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The conference was organized by Cameron Gordon (Austin, Texas, USA), Wolfgang Liick
(Miinster, Germany), and Bob Oliver (Paris, France). About fifty mathematicians—from
all over Europe, North America, and Australia—attended the meeting.

A highlight of the program was a series of three lectures delivered by Martin R. Bridson
(London, UK) on geometric group theory. In line with the well-established tradition of
the “Topologie Tagung”, the other sixteen talks covered a wide variety of areas of current
research in algebraic topology and related fields—such as stable homotopy theory, algebraic
K- and L-theory, L?-invariants, p-compact groups, three and four dimensional manifolds,
and geometric group theory.

With an average of four one-hour lectures a day, the participants also had plenty of time
for discussion and research. As usual the staff of the Mathematisches Forschungsinstitut
Oberwolfach provided all the ideal conditions for a successful meeting.



Abstracts

Lectures on Geometric Group Theory
MARTIN R. BRIDSON

1. THE UNIVERSE OF GEOMETRIC GROUP THEORY

What is geometric group theory: what are the mutual benefits of its interactions
with other areas of mathematics; what are some of the main issues, and why; why is
unconstrained group theory arbitrarily hard (in a quantifiable sense) and what are reason-
able constraints that lead to a tractable, rich and effective theory; which classes of groups
demand special attention, and why??7?

A brief review of why finitely presentations of groups are the natural objects of study.
The heart of combinatorial group theory: the word, conjugacy and isomorphism problems
and their geometric/topological origins (Dehn 1912). Topological group theory: topological
models of groups — the standard 2-complex, its strengths and weaknesses, ambiguity, strate-
gies for improvement; K (T',1), finiteness issues; manifold models, geometric properties
(e.g. symplectic, complex, Kéhler), aspherical models, uniqueness issues (Borel conjecture
etc.).

Naturally arising classes of groups in the above context: 1-relator groups, 3-manifold
groups, Kéahler groups, Thompson’s groups.

Geometric Group Theory: Strand 1 — illuminating groups and spaces by studying (and
constructing) group actions (preferably by isometries). Complexes of groups. Examples of
core algebraic problems solved by the Strand 1 approach.

Strand 2 — finitely generated groups as geometric objects (a la Gromov). Quasi-isometries
and intrinsic geometry. Limits and ultralimits; the polynomial growth theorem (sketch of
proof, emphasis on the synthesis of approaches [GH-limits, Montgomery-Zippin theorem,
Jordan, Tits]). Quasi-isometric rigidity. Asymptotic cones of free groups (whence hyper-
bolic groups). Special classes emerging: nilpotent groups, hyperbolic groups.

Connecting the core of combinatorial group theory to geometry: the word problem as
measured by Dehn functions; connection to isoperimetrical properties of manifolds via the
Filling Theorem; the isoperimetrical spectrum; the clear demarcation of hyperbolic groups
(again).

The universe of groups with two sides of simple development (the amenable side of the
universe and the hyperbolic side), with wild interior (“here there are dragons”).

The isolation of the class of hyperbolic groups: hyperbolic versus atoroidal, cf. 3-manifold
theory. What other ideas enter from 3-manifold theory? JSJ decomposition, automor-
phisms of (hyperbolic) groups; the special role of mapping class groups and automorphism
groups of free groups.

2. DEcISION PROBLEMS, NON-POSITIVE CURVATURE AND SUBGROUPS

We investigate how complex the universe of groups becomes as one moves beyond hy-
perbolic groups in the direction of non-positive curvature. Moving in this direction, we
focus on two fundamental questions:

* how can we determine when groups or spaces are isomorphic?

* what horrors can lurk among the subgroups of benign groups?



The many properties of hyperbolic groups; the hope that the next constraint on the word
problem may have similar impact to the linear isoperimetrical inequality defining hyper-
bolic groups. Positive and negative results. Automatic groups versus non-positive curva-
ture. CAT(0) spaces (a la Alexandrov), the group theoretic properties of their groups of
isometries (no proofs). Proof that CAT(0) implies a quadratic isoperimetrical inequality.
Quasification of CAT(0) — semihyperbolic ideas, combability.

What does it mean for a problem to be undecidable? Recursive and r.e. sets of integers,
encodings into groups, the Higman embedding theorem. Proof (given the Higman theorem)
of the existence of finitely presented groups with unsolvable word problem. Promoting this
to the undecidability of the isomorphism problems for groups (proof) and manifolds of
dimension 4 and above (sketch).

Explanation of the conjectures for 3-manifolds, namely that the word, conjugacy and
isomorphism problems should be solvable in the class of 3-manifold groups, and that the
homeomorphism problem should be solvable for compact 3-manifolds. Note that all of these
would follow (in a highly non-trivial manner) from a solution to Thurston’s Geometrization
Conjecture.

Theorem (Farrell-Jones; Sela). The homeomorphism problem is solvable in the class of
fundamental groups of closed negatively curved manifolds of dimension > 5.

Conjecture. The homeomorphism problem for closed non-positively curved manifolds is
unsolvable in dimensions 4 and above.

Theorem (MRB). The isomorphism problem is unsolvable in the class of combable groups.

Sketch of construction and proof.

Examples and theorems to illustrate the delicacy of deciding which subgroups of semihy-
perbolic groups are themselves semihyperbolic. Positive results in low dimensions, tame-
ness and wildness results in higher dimensions.

3. SOME GEMS OF THE THEORY, AND ASPECTS OF RIGIDITY

Mostow rigidity, automorphisms of hyperbolic groups, the theorems of Rips-Sela and
Paulin. The special role of mapping class groups and (outer) automorphism groups of free
groups.

The various manifestations of SL(2, Z) and the natural families of generalization to which
they lead: Thompson’s groups; SL(n,Z) (arithmetic lattices,...); mapping class groups;
(outer) automorphism groups of free groups.

A detailed list of some of the many levels to the analogies between lattices (particularly
SL(n,Z)), mapping class groups, and (outer) automorphism groups of free groups — sketch
ideas of proofs where possible.

Symmetric space / Teichmiiller space / Outer space. The isometry-rigidity theorems of
Tits, Royden, N. Ivanov, and Bridson-Vogtmann.

Rigidity manifests in the absence of outer automorphisms: the theorems of Bridson-
Vogtmann and Ivanov, analogous to Mostow’s work concerning lattices. Commensurators.

Super-rigidity: rigidity for maps from lattices to mapping class groups and automorphism
groups of free groups (Kaimanovich, Masur, Farb; Bestvina, Fujiwara; Bridson, Farb) and
between the latter classes of groups (Bridson-Vogtmann). Zimmer programme, actions on
the circle; quasi-isometric rigidity; property (T), etc.



p-compact groups as framed manifolds
TILMAN BAUER

Every compact Lie group GG comes with a canonical framing of its tangent bundle given
by left translation of a basis of its Lie algebra. Hence it gives rise to an element [G] in the
stable homotopy groups of spheres by means of the Thom-Pontryagin construction. It is
possible to construct this maps less geometrically using a stable transfer map

BG® — BH"

which is defined whenever H is a closed subgroup of G. The element [G] is then given as
the composite

S’ — BG® — B{1}, = S°.
This construction can be extended to the class of p-compact groups. Indeed, following
ideas of J. Klein, for any connected p-compact group G, we have

Sq = (SPG)" ~ §*

where the G-action is given by right multiplication and d is the mod p homological di-
mension of G. Everything is understood to be formed in the p-complete category. This
spectrum still has a left action of G which behaves like the adjoint action of a Lie group on
the one-point compactification of its Lie algebra. A suitable analog of BG® should therefore
be defined as the homotopy orbit spectrum of S under this action, and a transfer map is
constructed as the G-homotopy orbits of the map

Se — (E2G)" ~ G Ay Sq.
Homotopy classes arising in this way from p-compact groups include a; at any prime and 3

at p=3,5.
Moreover, every p-compact groups satisfies a self-duality equivalence

YPG ~ S NDGL
and, for a monomorphism H < G,
G N SH >~ D(G/H)+ A Sg.

This last identity, for H = S!, is the missing piece of information for proving the following,
using surgery theory and some structure theory of p-compact groups:

Theorem (Kitchloo, Nothohm, Pedersen, B.). Every quasifinite loop space is homotopy
equivalent to a closed, compact, smooth, parallelizable manifold.

The hyperbolicity of the curve complex
BRIAN BowDITCH

The complex of curves is a simplicial complex, C, associated to a compact surface. Its
vertex set is the set of homotopy classes of simple closed curves, and a (finite) subset of
vertices is deemed to span a simplex if the corresponding curves can be realised disjointly.
This complex was originally introduced by Harvey, and has been studied by many authors
since. For example it has been used by Harer to investigate the cohomology of the mapping
class group, M, and by Ivanov to study the outer automorphism group of M. More recently
the large scale geometry of C has been exploited. In particular, Masur and Minsky have
shown that (except in certain trivial cases) it is hyperbolic in the sense of Gromov. In this



talk we outline a simplified proof of this result. The arguments are more combinatorial
in nature, and are based on an analysis of intersection numbers. As a consequence one
can obtain certain refinements. For example, the hyperbolicity constant is bounded above
by a logarithmic function of the complexity (the genus plus the number of punctures).
One can also obtain a fairly explicit description of quasigeodesics in terms of intersection
numbers. It is hoped that these methods might lead to further understanding of this
complex, for example, its hierarchical finiteness properties as laid out in the second of
Masur and Minsky’s papers.

Homotopy self-equivalences of 4-manifolds
IAN HAMBLETON
(joint work with Matthias Kreck)

Let M be a closed, oriented topological 4-manifold. We fix a base-point zy in M and
consider the group Aut(M) of homotopy classes of orientation-preserving homotopy self-
equivalences f: M — M which fix the base-point. The group Aut(M) is a natural invari-
ant, but is not well understood except in the simplest cases.

Techniques from surgery theory can be used to give a conceptual description of Aut(M),
under fairly general assumptions, in terms of bordism groups and the base-point preserving
automorphisms Aut(B) of the 2-type of M. The answer is expressed in a commutative
braid diagram.

If M is a spin manifold and m; (M, x,) is a finite group of odd order, the braid diagram
can be computed to give a formula:

Aut(M) = Hy(M;7Z/2) x Isom(my (M), mo(M), ks, Sar)
as a semi-direct product of Hy(M;Z/2), and the isometries of the intersection form sy,
on my (M) respecting the action of 7 (M, x¢) and the k-invariant k,;. For simply-connected
4-manifolds the first complete proof of this formula was obtained by Cochran-Habegger
using homotopy-theoretic methods. The non-simply-connected results are new. Our ap-

proach is based on studying the group of h-cobordisms between M and itself, and the
results for this part also apply to smooth 4-manifolds.

The Scott-Wiegold conjecture and applications to Dehn surgery
JAMES HOWIE

Theorem. Let p,q,r be integers greater than 1, and W = W(x,y, z) an element of the
free group (x,y,z). Then the group

G=(x,y,zlz’ =y?=2" =W(x,y,2) =1)
18 nontrivial.

This answers in the affirmative a question of Jim Wiegold (Kourovka Notebook, Prob-
lem 5.53 (1976), attributed to Peter Scott). The problem had also been raised by Fintushel
and Stern (1980) and Gordon (1983) in connection with Dehn Surgery on knots in S?. In
this connection the following conjecture is of interest.

Conjecture (Cabling conjecture, Gonzalez-Acuna and Short, 1986). If Dehn surgery on
a knot in S® yields a non-prime 3-manifold, then the knot is a cable knot and the surgery
slope is that of the cabling annulus.



In the special situation described in the conjecture, it is well known that there are
precisely two prime factors, (at least) one of which is a lens space. So the conjectured
upper bound on the number of prime factors is 2.

An easy consequence of the theorem is the following:

Corollary. Let M = M#---#M, be a 3-manifold obtained by Dehn surgery on a knot
in S®. Then at least n — 2 of the M; are homology spheres.

Combining this with a result of Valdez Sanchez and Sayari that says at least n — 1 of
the M; are lens spaces, we get an upper bound of 3 prime factors. More precisely:

Corollary. Let M be as above. Then n < 3. Moreover, if n = 3 then, up to renumbering,
M is a homology sphere, My and Mj are lens spaces, and |mMs| is coprime to |m Ms)|.

Sketch proof of Theorem. It is easy to reduce to the case where p, ¢, r are distinct primes,
and the exponent-sums of z,y, 2z in W are all equal to 1.

In this case, we prove nontriviality of G by producing a representation
p:G— SO(3)=SU(2)/{+I} = S?/{+1}

such that the images of x, y, 2 have orders p, g, r respectively.

Assuming there is no such representation, we can construct a smooth, SO(3)-equivariant
map

) S?xS?xS? - 52
as follows. Allow each of the variables X, Y, Z to vary inside an appropriate conjugacy
class (22 S?) in S3. Define ¥(X,Y, Z) to be the S%-coordinate of
W(X,Y,Z) e S*\ {£1} = 5* xR
Alternatively, we may think of ¢ as a 2-parameter family of smooth maps
’Q/}X’Y : SQ — SQ,

with parameters X,Y € S2

The degrees of the maps in this family are clearly independent of the choice of param-
eters X, Y. If X = £V, then the map ¢ xy is S'-equivariant with respect to the rotation

action of S* on S? with fixed points £X. The degree of an S'-equivariant map S? — S?
is determined by the images of the two fixed-points, so can be easily calculated.

A final observation is that we can set everything up in such a way that the degrees of the
two equivariant maps corresponding to X = +Y are —1 and +1 respectively, contradicting
invariance of degree. O

Heegaard splittings, the virtually Haken conjecture and property (7)
MARC LACKENBY

This talk explained the interaction of the seemingly unrelated areas appearing in the title.
Its focus was the following three important conjectures in 3-manifold theory: the virtually
Haken conjecture, the positive virtual b; conjecture and the virtually fibred conjecture.
The main result was:

Theorem. Let M be a compact orientable irreducible 3-manifold, with boundary a (possibly
empty) collection of tori. Suppose that
(1) m (M) fails to have Property (1), and



(2) M has non-zero strong Heegaard gradient.
Then M is virtually Haken.

Property (7) is a concept from geometric group theory, introduced by Lubotzky and
Zimmer. It has many equivalent definitions, in terms of differential geometry, graph theory
and representation theory. Lubotzky and Sarnak proposed the following:

Conjecture. The fundamental group of a closed hyperbolic 3-manifold fails to have Prop-
erty (7).
The strong Heegaard gradient is
liminf{x*"(M;)/d; : M; — M is a degree d; cover}

where
X"(M;) = min{—x(F) : F is a strongly irreducible Heegaard surface for M;}.
This is at least the Heegaard gradient which is
irilf{xil(Mi)/di : M; — M is a degree d; cover}

where
X" (M;) = min{—x(F) : F is a Heegaard surface for M;}.

Conjecture. The strong Heegaard gradient of a closed hyperbolic 3-manifold is non-zero.

Conjecture. The Heegaard gradient of a closed hyperbolic 3-manifold is zero if and only
if it is virtually fibred.

Thus, either of the above conjectures, together with the Lubotzky-Sarnak conjecture,
would imply the virtually Haken conjecture for hyperbolic 3-manifolds.

I then gave a result, establishing geometric conditions on a finitely presented group
that are equivalent to having positive virtual b;. These are very similar to the equivalent
definitions of ‘not (7)’. This has applications in 3-manifold theory, including:

Theorem. Let M be a closed orientable 3-manifold with a negatively curved Riemannian
metric. Suppose that, for some collection of finite reqular covers {M; — M} with degree
d;, inf; X" (M;)/\/d; = 0. Then M satisfies the positive virtual b, conjecture.

The Morava K-theory of spaces related to BO
GERD LLAURES
(joint work with Nitu Kitchloo and W. Stephen Wilson)

We consider the Morava K-homology Hopf algebras of the connective covers BO (k)
of BO. For k = 1 or 2 they have been computed in the 80’s by Wilson. The cases
BSpin and BO (8) have been described for Morava K (1) and K(2) by Ando, Hopkins
and Strickland in terms of the universal rings of real k-structures. A result of Kitchloo
and myself shows that the concept of real k-structures does not apply to describe all
Morava K (n) of connective covers.

Especially the computation of the higher Morava K-homologies of BO (8) turns out to be
a hard problem. In our work we look at all maps and spaces of all connective covers of the
infinite loop spaces in the spectrum of KO. Our main tool is the bar spectral sequence to
compute these maps. It turns out that once we look at a connective cover E of a sufficiently



large connective cover B then the map into the Eilenberg-MacLane spaces become trivial
in homology and we obtain a short exact sequence of Hopf algebras (K = K (n))

K,— K, F— K,F— K.,B— K,.

Since the fibre F' has a finite Postnikov system its homology is known from results of
Ravenel and Wilson. This result leaves us with only a few spaces to compute. We use the
fibration of infinite loop spaces associated to the fibration

Ybo -5 bo — bu

to get our hands on the spectral sequences. It turns out that we had to compute almost
all spaces in order to get to the desired space BO (8). Our main theorem is (p = 2)

Theorem. The maps
K(Fy,2) — K(Z,3) — BO (8) — BSpin — K(Z,4) — K(Z,4)

give rise to an exact sequence of Hopf algebras in Morava K-homology. As an algebra,
K.BO (8) is polynomial tensor with K.K(Z,3) and concentrated in even degrees.

Techniques have been developed to take information of the Morava K-theory of a space
and use it to compute its BP cohomology. This done in the last part of the talk.

On the geometrization of 3-dimensional orbifolds
BERNHARD LEEB
(joint work with Michel Boileau and Joan Porti)

We discuss joint work with Boileau and Porti regarding the geometrization of compact
connected orientable 3-orbifolds. This is an aspect of Thurston’s Geometrization Program,
and geometrization here refers to locally homogeneous Riemannian metrics.

Our main result is that a small orbifold with non-empty singular locus is geometric.
Together with known results this implies that irreducible atoroidal orbifolds with non-
empty singular locus are geometric, i.e. the so-called Orbifold Theorem. Thurston had
formulated it in 1982 and outlined a strategy for its proof which had remained basic for
all later work on the topic.

Applications include (i) the Generalized Smith Conjecture, that non-free actions of fi-
nite groups on the 3-sphere by orientation preserving diffeomorphisms are conjugate to
orthogonal actions, and (ii) the geometrization of such actions on hyperbolic manifolds.

Our argument involves a study of representation varieties resp. deformation spaces of
cone structures and methods from the geometry of metric spaces with curvature bounded
below. A basis for the whole approach is the Hyperbolization Theorem for Haken manifolds.
The role of the Haken condition is played in the orbifold case by the non-emptiness of the
singular locus. One starts by putting a complete hyperbolic structure on the smooth part
of the orbifold and deforms it to a geometric structure on the orbifold.



p-local groups: the homotopy of p-fusion systems
RAN LEVI
(joint work with Carles Broto and Bob Oliver)

In this talk we give a preliminary report on a joint project with Broto and Oliver on
the theory of p-local compact groups. These are algebraically defined objects which admit
a ‘“classifying space”. The family of spaces thus arising are expected to have homotopy
theoretic properties which resemble those shared by p-completed classifying spaces of com-
pact Lie groups and p-compact groups. The motivation for the definition comes from
the finite analogue — p-local finite groups. The main change is replacing finite p-groups
in the definition of the finite case by discrete p-toral groups, i.e., extension of a discrete
p-torus by a finite p-group. As one might expect though, giving up finiteness introduces
an array of problems which we will address. The main result we will present is that all
compact Lie groups as well as all p-compact groups give rise to p-local compact groups
whose classifying spaces coincide up to homotopy with the p-completed classifying space of
the original object. We will also give an example of a family of exotic 2-local finite groups
arising from the family of fusion systems introduced by Benson. These 2-local groups can
be organized in a sequence whose “colimit” is a 2-local compact group which we identify
as the Dwyer-Wilkerson space BDI(4) — the space realizing the rank 4 Dickson algebra at
the prime 2.

A finiteness result for Heegaard splittings of 3-manifolds
MARTIN LUSTIG
(joint work with Yoav Moriah)

We show that for a given 3-manifold and a given Heegaard splitting there are finitely
many preferred decomposing systems of 3g — 3 disjoint essential disks. These are char-
acterized by a combinatorial criterion which is a slight strengthening of Casson-Gordon’s
rectangle condition. This is in contrast to the fact that in general there can exist infinitely
many such systems of disks which satisfy just the Casson-Gordon rectangle condition.

Recent progress on the Bass conjecture
GUuIDO MISLIN
(joint work with Jon Berrick and Indira Chatterji)

For each finitely generated projective (left) ZG-module P, there exists an idempotent
matrix (m;;) = M € M,(ZG) such that P is isomorphic to the image under right multipli-
cation ZG™ — ZG™ by M. Writing [ZG,ZG] for the additive subgroup of ZG generated
by the elements gh — hg (g,h € G), we identify ZG/[ZG,ZG] with @[S]E[G] Z - [s|, where
[G] is the set of conjugacy classes of elements of G. The Hattori-Stallings rank rp is then
defined by

rp =Y my+[ZG,ZG) =Y rp(s)sl€ €P Z-s].
i=1 [s]€[G]

s€[G]

In 1976, H. Bass made the following conjecture.



Conjecture (Classical Bass Conjecture). For any finitely generated projective ZG-module
P, the values rp(s) € Z of the Hattori-Stallings rank rp are zero for s € G\ {1}.

We show that groups that satisfy the Bost conjecture satisfy the classical Bass conjecture
too, and indeed a more general versions thereof that we call the /' Bass conjecture. The
proof is obtained via a chain of deductions, describing a tour from geometric functional
analysis, through operator algebra K-theory, algebraic topology and combinatorial group
theory (we refer to Lafforgue’s work for the definition of the Bost assembly map).

Theorem. Let G be a countable discrete group for which the Bost assembly map
B¢ KE(EG) — K (('(G))
is rationally an epimorphism in degree 0. Then the £ Bass conjecture holds for G.
Known information on the Bost conjecture implies for instance the following.
Corollary. Amenable groups satisfy the classical Bass conjecture.

The proof of the theorem involves a natural embedding of G in an acyclic group A(G)
that is injective on conjugacy classes, with the centralizer of any finitely generated abelian
subgroup of A(G) acyclic as well. This allows us to control the image of the universal trace

T': Ko((1(Q)) — HHy(11(Q)).

Some applications of noncommutative localization in topology
ANDREW RANICKI

The (Cohn) localization of a noncommutative ring A inverting a set ¥ of morphisms
of f.g. projective A-modules is a ring ¥ !4 with a universally Y-inverting morphism
A — Y 'A. Amalgamated free products and HNN extensions are special cases of non-
commutative localization. The applications of noncommutative localization to topology
involve an analogy between the geometric properties of fundamental domains of covers and
the algebraic properties of modules and quadratic forms over triangular matrix rings.

The 1980’s results of Schofield and Vogel on the algebraic K- and L-theory of ¥~ A have
been recently generalized by Neeman and myself, to obtain localization exact sequences of
the type
(http://arXiv.org/abs/math.RA/0109118) in the case of injective A — X1 A which are
‘stably flat’ :

Tord(S7'A,27'4) = 0.
The relative groups are the algebraic K- and L-groups of homological dimension 1 -
torsion A-modules. The localization exact sequences give new proofs of the 1970’s results
of Waldhausen and Cappell on the algebraic K- and L-groups of generalized free products,
with applications to codimension 1 splitting properties of manifolds.
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Algebraic K-theory of group rings and topological cyclic homology
HoLGER REICH
(joint work with Wolfgang Liick, John Rognes and Marco Varisco)

We use topological cyclic homology and the cyclotomic trace to detect elements in
K,(Z|G]) ®7 Q, the rationalized higher algebraic K-theory groups of integral group rings.
Modulo a certain conjecture in number theory and under mild homological finiteness con-
ditions on the group GG, we prove that the algebraic K-theory assembly map for the family
of finite subgroups is rationally injective. This vastly generalizes a result of Bokstedt,
Hsiang and Madsen, and leads to a concrete description of a large direct summand inside
K,(Z|G]) ®7Q in terms of group homology. Along the way we also prove integral splitting
results for THH and T'C assembly maps with arbitrary coefficients.

A Quillen adjunction close to differential graded commutative algebras
BIRGIT RICHTER

Starting from the well-known Dold-Kan correspondence between simplicial modules and
chain complexes, we show that the inverse of the normalization functor, D, from chain
complexes to simplicial modules sends differential graded commutative algebras to sim-
plicial E-algebras. We prove this by an explicit construction of an F_-operad, which
acts on D(X) for all differential graded commutative algebras X. This operad is a slight
generalization of an endomorphism operad and we prove that this operad is acyclic.

Differential graded commutative algebras do not possess any good homotopy category
in characteristic different from zero. So the natural idea is to pass to a homotopy invariant
analog of commutative algebras, namely differential graded E..-algebras.

With the help of the concept of parametrized operads we are able to show that the
functor D maps differential graded F-algebras to simplicial F-algebras. Here the F..-
operad on the simplicial side is constructed as an amalgamation of the E,-operad for the
functor D and the operad which acts on the differential graded input.

The functor which assigns an Eilenberg-MacLane spectrum to a simplicial module pro-
longs the functor D and allows us to pass from differential graded commutative algebras
(resp. E-algebras) to the category of E ring spectra.

It is easy to see that the functor D possesses a left adjoint on the level of E..-algebras
and this adjoint functor pair is in fact a Quillen adjunction, i.e., it induces an adjunction
on the corresponding homotopy categories. These homotopy categories can be obtained
with the help of Markus Spitzweck’s concept of semi model categories.
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L?-invariants and geometric group theory
ROMAN SAUER

By analytic means D. Gaboriau extended the notion of L?-Betti numbers of groups to
discrete measured groupoids. Each measure preserving action of a countable group on a
finite measure space gives rise to such a groupoid.

We provide an alternative definition of L?-Betti numbers of discrete measured groupoids
by means of homological algebra which still has the good properties of Gaboriau’s defini-
tion.

Using that, we can give an algebraic proof of Gaboriau’s theorem which says that L2-
Betti numbers of measure equivalent groups coincide up to a constant factor. Here measure
equivalence is a measure-theoretic analog of quasi-isometry, and it can be expressed in terms
of isomorphisms of certain groupoids. An important example of measure equivalent groups
is given by discrete subgroups with finite co-volumes in a locally compact group.

The methods in the new proof of Gaboriau’s theorem can also be applied to Novikov-
Shubin invariants. They turn out not to be invariant under measure equivalence but we
can show the following theorem.

Theorem. The Novikov-Shubin invariants of quasi-isometric amenable groups which admit
a finite model for the classifying space of proper actions coincide.

Galois symmetries of 4-manifolds and equivariant stable homotopy theory
MARKUS SZYMIK

An equivariant extension of the Bauer-Furuta invariants of closed smooth 4-manifolds X
has been discussed. Whenever a compact Lie group G acts on X preserving a complex spin
structure ox on X, the automorphism group of (X, ox) contains an extension G of G by
the circle group T. The equivariant invariant is the G-equivariant stable homotopy class
of the Seiberg-Witten monopole map associated to (X, ox).

If G is finite and acts freely on X, the invariants of the quotient 4-manifolds X/H for
subgroups H < (G are contained in the equivariant invariants of X. A comparison map
sends the latter to all the former. This map is an isomorphism away from the order of G.
Computations show that it is neither surjective nor injective in general. On the one hand,
this implies relations among the non-equivariant invariants. On the other hand, it shows
the potential of the equivariant invariants to contain more information.

Edited by Marco Varisco

12



Participants

Dr. Arthur Bartels
bartelsa@math.uni-muenster.de
Mathematisches Institut
Universitat Munster
Einsteinstr. 62

48149 Miinster

Prof. Dr. Stefan Alois Bauer
bauer@mathematik.uni-bielefeld.de
Fakultat fiir Mathematik
Universitat Bielefeld

Universitatsstr. 25
D-33615 Bielefeld

Dr. Tilman Bauer
tbauer@uni-muenster.de

SFB 478

Geom. Strukturen in der Mathematik
Hittorfstr. 27

D—-48149 Miinster

Stefan Bechtluft-Sachs

Stefan.Bechtluft-Sachs@
mathematik.uni-regensburg.de

NWFI-Mathematik
Universitat Regensburg
D-93040 Regensburg

Prof. Dr. Carl-Friedrich Bodigheimer
boedigheimer@math.uni-bonn.de
Mathematisches Institut

der Universitat Bonn

Wegelerstr. 10

D-53115 Bonn

Prof. Dr. Brian H. Bowditch
bhbOmaths.soton.ac.uk

Faculty of Mathematical Studies
University of Southampton
Highfield

GB-Southampton, SO17 1BJ

13

Prof. Dr. Martin R. Bridson
m.bridson@ic.ac.uk

Imperial College

Department of Mathematics
Huxley Building

180 Queen’s Gate

GB-London SW7 2BZ

Prof. Dr. Carles Broto
broto@mat.uab.es

Departament de Matematiques
Universitat Autonoma de Barcelona
Campus UAB
E-08193 Bellaterra

Prof. Dr. Cameron M. Gordon
gordon@math.utexas.edu

Dept. of Mathematics
University of Texas at Austin
RLM 8.100

Austin, TX 78712-1082 - USA

Prof. Dr. Ian Hambleton
ian@icarus.math.mcmaster.ca
Department of Mathematics and
Statistics

Mc Master University

1280 Main Street West

Hamilton, Ont. LL.8S 4K1 - Canada

Dr. Bernhard Hanke

Bernhard.Hanke@mathematik.uni-muenchen.de

Mathematisches Institut
Universitat Miinchen
Theresienstr. 39
D—-80333 Miinchen

Prof. Dr. Hans-Werner Henn
henn@math.u-strasbg.fr

U.F.R. de Mathématique et
d’Informatique

Université Louis Pasteur

7, rue René Descartes
F-67084 Strasbourg -Cedex



Prof. Dr. James Howie Dr. Stephan Klaus

jimOma.hw.ac.uk klausOmfo.de

jim@cara.ma.hw.ac.uk Mathematisches Forschungsinstitut
Dept. of Mathematics Oberwolfach

Heriot-Watt University Lorenzenhof

Riccarton-Currie D-77709 Oberwolfach

GB-Edinburgh, EH14 4AS
Prof. Dr. Peter H. Kropholler

Prof. Dr. Stefan Jackowski P.H.Kropholler@qmw.ac.uk
sjack@mimuw.edu.pl School of Mathematical Sciences
Instytut Matematyki Queen Mary College
Uniwersytet Warszawski University of London

ul. Banacha 2 Mile End Road

02-097 Warszawa - Poland GB-London, E1 4NS

Prof. Dr. Bjorn Jahren Prof. Dr. Marc Lackenby
bjoernj@math.uio.no lackenby@maths.ox.ac.uk
Department of Mathematics Mathematical Institute
University of Oslo Oxford University

P. O. Box 1053 - Blindern 24 - 29, St. Giles

N-0316 Oslo GB-Oxford OX1 3LB

Dr. Michael Joachim Dr. Gerd Laures
joachim@math.uni-muenster.de gerd@laures.de
Mathematisches Institut Mathematisches Institut
Universitat Miinster Universitat Heidelberg
Einsteinstr. 62 Im Neuenheimer Feld 288
D-48149 Miinster D-69120 Heidelberg

Prof. Dr. Klaus Johannson Dr. Ian J. Leary
johannso@math.uni-frankfurt.de i.j.leary@maths.soton.ac.uk
Fachbereich Mathematik Faculty of Mathematical Studies
Universitat Frankfurt University of Southampton
Robert-Mayer-Str. 6-10 Highfield

D—-60325 Frankfurt GB-Southampton, SO17 1BJ
Prof. Dr. Robion C. Kirby Prof. Dr. Bernhard Leeb

kirby@math.berkeley.edu leeb@riemann.mathematik.uni-tuebingen.de

Department of Mathematics Mathematisches Tnstitut

University of California Universitit Tiibingen

at Berkeley Auf der Morgenstelle 10
Berkeley, CA 94720-3840 - USA D-72076 Tiibingen

14



Dr. Ran Levi
ran@maths.abdn.ac.uk
Department of Mathematics

University of Aberdeen
GB-Aberdeen AB24 3UE

Prof. Dr. Wolfgang Liick
lueck@math.uni-muenster.de
Mathematisches Institut
Universitat Munster
Einsteinstr. 62

D—-48149 Miinster

Dr. Martin Lustig
Martin.Lustig@ruhr-uni-bochum.de
Mathématiques

Fac. des Sciences (St. Jerome)
Univ. d’Aix-Marseille IT1

Av. Escadr.Normandie-Niemen
F-13397 Marseille Cedex 20

Prof. Dr. Wolfgang Metzler
cyn@math.uni-frankfurt.de
Fachbereich Mathematik
Universitat Frankfurt
Robert-Mayer-Str. 6-10
D-60325 Frankfurt

Prof. Dr. Guido Mislin
mislin@math.ethz.ch
Departement Mathematik
ETH-Zentrum

Ramistr. 101

CH-8092 Ziirich

Frank Neumann

fn8@mcs.le.ac.uk

Dept. of Math. and Computer Science
University of Leicester

University Road

GB-Leicester LE1 7TRH

Dr. Dietrich Notbohm
notbohm@mcs.le.ac.uk

Dept. of Math. and Computer Science
University of Leicester

University Road
GB-Leicester LE1 7TRH

15

Prof. Dr. Robert Oliver
bob@math.univ-parisi3.fr
Département de Mathématiques
Institut Galilée

Université Paris XIII

99 Av. J.-B. Clément

F-93430 Villetaneuse

Prof. Dr. Erik Kjaer Pedersen

erik@math.binghamton.edu

Dept. of Mathematical Sciences
State University of New York

at Binghamton

Binghamton, NY 13902-6000 - USA

Prof. Dr. Andrew A. Ranicki
aar@maths.ed.ac.uk

School of Mathematics

University of Edinburgh

James Clerk Maxwell Bldg.
King’s Building, Mayfield Road
GB-Edinburgh, EH9 3JZ

Dr. Holger Reich
reichh@math.uni-muenster.de
SEB 478

Hittorfstr. 27

D-48149 Miinster

Dr. Birgit Richter
richter@math.uni-bonn.de
Mathematisches Institut
Universitat Bonn
Beringstr. 1

D-53115 Bonn

John Rognes
rognes@math.uio.no
Department of Mathematics
University of Oslo

P. O. Box 1053 - Blindern
N-0316 Oslo

Prof. Dr. Joachim Hyam Rubinstein

rubin@ms.unimelb.edu.au

Dept. of Mathematics & Statistics
University of Melbourne
Parkville, Victoria 3010 - Australia



Juliane Sauer
janich@math.uni-muenster.de
Mathematisches Institut
Universitat Miinster
Einsteinstr. 62

D—-48149 Miinster

Roman Sauer
sauerr@math.uni-muenster.de
Mathematisches Institut
Universitat Miinster
Einsteinstr. 62

D—-48149 Miinster

Thomas Schick
schickQuni-math.gwdg.de
Mathematisches Institut
Universitat Gottingen

Bunsenstr. 3-5
D-37073 Gottingen

Birgit Schmidt
bschmidt@mathematik.uni-bielefeld.de
Fakultat fiir Mathematik
Universitat Bielefeld

Universitatsstr. 25
D-33615 Bielefeld

Bjorn Schuster
schuster@math.uni-wuppertal.de
Bjoern.Schuster@math.uni-wuppertal.de
Fachbereich 7: Mathematik

U-GHS Wuppertal

GauBstr. 20

D—-42097 Wuppertal

Prof. Dr. Wilhelm Singhof
singhof@mx.cs.uni-duesseldorf.de
Mathematisches Institut
Heinrich-Heine-Universitat
Gebaude 25.22
Universitatsstrafle 1

D—40225 Diisseldorf

16

Markus Szymik
szymik@mathematik.uni-bielefeld.de
Fakultét fiir Mathematik
Universitat Bielefeld
Universitatsstr. 25

D-33615 Bielefeld

Prof. Dr. Vladimir G. Turaev
turaev@math.u-strasbg.fr

Institut de Mathématiques
Université Louis Pasteur

7, rue René Descartes
F-67084 Strasbourg Cedex

Marco Varisco
variscoQuni-muenster.de
Mathematisches Institut
Universitat Munster
Einsteinstr. 62
D—48149 Miinster

Prof. Dr. Elmar Vogt
vogt@math.fu-berlin.de

Institut fiir Mathematik IT (WE2)
Freie Universitat Berlin

Arnimallee 3
D-14195 Berlin

Prof. Dr. Rainer Vogt
rainer.vogt@mathematik.uni-osnabrueck.de
Fachbereich Mathematik /Informatik
Universitat Osnabriick

Albrechtstr. 28

D-49076 Osnabriick



