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The meeting was organised by Gerhard Huisken (Albert Einstein Institute Potsdam),
Jim Isenberg (Eugene) and Alan Rendall (Albert Einstein Institute Potsdam). It addressed
recent progress in several areas of Mathematical Relativity, in particular new developments
in cosmological models, in energy inequalities, solutions of the constraint equations and
solutions of Einstein’s equations with various forms of matter.

Of particular importance was the influence of new techniques in nonlinear partial dif-
ferential equations and differential geometry on the understanding of models in general
relativity. PDE techniques prove to be of importance for example in the investigation of
stability properties of solutions and their asymptotic behaviour, both for large distances
and near singularities. The introduction of new mathematical techniques has made it
possible to attack a number of important problems from a new point of view.

The participants composed a good mix of researchers from mathematics and theoretical
physics and ensured a close interaction between the two fields. The 25 lectures were given
in the morning and late afternoon, a number of collaborations were continued and some
new ones initiated amongst the 44 participants. Below are the abstracts of the lectures
given during the meeting. All participants enjoyed the wonderful atmosphere provided by
the institute and its staff in a white winter landscape.
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Abstracts

Gauge fixed evolution for the Einstein equations in low regularity

Lars Anderson (University of Miami)

The Einstein vacuum equations Rαβ = 0 in 3+1 dimensions are studied in the gauge given
by imposing the constant mean curvature time gauge trk = t − t0, together with the
spatial coordinate gauge given by requiring that the identity map Id : (3M, g) → (3M, ĝ)
is harmonic, for a fixed smooth background metric ĝ. The resulting elliptic–hyperbolic
system is shown to be well–posed in H2+γ. The proof uses a bootstrap argument, based
on a Lp

tL
∞
x Strichartz estimate, valid for vacuum spacetimes with the given regularity.

The proof of the Strichartz estimate is reduced, using Littlewood–Paley decomposition
and interpolation estimates, to a L2 −L∞ decay estimate, which in turn is proved using a
Morawetz type energy estimate. The crucial step in proving the estimate is the study of
null cones in a rescaled spacetime. In particular, the quadratic nature of the null structure
equations plays a central role in the proof.

Dynamical and Isolated Horizons

Abhay Ashtekar (Pennsylvania State University)

The talk summarized of some the recent results on Dynamical and Isolated Horizons and
suggested a number of problems at the interface of geometry and analysis whose solutions
will shed considerable light on what John Wheeler called the issue of the ‘Final State’.
The basic expectation, based on the black hole uniqueness theorems, is that, at late stages
of black hole formation, the near horizon geometry should approach the geometry near
the Kerr horizon. The key question is: Under which assumptions and in what precise
sense does this expectation on the ‘Final State’ hold? In numerical evolution of such
space-times, black holes are represented by apparent horizons on Cauchy slices. The world
tube of these apparent horizons constitutes a Dynamical Horizon which are space-like. An
isolated horizon is an asymptote to a Dynamical Horizon and is null. A great deal is known
about geometry and implications of Einstein’s equations on both, including an intrinsic
characterization of the Kerr isolated horizon. Therefore, it is possible to pose a series of
(mostly elliptic) problems whose solutions will characterize all Dynamical Horizons and
their asymptotes that can arise in numerical simulations, and answer questions concerning
the ‘Final State’.

Energy and monotone quantities

Robert Bartnik (University of Canberra)

This talk reviewed various positivity proofs concerning energy, and stressed the importance
of monotone quantities. The second variation formula for area of a hypersurface is closely
related to both Geroch’s monotonicity (used by Huisken-Ilmanen in their proof of the
Penrose Conjecture) and also to a parabolic equation used to construct quasi-spherical
and similar solutions to the Hamiltonian constraint (scalar curvature). These ideas have
been elegantly combined by Shi-Lam to show that the Brown-York mass of a bounded
convex region with non-negative scalar curvature, is non-negative and vanishes only for
flat domains.
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Blowup in the Yang-Mills-Equations

Piotr Bizon (Jagiellonian University, Krakow)

(joint work with Z. Tabor, Yu. Ovchinnikov, and M. Sigal)

I discuss the formation of singularities for the spherically symmetric Yang-Mills equations
in d + 1 dimensional Minkowski spacetime for d = 4 (the critical dimension) and d = 5
(the lowest supercritical dimension). Using combined numerical and analytical methods I
argue that in both cases solutions starting with large initial data blow up in finite time and
the asymptotic profile of blowup is universal. In d = 5 this profile is given by the stable
self-similar solution while in d = 4 it is given by the instanton. In the latter case the rate
of shrinking of the instanton is derived by solving the modulation equation for the scale
factor.

U(1) symmetric Einsteinian spacetimes, the unpolarized case

Yvonne Choquet-Bruhat (Université Paris)

The Einstein equations for vacuum spacetimes with spacelike U(1) isometry group are
equivalent to an Einstein - wave map system on a 2+1 dimensional manifold Σ × R,
together with an ordinary differential system for the evolution of the conformal structure
of Σ×{t} when the surface Σ, supposed to be compact, has genus greater than 1. I prove the
existence of future timelike and null such spacetimes, by using gauge conditions and elliptic
estimates to determine the 2+1 metric, up to the conformal structure of Σ×{t}, together
with differential equations in Teichmüller space which govern this conformal structure.
Corrected energies estimates lead to a decay of the energies of the wave map and its
derivatives. The future global existence is obtained by a bootstrap argument. The theorem
is an extension of results obtained in collaboration with V. Moncrief in the ”polarized” case,
where the wave map reduces to a scalar field.

On the dynamics of Gowdy space times

Piotr T. Chrusciel (Université de Tours)

(joint work with Myeongju Chae)

We study the behaviour near the singularity t = 0 of Gowdy metrics. A solution is said to
satisfy a power law blow-up if the theta derivatives of the associated map into hyperbolic
space do not blow up faster than |t|ε−1, for some positive constant ε, when approaching the
singularity t = 0. No solutions of the Cauchy problem are known which do not satisfy a
power low decay. We give an explicit self-similar solution which does not satisfy the power
law decay, but it does not fit into a Cauchy problem framework. Every solution with a
power law decay has a continuous asymptotic velocity function v, and is strongly censored,
with curvature blowing up uniformly, except perhaps at points θ at which v(θ) = 1.

Consider the set of initial data for solutions satisfying a power law decay and for which
v < 1. We show that this set is open in the set of all initial data; for those solutions
v is smooth except perhaps at points at which it crosses zero; all such solutions have
“asymptotically velocity term dominated” (AVTD) behaviour.

In recent further work we have shown that the set of AVTD solutions satisfying a certain
uniformity condition is open in the set of all solutions, without the v < 1 restriction, and
that for every solution there exists an open dense set Ω ⊂ S1 such that the solution displays
AVTD behaviour near {0} × Ω.
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On the Asymptotics for the Einstein Constraint Equations

Justin Corvino (Brown University, Providence)

(joint work with R. Schoen)

We study the asymptotics of solutions to the vacuum constraint equations. Given asymp-
totically flat initial data onM3 for the vacuum Einstein field equation, and given a bounded
domain in M , we construct solutions of the vacuum constraint equations which agree with
the original data inside the given domain, and are identical to that of a suitable Kerr slice
(or identical to a member of some other admissible family of solutions) outside a large ball
in a given end. The data for which this construction works is shown to be dense in an ap-
propriate topology on the space of asymptotically flat solutions of the vacuum constraints.
In particular, such data evolves to produce a spacetime with particularly nice behaviour
at null infinity. This construction generalizes work in [1], where the time-symmetric case
was studied.

[1] Corvino, J.: Scalar Curvature Deformation and a Gluing Construction for the Einstein
Constraint Equations. Comm. Math. Phys. 214, 137-189 (2000).

[2] Corvino, J., Schoen, R.M.: On the Asymptotics of the Vacuum Einstein Constraint
Equations. Preprint.

The internal structure of charged black holes and the problem of uniqueness
in general relativity

Mihalis Dafermos (Massachusetts Institute of Technology)

It is a well known fact that the maximal domain of development of Reissner-Nordstrom
data has a smooth future boundary. This indicates that gravitational collapse may lead to a
loss of predictability for observers entering the black hole. To examine the generality of this
phenomenon, a characteristic initial value problem for the Einstein-Maxwell- Scalar Field
equations is studied, with data on the event horizon satisfying a power-law decay. Such
data are conjectured to arise generically from the collapse of compactly supported scalar
fields. For such data, the spacetime that develops is completely understood. In particular,
the boundary of the maximal domain of development is proved to be a null singularity
along which the Hawking mass blows up yet the metric can be continuously extended
beyond. The implications of these results for the strong cosmic censorship conjecture are
discussed.

Initial data for black hole collisions

Sergio Dain (Albert Einstein Institute Potsdam)

I describe the construction of initial data for the Einstein vacuum equations that can
represent a collision of two black holes. I stress in the main physical ideas.
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PDE methods for spacelike hypersurfaces

Klaus Ecker (Freie Universität Berlin)

Maximal (mean curvature zero) hypersurfaces were used in Schoen and Yau’s proof of
the positive mass theorem and in the reduction of the Penrose inequality problem to a
problem about asymptotically flat 3-manifolds with non-negative scalar curvature, which
was recently solved by Huisken-Ilmanen and by Bray.

In this talk, we survey existence and classification results for spacelike hypersurfaces, in
particular noncompact ones, in Lorentzian manifolds. We review the geodesic completeness
estimate of Cheng-Yau which can be interpreted as a local gradient estimate for solutions
of an elliptic PDE. Finally, we present mean curvature flow methods, that is parabolic
PDE techniques, for the construction of such hypersurfaces.

Newton’s theory of spacetime and gravity as a limit of Einstein’s GR

Jürgen Ehlers (Albert Einstein Institute Potsdam)

If the basic laws underlying GR are slightly rearranged and reformulated in terms of
rescaled metric variables, they remain meaningful if the positive parameter λ ≡ c−2 is
replaced by 0. The resulting equations reproduce Newton’s theory including its spacetime
structure, if a condition of asymptotic flatness at spatial infinity is imposed. One can,
therefore, define a limit relation for sequences of GR solutions to have Newtonian solutions
as limits; Many examples illustrate this. This formalism has been used to obtain GR
results from Newtonian ones and to set up Newtonian approximations to GR.

[1] Jürgen Ehlers, The Newtonian limit of General Relativity in ”Classical Mechanics and
Relativity, relationship and consistency”, G. Ferrarese (ed., Napoli 1991).

[2] Jürgen Ehlers, Examples of Newtonian limits of relativistic spacetimes, CQG Nr. 14,
A119 - A126, 1997.

The inverse mean curvature flow in cosmological spacetimes. Transition from
big crunch to big bang

Claus Gerhardt (Universität Heidelberg)

Let N be a cosmological spacetime of dimension (n+1), N = (a, b)×S0, that is asymptot-
ically Robertson-Walker and has a big crunch singularity. We consider the inverse mean
curvature flow

ẋ = −H−1ν

with initial hypersurface M0, where ν is the past directed normal, and H |M0
> 0. If N

satisfies a so-called strong volume decay condition, then the inverse mean curvature flow
exists for all time and provides a smooth foliation of the future of M0.

Let M(t) be the flow hypersurfaces with mean curvature H. Then, we can prove that
the rescaled M(t) converge in C∞(S0) to a homothetic image of S0.

Moreover, we can define a new universe Ñ by reflection at the big crunch which is a
mirror image of the old universe such that the old and the new stress energy tensors are
identical, and all equations that are valid in N also hold in the mirror image. In Ñ the
singularity is now a big bang singularity.
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If we rescale the inverse mean curvature flow by introducing a new flow parameter

s = −e−γt,

with a suitable γ > 0, then, the rescaled flow can be canonically extended to Ñ as a
flow which is of class C∞ in x and of class C3 in s. Thus, there exists a natural C2-
diffeomorphism defined on

(−a, a)× S0, a > 0,

which is of class C∞ outside the singularity.

Self-similarity in the massless Einstein-Vlasov system

Jose M. Martin-Garcia (University of Southampton)

(joint work with C. Gundlach)

The work reported in this talk is motivated by recent numerical investigations searching for
critical phenomena in the gravitational collapse of Vlasov (collisionless Boltzmann) matter
coupled to General Relativity. They have found no indication of existence of a self-similar
intermediate attractor in phase-space, and some, but not concluding, indications of the
existence of a static intermediate attractor, key ingredients for having type I or type II
critical phenomena, respectively.

We investigate this issue by numerically constructing static solutions (rigorously estab-
lished by Rein and Rendall) for massive and massless particles, and self-similar solutions
(not known before) for massless particles. For zero mass particles we find that the in-
variance of the spacetime under redistributions of energy-momentum among the particles
prevents the existence of isolated intermediate attractors, so that the usual critical phe-
nomenology cannot be realized in the massless case. This result cannot be directly applied
to those numerical investigations because they assume massive particles, but serves as an
example of a noncritical system.

Null asymptotic behaviour of the Riemann tensor in a class of vacuum
spacetimes

Francesco Nicolo (Universita di Roma)

(joint work with S. Klainerman)

In this work by Sergiu Klainerman and myself we show that, assuming that the metric
tensor decays as O(r3+ε) with its derivatives up to fourth order, on the initial spacelike
hypersurface Σ0, the various components of the Riemann tensor of the spacetime (M, g),
solution of the Einstein vacuum equations with these initial data, have an asymptotic
decay along the null outgoing directions consistent with the predictions of the conformal
compactification approach and in particular of the ”peeling theorem”. It is also proved
how much of the peeling result is lost when the decay for the metric tensor on Σ0 is only
O(r3−γ) with γ ∈ (3

2
, 0]. The result with γ = 0 is in partial agreement with the discussion

on polyhomogeneous expansion.
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Stability of Newtonian Galaxies and Stars

Gerhard Rein (Universität Wien)

We consider self-gravitating matter distributions in a Newtonian framework. The matter
is modelled either as a collisionless gas or as a perfect, compressible fluid. The former
case—the Vlasov-Poisson system—describes a galaxy, the latter case—the Euler-Poisson
system— describes a simple star.

Starting with the Vlasov-Poisson system we consider an energy-Casimir functional acting
on density functions on phase space, and we show that minimizers of this functional are
non-linearly stable steady states. To prove the existence of minimizers we construct a
reduced version of the energy-Casimir functional acting on density functions on space in
such a way that there is a one-to-one correspondence between the minimizers of the original
functional and those of the reduced one. Minimizers of the latter functional are shown to
exists by a concentration-compactness technique.

As a bonus minimizers of the reduced functional turn out to be non-linearly stable steady
states (static solutions) of the Euler-Poisson system.

On the asymptotics of Gowdy

Hans Ringström (Albert Einstein Institute Potsdam)

The talk concerned the Gowdy spacetimes under the assumption that the spatial hyper-
surfaces are three tori. The relevant equations are wave map equations with the hyperbolic
space as a target. Asymptotic expansions for the solutions have been proposed to describe
the behaviour near the singularity. In the talk we presented different types of conditions
yielding such asymptotic expansions.

Selfgravitating elastic bodies in Einstein’s theory

Bernd Schmidt (Albert Einstein Institute Potsdam)

(joint work with R. Beig)

Presently we only have existence of static asymptotically flat solutions of Einstein’s field
equations with sources for fluids, which are necessarily spherically symmetric, and Vlasov
matter with axial symmetry. There should, undoubtedly, exist static spacetimes with
elastic bodies as sources.

We answered this question in Newton’s theory in [1] by proving the existence of small,
selfgravitating elastic bodies.

The case we are really interested in is Einstein’s Theory. The approach we want to use
is to perturb from a Newtonian solution to a solution of Einstein’s equations.

In 1981 J. Ehlers found a way to write Einstein’s field equations with fluid sources
containing λ = 1

c2
as a parameter, such that the PDEs had a well defined limit system for

λ→ 0, which is equivalent to the Newtonian system. In general this limit is ”singular” in
the sense that the hyperbolic relativistic equations have a limit which is still hyperbolic in
the matter variables but elliptic in the variable describing the gravitational field.

In the time independent case, however, the full equations as well as the limiting equations
are elliptic. This offers the possibility to perturb non linearly away from a Newtonian
solution to a relativistic one.

This approach has actually been used by U.Heilig [2] who gave the first — and up to now
only — existence theorem for a stationary, rigidly rotating fluid with small angular velocity.
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He perturbed non linearly away from a Newtonian, non rotating solution. (ω = 0, λ = 0)
The equations are formulated in harmonic coordinates. Then we have to solve:

(1) the ”reduced field equation ” for the geometry g and the deformation φ

F (g, φ, λ) = 0

(2) the matter equation

T (g, φ, λ) = 0

(3) the harmonicity condition

H(g, λ) = 0

(1) and (2) are elliptic for a ”reasonable ”description of elastic matter. Heilig has shown
that solutions of (1),(2) satisfying the correct boundary conditions satisfy (3) for sufficiently
small λ.

For λ = 0 we know the existence of solutions from [1]

F (gN , φN , 0) = 0 , T (gN , φN , 0) = 0 , H(gN , φN , 0) = 0

As a first step we obtain solutions (δg, δφ) of the equations linearized on (gN , φN). The
linearized equations have ”source terms” determine by the Newtonian solution and λ and
can be solved uniquely for sufficiently small λ. Next we plan to investigate whether one
can obtain solutions of the full equations for small λ via the implicit function theorem.

[1] R. Beig, B.Schmidt, Proc. Roy. Soc. 459, Nr. 2029 (2003).

[2] U.Heilig, Commun. Math. Phys. 166, 475 (1995).

Estimates for Scalar Fields on a Naked Singularity Background

A. Shadi Tahvildar-Zadeh (Rutgers University, Piscataway)

The Reissner-Nordström solution is the static spherically symmetric solution of the Einstein-
Maxwell equations gµνdx

µdxν = −α2dt2+ 1
α2dr

2+r2(dθ2+sin2 θdφ2) where α2 = 1− 2m
r

+ e2

r2 .
In the case |e| > m the singularity at r = 0 is naked. We study the Cauchy problem for a
spherically symmetric scalar field ψ on this background ∂µg

µν∂νψ = 0 and obtain spacetime
LpLq estimates (Strichartz estimates) for ψ in terms of its initial data. This is motivated in
part by the study of the problem of stability of the R-N solution as well as by the desire to
understand the issues regarding well-posedness in the absence of global hyperbolicity or cos-
mic censorship. Using the Regge-Wheeler tortoise coordinate r∗, the equation satisfied by
ψ can be written as a wave equation on flat spacetime, with a central potential V (r∗). The
potential is singular at the origin r∗ = 0 and behaves like c/r2

∗ both for r∗ small and large.
We note that the perturbation equations derived by Zerilli and Moncrief for studying the
linearized stability of the Reissner-Nordström solution take the form of two wave equations
with potentials that are of this same form. In the case of the wave equation with a poten-
tial that is exactly inverse-square U(x) = a

|x|2 the desired (generalized) Strichartz estimates

have been obtained by Burq, Planchon, Stalker and Tahvildar-Zadeh. We show that this
result can be generalized to central potentials that only behave like inverse-square, showing
that under an additional hypothesis on the potential, namely supr>0 r

2(rU(r))r <
1
4
, the

Strichartz estimates continue to hold. We then proceed to show that the particular poten-
tial V that comes up in the scalar field problem above satisfies the additional hypothesis
that we had to make, as long as |e| ≥ 2m.
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Cosmology, Black Holes, and Shock Waves Beyond the Hubble Length

Joel Smoller (University of Michigan)

(joint work with Blake Temple)

In this paper, we put forth in a rigorous mathematical setting, a new Cosmological Model
in which the expanding Friedmann-Robertson-Walker (FRW) universe emerges from an
event more similar to a classical explosion—there is a shock wave at the leading edge of the
expansion—than the standard scenario of the Big Bang. We believe that general relativity
pretty much forces such a solution on you as soon as you try to relax the assumption in the
standard model that the expansion of the galaxies is of infinite extent at each fixed time.
(You could say that in our model, the Copernican Principle is replaced by the principle
in physics, that nothing is infinite.) Most importantly, in these new models, the explosion
is large enough to account for the enormous scale on which the galaxies and the cosmic
background radiation appear uniform.

There are a number of remarkable twists that arise in these new GR blast waves. First of
all, the shock wave lies beyond one Hubble length from the FRW center, this threshold being
the boundary across which the bounded mass lies inside its own Schwarzschild radius—
that is, 2M/r > 1 beyond one Hubble length—and thus the shock wave solution evolves
inside a Black Hole. The nature and evolution of the ”total mass” inside the Black Hole
is unexpected and interesting.

Another interesting consequence is that the entropy condition chooses the explosion
over the implosion, (time irreversibility), and also implies that the shock eventually weak-
ens until it emerges from the Black Hole, (through the White Hole event horizon), as a
zero pressure Oppenheimer-Snyder solution. Asymptotically, for large time, the explo-
sion settles down to something like a giant supernova of finite mass and extent, but on
an enormous scale—a localized mass expanding into an asymptotically flat Schwarzschild
spacetime, everywhere outside the Black Hole.

But he biggest surprise to us is that unlike shock matching outside the Black Hole,
the equation of state, p = 1/3ρ—the equation of state at the earliest stage of Big Bang
physics—is mysteriously distinguished at the instant of the Big Bang. For this equation
of state alone, the shock wave emerges from the Big Bang at a finite nonzero speed, the
speed of light. (The shock wave then decelerates to a sub-luminous wave at all times after
the Big Bang.) These solutions describe, in exact formulas, the global dynamics of strong
gravitational field solutions of the Einstein equations, and the setting, inside the Black
Hole, is pretty much unexplored territory for analysis.

Wave maps with symmetry

Michael Struwe (Eidgenössische Technische Hochschule Zürich)

Consider wave maps U : R2+1
+ → N with either radial or co-rotational symmetry, blowing

up at t = 0, x = 0. We show that for suitable ti ↘ 0, Ri ↘ 0 (i → ∞) the rescaled
sequence

ui(x) = u(ti, Ri, x)(i→∞) → u∞ in H1
loc(R

2
0, N) ,

where u∞ : R2 → N is harmonic with finite energy, non-constant, and symmetric.
The non-existence of such maps with radial symmetry then shows that the Cauchy

problem for radially symmetric wave maps is globally well-posed, and similarly the Cauchy
problem for co-rotational wave maps to non-compact target surface of revolution.
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Perturbations of Spatially Locally Homogeneous Spacetimes

Masayuki Tanimoto (Yale University)

The aim of this talk is to presented the recent results on the linear perturbation analysis and
thereby on the asymptotic stability, of some vacuum solutions that are spatially closed and
locally homogeneous but anisotropic. The main focus is on the Bianchi III type (Thurston’s
H2 × R). One of the basic results about the evolutions of the perturbations of this type
is that they decouple in four independent parts for each appropriate mode. Defining
appropriate gauge-invariant variables, the wave equations (equivalent to the linearized
Einstein equation) for those variables were explicitly presented for each one of the four
kinds. Furthermore, based on the ‘zero-mode normalization’ scheme, it was concluded
that the solution is unstable against the linear perturbations (especially against the ones
called ‘even’ kind). Perturbations for the Bianchi II type were also commented, where in
particular the differences between classes B (to which Bianchi III belongs) and A (to which
Bianchi II belongs) were stressed.

The past attractor in inhomogeneous cosmology

Claes Uggla (University of Karlstad) and John Wainwright (University
of Waterloo)

We present a general framework for analyzing inhomogeneous cosmological dynamics. It
employs Hubble-normalized scale-invariant variables which are defined within the orthonor-
mal frame formalism, and leads to a formulation of Einstein’s field equations as an au-
tonomous system of evolution equations and constraints. This framework incorporates
spatially homogeneous dynamics in a natural way as a special case, thereby placing earlier
work on spatially homogeneous cosmology in a broader context, and allows us to draw on
experience gained in that field using dynamical systems methods. One of our goals is to
provide a precise formulation of the approach to the initial spacelike singularity in cos-
mological models, described heuristically by Belinskǐi, Khalatnikov and Lifshitz. We show
that the evolution equations admit an invariant set, which we call the silent boundary,
on which the dynamics reduces to that of spatially homogeneous models. We then use
our knowledge of spatially homogeneous dynamics to construct an invariant subset of the
silent boundary, which we conjecture forms the local past attractor of the evolution equa-
tions. We anticipate that this new formulation will provide the basis for proving rigorous
theorems concerning the asymptotic behaviour of inhomogeneous cosmological models.

T 2 symmetry – area of the orbits

Marsha Weaver (University of Alberta)

An open problem in General Relativity is global existence in the sense of characterizing
the maximal globally hyperbolic development for general classes of initial data. Consider
maximal globally hyperbolic solutions of the vacuum Einstein equations with Cauchy sur-
face topologically T 3 and a spatially acting two dimensional isometry group the orbits of
which are topologically T 2. Let the area of the T 2 be R. Suppose ∇R 6= 0. In 1997
Berger, Chruściel, Isenberg and Moncrief showed that on the maximal globally hyperbolic
development R serves globally as a time coordinate and takes on all values in (R0,∞) for
some R0 ≥ 0. The new result, with Isenberg, is that if the spacetime is non-flat then R
takes on all values in (0,∞).

10



Static space time metrics with mean geodesic flow: A variational approach

Gershon Wolansky (Israel Institute of Technology)

The talk examined the stability of the Einstein-Vlasov system with spherical symmetry
using variational methods.

The AdS/CFT Correspondence and the Uniqueness of the AdS Soliton

Eric Woolgar (University of Alberta)

By an application of the Null Splitting Theorem of G.J. Galloway [math.DG/9909158],
G.J. Galloway, S. Surya, and I have been able to take steps towards the proof of the
Horowitz-Myers conjecture. Specifically, under suitable asymptotic conditions (smooth
toroidal scri, negative mass, convexity of a certain sort), we find that the AdS soliton is
the unique Einstein metric of negative mass admitting a hypersurface-orthogonal Killing
field that is timelike near infinity [hep-th/0108170, 0204081, 0212079]. The proof proceeds
by noting that the universal covering spacetime of the AdS soliton admits a null line, an in-
extendible (in fact, complete) achronal null geodesic, and indeed so will any spacetime with
the same boundary at infinity and negative mass, given our asymptotic conditions. Now
the null splitting theorem asserts that spacetimes admitting null lines split geometrically,
simplifying the field equations. It is then straightforward to analyse the remaining field
equations and show that they admit an essentially unique solution. However, the solution
does depend on the choice of the kernel of the mapping, induced by boundary inclusion,
that takes the fundamental group of the conformal boundary onto that of the spacetime. If
one invokes the AdS/CFT correspondence, D.N. Page has shown that this non-uniqueness
leads to a remarkable prediction seemingly quite unrelated to the Einstein equations, which
is that Conformal Field Theory on the 3-torus has zero-temperature phase transitions as
the conformal structure is varied [hep-th/0205001].

Edited by Jan Metzger
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Université Paris VI
16 Avenue D’Alembert
F-92160 Antony

Prof. Dr. Piotr T. Chrusciel
chrusciel@univ-tours.fr
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Université de Tours
Parc de Grandmont
F-37200 Tours

Prof. Dr. Justin Corvino
corvino@math.brown.edu

Dept. of Mathematics
Brown University
Box 1917
Providence, RI 02912 - USA

Dr. Mihalis Dafermos
dafermos@math.mit.edu

Department of Mathematics
MIT 2-172
77 Massachusetts Avenue
Cambridge MA 02139-4307 - USA

12



Dr. Sergio Dain
dain@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Prof. Dr. Klaus Ecker
ecker@math.fu-berlin.de

Fachbereich Mathematik
und Informatik
Freie Universität Berlin
Arnimallee 2-6
D–14195 Berlin

Prof. Dr. Jürgen Ehlers
ehlers@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Prof. Dr. Felix Finster
felix.finster@mathematik.uni-regensburg.de

Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
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Dr. Makoto Narita
maknar@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Prof. Dr. Francesco Nicolo
nicolo@mat.uniroma2.it

Dipartimento di Matematica
Universita di Roma
Tor Vergata
V.della Ricerca Scientifica, 1
I-00133 Roma

Prof. Dr. Daniel Pollack
pollack@math.washington.edu

Dept. of Mathematics
Box 354350
University of Washington
Seattle, WA 98195-4350 - USA

Prof. Dr. Gerhard Rein
gerhard.rein@univie.ac.at

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien

Prof. Dr. Alan Rendall
rendall@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Dr. Hans Ringström
hansr@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Dr. Bernd Schmidt
bernd@aei-potsdam.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
D–14476 Golm

Dr. Felix Schulze
felix@riemann.mathematik.uni-tuebingen.de

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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