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The workshop was organized by V. Bangert (Freiburg), Yu.D. Burago (St. Petersburg)
and U. Pinkall (Berlin).

The 47 participants came from 10 countries, about half of them from Germany and
larger groups from the U.S.A., from Switzerland and from Great Britain.

The official program consisted of 22 lectures, and included three lectures by I. Babenko
(Montpellier) on the “Topological nature of systolic rigidity” and two lectures by M. Bonk
(Ann Arbor) on “Quasisymmetric and bi-Lipschitz parametrizations”. The program cov-
ered a wide range of new developments in geometry. To name some of them we mention
the topics “Submanifolds and integrable systems, including discrete ones and numerics”,
“Finsler geometry” and “Alexandrov geometry”. Each participant had prepared an ab-
stract of his/her recent research. These abstracts were posted and stimulated lively dis-
cussions.

1



Abstracts

Topological nature of systolic rigidity I-III

I. Babenko

The course is devoted to the recent progress in systolic geometry. First results (of the
modern form) in systolic geometry were obtained more than 50 years ago (Loewner, Pu).
Essential progress in this domain of geometry in the large was made 20 years ago (Gromov)
who found the sufficient topological condition of systolic rigidity for 1-systoles (1-rigidity).
The necessary condition for 1-rigidity was obtained 10 years later (Babenko). Higher-
dimensional systols were introduced in the beginning of the 70-th (Berger). During more
than 10 years there were no results in this direction. In the middle of the 80-th a few
of particular results for stable higher-dimensional systols have been obtained (Gromov,
Hebda). The general result for stable higher-dimensional systols was obtained only re-
cently (Bangert, Katz). The problem of rigidity for higher-dimensional unstable systoles is
completely different from the same one in stable case. The general situation here is systolic
(or intersystolic) freedom. This case was developed significantly during the last 4 years in
the series of works (Babenko, Katz, Suciu).
1. I. Babenko, Asymptotic invariants of smooth manifolds, (Russian Acad. Sci. Izv.
Math., Vol. 41, 1993, pp. 1-38). 2. I. Babenko, M. Katz, Systolic freedom of orientable

manifolds, (Ann. scient. Éc. Norm. Sup., 4e série, T 31, 1998, pp. 787-809). 3. I.
Babenko, M. Katz, A. Suciu, Volumes, middle-dimensional systoles, and Whitehead
products, (Math. Res. Lett., Vol 5, 1998, pp. 461-471). 4. I. Babenko, Forte souplesse
intersystolique de variétés fermées et de polyèdres, (Annales de l’Institut Fourier, Vol 52,
2002, fasc. 5). 5. I. Babenko, Nature topologique des systoles. Z2-systoles unidimen-
sionnelles, (Université Montpellier-II, preprint n14, 2002). 6. V. Bangert, M. Katz,
Stable systolic inequalities and cohomology products, (Communications on Pure and Appl.
Math. Vol 56, 2003). 7. C. Bavard, Inegalité isoperimétrique pour la bouteille de Klein,
(Math. Annalen., Vol 274, 1986, pp. 439-441). 8. M. Berger, A l’ombre de Loewner,

(Ann. scient. Éc. Norm. Sup., T 5, 1972, pp. 241-260). 9. M. Berger, Du côté de

chez Pu, (Ann. scient. Éc. Norm. Sup., T 5, 1972, pp. 1-44). 10. M. Berger, Systoles
et applications selon Gromov, exposé 771 Séminaire N. Bourbaki 1992/93 (Asterisque, Vol
216, 1993, pp. 279-310). 11. M. Berger, Riemannian geometry during the second half of
the twentieth century, (Jahresber. Deutsch. Math. -Verein, Vol 100, 1998, pp. 45-208). 12.
H. Federer, Real flat chains, cochains and variational problems, (Indiana Math. Jour-
nal, Vol 24, 1974, pp. 351-407). 13. M. Gromov, Systoles and intersystolic inequalities,
(Actes de la table ronde de géométrie différentielle en l’honeur de Marcel Berger, Collection
SMF n 1, 1996, pp. 291-362). 14. M. Gromov, Filling Riemannian manifolds, (J. Diff.
Geom. Vol 18, 1983, pp. 1-147). 15. M. Gromov, Metric structures for Riemannian end
non-Riemannian spaces, Birkhäuser, 1999. 16. J.J. Hebda, The collars of Riemannian
manifolds and stable isosystolic inequalities, (Pacific J. of Math., Vol 121, 1986, pp. 339-
356). 17. M. Katz, Counter-examples to isosystolic inequalities, (Geometriae Dedicata,
Vol 57, 1995, pp. 195-206). 18. M. Katz, Systolically free manifolds, Appendix D to [15].
19. M. Katz, A. Suciu, Volume of Riemannian manifolds, geometric inequalities, and
homotopy theory, in Rothenberg Festschrift, Contemporary Mathematics, AMS, 1999. 20
.M. Katz, A. Suciu, Systolic freedom of loopspaces, (Geometric and Functional Analy-
sis) à paraitre. 21. P.M. Pu, Some inequalities in certain non-orientable Riemannian
manifolds, (Pacific J. of Math., Vol 2, 1952, pp. 55-71).
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An Invariant based on the Yamabe operator

Christian Bär

(joint work with M. Dahl)

Let Mn be a closed differentiable manifold of dimension n ≥ 3. Given a Riemannian metric
g on M one defines the Yamabe Operator

Lg = ∆g +
n− 2

4(n− 1)
Scalg.

Denote the eigenvalues of Lg by µ0(Lg) < µ1(Lg) ≤ µ2(Lg) ≤→ +∞. Define κ(M) to be
the smallest k ∈ N0 such that for each ε > 0 there is a Riemannian metric gε such that
|µi(Lgε)| ≤ ε, i = 0, . . . , k − 1 and µk(Lgε) ≥ 1. Then κ(M) is a differential topological
invariant of M . It is positive if and only if M admits a metric of positive scalar curvature.
If M is connected and has a scalar flat metric, then κ(M) ≤ 1.

We bound κ(M) from below and (in the simply connected case) from above by the
α-genus of M . One crucial result is the inequality

κ(M̃) ≤ κ(M)

if M̃ is obtained from M by surgery in codimension ≤ 3. This is not true for surgeries in
lower codimension. The inequality allows to apply results from bordism theory.

Answering a question by Gromov we show that positivity of the operator

∆g + c Scalg

has no topological significance for 0 < c < n−2
4(n−1)

.

Eigenvalues and holonomy

Werner Ballmann

(joint work with J. Brüning and G. Carron)

Let M be a closed Riemannian manifold of dimension n, let E → M be a Hermitian
vector bundle with a flat Hermitian connection ∇E. Assume that the holonomy of E is
irreducible and nontrivial. Recall that at each point of M, the fundamental group at that
point is generated by loops of length ≤ 2 diam M. It follows that there is a constant α > 0
such that the holonomy along each such loop satisfies for all v ∈ Ex

|Hc(v)− v| ≥ α · |v|,

where x is the given point.

Theorem. If λ ≥ 0 is an eigenvalue of the connection Laplacien (∇E)∗∇E, then
√

λ exp{co

√
λ + (n− 1)κ diamM} ≥ α

2 diamM
,

where c0 = c0(n,
√

κ diamM) and RicM ≥ −(n− 1)κ.

In applications, the important feature is that diamM is in the denominator on the
RHS. There is a similar version in the case where RE 6= 0, but in the talk I only explained
the proof in the flat case RE = 0.
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Projective planes, Severi varieties and spheres

Jürgen Berndt

(joint work with Michael Atiyah)

There is an elementary but very striking result which asserts that the quotient of the
complex projective plane CP 2 by complex conjugation is the 4-dimensional sphere S4.
This result has first appeared in the literature without proof in a paper by Arnold in 1971,
but Arnold himself attributes this result to Pontryagin. Various proofs of this result were
given later by Kuiper, Massey, and others.

Recently Arnold and independently Atiyah and Witten proved that the quotient of the
quaternionic projective plane HP 2 by a certain U(1)-action is a 7-dimensional sphere.
Atiyah and Witten were motivated by the fact that the quaternionic projective plane
contains several hypersurfaces with G2-holonomy, which they used in their studies of M -
theory dynamics on manifolds with this exceptional holonomy. Arnold’s motivation has
been of algebraic nature.

In the first part of our work we extend the above two results to the Cayley projec-
tive plane and provide a unifying proof for all three projective planes. Actually we have
three different proofs: a theoretical one using group theory, and two proofs giving explicit
diffeomorphisms using real Jordan algebras resp. real projective geometry.

Every projective plane over a normed real division algebra has a natural complexification.
These complexified projective planes are precisely the four Severi varieties in complex
projective spaces. For the real projective plane RP 2 this is naturally the complex projective
plane CP 2 sitting inside CP 5 as the Veronese surface. In the second part of our work we
extend the result relating CP 2 and S4 to the other Severi varieties. The resulting fibrations
exhibit some interesting interplay between complex algebraic geometry and differential
geometry.
Literature:
M. Atiyah, J. Berndt: Projective planes, Severi varieties and spheres. math.DG/0206135.

Minimal surfaces from circle patterns: geometry from combinatorics

Alexander I. Bobenko

(joint work with T. Hoffmann and B. Springborn)

A circle packing is a configuration of disjoint discs which may touch but not intersect.
It is a classical result by Koebe saying that for every triangulation of the sphere there is
a packing of circles in the sphere such that circles correspond to vertices and two circles
touch if and only if the corresponding vertices are adjacent. This circle pattern is unique
up to Möbius transformations of the sphere. In [A. Bobenko, B. Springborn. Variational
principles for circle patterns and Koebe’s theorem. Arxiv: math.GT 0203250] this theorem
is generalized in two directions. First we consider patterns of circles intersecting at arbitrary
angles. Second, we consider not only circle patterns in the sphere but also in other surfaces
of constant curvature. We present new variational principles for the circle patterns in
Euclidean and hyperbolic surfaces. The functionals are given explicitly in terms of the
dilogarithm function Li2 of the radii of the circles. The convexity of the functional allows
us to prove the existence and uniqueness.

Circle patterns in the sphere with intersection angles π/2 can be treated as Gauss maps of
discrete minimal surfaces. This allows us to use our variational description of circle patterns
to recover minimal surfaces from the combinatorics of their curvature lines. Examples
include discrete catenoid, Enneper, Schwarz, Scherk surfaces.
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Quasisymmetric and bi-Lipschitz parametrizations I+II

M. Bonk

A homeomorphism f between two metric spaces X and Y is called bi-Lipschitz if it distorts
distances by an at most multiplicative amount. The homeomorphism is called quasisym-
metric if relative distances are distorted in a controlled manor, more precisely, we require
that there exists an increasing function η : [0,∞) → [0,∞) with η(0) = 0 such that for all
distinct points x, y, z ∈ X we have

|f(x)− f(z)|
|f(x)− f(y)|

≤ η

(
|x− z|
|x− y|

)
.

If there exists a bi-Lipschitz or quasisymmetric homeomorphism between two metric spaces,
then they are called bi-Lipschitz or quasisymmetric equivalent, respectively. The basic
question of this survey is how to characterize standard metric spaces like Sn or Rn up to
bi-Lipschitz or quasisymmetric equivalence. This is related to Cannon’s conjecture in the
theory of Gromov hyperbolic groups or the Jacobian problem for quasiconformal maps.
Even for n = 2 our basic question seems to be a very hard problem and only partial results
are available. For example, in joint work with U. Lang the author settled a conjecture of
J. Fu by proving the following

Theorem. Let X be a complete surface homeomorphic to R2 with (possibly singular)
Riemannian metric. If we have

∫
X

K+dA < 2π and
∫

X
K−dA < ∞ for the Gaussian

curvature K, then X is bi-Lipschitz equivalent to R2.

Curvature and global rigidity in Finsler manifolds

Patrick Foulon

We present some strong global rigidity results for Finsler manifolds. Following E Cartan’s
definition a locally symmetric Finslermetric is one whose curvature is parallel. These
spaces strictly contain the spaces such that the geodesic reflections are local isometrics and
also constant curvature manifolds. In case of negative curvature we prove that the locally
symmetric Finsler metrics on compact manifolds are in fact Riemannian and this therefore
extends Akbar Zadeh’s rigidity result. We also survey some results on positive constant
curvature where the situation is still far from being understood. We prove that on S2 a
reversible Finsler metric of K = +1 has its geodesic flow conjugate to the standard one.
We also introduce an integral geometric condition for projective structures. We show that
if the (axiomatic) projective structure on the space of geodesics fulfils this condition then
the metric is Riemannian. But the (non-)existence of a non-Riemannian reversible metric
with constant flag curvature on S2 remains open. It should be quoted that there are many
such non reversible metrics due to Bryant’s work on Sn.
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Decomposing hypersurfaces by mean curvature flow

Gerhard Huisken

(joint work with Carlo Sinestrari)

The motion of a hypersurface F : Mn → Rn+1 by mean curvature flow d
dt

F =
→
H, leads to

a large variety of finite time singularities. The lecture describes results on the structure of
singularities under various curvature assumptions, in particular

(i) If the initial mean curvature of the surface is positive, then any smooth rescaling
of a singularity is convex and can be split into a Euclidean part times a strictly
convex solution of the flow. The strictly convex flow (in the limit) is homothetically
shrinking if the singularity is type I, it is translating of the singularity is type II,
i.e. if sup|λi|(T − t)

1
2 is unbounded; here λi are the principal curvatures and T is

final time.
(ii) If the (n−1)st elementary symmetric polynomial of the principal curvatures is pos-

itive, this remains so during the flow; in this case, if one of the principal curvatures
is small compared to the mean curvature, i.e. |λ1| ≤ µH, the remaining principal
curvatures must be close together near a singularity, i.e.

∑
i,j 6=1

|λi − λj| ≤ µH + Cµ.

Using this description of singularities at the curvature level, we show that there is an
axially symmetric “neck” present in the surface just before the first singular time. It is
described how such a neck can be parametrised in a canonical way and a surgery can be
performed which respects the a priori estimates above. It is an open problem to prove that
only finitely many “necks” occur for a given initial surface.

Willmore spheres in HPn

Katrin Leschke

We are interested in transformations of conformal maps f : M → S4 which preserve Will-
more surfaces. Using a quaternionic approach we consider, more generally, transformations
of holomorphic curves in HP n where a holomorphic curve in HP n can be thought of as a
family of branched conformal immersions. A Willmore surface in HP n is a critical point
of the Willmore energy under variations by holomorphic curves. By the Kodaira corre-
spondence a holomorphic curve in HP n corresponds to a basepoint free linear system of a
quaternionic holomorphic line bundle. Thus conformal maps in S4 with high-dimensional
space of holomorphic sections arise from projections of holomorphic curves in HP n. In the
talk I present two transformations (joint work with F. Pedit) of holomorphic curves. The
Bäcklund transforms of a holomorphic curve arise from new linear systems which we get
by integrating closed (1, 0)-forms. In case of Willmore surfaces the Bäcklund transforms
are again Willmore. Tangent curves of holomorphic curves arise by intersecting the tan-
gent planes with a fixed hyperplane at infinity. The tangent curve of a Willmore sphere is
Willmore. For Willmore spheres in HP n we get a generalization of Bryant’s theorem on
Willmore surfaces in R3: Willmore spheres in HP n arise from complex holomorphic data,
and have integer Willmore energy.
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Isoperimetric inequalities and Tits buildings

Enrico Leuzinger

Let B be a euclidean or hyperbolic building and let G ⊂ Aut B be a locally compact
unimodular group, which acts strongly transitively on B. We use graphs G, quasi-isometric
to B, to study asymptotic properties of quotients Γ\B, where Γ is a discrete subgroup of G.
If G has Kazhdan’s property (T) we show that such quotients satisfy strong isoperimetric
inequalities. This yields new examples of graphs with positive Cheeger constant. Such
graphs cannot be bi-Lipschitz embedded into Hilbert space if they are infinite. Moreover,
simple random walks on such quotients are shown to be recurrent if and only if Γ is a
lattice in G.

Spectral curves of tori in S4

Franz Pedit

Over the past 15 years special surface classes, i.e., constant mean curvature tori, minimal
tori, Willmore tori etc., have been studied from the view point of integrable systems. Each
such torus came with an auxiliary Riemann surface, the so called spectral curve, and the
torus could be constructed from theta functions on the spectral curve.

In this talk I explained two things:

1. Every conformally immersed torus in S4 has a spectral curve (of possibly infinite
genus) invariant under the Möbius group of S4. If the spectral curve has finite
genus, the corresponding immersed torus is given by theta functions.

2. The spectral curve is described geometrically as all closed “Darboux transforms”
of the given immersed torus.

More precisely: let
f : T 2 → S4

be a conformally immersed torus in S4. Then there is a marked Riemann surface (Σ, o) of
possibly infinite genus and a map

F : T 2 × Σ → S4

so that

1. For all p ∈ T 2 the map F (p,−) : Σ → S4 is a Willmore surface, in fact, the twistor
projection of a holomorphic curve into CP3. The immersed torus and the spectral
curve touch at f(p) = F (p, o).

2. For all σ ∈ Σ the map F (−, σ) : T 2 → S4 is a conformally immersed torus, a
Darboux transform of f , whose Willmore energy equals that of f .

For the simplest example of the Clifford torus in S3 the spectral curve is the Riemann
sphere and all the maps F (p,−) are Veronese embeddings in S4.
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Unstable periodic discrete minimal surfaces

Konrad Polthier

We use discrete surfaces to study the index of unstable minimal surfaces by evaluating the
spectra of their Jacobi operators. Our numerical estimates confirm known results on the
index of some smooth minimal surfaces like the trinoid and the Costa surface, and provide
new estimates for a large number of triply period minimal surfaces. Also it gives additional
information on the geometry of their area-reducing variations [2].

The investigation of the index requires the numerical computation of unstable discrete
minimal surfaces with excellent numerical qualities, which is among the very challenging
problems. Good quality means that the numerical solution is sufficiently accurate to allow
further investigations of the numerical data set. For example, to study the second variation
of the area functional and the index of minimal surfaces. Currently, good data sets of
unstable discrete minimal surfaces are very hard to produce, even worse, they are hardly
available to the community.

The essential ingredient in the algorithm is the introduction of the new alignment energy
for non-conforming triangle meshes [1]. It turns out that minimizing the alignment energy
in the class of non-conforming triangle meshes leads to non-conforming discrete minimal
surfaces whose discrete conjugate surfaces are then solutions of free-boundary value prob-
lems for conforming triangle meshes. The new algorithm allows us the computation of
many unstable periodic discrete minimal surfaces of highest numerical precision.

[1] K. Polthier. Unstable periodic discrete minimal surfaces. In S. Hildebrandt and
H. Karcher, editors, Geometric Analysis and Nonlinear Partial Differential Equa-
tions, pages 127-143. Springer Verlag, 2002

[2] K. Polthier and W. Rossman. Discrete constant mean curvature surfaces and their
index. J. reine angew. Math. 549(47-77), 2002.

The sphere theorem in Finsler geometry

Hans-Bert Rademacher

For a non-reversible Finsler metric F on a compact manifold we introduce the reversibility

λ = max{F (−X)|F (X) = 1} ≥ 1.

If λ = 1 then the metric is reversible, i.e. then F (X) = F (−X) for all X. We show the
following generalization of the classical sphere theorem in Riemannian geometry:

Theorem. A simply-connected and compact Finsler manifold of dimension n = 3 with
reversibility λ and with flag curvature(

1− 1

1 + λ

)2

< K 5 1

is homotopy equivalent to the n-sphere.
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Products of hyperbolic metric spaces

Viktor Schroeder

(joint work with Thomas Foertsch)

Let (Xi, di), i = 1, 2 be proper, geodesic metric spaces which are hyperbolic in the sense of
Gromov, and let zi ∈ Xi be chosen basepoints.

Define Y = {(x1, x2) ∈ X1 ×X2|d1(x1, z1) = d2(x2, z2)} and consider on Y the induced
interior metric d.

The following result is joined work with Thomas Foertsch:

Theorem. (Y, d) is also a proper, geodesic Gromov hyperbolic metric space and ∂∞Y =
∂∞X1 × ∂∞X2.

The result can be carried over to the limit case with zi ∈ ∂∞Xi. There are applications
of this result in the study of the “hyperbolic rank” of a metric space.

Quantization of curvature for compact surfaces in Sn(1).

Udo Simon

(joint work with Haizhong Li)

Calabi’s classification of all isometric minimal immersions of S2(K) → S2+p(1) stated, that
K = 2

s(s+1)
for some s ∈ N (1967). Lawson (1970) proved than a closed surface with Gauß

curvature K satisfying 1
3

5 K 5 1, immersed minimally into S4(1), is totally geodesic or
the Veronese surface. This led to the so called

quantization conjecture. If (M2, g) is closed and isometrically, minimally immersed
into S2+p(1) with 2

(s+1)(s+2)
5 K 5 2

s(s+1)
, then K = const and the immersion belongs to

Calabi’s classification (U. Simon, 1979).

The conjecture is true for s = 1, 2 (Kozlowski-Simon, M.Z. 1984); for s = 3 there are
many results under additional assumptions. We prove a general integral formula which
admits to extend the above result for s = 1 to large classes of immersions (e.g. Willmore
surfaces; surfaces with parallel mean curvature vector). A typical result is:

Theorem. Let (M2, g) → S2p(1) be a closed Willmore immersion satisfying a curvature
control of the (intrinsic) Gauß curvature in terms of the (extrinsic) mean curvature normal
→
H, namely with H2 := ‖

→
H ‖2:

1

3
+ H2 5 K 5 1 + H2.

Then either p = 1, K = 1 + H2 and the surface is totally umbilical, or p = 2, K = 1
3

and
the surface is Veronese. A more general classification is based on the curvature control

(
→
H 6= 0)

1

4

| grad
→
H |2

|
→
H |2

5 2K − 1 5 1.

9



Essential for the proofs is the construction of a totally symmetric, traceless, vector valued
(3, 0)-form, W , using the position vector x of M2 → S2+p ↪→ R3+p.

Wijk := xijk + 1
2
(1 + K)gijxk + 1

2
(1−K)(gikxj + gjkxi)

− 1
2
(
→
Hk gij + Higjk+

→
Hj gik)

where (gij) denote local coefficients of the first fundamental form and xijk a local notation
for covariant derivates. The integral formula and the assumptions lead to W ≡ 0; this
gives PDEs for the classifications. In all but one case the results are optimal.

Constant mean curvature trinoids with bubbletons

Ivan Sterling

The first main result, which is for trinoids, states that for any trinoid it is possible to add
bubbletons. The result is obtained as follows. We start with a known trinoid input data to
the DPW method, gauging to a setting where the DPW integration process produces loops
which can be explicitly calculated via hypergeometric functions and whose monodromies
are given in terms of exponentials and Γ functions. Then we find the dressing matrix
which dresses this loop to a loop which produces a closed trinoid. The next step is to
compute the set of points in the loop parameter at which all the end monodromies have
a common eigenline. Simple factor matrices can be constructed which will dress the given
closed trinoid to a closed trinoid with a bubbleton on it.

Rope length criticality

John Sullivan

The rope length of a link L is ratio of length to thickness, where thickness τ(L) is the
radius of the largest embedded normal tube. We have τ(L) = inf

x,y,z∈L
r(x, y, z), where r =

radius of circle through x, y, z.
Theorem. [Cantarella, Kusner, Sullivan: 2002 Inventiones Math.] There is a rope length

minimizer in any link type. It is C1,1 but not necessarily C2.

All known minimizers come from:

Theorem. If one component K of a link of thickness 1 is linked to n others, then
len (K) ≥ Cn.

Examples: Hopf link - Each component has Len = 4π. Chain - Middle components are
stadium curves.

But for a clasp (one rope attached to ceiling, linked to another attached to floor) the min-
imizer does not use semicircles! To understand it (and the related minimizer for Borromean
rings) consider a notion of criticality for rope length: A link L is tight if for any variation
v, δvlen(L) < 0 ⇒ δvτ(L) < 0. Assuming L has τ = 1 and curvature κ < 1, its thickness is
determined by Strut (L) := {(x, y) ∈ L× L : (x− y) ⊥ TxL, (x− y) ⊥ TyL, ‖ x− y ‖= 2}.
Given any nonnegative Radon measure µ on Strut (L), we consider a vector-valued mea-
sure 1

2
(x − y)dµ(x, y) and then project this L × L → L. Then our (C+K+S+Joe Fu +

N.Wrinkle) main theorem says L is tight ⇔ ∃µ on Struts such that the projected measure
on L equals −κNds. That is, the tension force shrinking L can be balanced by compression
forces on the struts.
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Affine differential geometry in higher codimension

Martin Wiehe

Suppose that x : Mn → An+p is an immersion into the affine space An+p endowed with a
fixed volume form. Furthermore σ is - at first - an arbitrary transversal space. We get

∇u∇vx = dx(∇uv) +

∈σ︷ ︸︸ ︷
h(u, v) .

Generalizations of Blaschkes (Sl - or unimodularly invariant) theory for hypersurfaces to
higher codimension were considered by

a) Burstin and Mayer 1927 (n = 2, p = 2)
b) Weise 1939: later Klingenberg 1951/52
c) Nomizu and Vrancken 1993 (n = 2, p = 2)

among others. The attempts as well as ours are based on regularity assumptions on the
immersion. Unfortunately b) needs an additional regularity assumption. Using the regu-

larity we introduce so-called pseudoinverse-elements h̃ of the fundamental form h. Their
basic property is:

h̃ij
ρ hρ

jη = pδi
η, h̃

ij
ρ hγ

ij = nδγ
ρ .

It turns out that the condition trace (
◦
∇ h̃) = 0 fixes uniquely a unimodular invariant

transversal space σ(u). (Here
◦
∇ is the “van der Waerden-Bartolotti” connection).

Moreover: Introducing a fundamental unimodular invariant 2p-tensor field g with its
volume form ω(g) we can show

(i) ∇ω(g) = 0 for the connection ∇ induced by σ(u) (Hence ∇ is Ricci-symmetric).
(ii) The unimodular mean curvature vanishes iff the immersion is a critical point of the

area functional induced by ω(g).

The transversal spaces of a) and b) do not obey these properties.

Torus actions on positively curved manifolds

Burkhard Wilking

The symmetry rank of a Riemannian manifold is one possible way to measure the amount
of symmetry. It is defined as the rank of the isometry group

symrank (M, g) = rank (Iso(M, g)).

We prove several structure results for positively curved manifolds with a large symmetry
rank. Among them is the following

Theorem. Let (Mn, g) be a positively curved manifold with symrank (Mn, g) ≥ n
4
+1, n ≥

10. Then Mn is homeomorphic to Sn or HP n/4 or homotopically equivalent to CP n/2.

Edited by Victor Bangert
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Université de Fribourg
Perolles
CH-1700 Fribourg

Dr. Evangelia Samiou
samiou@ucy.ac.cy

Department of Mathematics
and Statistics
University of Cyprus
P.O.Box 20357
1678 Nicosia - CYPRUS

Prof. Dr. Viktor Schroeder
vschroed@math.unizh.ch

Institut für Mathematik
Universität Zürich
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Université de Metz et C.N.R.S.
Ile du Saulcy
F-57045 Metz Cedex 01

15


