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The 
onferen
e was organized by Cameron Gordon (Austin, Texas, USA), Wolfgang L�u
k

(M�unster, Germany), and Bob Oliver (Paris, Fran
e). About �fty mathemati
ians|from

all over Europe, North Ameri
a, and Australia|attended the meeting.

A highlight of the program was a series of three le
tures delivered by Martin R. Bridson

(London, UK) on geometri
 group theory. In line with the well-established tradition of

the \Topologie Tagung", the other sixteen talks 
overed a wide variety of areas of 
urrent

resear
h in algebrai
 topology and related �elds|su
h as stable homotopy theory, algebrai


K- and L-theory, L

2

-invariants, p-
ompa
t groups, three and four dimensional manifolds,

and geometri
 group theory.

With an average of four one-hour le
tures a day, the parti
ipants also had plenty of time

for dis
ussion and resear
h. As usual the sta� of the Mathematis
hes Fors
hungsinstitut

Oberwolfa
h provided all the ideal 
onditions for a su

essful meeting.
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Abstra
ts

Le
tures on Geometri
 Group Theory

Martin R. Bridson

1. The Universe of Geometri
 Group Theory

What is geometri
 group theory: what are the mutual bene�ts of its intera
tions

with other areas of mathemati
s; what are some of the main issues, and why; why is

un
onstrained group theory arbitrarily hard (in a quanti�able sense) and what are reason-

able 
onstraints that lead to a tra
table, ri
h and e�e
tive theory; whi
h 
lasses of groups

demand spe
ial attention, and why???

A brief review of why �nitely presentations of groups are the natural obje
ts of study.

The heart of 
ombinatorial group theory: the word, 
onjuga
y and isomorphism problems

and their geometri
/topologi
al origins (Dehn 1912). Topologi
al group theory: topologi
al

models of groups { the standard 2-
omplex, its strengths and weaknesses, ambiguity, strate-

gies for improvement; K(�; 1), �niteness issues; manifold models, geometri
 properties

(e.g. symple
ti
, 
omplex, K�ahler), aspheri
al models, uniqueness issues (Borel 
onje
ture

et
.).

Naturally arising 
lasses of groups in the above 
ontext: 1-relator groups, 3-manifold

groups, K�ahler groups, Thompson's groups.

Geometri
 Group Theory: Strand 1 { illuminating groups and spa
es by studying (and


onstru
ting) group a
tions (preferably by isometries). Complexes of groups. Examples of


ore algebrai
 problems solved by the Strand 1 approa
h.

Strand 2 { �nitely generated groups as geometri
 obje
ts (�a la Gromov). Quasi-isometries

and intrinsi
 geometry. Limits and ultralimits; the polynomial growth theorem (sket
h of

proof, emphasis on the synthesis of approa
hes [GH-limits, Montgomery-Zippin theorem,

Jordan, Tits℄). Quasi-isometri
 rigidity. Asymptoti
 
ones of free groups (when
e hyper-

boli
 groups). Spe
ial 
lasses emerging: nilpotent groups, hyperboli
 groups.

Conne
ting the 
ore of 
ombinatorial group theory to geometry: the word problem as

measured by Dehn fun
tions; 
onne
tion to isoperimetri
al properties of manifolds via the

Filling Theorem; the isoperimetri
al spe
trum; the 
lear demar
ation of hyperboli
 groups

(again).

The universe of groups with two sides of simple development (the amenable side of the

universe and the hyperboli
 side), with wild interior (\here there are dragons").

The isolation of the 
lass of hyperboli
 groups: hyperboli
 versus atoroidal, 
f. 3-manifold

theory. What other ideas enter from 3-manifold theory? JSJ de
omposition, automor-

phisms of (hyperboli
) groups; the spe
ial role of mapping 
lass groups and automorphism

groups of free groups.

2. De
ision Problems, Non-Positive Curvature and Subgroups

We investigate how 
omplex the universe of groups be
omes as one moves beyond hy-

perboli
 groups in the dire
tion of non-positive 
urvature. Moving in this dire
tion, we

fo
us on two fundamental questions:

* how 
an we determine when groups or spa
es are isomorphi
?

* what horrors 
an lurk among the subgroups of benign groups?
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The many properties of hyperboli
 groups; the hope that the next 
onstraint on the word

problem may have similar impa
t to the linear isoperimetri
al inequality de�ning hyper-

boli
 groups. Positive and negative results. Automati
 groups versus non-positive 
urva-

ture. CAT(0) spa
es (�a la Alexandrov), the group theoreti
 properties of their groups of

isometries (no proofs). Proof that CAT(0) implies a quadrati
 isoperimetri
al inequality.

Quasi�
ation of CAT(0) { semihyperboli
 ideas, 
ombability.

What does it mean for a problem to be unde
idable? Re
ursive and r.e. sets of integers,

en
odings into groups, the Higman embedding theorem. Proof (given the Higman theorem)

of the existen
e of �nitely presented groups with unsolvable word problem. Promoting this

to the unde
idability of the isomorphism problems for groups (proof) and manifolds of

dimension 4 and above (sket
h).

Explanation of the 
onje
tures for 3-manifolds, namely that the word, 
onjuga
y and

isomorphism problems should be solvable in the 
lass of 3-manifold groups, and that the

homeomorphism problem should be solvable for 
ompa
t 3-manifolds. Note that all of these

would follow (in a highly non-trivial manner) from a solution to Thurston's Geometrization

Conje
ture.

Theorem (Farrell-Jones; Sela). The homeomorphism problem is solvable in the 
lass of

fundamental groups of 
losed negatively 
urved manifolds of dimension � 5.

Conje
ture. The homeomorphism problem for 
losed non-positively 
urved manifolds is

unsolvable in dimensions 4 and above.

Theorem (MRB). The isomorphism problem is unsolvable in the 
lass of 
ombable groups.

Sket
h of 
onstru
tion and proof.

Examples and theorems to illustrate the deli
a
y of de
iding whi
h subgroups of semihy-

perboli
 groups are themselves semihyperboli
. Positive results in low dimensions, tame-

ness and wildness results in higher dimensions.

3. Some Gems of the Theory, and Aspe
ts of Rigidity

Mostow rigidity, automorphisms of hyperboli
 groups, the theorems of Rips-Sela and

Paulin. The spe
ial role of mapping 
lass groups and (outer) automorphism groups of free

groups.

The various manifestations of SL(2;Z) and the natural families of generalization to whi
h

they lead: Thompson's groups; SL(n;Z) (arithmeti
 latti
es,: : : ); mapping 
lass groups;

(outer) automorphism groups of free groups.

A detailed list of some of the many levels to the analogies between latti
es (parti
ularly

SL(n;Z)), mapping 
lass groups, and (outer) automorphism groups of free groups { sket
h

ideas of proofs where possible.

Symmetri
 spa
e / Tei
hm�uller spa
e / Outer spa
e. The isometry-rigidity theorems of

Tits, Royden, N. Ivanov, and Bridson-Vogtmann.

Rigidity manifests in the absen
e of outer automorphisms: the theorems of Bridson-

Vogtmann and Ivanov, analogous to Mostow's work 
on
erning latti
es. Commensurators.

Super-rigidity: rigidity for maps from latti
es to mapping 
lass groups and automorphism

groups of free groups (Kaimanovi
h, Masur, Farb; Bestvina, Fujiwara; Bridson, Farb) and

between the latter 
lasses of groups (Bridson-Vogtmann). Zimmer programme, a
tions on

the 
ir
le; quasi-isometri
 rigidity; property (T), et
.
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p-
ompa
t groups as framed manifolds

Tilman Bauer

Every 
ompa
t Lie group G 
omes with a 
anoni
al framing of its tangent bundle given

by left translation of a basis of its Lie algebra. Hen
e it gives rise to an element [G℄ in the

stable homotopy groups of spheres by means of the Thom-Pontryagin 
onstru
tion. It is

possible to 
onstru
t this maps less geometri
ally using a stable transfer map

BG

g

! BH

h

whi
h is de�ned whenever H is a 
losed subgroup of G. The element [G℄ is then given as

the 
omposite

S

d

! BG

g

! Bf1g

+

= S

0

:

This 
onstru
tion 
an be extended to the 
lass of p-
ompa
t groups. Indeed, following

ideas of J. Klein, for any 
onne
ted p-
ompa
t group G, we have

S

G

:= (�

1

+

G)

hG

' S

d

where the G-a
tion is given by right multipli
ation and d is the mod p homologi
al di-

mension of G. Everything is understood to be formed in the p-
omplete 
ategory. This

spe
trum still has a left a
tion of G whi
h behaves like the adjoint a
tion of a Lie group on

the one-point 
ompa
ti�
ation of its Lie algebra. A suitable analog of BG

g

should therefore

be de�ned as the homotopy orbit spe
trum of S

G

under this a
tion, and a transfer map is


onstru
ted as the G-homotopy orbits of the map

S

G

! (�

1

+

G)

hH

' G ^

H

S

H

:

Homotopy 
lasses arising in this way from p-
ompa
t groups in
lude �

1

at any prime and �

1

at p = 3; 5.

Moreover, every p-
ompa
t groups satis�es a self-duality equivalen
e

�

1

+

G ' S

G

^DG

+

and, for a monomorphism H < G,

G ^

H

S

H

' D(G=H)

+

^ S

G

:

This last identity, for H = S

1

, is the missing pie
e of information for proving the following,

using surgery theory and some stru
ture theory of p-
ompa
t groups:

Theorem (Kit
hloo, Notbohm, Pedersen, B.). Every quasi�nite loop spa
e is homotopy

equivalent to a 
losed, 
ompa
t, smooth, parallelizable manifold.

The hyperboli
ity of the 
urve 
omplex

Brian Bowdit
h

The 
omplex of 
urves is a simpli
ial 
omplex, C, asso
iated to a 
ompa
t surfa
e. Its

vertex set is the set of homotopy 
lasses of simple 
losed 
urves, and a (�nite) subset of

verti
es is deemed to span a simplex if the 
orresponding 
urves 
an be realised disjointly.

This 
omplex was originally introdu
ed by Harvey, and has been studied by many authors

sin
e. For example it has been used by Harer to investigate the 
ohomology of the mapping


lass group,M , and by Ivanov to study the outer automorphism group ofM . More re
ently

the large s
ale geometry of C has been exploited. In parti
ular, Masur and Minsky have

shown that (ex
ept in 
ertain trivial 
ases) it is hyperboli
 in the sense of Gromov. In this
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talk we outline a simpli�ed proof of this result. The arguments are more 
ombinatorial

in nature, and are based on an analysis of interse
tion numbers. As a 
onsequen
e one


an obtain 
ertain re�nements. For example, the hyperboli
ity 
onstant is bounded above

by a logarithmi
 fun
tion of the 
omplexity (the genus plus the number of pun
tures).

One 
an also obtain a fairly expli
it des
ription of quasigeodesi
s in terms of interse
tion

numbers. It is hoped that these methods might lead to further understanding of this


omplex, for example, its hierar
hi
al �niteness properties as laid out in the se
ond of

Masur and Minsky's papers.

Homotopy self-equivalen
es of 4-manifolds

Ian Hambleton

(joint work with Matthias Kre
k)

Let M be a 
losed, oriented topologi
al 4-manifold. We �x a base-point x

0

in M and


onsider the group Aut(M) of homotopy 
lasses of orientation-preserving homotopy self-

equivalen
es f : M !M whi
h �x the base-point. The group Aut(M) is a natural invari-

ant, but is not well understood ex
ept in the simplest 
ases.

Te
hniques from surgery theory 
an be used to give a 
on
eptual des
ription of Aut(M),

under fairly general assumptions, in terms of bordism groups and the base-point preserving

automorphisms Aut(B) of the 2-type of M . The answer is expressed in a 
ommutative

braid diagram.

If M is a spin manifold and �

1

(M;x

0

) is a �nite group of odd order, the braid diagram


an be 
omputed to give a formula:

Aut(M) = H

2

(M ;Z=2)o Isom(�

1

(M); �

2

(M); k

M

; s

M

)

as a semi-dire
t produ
t of H

2

(M ;Z=2), and the isometries of the interse
tion form s

M

on �

2

(M) respe
ting the a
tion of �

1

(M;x

0

) and the k-invariant k

M

. For simply-
onne
ted

4-manifolds the �rst 
omplete proof of this formula was obtained by Co
hran-Habegger

using homotopy-theoreti
 methods. The non-simply-
onne
ted results are new. Our ap-

proa
h is based on studying the group of h-
obordisms between M and itself, and the

results for this part also apply to smooth 4-manifolds.

The S
ott-Wiegold 
onje
ture and appli
ations to Dehn surgery

James Howie

Theorem. Let p; q; r be integers greater than 1, and W = W (x; y; z) an element of the

free group hx; y; zi. Then the group

G = hx; y; zjx

p

= y

q

= z

r

=W (x; y; z) = 1i

is nontrivial.

This answers in the aÆrmative a question of Jim Wiegold (Kourovka Notebook, Prob-

lem 5.53 (1976), attributed to Peter S
ott). The problem had also been raised by Fintushel

and Stern (1980) and Gordon (1983) in 
onne
tion with Dehn Surgery on knots in S

3

. In

this 
onne
tion the following 
onje
ture is of interest.

Conje
ture (Cabling 
onje
ture, Gonzalez-A
u~na and Short, 1986). If Dehn surgery on

a knot in S

3

yields a non-prime 3-manifold, then the knot is a 
able knot and the surgery

slope is that of the 
abling annulus.

5



In the spe
ial situation des
ribed in the 
onje
ture, it is well known that there are

pre
isely two prime fa
tors, (at least) one of whi
h is a lens spa
e. So the 
onje
tured

upper bound on the number of prime fa
tors is 2.

An easy 
onsequen
e of the theorem is the following:

Corollary. Let M = M

1

# � � �#M

n

be a 3-manifold obtained by Dehn surgery on a knot

in S

3

. Then at least n� 2 of the M

i

are homology spheres.

Combining this with a result of Valdez S�an
hez and Sayari that says at least n � 1 of

the M

i

are lens spa
es, we get an upper bound of 3 prime fa
tors. More pre
isely:

Corollary. Let M be as above. Then n � 3. Moreover, if n = 3 then, up to renumbering,

M

1

is a homology sphere, M

2

and M

3

are lens spa
es, and j�

1

M

2

j is 
oprime to j�

1

M

3

j.

Sket
h proof of Theorem. It is easy to redu
e to the 
ase where p; q; r are distin
t primes,

and the exponent-sums of x; y; z in W are all equal to 1.

In this 
ase, we prove nontriviality of G by produ
ing a representation

� : G! SO(3) = SU(2)=f�Ig = S

3

=f�1g

su
h that the images of x; y; z have orders p; q; r respe
tively.

Assuming there is no su
h representation, we 
an 
onstru
t a smooth, SO(3)-equivariant

map

 : S

2

� S

2

� S

2

! S

2

as follows. Allow ea
h of the variables X; Y; Z to vary inside an appropriate 
onjuga
y


lass (

�

=

S

2

) in S

3

. De�ne  (X; Y; Z) to be the S

2

-
oordinate of

W (X; Y; Z) 2 S

3

n f�1g

�

=

S

2

� R:

Alternatively, we may think of  as a 2-parameter family of smooth maps

 

X;Y

: S

2

! S

2

;

with parameters X; Y 2 S

2

.

The degrees of the maps in this family are 
learly independent of the 
hoi
e of param-

eters X; Y . If X = �Y , then the map  

X;Y

is S

1

-equivariant with respe
t to the rotation

a
tion of S

1

on S

2

with �xed points �X. The degree of an S

1

-equivariant map S

2

! S

2

is determined by the images of the two �xed-points, so 
an be easily 
al
ulated.

A �nal observation is that we 
an set everything up in su
h a way that the degrees of the

two equivariant maps 
orresponding to X = �Y are �1 and +1 respe
tively, 
ontradi
ting

invarian
e of degree. �

Heegaard splittings, the virtually Haken 
onje
ture and property (�)

Mar
 La
kenby

This talk explained the intera
tion of the seemingly unrelated areas appearing in the title.

Its fo
us was the following three important 
onje
tures in 3-manifold theory: the virtually

Haken 
onje
ture, the positive virtual b

1


onje
ture and the virtually �bred 
onje
ture.

The main result was:

Theorem. LetM be a 
ompa
t orientable irredu
ible 3-manifold, with boundary a (possibly

empty) 
olle
tion of tori. Suppose that

(1) �

1

(M) fails to have Property (�), and
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(2) M has non-zero strong Heegaard gradient.

Then M is virtually Haken.

Property (�) is a 
on
ept from geometri
 group theory, introdu
ed by Lubotzky and

Zimmer. It has many equivalent de�nitions, in terms of di�erential geometry, graph theory

and representation theory. Lubotzky and Sarnak proposed the following:

Conje
ture. The fundamental group of a 
losed hyperboli
 3-manifold fails to have Prop-

erty (�).

The strong Heegaard gradient is

lim inf

i

f�

sh

�

(M

i

)=d

i

:M

i

!M is a degree d

i


overg

where

�

sh

�

(M

i

) = minf��(F ) : F is a strongly irredu
ible Heegaard surfa
e for M

i

g:

This is at least the Heegaard gradient whi
h is

inf

i

f�

h

�

(M

i

)=d

i

:M

i

!M is a degree d

i


overg

where

�

h

�

(M

i

) = minf��(F ) : F is a Heegaard surfa
e for M

i

g:

Conje
ture. The strong Heegaard gradient of a 
losed hyperboli
 3-manifold is non-zero.

Conje
ture. The Heegaard gradient of a 
losed hyperboli
 3-manifold is zero if and only

if it is virtually �bred.

Thus, either of the above 
onje
tures, together with the Lubotzky-Sarnak 
onje
ture,

would imply the virtually Haken 
onje
ture for hyperboli
 3-manifolds.

I then gave a result, establishing geometri
 
onditions on a �nitely presented group

that are equivalent to having positive virtual b

1

. These are very similar to the equivalent

de�nitions of `not (�)'. This has appli
ations in 3-manifold theory, in
luding:

Theorem. Let M be a 
losed orientable 3-manifold with a negatively 
urved Riemannian

metri
. Suppose that, for some 
olle
tion of �nite regular 
overs fM

i

! Mg with degree

d

i

, inf

i

�

h

�

(M

i

)=

p

d

i

= 0. Then M satis�es the positive virtual b

1


onje
ture.

The Morava K-theory of spa
es related to BO

Gerd Laures

(joint work with Nitu Kit
hloo and W. Stephen Wilson)

We 
onsider the Morava K-homology Hopf algebras of the 
onne
tive 
overs BO hki

of BO. For k = 1 or 2 they have been 
omputed in the 80's by Wilson. The 
ases

BSpin and BO h8i have been des
ribed for Morava K(1) and K(2) by Ando, Hopkins

and Stri
kland in terms of the universal rings of real k-stru
tures. A result of Kit
hloo

and myself shows that the 
on
ept of real k-stru
tures does not apply to des
ribe all

Morava K(n) of 
onne
tive 
overs.

Espe
ially the 
omputation of the higher MoravaK-homologies of BO h8i turns out to be

a hard problem. In our work we look at all maps and spa
es of all 
onne
tive 
overs of the

in�nite loop spa
es in the spe
trum of KO. Our main tool is the bar spe
tral sequen
e to


ompute these maps. It turns out that on
e we look at a 
onne
tive 
over E of a suÆ
iently
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large 
onne
tive 
over B then the map into the Eilenberg-Ma
Lane spa
es be
ome trivial

in homology and we obtain a short exa
t sequen
e of Hopf algebras (K = K(n))

K

�

�! K

�

F �! K

�

E �! K

�

B �! K

�

:

Sin
e the �bre F has a �nite Postnikov system its homology is known from results of

Ravenel and Wilson. This result leaves us with only a few spa
es to 
ompute. We use the

�bration of in�nite loop spa
es asso
iated to the �bration

�bo

�

�! bo �! bu

to get our hands on the spe
tral sequen
es. It turns out that we had to 
ompute almost

all spa
es in order to get to the desired spa
e BO h8i. Our main theorem is (p = 2)

Theorem. The maps

K(F

2

; 2) �! K(Z; 3) �! BO h8i �! BSpin �! K(Z; 4)

2

�! K(Z; 4)

give rise to an exa
t sequen
e of Hopf algebras in Morava K-homology. As an algebra,

K

�

BO h8i is polynomial tensor with K

�

K(Z; 3) and 
on
entrated in even degrees.

Te
hniques have been developed to take information of the Morava K-theory of a spa
e

and use it to 
ompute its BP 
ohomology. This done in the last part of the talk.

On the geometrization of 3-dimensional orbifolds

Bernhard Leeb

(joint work with Mi
hel Boileau and Joan Porti)

We dis
uss joint work with Boileau and Porti regarding the geometrization of 
ompa
t


onne
ted orientable 3-orbifolds. This is an aspe
t of Thurston's Geometrization Program,

and geometrization here refers to lo
ally homogeneous Riemannian metri
s.

Our main result is that a small orbifold with non-empty singular lo
us is geometri
.

Together with known results this implies that irredu
ible atoroidal orbifolds with non-

empty singular lo
us are geometri
, i.e. the so-
alled Orbifold Theorem. Thurston had

formulated it in 1982 and outlined a strategy for its proof whi
h had remained basi
 for

all later work on the topi
.

Appli
ations in
lude (i) the Generalized Smith Conje
ture, that non-free a
tions of �-

nite groups on the 3-sphere by orientation preserving di�eomorphisms are 
onjugate to

orthogonal a
tions, and (ii) the geometrization of su
h a
tions on hyperboli
 manifolds.

Our argument involves a study of representation varieties resp. deformation spa
es of


one stru
tures and methods from the geometry of metri
 spa
es with 
urvature bounded

below. A basis for the whole approa
h is the Hyperbolization Theorem for Haken manifolds.

The role of the Haken 
ondition is played in the orbifold 
ase by the non-emptiness of the

singular lo
us. One starts by putting a 
omplete hyperboli
 stru
ture on the smooth part

of the orbifold and deforms it to a geometri
 stru
ture on the orbifold.
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p-lo
al groups: the homotopy of p-fusion systems

Ran Levi

(joint work with Carles Broto and Bob Oliver)

In this talk we give a preliminary report on a joint proje
t with Broto and Oliver on

the theory of p-lo
al 
ompa
t groups. These are algebrai
ally de�ned obje
ts whi
h admit

a \
lassifying spa
e". The family of spa
es thus arising are expe
ted to have homotopy

theoreti
 properties whi
h resemble those shared by p-
ompleted 
lassifying spa
es of 
om-

pa
t Lie groups and p-
ompa
t groups. The motivation for the de�nition 
omes from

the �nite analogue { p-lo
al �nite groups. The main 
hange is repla
ing �nite p-groups

in the de�nition of the �nite 
ase by dis
rete p-toral groups, i.e., extension of a dis
rete

p-torus by a �nite p-group. As one might expe
t though, giving up �niteness introdu
es

an array of problems whi
h we will address. The main result we will present is that all


ompa
t Lie groups as well as all p-
ompa
t groups give rise to p-lo
al 
ompa
t groups

whose 
lassifying spa
es 
oin
ide up to homotopy with the p-
ompleted 
lassifying spa
e of

the original obje
t. We will also give an example of a family of exoti
 2-lo
al �nite groups

arising from the family of fusion systems introdu
ed by Benson. These 2-lo
al groups 
an

be organized in a sequen
e whose \
olimit" is a 2-lo
al 
ompa
t group whi
h we identify

as the Dwyer-Wilkerson spa
e BDI(4) { the spa
e realizing the rank 4 Di
kson algebra at

the prime 2.

A �niteness result for Heegaard splittings of 3-manifolds

Martin Lustig

(joint work with Yoav Moriah)

We show that for a given 3-manifold and a given Heegaard splitting there are �nitely

many preferred de
omposing systems of 3g � 3 disjoint essential disks. These are 
har-

a
terized by a 
ombinatorial 
riterion whi
h is a slight strengthening of Casson-Gordon's

re
tangle 
ondition. This is in 
ontrast to the fa
t that in general there 
an exist in�nitely

many su
h systems of disks whi
h satisfy just the Casson-Gordon re
tangle 
ondition.

Re
ent progress on the Bass 
onje
ture

Guido Mislin

(joint work with Jon Berri
k and Indira Chatterji)

For ea
h �nitely generated proje
tive (left) ZG-module P , there exists an idempotent

matrix (m

ij

) =M 2M

n

(ZG) su
h that P is isomorphi
 to the image under right multipli-


ation ZG

n

! ZG

n

by M . Writing [ZG;ZG℄ for the additive subgroup of ZG generated

by the elements gh � hg (g; h 2 G), we identify ZG=[ZG;ZG℄ with

L

[s℄2[G℄

Z � [s℄, where

[G℄ is the set of 
onjuga
y 
lasses of elements of G. The Hattori-Stallings rank r

P

is then

de�ned by

r

P

=

n

X

i=1

m

ii

+ [ZG;ZG℄ =

X

s2[G℄

r

P

(s)[s℄ 2

M

[s℄2[G℄

Z � [s℄:

In 1976, H. Bass made the following 
onje
ture.
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Conje
ture (Classi
al Bass Conje
ture). For any �nitely generated proje
tive ZG-module

P , the values r

P

(s) 2 Z of the Hattori-Stallings rank r

P

are zero for s 2 G n f1g.

We show that groups that satisfy the Bost 
onje
ture satisfy the 
lassi
al Bass 
onje
ture

too, and indeed a more general versions thereof that we 
all the `

1

Bass 
onje
ture. The

proof is obtained via a 
hain of dedu
tions, des
ribing a tour from geometri
 fun
tional

analysis, through operator algebra K-theory, algebrai
 topology and 
ombinatorial group

theory (we refer to La�orgue's work for the de�nition of the Bost assembly map).

Theorem. Let G be a 
ountable dis
rete group for whi
h the Bost assembly map

�

G

�

: K

G

�

(EG)! K

top

�

(`

1

(G))

is rationally an epimorphism in degree 0. Then the `

1

Bass 
onje
ture holds for G.

Known information on the Bost 
onje
ture implies for instan
e the following.

Corollary. Amenable groups satisfy the 
lassi
al Bass 
onje
ture.

The proof of the theorem involves a natural embedding of G in an a
y
li
 group A(G)

that is inje
tive on 
onjuga
y 
lasses, with the 
entralizer of any �nitely generated abelian

subgroup of A(G) a
y
li
 as well. This allows us to 
ontrol the image of the universal tra
e

T

1

: K

0

(`

1

(G))! HH

0

(`

1

(G)):

Some appli
ations of non
ommutative lo
alization in topology

Andrew Rani
ki

The (Cohn) lo
alization of a non
ommutative ring A inverting a set � of morphisms

of f.g. proje
tive A-modules is a ring �

�1

A with a universally �-inverting morphism

A ! �

�1

A. Amalgamated free produ
ts and HNN extensions are spe
ial 
ases of non-


ommutative lo
alization. The appli
ations of non
ommutative lo
alization to topology

involve an analogy between the geometri
 properties of fundamental domains of 
overs and

the algebrai
 properties of modules and quadrati
 forms over triangular matrix rings.

The 1980's results of S
ho�eld and Vogel on the algebrai
 K- and L-theory of �

�1

A have

been re
ently generalized by Neeman and myself, to obtain lo
alization exa
t sequen
es of

the type

� � � ! K

i

(A)! K

i

(�

�1

A)! K

i

(A;�)! K

i�1

(A)! : : : ;

� � � ! L

i

(A)! L

i

(�

�1

A)! L

i

(A;�)! L

i�1

(A)! : : :

(http://arXiv.org/abs/math.RA/0109118) in the 
ase of inje
tive A! �

�1

A whi
h are

`stably 
at' :

Tor

A

�

(�

�1

A;�

�1

A) = 0 :

The relative groups are the algebrai
 K- and L-groups of homologi
al dimension 1 �-

torsion A-modules. The lo
alization exa
t sequen
es give new proofs of the 1970's results

of Waldhausen and Cappell on the algebrai
 K- and L-groups of generalized free produ
ts,

with appli
ations to 
odimension 1 splitting properties of manifolds.
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Algebrai
 K-theory of group rings and topologi
al 
y
li
 homology

Holger Rei
h

(joint work with Wolfgang L�u
k, John Rognes and Mar
o Varis
o)

We use topologi
al 
y
li
 homology and the 
y
lotomi
 tra
e to dete
t elements in

K

n

(Z[G℄)


Z

Q , the rationalized higher algebrai
 K-theory groups of integral group rings.

Modulo a 
ertain 
onje
ture in number theory and under mild homologi
al �niteness 
on-

ditions on the group G, we prove that the algebrai
 K-theory assembly map for the family

of �nite subgroups is rationally inje
tive. This vastly generalizes a result of B�okstedt,

Hsiang and Madsen, and leads to a 
on
rete des
ription of a large dire
t summand inside

K

n

(Z[G℄)


Z

Q in terms of group homology. Along the way we also prove integral splitting

results for THH and TC assembly maps with arbitrary 
oeÆ
ients.

A Quillen adjun
tion 
lose to di�erential graded 
ommutative algebras

Birgit Ri
hter

Starting from the well-known Dold-Kan 
orresponden
e between simpli
ial modules and


hain 
omplexes, we show that the inverse of the normalization fun
tor, D, from 
hain


omplexes to simpli
ial modules sends di�erential graded 
ommutative algebras to sim-

pli
ial E

1

-algebras. We prove this by an expli
it 
onstru
tion of an E

1

-operad, whi
h

a
ts on D(X) for all di�erential graded 
ommutative algebras X. This operad is a slight

generalization of an endomorphism operad and we prove that this operad is a
y
li
.

Di�erential graded 
ommutative algebras do not possess any good homotopy 
ategory

in 
hara
teristi
 di�erent from zero. So the natural idea is to pass to a homotopy invariant

analog of 
ommutative algebras, namely di�erential graded E

1

-algebras.

With the help of the 
on
ept of parametrized operads we are able to show that the

fun
tor D maps di�erential graded E

1

-algebras to simpli
ial E

1

-algebras. Here the E

1

-

operad on the simpli
ial side is 
onstru
ted as an amalgamation of the E

1

-operad for the

fun
tor D and the operad whi
h a
ts on the di�erential graded input.

The fun
tor whi
h assigns an Eilenberg-Ma
Lane spe
trum to a simpli
ial module pro-

longs the fun
tor D and allows us to pass from di�erential graded 
ommutative algebras

(resp. E

1

-algebras) to the 
ategory of E

1

ring spe
tra.

It is easy to see that the fun
tor D possesses a left adjoint on the level of E

1

-algebras

and this adjoint fun
tor pair is in fa
t a Quillen adjun
tion, i.e., it indu
es an adjun
tion

on the 
orresponding homotopy 
ategories. These homotopy 
ategories 
an be obtained

with the help of Markus Spitzwe
k's 
on
ept of semi model 
ategories.
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L

2

-invariants and geometri
 group theory

Roman Sauer

By analyti
 means D. Gaboriau extended the notion of L

2

-Betti numbers of groups to

dis
rete measured groupoids. Ea
h measure preserving a
tion of a 
ountable group on a

�nite measure spa
e gives rise to su
h a groupoid.

We provide an alternative de�nition of L

2

-Betti numbers of dis
rete measured groupoids

by means of homologi
al algebra whi
h still has the good properties of Gaboriau's de�ni-

tion.

Using that, we 
an give an algebrai
 proof of Gaboriau's theorem whi
h says that L

2

-

Betti numbers of measure equivalent groups 
oin
ide up to a 
onstant fa
tor. Here measure

equivalen
e is a measure-theoreti
 analog of quasi-isometry, and it 
an be expressed in terms

of isomorphisms of 
ertain groupoids. An important example of measure equivalent groups

is given by dis
rete subgroups with �nite 
o-volumes in a lo
ally 
ompa
t group.

The methods in the new proof of Gaboriau's theorem 
an also be applied to Novikov-

Shubin invariants. They turn out not to be invariant under measure equivalen
e but we


an show the following theorem.

Theorem. The Novikov-Shubin invariants of quasi-isometri
 amenable groups whi
h admit

a �nite model for the 
lassifying spa
e of proper a
tions 
oin
ide.

Galois symmetries of 4-manifolds and equivariant stable homotopy theory

Markus Szymik

An equivariant extension of the Bauer-Furuta invariants of 
losed smooth 4-manifoldsX

has been dis
ussed. Whenever a 
ompa
t Lie group G a
ts on X preserving a 
omplex spin

stru
ture �

X

on X, the automorphism group of (X; �

X

) 
ontains an extension G of G by

the 
ir
le group T. The equivariant invariant is the G -equivariant stable homotopy 
lass

of the Seiberg-Witten monopole map asso
iated to (X; �

X

).

If G is �nite and a
ts freely on X, the invariants of the quotient 4-manifolds X=H for

subgroups H 6 G are 
ontained in the equivariant invariants of X. A 
omparison map

sends the latter to all the former. This map is an isomorphism away from the order of G.

Computations show that it is neither surje
tive nor inje
tive in general. On the one hand,

this implies relations among the non-equivariant invariants. On the other hand, it shows

the potential of the equivariant invariants to 
ontain more information.

Edited by Mar
o Varis
o
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