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September 15th — September 21st, 2002

The conference was organized by S.Bécherer (Mannheim), T.Ibukiyama (Osaka) and
W.Kohnen (Heidelberg). 23 talks were given, covering a wide range of topics. One speaker
(Prof.Tkeda) was asked to give two talks on his results.

The theory of modular forms has many branches and it was one of the main purposes of
the conference to bring together experts from various corners of the field.

Topics covered include

L-functions and zeta-functions (not only of Langlands-type)
Dimension formulas for spaces of modular forms

explicit structure of rings of modular forms

Applications of trace formulas

Liftings of modular forms

Local representation theory

e congruences for modular forms

e Relations with geometry

We hope that the stimulating atmosphere of the conference helped to create new collab-
orations among the participants.



Abstracts

A representation theoretic Kohnen-Zagier formula
M.BARUCH

The Kohnen-Zagier formula relates the Fourier coefficient of a half-integral weight form
in the Kohnen +space to a twisted central value of an L-function of an integral weight form.
A formula of this type was first proved by Waldspurger. We prove a generalized formula of
this type in a representation theoretic setting and show that it implies the Kohnen-Zagier
formula.

Eisenstein Series and Moments of Zeta
D.Buwmp
(joint work with J.Beinecke)

It is shown that if the parameters of an Eisenstein series on GL(2k) are chosen so that
its (integrated) L-function is the 2k-th moment of the Riemann zeta function, then the (2:)
terms in its constant term agree with the (2:) factors appearing in a conjectural formula
for the 2k-th moment by Conrey, Farmer, Keating, Rubinstein and Snaith. A method of
eliminating the problematic “arithmetic part” is shown for the 6-th moment. Furthermore
a method of Sarnak is worked out using Eisenstein series on GL(2) to estimate the 4-th

moment of (.

Asymptotics of class numbers
A.DEITMAR

For an order O in a number field let A(O) be its class number, R(O) its regulator and
D(0O) its discriminant. In 1983 Peter Sarnak proved that

Y WO)RO) ~ —

logz’
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as x — 0o. The main result of my talk is a generalization of Sarnak’s result to number fields
of prime degree. Let d be a prime number > 3. Let r, s > 0 be integers with d = r 4 2s.
A number field F is said to be of type (r,s) if F has r real and 2s complex embeddings.
Let S be a finite set of primes with |S| > 2. Let C, 4(S) be the set of all number fields F'
of type (r, s) with the property p € S = p is non-decomposed in F. Let O, 4(S) denote
the set of all orders O in number fields F' € C, 4(S) which are maximal at each p € S. For
such an order O let h(O) be its class number, R(O) its regulator and A\s(O) = [[,cq fp,
where f, is the inertia degree of pin F'= O ® Q. Then f, € {1,d} for every p € S.

For A\ € O* let py,...,p, denote the real embeddings of F' ordered in a way that
lpe(N)| > |pes1(A)] holds for &k = 1,...,r — 1. For the same \ let 0;...0, be pairwise
non conjugate complex embeddings ordered in a way that |ox(A\)| > |oks1(N)| holds for
k=1,...,s—1.



Fork=1,...5 — 1 let ag()) := 2k(d — 2k) log (%) .
If s> 0let

oo (28).

Fork=s+1,...,r+s—1let
ag(N) == (k+s)(r—|—s—k)(log< s (M| >
|Pe—s+1(M)]
For Ty, ..., T1s—1 > 0 set
vo(Ty, ... Trys1) =#{A€ O/ £1|0<ax(N) <Tj, k=1,...,r+s—1}.
Let

c=(V2)'re (i:[(4k(d — 2k)> 4rs (’"ﬁ 2(k + s)(r +s — k)) :

k=1 k=s+1
where the factor 4rs only occurs if rs # 0. The main result is
Theorem With
Is(T):= > vo(T) R(O)h(0) As(O)
0e0(S)
we have, as Ty, ..., Tyys—1 — 0,

19(T1, “ee ;Tr+571) ~
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The proof involves a new Lefschetz formula for higher rank symmetric spaces.

Tl T Tr+571-

On two geometric theta lifts
J.FUNKE

The theory of theta lifts has been a major tool in the investigation of the geometry
(of cycles) of locally symmetric spaces of orthogonal type. Here the singular theta lift
introduced by Borcherds and extended by Brunier and the Kudla-Millson theta lift have

been of particular interest.

In this talk, we show that in the Hermitian case (i.e. for O(p,2)) the Kudla-Millson lift
and dd°(extended Borcherds lift) are adjoint maps. We also introduce a suitable Borcherds
lift for general signature and obtain a similar relation to the Kudla-Millson lift. Moreover,
we show that this generalized Borcherds lift gives rise to “differential characters” in the

sense of Cheeger and Simons for certain special cycles of codimension q.



Siegel 3-folds of geometric genus one
V.GRITSENKO

Let A, be the moduli space of (s, t)-polarized abelian surfaces:
Asy =Hy /sy,
where T’y ; is the paramodular group of type (s,t). We prove the following result:
Theorem: h*%(A,,;) = dim S3(Ty,) =1 if t=13, 17, 19
We formulate the Conjecture:
RPO(A) =1 <= t=13,17,19,21,22,23,25,27, 28, 32, 35, 40, 42, 48, 60.

We sketch the proof of the theorem for ¢ = 13, which goes through the explicit construction
of certain Jacobi cusp forms of weight 3.

Shintani Cocyycles on GL,(Q)
R.HILL

In the case n = 2, D.Solomon constructed a 1-cocycle on GLy(Q) with values in the

Shintani functions corresponding to cones in Q2. Essentially, to two 2 x 2-matrices ar, 3
the cocycle assigns the Shintani function of the cone generated by the first column of «
and the first column of .
The aim of the talk is to generalize this construction to give an (n-1)-cocycle on GL,(Q).
The difficulties arise when the cones arising degenerate or when one needs to decide whether
a boundary component of the cone should be included or not. The difficulties are overcome
by passing to a field extension F' = Q(ey,...,€,) of Q, in which the ¢; are regarded as
infinitesimally small. The boundaries of the cones obtained in F™ only intersect Q™ at the
origin and the cones are never degenerate.

Spherical functions on Sp, as a spherical homogeneous Sp, x Spi-space
Y.HIRONAKA

Let G = Spy x Sp?, where Sp? is considered as a subgroup of Sp, in the usual way
(diagonally). Then X = Spy is a spherical homogeneous G-space with G-action defined
by (91, 92) - & = g12g5-

Let k be a local field with odd residual characteristic. We put G = G(k), X = X (k) and
K = G(0Oy,). We study spherical functions on X. Among other things, we obtain

e a complete set of representatives of K-orbits in X
e employing spherical functions as kernel functions, we obtain an (G, K)-isomorphism

A 2
S(K\X) ~ (C[qizl, N e H(q7 +q 7 -Clgtn, ..., qiz“]W) ;
i=1
therefore S(K\X) is a free H (G, K)-module of rank 4 and a basis is given explicitly.
e Eigenvalues for spherical functions are parametrized by C/W, where W is the Weyl
group of G. The space of spherical functions on X corresponding to z € C*/W has
dimension 4 and a basis is given explicitly.



Multiple Dirirchlet series: What one can prove and what one can’t
J.HOFFSTEIN

Consider the L-series L(s, f, X&”)), where f is an automorphic form on GL(r) and X&”) =

(E)n' We assume that the ground field contains the n-th roots of unity.
We define the “imperfect” double Dirichlet series

L(s, £,x5")
Z(s,w) = L Ad
d squarefree
and obtain the meromorphic continuation as a function of two variables on a convex subset
of C?. This continuation is sufficient to establish the existence of a pole in w with non-zero
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residue for any s with 1 — —5 < R(s) < 1 (for n = 2 there is a stronger result). This

implies that for any s in this range, there exist infinitely many d with d squarefree such
that L(s, f, X&")) # 0. We also sketch lot of the cases where L(s, f, X&")) can be extended
to all of d (i.e. not just squarefree d). In some cases, the corresponding “perfect” double
Dirichlet series can then be extended to all of C2.

Liftings of Modular Forms
T.IKEDA

The Fourier coefficients A,(ff,)L of the Siegel Eisenstein series E,?frz are given as follows

n k:f% ~ a1
C- AP (B) =L — k,xu)fn > [ Fp(B,p7"%)

plfB
Here,
B = B! >0 : half integral symmetric matrix
C : some constant depending only on n and &
Dp = (—1)"det(2B)
Dp =| Disc(Q(vDs)) |
| Dp|  =Dp-f§, (f1>0)
XB :Dirichlet character corresponding to Q(v/Dpg)

F,(B,X) : some Laurent polynomial
Let f(7) = >y a(N)g" € Sor(SLy(Z)) be a normalized Hecke eigenform. Put

k—1 =
A(B)=C(Dp)fy " [ F(B.ay)
plfs
Here, 1—a(p)X +p* X2 = (1—pF 20, X)(1 —pk*%azle) and C(Dp) denotes the Fourier
coefficient of the corresponding modular form of half-integral weight. Then we have

Theorem: Put F(Z) =Y 5 A(B)exp(2mitr(BZ)) with Z € Ha,. Then F' € Sk, (Sp2n(Z));
it is a Hecke eigenform and

2n
L(s, F, stand) = C(S)HL(S+k+n—i,f)

i=1
We can also construct a hermitian cusp form from the Fourier coefficient formula for
Hermitian Eisenstein series.



On the conjecture of Miyawaki
T.IKEDA

Let f = Y ya(N)gV € Sy (SLa(Z)) be a normalized Hecke eigenform, whose Satake
parameters are a;“. For non-negative integers n,r such that n +r = k£ mod 2, there is a
Hecke eigenform F' € Siipnir(Sponyiar(Z)) such that
2n+2r
L(s,F,st)=((s) [] Ls+k+n+r—i,f).
i=1
Given g€ Sk-l—n-l—r(Spr(Z))v we pUt

Fro(Z) = /S o F((S 3 ))m(det S(Z2')Fnde!

Then ff,g € Sk+n+r(5p2n+r(z))'

Theorem: Assume that g is a Hecke eigenform and that F;, # 0. Then F;, is a Hecke

eigenform and
2r

L(s,Fyg4,st) = L(s, g, st) - HL(S +k+4+n—i,f).
i=1
As for the non-vanishing, we describe a conjecture for the special case n = 0, giving a
conjectural formula for the double scalar product

<F|HT><HM9 X g)

in terms of values of some L—function.

CAP Automorphic Representations of Uy (4)
T.KONNO
(joint work with K.Konno)

The term CAP is the short hand for ”cuspidal but associated to parabolic”, which was
first used by I.Piatetski-Shapiro. Thus a CAP-form is a cuspidal automorphic form which
shares almost all local components with some residual discrete automorphic representation.
The image of the Saito-Kurokawa-lifting and Tkeda’s lifting are examples of such forms.
In this talk, we consider the quasisplit unitary group Ug/r(4) in 4 variables, for which all
the residual discrete forms are obtained. We construct the candidates of all CAP-forms
expected by Arthur’s conjectures on the automorphic spectrum. In particular, we show:
Theorem: The CAP-forms are obtained as 0-lifts of some discrete automorphic represen-
tations of unitary groups in two variables.

Looking at the precise description of the local and global #-correspondence, we also show
that the occurrence of these CAP forms agrees with the multiplicity formula conjectured
by Arthur.



Some vanishing theorems for the cohomology of arithmetic manifolds
J.-S.L1
(joint work with J.Schwermer)

Suppose that X = G/K is a Riemannian symmetric space, I' C G is a lattice in G and F
is a finite dimensional representation of G. The Matsushima formula, when combined with
the Vogan-Zuckermann classification of unitary representations with non-zero cohomology,
gives the first basic vanishing results for H*(T', E') (or at least the cuspidal cohomology).
There is much evidence showing that this vanishing result cannot be improved without
posing further conditions on G and I'. In this talk we describe our joint work with Schwer-
mer, where we prove that H’(T, E) = 0 for all j < qo(G), if E has regular highest weight.

Here
w(G) = 5 (dim(X) — k(@) + k()

On a Rankin-Selberg Convolution of n Variables for Siegel Modular Forms
Y .MARTIN
(joint work with O.Imamoglu)

Let F(Z) = > ;a(T)e(TZ) and G(Z) = > ;- b(T)e(T'Z) be two Siegel cusp forms of
weight k for Sp(n,Z). We study the Dirichlet series

ao(T)b(T)

D(F,G,w) = ——FK(T,w),
(PG = 3 S BT
where E(Y,w) is the Selberg Eisenstein series for GL(n), which depends on n complex

variables w = (wy, ..., wy).
One can prove that

A(F,G,w) = (suitable gamma factors) x D(F,G,w)

- has a meromorphic continuation to C"

- satisfies 2"n! functional equations

- at a particular point wy € C™ we have A(F,G,wq) = constant x (F,G)

- Particular specializations of A(F,G,w) yield the one variable Rankin-Selberg
convolutions of Kalinin and Yamazaki.

Modular Form Congruences and Selmer Groups
W.McGRAW
(joint work with K.Ono)

A famous question of Hida asks: When do integral weight congruences between modu-
lar forms descend, via the Shimura correspondence, to congruences between half-integral
weight forms 7 Serre shows that there are congruences between forms in Sy(I',(p)) and
formsin S, ;. We show that the pre-images of these forms in S5 (T'g(4p)) and S}, (T'p(4))are

2 2

congruent after acting on the first form by the U(p)-operator. Combining this result with
work of Dummigan, we give a large class of examples for which the existence of elements
in certain Selmer groups associated to these integral weight forms agrees with famous
conjectures on special values of L-functions for these forms.



Spherical functions of real reductive groups of low rank
T.OpA

The problem of generalized spherical functions of a reductive group over a local field k
is formulated as follows: Given a reductive group G over k, and an admissible represen-
tation m of G which is irreducible; given a closed subgroup R and an irreducible unitary
representation (1, V) of R, we can construct the (say, smooth) induced G-module Ind%(n).
The following problem is fundamental in the local theory of automorphic forms:
Problem: (i) Finds triads so that the intertwining space Homg(m, Ind%(n)) is of finite
dimension.

(ii) For each non-zero element I € Homg(w, Ind%(n)), describe the image Im(I) <
Ind§(n).
Usually we assume the existence of a double coset decomposition

G = RARK
with a subgroup of the split component of a maximally split Cartan subgroup A of G.
Then choosing a K-type 7 <y 7 of m we have the restriction homomorphism
Homg(m, Ind$(n)) — Homg (1, Ind$(n))
= {r" @ Indz(n)}"
— 7" C*(AR)
The determination of the image of the composition map r, is solved by considering the
holonomic system, i.e. a maximally overdetermined system of partial differential equations,
when G = Sp(2,R) and G = SU(2,2) for many R.
The description of the maximal compact K’s representations is quite important. To settle
those K — U(1)! x SU(2)™ x SU(3)", the projector of a certain tensor product of the

representations of gl, = Lie(U(3)) ® C in terms of the canonical basis was discussed, which
is joint work with M.Hirano.

Arithmetic Differential Operators on nearly holomorphic Siegel Modular
Forms

A .PANCISKIN

Nearly holomorphic Siegel modular forms over a ring A are certain formal expansions
f=2 R
&n

where ¢ runs over all half-integral positive semidefinte symmetric matrices of size m,
¢* = exp(2mitr(£z), 2 € Hy, R = (Rij) = (473(Z))"", n = (n;;) and R* =T, , R

We describe the action of the arithmetic differential operators of Maafl and Shimura (The-
orem 1). This gives a method of proving congruences between nearly holomorphic Siegel
modular forms (Theorem 2) and Kummer type congruences for certain L-values attached
to Siegel modular forms (Theorem 3).



L and ¢ -Factors of some Representations of GSp(4)
B.ROBERTS

In our proof of an analogue for GSp(4) of the dihedral case of the Langlands-Tunnel
theorem we defined some L-packets for GSp(4). In this talk we describe the L- and
e-factors associated to the generic elements of these local L-packets by the Novodvorsky
integral representation in the nonarchimedean case. As pointed out by Takloo-Bighash, the
theory also has implications for archimedean zeta integrals. We also discuss the problem of
finding canonical vectors in such generic representations which represent their L-factors.

The Burkhardt Group and Modular Forms
R.SALVATI-MANNI
(joint work with E.Freitag)

We investigate the ring of Siegel modular forms of genus 2 and level 3. We determine the
structure of this ring. It is generated by 10 modular forms (5 of weight 1 and 5 of weight
3) and there are 20 relations. The proof consists of two steps: In a first step we prove
that the projective variety associated to this ring of modular forms is the normalization
of the dual of Burkhardt’s quartic. The second step consists in the normalization of the
Burkhardt dual. Several complicated polynomial identities will occur. We first construct
an element of the normalization, then using the action of Burkhardt’s group we obtain the
other elements; at the end we obtain a ring contained in the same ring of fractions that
satisfies Serre’s criterion of normality. This is the ring of modular forms.

An integral Representation of the Singular Series and its Applications
F.SATo

The (global) singular series b(T, w) is defined (for R(w) > %) by

b(T, w) — Z I/(R)_w 627rz'tr(TR)
ReSymn (Q/Z)

where T is a half-integral symmetric matrix of size n and v(R) is the product of the
denominators of the elementary divisors of R.

Theorem: Put H, = 1 ( (1)" (1)" > and X(T) = {x = ( il > € My, n(Q,) | Hylz] =
n n 2
T}. Let wr be the gauge form on X (T) given by %' Then

det w=n = b, (T _
/ o Vet(es) [ = vy [T =,

i=1
Application 1: The local singular series b,(T,w) can be written as a finite linear com-
bination of spherical functions on the p-adic symmetric space SO(n,n)/S(O(n) x O(n)).
This gives an explanation of the functional equation satisfied by b,(T, w) (joint work with
Y.Hironaka)

Application 2: The Koecher-Maass series of the non-holomorphic Siegel Eisenstein series
can be identified with the zeta function associated to a certain prehomogeneous vector
space (joint work with T.Ueno).



On Hecke eigenvalues of primitive forms and the analogue of Linnik’s
problem in the weight aspect

J.SENGUPTA

Let f and g be two primitive cusp forms for T'o(N) having distinct weights k; and ky. Let

ko—1

f(z) = Z nm;l)\f(n)egmnz g(z) = Z D5 (n)e2mine

be their respective Fourier expansions; A;(n) is the normalized eigenvalue for the n-th Hecke
operator. The strong multiplicity one theorem for GL(2) says that there are infinitely
many primes p such that As(p) # Ay(p). We are interested in the “smallest” such prime
p. We show that given € > 0 there exists a prime p as above such that p = O(k*)
where k = max(ky, ky) and the implied constant depends only on ¢ and N. This is an
improvement of the earlier result of Moreno.

In the second part of the talk we discuss an analogue of Linnik’s classical problem in the
context, of primitive cusp forms of varying weight.

Green currents for modular cycles in arithmetic quotients of complex
hyperballs

M.TsuzukI
(joint work with T.Oda)

Let X be a complex manifold and Y an analytic subvariety of codimension ». In such a
situation a Green current for Y can be defined.
We want to construct a Green current for Y analytically using the techniques of harmonic
analysis on Lie groups, when X is the quotient of a Hermitian symmetric domain G/K
by an arithmetic lattice I' and Y is a modular cycle coming from a modular embedding
H/HNK — G/K. The focus of the talk was on the case when G/ K is a complex hyperball
of dimension n and H/H N K is also a complex hyperball (of dimension n — v). In the
case v = 1 (as was predicted by T.Oda) we have already succeeded to construct a Green
current for a modular divisor Y by taking the constant term at a suitable point sq of the

meromorphic continuation of the Poincare series Z’ye(f‘ﬂ T ngQ) (vg) with the “secondary
spherical function” ¢§2).

So it is quite natural to ask whether the same method works when v > 1. In the talk we
reported on the following points:

e To make precise the notion of vector-valued secondary spherical function and to
show the existence of such functions ¢§2).

e To show the L'-convergence of the series 27 ¢§2) = (3, with s € C lying in a certain
nonempty domain.

e The differential equation of the current defined by G,

We expect that the function s — G has a meromorphic continuation so that s = n—2v+2
is (at most) a simple pole and that the constant term of Gy at s = n — 2v + 2 is closely
related to a green current of Y.
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The twisted topological trace formula and liftings of automorphic
representations

U.WESELMANN

For a reductive connected group G' we consider the G(A ¢)-modules

H'(G, B)) = lim H'(G(Q\G(A) /K Ac(R)’ Ky, Ey)

where E, is the coefficient system attached to the representation with highest weight
A€ X*(T). If n € Aut(G) fixes some splitting, we may consider the n-action on H'(G, E))

o

too and construct the stable endoscopic group G such that @1 = (@") , .8
a) G=GLy, xGL; n(Aya)=(JtA ' T det(A)-a) G, = GSping,i
b) G = PGL2n+1 T](A) = JtA_lj_l G1 = Spgn
¢) G = SO0g,42 N € Ogpia \ SOa42 G, = Span

To compute Hecke operators, we developed a topological trace formula

tr(nohy, H* (G, Ey)) = Y (—1)H&\D/m > alye) tr(ny | Ex)-O%(ny, hy)
reh s V€ Pi(Q)
mod st.conj.

By a comparison of two trace formulas one gets that H*(G, E)) is the lift of H*(Gy, E))

G(Af)xn

up to representations of the form I ndG( A in the Grothendieck group of admissible

G(Ay) x (n)-modules in the situations a) and b) for n = 2. Here we use a fundamental
lemma due to Flicker and the equivalence of the fundamental lemmas in the situations
a), b), ¢). From these identities one develops character identities between local represen-
tations and deduces for all representations 7y of G(Ayf) that contribute via the discrete
spectrum to H3(GSpy, E) but are neither endoscopic lifts from G Ly x GLy/G Ly nor CAP
representations w.r.t. the Siegel parabolic:

e cach 77; in the packet of m; occurs in H3(G, E)) with multiplicity 4

e there exists 7 in the packet of 7; such that 7% x 7 is globally generic

e all automorphic representations 720 x 7y and 72 x 75 occur with multiplicity one

in the cuspidal spectrum of GGSp, for all 74 in the packet of 7.

Computation of Spaces of Siegel Modular Cusp Forms
DavID S.YUEN
(joint work with C.Poor)

We survey the known dimensions of S, the space of Siegel modular cusp forms of weight
k and degree n. We obtain new results for degrees 4, 5, 6 by combining a Vanishing Theorem
and a restriction technique. For fixed n, k, the Vanishing Theorem gives an explicit set
of Fourier coefficients which determine S%. The restriction of Siegel modular forms to
elliptic modular forms reveal linear relations among these Fourier coefficients. Sometimes
we produce enough relations to determine S¥. We discuss conjectures to the effect that
this method always computes the dimension of S¥.

Edited by Siegfried Bocherer
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