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The meeting was organised by H. Schäfer (Marburg), C.Amos (Houston), and M.P.
Baur (Bonn). During the 5 days of the conference, 29 talks and a tutorial on Variance-
component Methods were given, 43 scientists from Germany (# 20), USA (# 16), Great
Britain (# 3) France (# 3), and Canada (# 1) participated. The conference was dedicated
to current statistical developments in the field of statistical genetics and genetic epidemi-
ology. After the impressing advances in uncovering the etiology of monogenic diseases in
the last decades, the grand challenge to genetic epidemiology is now the identification of
genes for complex diseases. The rapid developments in molecular genetics, such as the
detection of highly polymorphic microsatellite markers and of up to 1.500.000 SNPs in the
human genome, has been paralleled by great advances in the statistical methodology. The
conference gave an impressive overview of current statistical developments in this field.
The fruitful scientif! ic interaction during the conference will certainly stimulate further
cooperation and research.

The organisers and participants thank the “Mathematisches Forschungsinstitut Ober-
wolfach” to make the conference possible in the usual comfortable and inspiring setting.
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Abstracts

Population Genomics: A Paradigm for Complex Disease Studies in the
Post-Genome Era

Ranajit Chakraborty and Kosuke Teshima

Even though complex diseases constitute the major public health burden in all societies
around the world, success in determining etiology of such diseases has been rather limited
for several reasons. This presentation starts with a brief outline of possible reasons of
the difficulties involved in elucidating the genetic basis of complex diseases. From these
discussions, we argue that population-based association studies are more likely to provide
insights of genetic basis of complex diseases, rather than traditional family-based study
designs. However, since disease-gene association at population level stems from inter-locus
association of alleles, a thorough understanding of population genetic properties of link-
age disequilibrium (LD) is needed for appropriate genetic interpretation of disease-gene
association data. To this effect, some properties of genome-wide background LD are ex-
amined through a coalescence-based simulation study. We show that when microsatellite
loci ar! e used as genomic markers for disease-gene association studies, the expectation
of the weighted normalized LD between two loci decreases with recombination distance
between loci. However, the extent and trend of such decay is dependent on the rate and
pattern of mutations as well as on the demographic history of populations. For example,
for any specified recombination distance, the simulation results show that the power of
detection of LD is larger in populations of constant smaller size. In a growing population,
the power of detecting LD is substantially reduced, making it comparable to that expected
in a constant population of the largest size reached by the population. In presence of
population growth, the enhancement of LD detection power with increasing sample size
is less conspicuous than in populations of constant size. Power of detection of LD is also
larger for loci with higher mutation rate in populations of constant size, although under
population growth, the eff! ect of mutation rate is reversed, particularly for markers of
l! arger recombination distances. Multistep forward-backward mutations at microsatellite
loci actually increase the power. Finally, presence of multiple alleles at microsatellite loci
makes such markers more powerful to detect LD, than the common single nucleotide poly-
morphism sites (SNPs) residing at the same recombination distance. The relevance of such
population genomic paradigm for complex traits is also illustrated with examples, where
studying them individually may not readily recognize the underlying mutations affecting
complex traits, but when studied in the context of haplotypes, their effects become sta-
tistically significant. (Research supported by US Public Health Research Grants from the
National Institutes of Health).

Mapping Genes With the Use of a Local Approcimation to the Ancestral
Recombination Graph

Sebastian Zoellner and Jonathan Pritchard

Fine mapping with Linkage Disequilibrium (LD) is the method of choice to locate disease-
causing mutations by using LD to detect haplotypes that share a common ancestry among
cases. But this method relies on a sufficiently high level of association between a marker
and a disease phenotype. However, for complex disease genes this association does not
always exist. Therefore, a more powerful approach is required. Here we propose a novel
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method to infer the position of a disease mutation by inferring the ancestry of a genomic
region from marker data consisting of a sample of diploid cases and controls with known
phase. For a given location on the marker-map, we use the marker information of both
cases and controls to reconstruct local approximations of the full recombination graph using
Markov Chain Monte Carlo. We sample from the space of trees that are most likely, given
the marker data. On each tree, the likelihood that the given location harbours the disease
mutation is estimated, based on the distribution of cases and controls among the tips. By
integrating over the space of trees, we estimate the likelihood of a disease mutation at the
given location. Repeating this process for each possible position of the disease mutation
allows the estimation of a likelihood curve in the genomic region under consideration. From
this, we can determine the most likely location and construct a corresponding confidence
interval. This method also allows us to estimate the penetrances of the disease mutation(s)
for any given location of the disease mutation. Furthermore, this approach can be extended
to analyze quantitative traits.

Bayesian modelling of complex metabolic pathways

Duncan C. Thomas

Much of molecular epidemiology is concerned with studying pathways that may involve
multiple genes and/or multiple environmental exposures. For example, well done red meat
(E1) and tobacco smoking (E2) are known sources of heterocyclic amines (HCAs) and
polycyclic aromatic hydrocarbons (HCAs), which are converted to active carcinogens by a
number of activating enzymes and detoxified by other enzymes, each regulated by specific
genes (for example, CYP1A2, NAT1, NAT2 for HCAs, CYP1A1, mEH, GSTM3 for PAHs
(G1−G6), amongst others). These various factors have been implicated in epidemiological
studies of colorectal polyps (Y ) or colorectal cancer, for which polyps are a known precursor
lesion.

Epidemiological data are commonly presented in terms of contingency tables, consider-
ing one or two exposures or genes at a time, singly or in pairwise combinations, thereby
neglecting the potentially confounding effects of other factors or more complex interactions.
While multiple logistic regression offers an approach to developing more sophisticated mod-
els, uncertainty remains about the choice of model when interpreting the effects included in
any particular model. For example, in fitting these factors to data on 466 polyps cases and
509 controls drawn from a sigmoidoscopy clinic (Haile et al., 1997), we found significant
main effects only for smoking, but a number of gene-environment (G × E), E × E, and
G × G interactions, as well as some 3- and 4-way interactions, but the strength of these
interactions varied depending upon what other terms were in the model. We suggest two
alternative approaches to this problem: Bayes model averaging (George and Fost! er, 2000;
Raftery et al., 1997); and pharmacokinetic modelling (Gelman et al., 1996).

In the former approach, we postulate a logistic model of the form

logit Pr(Y = 1|E,G) = β0 + β′
1E + β′

2G + β′
3E⊗ E + β′

4G⊗ E + β′
5G⊗G + ...

together with a prior distribution for β as a mixture

Pr(β) =
M∑

m=1

πm

P∏
p=1

[
(1−Wmp)δ(0) +WmpN(0, τ 2

p )
]

where πm denotes the prior probability for model m and Wmp an indicator variable for
whether effect p is in model m. Following Chipman (1996), we restrict attention to the
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class H of hierarchical models, such that an interaction effect can have W = 1 only if all
of its main effects and lower-order interactions are also included. Hence we take

Pr(Wm) ∝
∏

p

I(Wm ∈ H)
∑

p

Dirichlet(1)

Fitting this model to the polyps data, only the smoking effect remained significant in the
marginal model, while most of the interaction effects disappeared.

In the pharmacokinetic modelling approach, we include the intermediate metabolites as
unobserved (latent) variables Zim for metabolite m, which are related to each other by a
series of person-specific activation rates λim and detoxification rates µim, which in turn are
determined by the individual’s genotypes. Specifically we used first-order linear kinetic
models, which yield the steady state solution

Zi,m+1 = Zim
λim

λi,m+1 + µim

and assumed that log λim ∼ N(λ̄mGim
, σ2

m). This model can be fitted using Markov chain
Monte Carlo methods, as described by Cortessis et al. (2002). Simulation studies of the
statistical properties of the approach are underway.
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Model-based methods for the genetic analysis of complex diseases: what can
they bring?

Florence Demenais

Identification of genes underlying complex diseases is a challenging task which can be con-
ducted by two main analytical approaches: 1) model-free methods that do not assume a
genetic model for the disease (or for the phenotype of interest); 2) model-based methods
that specify a genetic model. Models-free methods are the methods of choice to character-
ize the chromosomal regions that may harbour disease-predisposing genes by genome-wide
linkage analyses and, then, to identify these genes by association studies. Model-based
methods can be used advantageously to confirm linkage results obtained by model-free
methods but also permit, in a given region, not only to identify the genetic variants as-
sociated with the disease (or any intermediate quantitative phenotype) but also to model
the effects of these variants and to search for gene-gene and gene-environment interactions.
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The regressive models that include the effect of the gene under investigation (possibly
linked and eventua! lly in linkage disequilibrium (LD) with a marker or a set of markers),
other sources of familial correlations (due to other genes and/or shared environmental
factors), and covariates, are particularly suitable to achieve these goals [1, 2, 3]. The per-
formances of combined segregation-linkage analysis based on these models were presented
in the two following situations: 1) detection of potential causal variants influencing the
variability of a quantitative phenotype; 2) assessment of the power of this approach to
detect gene-environment (GxE) interactions underlying the liability to a disease.

We showed that combined segregation-linkage analysis, based on the class D regressive
model, was able to detect significant effects of four of five polymorphisms of the AGT
(Angiotensinogen) gene influencing plasma AGT levels. The most significant result was
found at C-532T polymorphism (P = 0.000001), which accounted for 4.3

Power of the class D regressive-threshold model [5,6] to detect GxE was investigated
by simulations in nuclear families [7]. The generated model assumed a liability to disease
depending on a common gene with a small effect, a polygenic component and an environ-
mental factor interacting with the gene; parameter values of these different components
were varied. The disease gene was assumed tightly linked to a diallelic marker (SNP)
with varying strength of LD between the 2 loci (D’ being equal to 0, 0.5 or 1). Power
of the regressive threshold model to detect GxE was estimated by the proportion of 100
replicates of 165 nuclear families (with varying sibship size) to reject the null hypothesis of
no interaction versus GxE while estimating all parameters of the model. This power was
between 65-82when D’ = 1, 25-28factor and the nature of this factor (binary or quanti-
tative). Moreover, when comparing two alternative formulations of the regressive models,
the power to detect GXE appeared higher when analyzing the data with the regressive
threshold model [5] than using the regressive logistic model [2]. Alternatively, ignoring
the presence of GxE in the analysis may affect the detection of the true LD model and,
therefore, the identification of the putative functional variant. Evidence for complete LD
was reduced by about 60-70% when ignoring GxE as compared to taking it into account
and this impact was slightly greater for a dominant gene than for a recessive one and for a
quantitative environmental factor than for a binary factor. Thus, use of models that can
take into account both LD and GxE may be of major importance to disentangle the mech-
anisms underlying complex diseases. This was illustrated by combined segregation analysis
of cutaneous malignant melanoma and CDKN2A gene (a known melanoma predisposing
gene) in 53 French melanoma-prone families. Cumulative risk of melanoma depended on
presence of mutations of this gene and this risk was modified by pigmentary phenotypes
(high number of nevi, presence of atypical nevi) and reactions to sun exposure (propensity
to sun! burn) [8]. These latter results can have important consequences in risk assessment.
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Detection of microdeletions using SNPs and other genetic markers

Chris Amos

Microdeletions have been found to cause a variety of human diseases and conditions such
as Prader-Willi Syndrome, diGeorge syndrome and autism. Syndromes that sometimes
present with microdeletions such as Wilms Tumor due to deletion of the WT1 gene and
nearby loci (WAGR association syndrome) are virtually all de novo and show little familial-
ity although they are genetic. In 2002, microdeletions were commonly found in regions of
the genome supporting linkage to familial autism and these are all stably inherited, with a
normal parent transmitting a microdeletion to an affected child. The increasing precision
provided by characterizing families with much denser maps of genetic markers suggests
increased ability to identify microdeletions. In this talk, I developed statistical approaches
for specifying the likelihood of family data to model normal transmission of alleles, de
novo microdeletions and stably inherited microdeletions. Complications arise in trying to
model transitions from normal to microdeleted regions and I gave one approach assuming
a first-order Markov process. I also discussed the complexity of modelling family data
when there are associations among the alleles at closely linked loci. I briefly described an
approach for error identification in families. I also briefly discussed potential development
of methods to scan for microdeletions using cases with a disease or cases and controls.

Scoring method for linkage from Bayesian MCMC oligogenic combined
segregation analysis

E.Warwick Daw

In the dissection of complex genetic traits, where exact parametric models become com-
putationally intractable, Bayesian Monte Carlo Markov chain (MCMC) techniques have
shown promise. The methods implemented by Heath (1997, American Journal of Human
Genetics 61:748760), in the program Loki, have been able to localize genes for complex
traits in both real and simulated data sets. Loki uses an iterative MCMC process to es-
timate the posterior probability over a model space that includes quantitative trait loci
(QTL) locations on a chromosome. We consider marginal posterior probability not only
over location, but also over variance attributed to a QTL, producing a 2-dimensional prob-
ability surface. This 2-dimensional surface allows us to estimate the relative contribution,
which is important in an oligogenic analysis. Unfortunately, interpretation of the results
and assessment of their significance has been difficult. We have introduced score, the Log
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Of the Posterior placement ! probability ratio (LOP), for assessing oligogenic QTL detec-
tion and localization (Daw et al., 2003 Genetic Epidemiology 24:181-190). The LOP is the
log of the posterior probability of linkage to the real chromosome divided by the posterior
probability of linkage to an unlinked pseudo chromosome with marker informativeness sim-
ilar to the marker data on the real chromosomes. The pseudo chromosome is created by
random gene drop using the observed pedigree structures, allele frequencies, and missing
data patterns. Since the LOP cannot be calculated exactly, we estimate it in simultaneous
analysis of both real and pseudo chromosomes. While lod scores are calculated under a sin-
gle linkage model, the LOP is calculated with Monte Carlo integration over a large number
of model parameters, including the number of trait loci and the additive and dominance
effects at each locus. We have examined several ways to estimate LOP: by counting QTL
placements on the real and pseudo chromosomes,! by calculating the relative probabilities
on the real and pseu! do chromosomes at the location a QTL is proposed, and by calculat-
ing the relative probabilities on the real and pseudo chromosomes at fixed locations along
the chromosome. We have begun to investigate the distributional properties of each of
these estimates of LOP in the presence and absence of trait genes. We have demonstrated
how to obtain an empirical p-value for chromosome-wide linkage with LOP.

Use of Decision and Regression Trees in Genetic Epidemiology

Michael Krawczak

One of the major aims of genetic epidemiology is to partition, on the basis of environmental
or genotypic covariates, a data set comprising qualitative or quantitative trait values.
Decision and regression trees represent a powerful tool to achieve this goal. In genetic
epidemiology, however, this type of exploratory data mining methodology has not hitherto
attained the attention it deserves. Possible applications are manifold, including the use of
decision trees for characterizing gene-disease associations. Here, the major advantages of
the technique are that it

(1) is genotype-based and therefore avoids prior hypotheses about the genotype-phenotype
relationships involved,

(2) can include a virtually unlimited number of genetic markers,
(3) allows for complex gene-gene and gene-environment interactions,
(4) requires no haplotype reconstruction,
(5) entails only a moderate loss of information in comparison to haplotype-genotype-

based inference tools.

The practical utility of decision and regression trees in a genetics context is highlighted
by an application to 23 SNP from the human CARD15 gene region in relation to Crohn
Disease (CD). The three SNPs known to be associated with CD together with an additional
SNP from the 5UTR constitute the final, pruned tree.

In another study of the in vitro expression profile of 15 SNPs from the human growth
hormone (GH1) region, 6 SNP defining 11 haplotypes are shown to capture the bulk of
phenotypic variation observed. These SNP exerted there increasing/decreasing influence
upon expression

7



Sum statistics for capturing joint effects of multiple disease loci

Jurg Ott

When multiple susceptibility loci are jointly responsible for a disease, it must be inefficient
to carry out association (or linkage) studies for one marker at a time. We previously
addressed the problem of multiple disease loci by ordering SNP markers according to their
individual statistic for association and then building sums containing varying numbers of
SNPs with the highest statistics. The smallest p-value associated with any of the largest
n sums was then taken as our overall statistic with associated study-wise significance level
(”Set Association” analysis, Hoh et al., Genome Res 11:2115, 2001).

A drawback of this approach is that it relies on marker-specific statistics (main effects).
We propose an extension of our method that includes pair-wise interactions between SNPs.
Theoretical calculations on the basis of a purely epistatic 3-locus disease model (Culver-
house et al., Am J Hum Genet 70:461, 2002) demonstrate that the penalty for multiple
testing of all possible pairs of up to 50,000 SNPs still leaves expected results of association
tests highly significant.

Computational approaches to detecting gene-gene interactions

Jason H. Moore

One goal of genetic epidemiology is to identify polymorphisms associated with common,
complex multifactorial diseases. Success in achieving this goal will depend on a research
strategy that recognizes and addresses the importance of interactions among multiple ge-
netic and environmental factors in the etiology of common diseases. One traditional ap-
proach to modelling the relationship between discrete predictors such as genotypes and
discrete clinical outcomes is logistic regression. However, logistic regression is limited in
its ability to deal with interaction data involving many simultaneous factors because of the
curse of dimensionality. In response to this limitation, we developed the multifactor dimen-
sionality reduction (MDR) approach that seeks to reduce the dimensionality of multilocus
genotype space to facilitate the identification of gene-gene interactions. This approach is
nonparametric and genetic-model free and is directly applicable to the analysis of case-c!
ontrol and discordant sib-pair study designs. Further, an MDR software package is avail-
able. Empirical studies with both simulated and real data have indicated MDR has good
power for identifying high-order gene-gene interactions. We anticipate that MDR will be a
useful addition to the repertoire of new approaches for the detection and characterization
of gene-gene and gene-environment interactions.

Detection and modelling of heterogeneity in allele sharing

Shelley B.Bull

Linkage studies of complex disease may be designed to find chromosomal regions that
harbour susceptibility genes by genome-wide search or to assess a particular gene with
known location by a candidate gene approach. Common designs involve recruitment of
families with affected sibling pairs and/or other affected relatives in whom a set of genetic
markers are typed across the genome or in a region. In complex disease, the ability to
detect linkage is compromised by heterogeneity, due for example to having a mixture of
families that are linked or unlinked to a single disease gene locus. Modelling of variation
in identical-by-descent allele sharing can be useful to increase power to detect linkage,
identify covariate-defined subgroups that are linked to particular marker regions, identify
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characteristics for phenotype refinement, and improve the design of subsequent studies
to localize genes and characterize their effects in combination with other genes and/or
environmental fact! ors.

To this end, we extended the linear and exponential linkage likelihoods of Kong and
Cox (Am J Hum Genet 1997) for affected relatives to incorporate a binary covariate that
allows differences in NPL (non-parametric linkage) scores between two groups of families.
We compared the performance of a likelihood ratio (LR) test statistic for group differences
to that of a simple two-sample t-statistic for mean NPL differences. In simulation studies of
families with affected siblings or affected cousins exhibiting locus heterogeneity, we found
that, under the null hypothesis of linkage without heterogeneity, the distribution of the
LR test statistic depends on the extent of linkage, particularly so in the linear model due
to constraints on the parameters. On the other hand, the distribution of the t-statistic
may be biased by differences between groups in information content. Thus, although these
approaches are useful in several respects, the interpretation of covariate effects in al! lele-
sharing models requires caution.

Methods and algorithms for linkage analysis of genetically complex traits:
extensions for imprinting and two-locus models

Konstantin Strauch Johannes Dietter

Genetically complex traits are often determined by more than one gene. In addition, there
may be non-canonical inheritance even in the context of a single gene, such as overdom-
inance or genomic imprinting. In order to adequately model imprinting in the context
of parametric single-trait-locus linkage analysis, individuals heterozygous at the disease
locus need to be distinguished by the parent who transmitted the mutation. Therefore,
an adequate imprinting model contains two heterozygote penetrances instead of only one,
that is, four penetrance parameters altogether. Parametric linkage analysis with four-
penetrance imprinting models has been implemented into the program GENEHUNTER-
IMPRINTING. Since, for parametric linkage analysis, the power to detect linkage decreases
if the trait model is misspecified, it can be useful to maximize the LOD score with respect
to the disease model parameters, i.e., penetrances and disease allele frequency. Therefore,
GENEHUNTER-IMPRINTING has recently been extended to perform such a maximiza-
tion procedure, which is called ’MOD-score analysis’ or ’maximizing the maximum LOD
score’ (MMLS).

Another program extension, GENEHUNTER-TWOLOCUS, allows to explicitly model two
trait loci with parametric and nonparametric linkage analysis in the multi-marker context.
For traits which are in fact determined by two loci, the power of two-trait-locus analysis
has proven to be higher than with single-trait-locus methods, provided that at least one
marker linked to each disease locus is included into the analysis. Due to the nature of
the Lander-Green algorithm, for which the computation time and memory requirements
increase exponentially with the number of individuals in a pedigree, the pedigrees to be an-
alyzed with the original version of GENEHUNTER-TWOLOCUS were restricted to 12-13
bits. Recently, the two-trait-locus algorithm of the program has been thoroughly opti-
mized; this increased the speed by a factor of ten. In addition, the time-intensive part has
been parallelized. The obtained speed-up is perfect, and so the computation time further
decreases by a factor which is equal to the number of processors used. Altogether, with the
optimized and parallelized version of GENEHUNTER-TWOLOCUS, the size of pedigrees
which can be analyzed increases from 12-13 to 17 bits and more. In addition, the new
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version of GENEHUNTER-TWOLOCUS calculates LOD and NPL scores as a function of
both trait-locus positions, not just of one trait-locus position as before, with the position
of the other disease locus being fixed. The LOD or NPL results are conveniently displayed
in a three-dimensional plot, and can be viewed e.g. with GNUPLOT, or any other suitable
graphics package.

Bayesian spatial modelling of haplotype associations

Duncan C. Thomas

Multilocus genotypes of tightly linked loci can be a powerful tool for mapping a disease
gene by linkage disequilibrium or for characterizing the effect of a candidate gene. To fully
exploit the information from multilocus genotypes Gitr = (Gi`)`=1,...L, where ` indexes
the loci and i the subjects, one must first arrange the genotypes into two haplotypes
Hi = (hi1, hi2), the sequence of alleles on each chromosome. These haplotypes can usually
not be determined with certainty from the observed genotypes. Hence, we use a likelihood
of the form

L(β,q) =
∑
h∼Gi

Pβ(Yi|Hi = h) Pq(Hi = h)

where Yi is a subject’s phenotype, h ∼ G indicates the set of haplotype pairs that are
compatible with the observed genotypes, and (β,q) are parameters for haplotype relative
risks and haplotype population frequencies, respectively. For example, we might adopt a
logistic model of the form

logit Pr(Yi = 1|Hi) = β0 + βhi1
+ βhi2

The model can be fitted using E-M methods (Chiano and Clayton, 1998; Excoffier and
Slatkin, 1995; Schaid et al., 2002; Stram et al., 2002), provided the number of loci (or
haplotypes) is not too large; otherwise Markov chain Monte Carlo (MCMC) methods can
be used (Liu et al., 2001; Niu et al., 2002).

However, in the case of many haplotypes, we are quickly confronted with the interrelated
problems of multiple comparisons and sparse data, for which Bayesian shrinkage estimators
appear to be a natural solution. In doing so, we wish to exploit the notion that structurally
similar haplotypes in the neighbourhood of a disease predisposing locus are more likely to
harbor the same susceptibility allele and hence to have similar βs. Thomas et al. (2001)
and Molitor et al. (Molitor et al., 2002) considered a conditional autoregressive (CAR)
model of the form

β ∼ MVN(0, σ2I + τ 2W)

where W is a matrix of “similarities” of each pair (h, k) of haplotypes, such as the length
Lhk(x) of the segment shared ibs surrounding a candidate mutation location x.

More recently, we have been considering the Potts (Green and Richardson, 2001) and
Voronoi (1908) spatial clustering models, of the form

logit Pr(Yi = 1|Hi) = β0 + βchi1
+ βchi2

where ch denotes the “cluster” to which haplotype h belongs. For the Potts model,

Pr(ch = c|c−h) =
exp [ψ

∑
h∼k I(ck = c)]∑

c′ exp [ψ
∑

h∼k I(ck = c′)]

where h ∼ k means h and k are neighbours (e.g., they differ at only a single SNP). In the
Voronoi model, haplotypes are assigned deterministically the the cluster containing the
“nearest” ancestral haplotype Ac. MCMC methods are used to update β, x, σ2, τ 2 (in
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the CAR models), c, ψ (for the Potts model), and Ac (for the Voronoi model). Reversible
jump MCMC could be used to update the number of clusters.

These spatial clustering models implicitly assume a “star-shaped” genealogy, i.e., the
present day haplotypes in each cluster are assumed to be independently derived from
the corresponding ancestral haplotype. We are currently trying to relate this approach
to coalescent models, by allowing each haplotype to have its own βh, but to allow the
covariance of pairs of haplotypes in the same cluster to depend upon their estimated time
Thk to a common ancestor, based on their shared length Lhk. Letting cov(βh, βk|Thk) =
σ2

c exp(−ϕThk), and using the fact that Lhk ∼ Γ(2, 2Thk) and Thk Γ(1, 1/(2N)), where N
is the effective population size, the marginal covariance can be shown to be

cov(βn, βk|ch =ck) =

(
4ϕσ2

c

N

) (
Lhk

φ+ 1/(2N) + 2 Lhk

)

We are also exploring alternative approaches based on hierarchical models for inferences
on the genotype level, without having to infer haplotypes (Conti and Witte, 2003). In this
approach, the first level model is expressed in terms of relative risks coefficients for the
genotypes at each locus separately, and the second level model defines the prior means and
covariances of these coefficients.
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Statistical Issues in Haplotype Analysis

Hongyu Zhao

Haplotype analyses may provide more information on the complex relation between DNA
variation and phenotypes than single marker analyses. However, there are many statistical
issues that need to be resolved and understood to fully take advantage of haplotype data.
In this talk, we cover a few topics that are of great interest to human geneticists.

The first issue is that the identification and analysis of haplotypes require knowledge
of phase information on the sampled individuals, which is not generally available from
unrelated individuals. We describe a likelihood-based approach to assessing associations
between traits and haplotypes based on haplotype-based logistic regression models. In this
model, the outcome is case or control, and the predictor variables include the number of
copies (0,1,or 2) of each haplotype, as well as other explanatory variables. We consider
the underlying unobserved haplotype pairs and phase information as missing data and use
the method of weights to estimate model parameters. Our methods provide both global
test and haplotype-specific tests. In addition, one major advantage of our method is that
we are able to estimate specific haplotype effects with respect to the baseline haplotype.
We show the results of our method applied to study associations between p53 and breast
cancer and betwe! en the human opioid receptor gene and substance dependence using real
data sets. Our methods can be directly applied to cohort studies and extended to analyze
quantitative traits and other types of data by constructing corresponding generalized linear
models.

The second issue is SNP marker selection. Although millions of genetic polymorphisms
have been identified in the human genome, a small proportion of these markers may be
needed to capture the majority of the diversity due to linkage disequilibrium. Several meth-
ods have been proposed to select representative markers. One use of these representative
markers is to select a set of markers to detect an association of disease with haplotype
(disease gene mapping). We investigate the usefulness of three methods designed to se-
lect markers that preserve information or diversity for identifying disease associations with
haplotypes in case-control studies. We examine five genes with known disease associations.
The three procedures designed to preserve information or diversity often lead to the selec-
tion of markers with poor power to detect the disease association. An alternative strategy,
such as a two-stage design that uses data on cases and controls in the initial stage, may
se! lect more powerful markers for disease gene mapping in the second stage.

The third issue addressed in this talk is measurement errors in genotypings. In general,
two different genotyping strategies may be employed to establish associations between
genotypes and phenotypes: (1) collecting individual genotypes or (2) quantifying allele
frequencies in DNA pools. These two technologies have their respective advantages. In-
dividual genotyping gathers more information, whereas DNA pooling may be more cost
effective. Recent technological advances in DNA pooling have generated great interest in
using DNA pooling in association studies. We investigate the impacts of measurement
errors in genotyping on the identification of genetic associations with these two genotyping
strategies. We find that, with current technologies, a larger sample is generally required
to achieve the same power using DNA pooling compared to individual genotyping. We
further consider the use of DNA pooling as a screening tool to identify candidate regions
for follow up studies. We fi! nd that a majority of the positive regions identified from DNA
pooling results may represent false positives if measurement errors are not appropriately
considered in the design of the study.
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Haplotype estimation for multilocus SNP genotype data and their association
to genetic traits

Klaus Rhode

With exception of direct haplotyping the majority of genetic data are large samples of
multilocus biallelic (SNP) genotypes with the phase of the alleles at each locus not known.
The problem is to estimate the underlying haplotype pairs behind the phase-unknown
genotypes in order to find some association between a certain haplotype and a genetic
trait. We use a three-stage approach:
- EM-algorithm (extended to nuclear families) for estimating haplotype frequencies and all
compatible haplotype pair configurations of the sample.
- Conventional statistics ANOVA (parents or individuals) or TDT (nuclear families) at the
most likely haplotype pair configuration of the sample.
- Sampling the statistics over all compatible haplotype pair configurations with their weight
in order to take also the less likely haplotype pair configurations into account.
Applications for simulated and real data (ACE polymorphisms in a Caucasian and Ni-
gerian sample) were shown.

Detecting association between disease and a group of “haplotype tagging”
single nucleotide polymorphisms

David Clayton

Recently it has been suggested that association between disease and a small genetic region
may be most efficiently detected by typing a few “haplotype tagging” SNP’s (htSNP’s).
Typically these will have been selected from a larger set of markers in order to most closely
identify the most frequent haplotypes in the population. Less attention has been given to
the problem of how such studies should be analysed when completed and how the initial
data which was used to select the htSNPs should be incorporated into the analysis. This
paper discussed this problem for both population– and family–based association studies.
The role of the R2 measure of association between a causal locus and various methods of
scoring of marker haplotypes is highlighted. Lack of knowledge of gametic phase was shown
to result in little loss of power, and a new “multi-locus TDT” was proposed in passing.

Design Issues in Using htSNPs for Association Studies

John S. Witte and Deborah Thompson

The increasing availability of regularly spaced SNPs throughout the human genome has
prompted many groups to use SNPs in association studies to search for genetic variants
responsible for common diseases. More information can be gained from basing such studies
on haplotypes, rather than considering each SNP separately. Several groups have demon-
strated the existence of discrete blocks of low haplotype diversity within the human genome.
High linkage disequilibrium within blocks means that information from a proportion of the
SNPs is redundant, and the majority of the haplotypes can be distinguished using a much
smaller number of SNPs, known as ’tagging SNPs’. Several approaches have been suggested
for identifying the optimal tagging SNPs. We focus on the program tagSNPs (Stram et
al., 2003), which selects tagging SNPs to minimise the uncertainty in predicting common
haplotypes for individuals with unphased genotype data. Optimal tagging SNPs can be
estimated using a small subgroup of the study population that have been genotyped for a
dense SNP map, and it is just these tagging SNPs that are genotyped in the remainder of
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the samples. We used simulations to investigate how the size of the subsample affects the
power of such an association study, and whether the subsample should consist of controls,
or a mixture of cases and controls.

Inference of Specific Haplotype Effects in Case-Control Studies Using
Unphased Genotype Data

Michael P. Epstein and Glen A. Satten

Haplotype-based association methods are powerful and popular procedures for identifying
genes that influence complex disease. For a case-control study design, a variety of sta-
tistical methods exist that detect haplotype-disease association by comparing haplotype
frequencies among sampled cases and controls. Given unrelated samples often consist of
unphased genotype data (resulting in haplotype ambiguity), many such statistical methods
account for missing haplotype information by using the Expectation-Maximization (EM)
algorithm for inference. While existing haplotype-based association methods are impor-
tant, the majority fail to determine how specific haplotypes influence disease. Inference
of specific haplotype effects is valuable-particularly for identifying functional variants of a
candidate gene. Therefore, we develop a retrospective likelihood for estimating and testing
the effects of specific SNP-based haplotypes on disease in a case-control study assuming
unphased geno! type data. Our proposed method has a flexible structure that allows
modelling of main and interaction effects of specific haplotypes on disease. For statis-
tical inference, we apply an Expectation-Conditional-Maximization (ECM) algorithm to
account for the ambiguous haplotype information in the genotype data. Using simula-
tion studies, our results suggest that our method returns unbiased estimates of specific
haplotype effect size and has excellent power to detect such effects.

Association studies with tightly linked markers

Michael Knapp

Recently, Zhao et al. (2000) proposed a modification of the TDT which allows to ana-
lyze multiple tightly linked marker loci simultaneously, even if haplotypes are not directly
observed. This talk presents a general approach for constructing size α tests in case of
random variables for which the set of possible realizations is finite and in case that some
of these realizations are equally probable under the null hypothesis. It is shown that the
method by Zhao et al. (2000) can be viewed as a special case of this principle. By this,
it is obvious that several intuitive modifications of Zhao’s method which may increase the
power of his approach will not affect its validity. In addition, the general approach shows
how to extend Zhao’s method to allow the analysis of general nuclear families with an
arbitrary number of affected and unaffected children.

Using the non-informative families in family-based association tests: a
powerful new testing strategy

Christoph Lange

For genetic association studies with multiple phenotypes, we propose a new testing strat-
egy for family-based association tests (FBATs) that increases the power by both using all
available family data and reducing the number of hypotheses tested. Using conditional
power calculations, the approach identifies the subset of phenotypes which has optimal
power when tested for association either by univariate or by multivariate FBATs. Further,
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using all available families, the approach provides estimates of the effects sizes without bi-
asing the nominal significance level. In simulation studies, we compare our testing strategy
with standard methodology. An application of our strategy to an asthma study shows the
practical relevance and the robustness of the proposed methodology. The popular TDT is
included as a special case.

Adaptive designs for candidate gene association studies with trios for
data-driven design modifications

Andre Scherag

The use of conventional TDT test statistics in the analysis of candidate gene association
studies requires the precise and complete pre-specification of the total number of trios to
be sampled in order to control the error risk of a false positive result (type I error risk).
Looking at the collected data before the pre-specified end and performing a conventional
statistical level alpha test for early stopping in general will increase the risk of false positive
results. In the case of most of these studies only little information about the genetic
effects will be available beforehand and thus it will be difficult to specify the alternative
hypothesis and to fix the sample size. In this situation we propose to allow for an interim
analysis and explicitly plan to make appropriate sample size adjustments or changes based
on estimates of the genetic effects obtained from the interim analysis (Scherag, Dempfle,
Hinney, Hebebrand and Schäfer, in revision). We apply the method for data-driven design
modifications developed by Mller and Schäfer (2001) in the context of a clinical trial which
allows to change statistical design elements such as the sample size or to include an interim
analysis for early stopping when no formal rule for early stopping was foreseen or to increase
or reduce the number of planned interim analyses, without affecting the type I error risk.
The method is based on the conditional rejection probability of a decision function.

IBD (Identity by Descent) Processes

Chris Cannings

The concept of Identity by Descent (IBD) is immensely valuable in capturing the informa-
tion regarding genealogical structure, either for a specific sample or for a random process
within a population. Using it we can investigate complex models of population including
diploids, polygamy, proscription of certain types of marriages, clan structure etc.

IBD is usually used with respect to a single locus but in a more general setting IBD can
be treated as a process across the genome, the IBD state changing at points corresponding
to recombination events in the history of the genealogy.

Contributions to the understanding of this process were initiated by Donnelly(1983) who
considered unilineal relationships between two individuals (ones who can only share one
gene IBD), and showed that in this case the IBD process was equivalent to a random
walk on a hypercube (the dimension matching the depth of the genealogy). Bickeboller
and Thompson(1996( considered the case of half sibs using the Poisson clumping heuristic,
and Stefanov(2000) cases similar to those of Donnelly exploiting methods developed for
exponential families. Explicit expressions for the distribution of the total IBDlength in
unilineal relationships are given by Walters and Cannings (20031), and for the number of
segments by Walters and Cannings(2003b).

For more general genealogies and larger (than 2) sets of individuals the exact derivation
of the distribution is intractable. One method is to simulate the flow through the genealogy
as per Dimitropoulou and Cannings (2003). Another is to derive the matrix of transition
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rates between the possible IBD states, and to deduce from this, possibly by simulation,
statistics of interest. The latter method has the advantage that the simulation is then
far easier to carry out because the genealogy has been encapsulated into a much simpler
structure. It is this latter method which will be described here, and the particular example
of repeated sib-mating used as an illustration.
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Genome sharing in large pedigrees

Elizabeth Thompson

Gene identity by descent underlies patterns of phenotypic similarity among related indi-
viduals. Individuals concordant for a trait phenotype have increased probability of ibd at
causal loci, and hence also at linked markers. Using MCMC methods, patterns of ibd can
be realized jointly over individuals and jointly over loci, conditional on all marker data YM

observed on the pedigree. Such MCMC methods have the advantage that ibd can be scored
jointly over loci. Also the samplers can be adapted to gender-specific maps, genetic interfer-
ence, and linkage disequilibrium among marker loci in pedigree founders. Often measures
W of ibd are used to test for linkage, using statistics of the form T ≡ Exp(W | YM). This
is undesirable, since var(T ) ≤ var(W ) and suitable pedigree-based measures W often have
highly skewed distributions, given YM. Instead we propose p-values for linkage of the form

Exp(P (W ∗ ≥ W |Y∗
M,YM))

where the expectation is taken over data-set realizations Y∗
M having the distribution

of marker data having the same genetic map, marker-locus characteristics, and data-
availability as the observed data YM, but in the absence of linkage. The cumulative
distribution functions of W ∗(λ) and W (λ) are estimated for all of a set of chromosomal
locations λ ∈ Λ by MCMC given Y∗

M and YM, respectively. Combined p-values for linkage
are then estimated by taking expectations over multiple data sets Y∗

M.
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Meta-Analysis of Linkage Genome Scans

Astrid Dempfle and Sabine Loesgen

Linkage genome scans for complex diseases have low power with the usual sample sizes.
Meta-analysis of several scans for the same disease might therefore be a promising ap-
proach. Appropriate data are getting accessible. Here, we give an overview of the available
statistical methods and recent applications. In a simulation study, we compare the power
of different methods to combine multipoint linkage scores, namely Fishers p-value com-
bination, the truncated product method (Zaykin et al., 2002), the Genome Search Meta-
Analysis (GSMA, Wise et al., 1999) method and a weighting method for nonparametric
linkage scores (Loesgen et al., 2001). In particular, we investigate the effects of hetero-
geneity introduced by different genetic marker sets and sample sizes between genome scans.
The weighting methods explicitly take those differences into account and have more power
in the simulated scenarios than the other methods.

Group sequential study designs in genetic-epidemiological case control studies

I.R. Koenig, A. Ziegler

In the past years, the focus of genetic-epidemiological studies has shifted to the analysis
of complex diseases. Here, a single gene often contributes only little to the manifestation
of a trait; hence, many patients have to be included in a study to reliably detect small
effects. To reduce the number of required phenotypings and genotypings in a study and
thus facilitate the analysis of complex traits, sequential study designs can be applied. For
the sequential analysis of candidate genes in association studies, we describe at first the
procedure by Sobell et al. [1]. This includes the successive testing of many candidate
genes with an adjustment of the significance level. Thus detected associations are vali-
dated in independent samples. Based on results from Monte-Carlo simulations, we discuss
the efficiency of this procedure. Secondly, we present the adaptation of group sequential
study designs by Pampallona and Tisatis [2] to the analysis of candidate genes. In this
procedure, the sample of cases and controls is enlarged sequentially; after the genotyping
of each subsample, association is analyzed in the cumulative data. Error rates and the ef-
ficiency of this proceeding are similarly investigated by Monte-Carlo simulations. Finally,
we compare both procedures regarding error rates, efficiency, and practical applicability.
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Pairwise IBD estimation

Simon Heath

Estimates of pairwise measures of Identity by Descent (IBD) describe the identity rela-
tionship between the four alleles carried by any two individuals at a given locus. These
measures are required for (amongst other uses) variance component methods of linkage
analysis which use them to give the covariance structure of the major gene variance com-
ponents. The problem of estimating the IBD measures is technically similar to classical
linkage analysis in that it involves summation over all configurations of gene flow in pedi-
grees which are consistent with the observed data, and algorithms for linkage analysis can
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be simply adapted to the estimation of IBD measures. It is normally desirable to use
all available marker and pedigree information, but this leads to computational difficulties
unless pedigree are very small or few marker loci are considered. MCMC methods can be
applied to this problem to perform the summation over gene flow patterns. Use of MCMC
approaches has the advantages that large pedigrees with many marker loci can be used,
and more complicated estimates can be easily obtained such as joint IBD sharing at mul-
tiple linked loci. However it can be difficult to obtain a well mixing sampler, particularly
when markers are tightly linked. It can be useful to construct a MCMC sampler which
has multiple types of sample updates to help the sampler efficiently move around the sam-
ple space. The sampler presented here has two main components: a locus sampler which
updates jointly the state of all pedigree members at an individual marker conditional on
neighbouring loci, and a meiosis sampler which jointly updates the grand-parental origin of
the genes carried by an individual at all loci. Further improvement in the meiosis sampler
by jointly updating blocks of meioses will also be presented.

Modelling of Periodic Screening for Lung Cancer of Smokers with Increased
Mutagen Sensitivity and Reduced DNA Repair Capacity: Impact on

Population–Based Mortality

Olga Yu Gorlova and Marek Kimmel

It has been shown that lung cancer cases consistently show higher mutagen induced chro-
mosomal break scores and poorer DNA repair capacity (DRC) than age- and ethnicity-
matched controls. These associations can help to identify individuals (smokers) at higher
risk to develop lung cancer. In this study, we applied the data from both these assays in
149 cases of non-small cell lung cancer and 149 matched controls, to a previously developed
and validated stochastic model of lung cancer natural history and detection (Flehinger and
Kimmel, Biometrics 1987, 43: 127-144). This model allows estimating the mortality re-
duction associated with early detection of lung cancer followed by appropriate treatment
(Flehinger et al., Cancer 1993, 72: 1573-1580; Gorlova et al, Cancer 2001, 92: 1531-1540).
The lifetime susceptibility to get lung cancer distinguishes mutagen sensitive and insensitive
individuals. We estimated the lifetime susceptibility using our previous estimate (17.4%)
of lung ! cancer susceptibility based on the Mayo Lung Project and the case-control lung
cancer study at the Epidemiology Department at the MD Anderson Cancer Center. As an
example, the estimate of lifetime susceptibility to lung cancer of smokers who exhibited
the mutagen sensitive phenotype equals 25%, as opposed to 14% for non-sensitive smokers.
Modelling shows that annual CT screening of all smokers for 20 years can reduce mortality
by 36%. If, within the same group, only individuals with elevated BPDE sensitivity and
reduced DRC are screened, the mortality reduction is 19%. Further modelling to consider
costs associated with screening the highest-risk segments of the population is warranted.

Edited by Tim Becker
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