira dim. 0 and the base variety has dim. equal to the

Kodaira dim. of the sour
e variety. This is a motivation for us to 
onsider varieties V of

Kodaira dim. 0. If further, V is minimal and assume the abundan
e 
onje
ture (proved

when dim � 3) then mK

V

� 0 for some m � 1.

De�nition E [Zhang, Kyoto, 1991-93℄. A log terminal proj. surfa
e Y is log Enriques

if mK

Y

� 0 for some m � 1 and if H

1

(Y;O

Y

) = 0. The I = I(X) := minfmjm �

1; mK

X

� 0g is 
alled the index of Y .

The one below was formulated, when X is Du ValK3, in [Catanese-Keum-Oguiso, Math.

Ann. 2002?℄.

Conje
ture F. Let Y be a log Enriques surfa
e. Then either �

1

(Y

0

) is �nite, or there is

a quasi-etale (= etale in 
o-dim 1) morphism X ! Y with X an abelian surfa
e.

Let

e

Y ! Y the min.resolution, D =

P

D

i

the ex
eptional divisor and #D the number of

irred.
omp. of D.

Theorem G (1) [Shimada-Zhang, Nagoya 2001℄When Y is Du Val K3, we have �

1

(Y

0

) =

(1) if the latti
e Z[[

i

D

i

℄ is primitive in H

2

(

e

Y ;Z), if #D � 18 and if the dis
riminant

group (Z[[

i

D

i

℄)

_

=(Z[[

i

D

i

℄) is generated by no more than minf#D; 20 � #Dg elements

(the last two 
onditions due to Nikulin are to guarantee the uniqueness of a primitive

latti
e embedding).

(2) [Keum-Zhang JPAA 2002℄When Y is either Du Val K3 or Du Val Enriques, Conje
ture

F is true if Y has a few singularities of type A

p�1

and no others, where p is a prime number.

(3) [Catanese-Keum-Oguiso℄ When Y is Du Val K3, Conje
ture F is true if either Y has

an ellipti
 �bration, or the ex
eptional divisor of the minimal resolution of Y has at most

15 
omponents.

Edited by Pho Du
 Tai
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