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Introduction

The conference was organized by K. Diederich (Wuppertal), T. Ohsawa (Nagoya), and E.
L. Stout (Seattle). It was dedicated to Complex Analysis with emphasis on methods from
the theory of partial differential equations. It has found large interest and was attended by
38 researchers from China, France, Germany, Japan, Slovenia, Poland, Russia, Sweden,and
the United States of America. In 15 morning sessions of 50 minutes and 11 afternoon
sessions of 40 minutes they reported on their recent results, giving an important impression
of the progress that has been made in the different areas of research and proving that
complex analysis is a lively field worldwide.

In the lectures topics from the following areas were discussed:

• Automorphism groups of complex manifolds
• Complex analysis in Banach spaces
• Existence and non-existence of Levi flat hypersurfaces in symmetric spaces
• Bergman theory
• Hartogs phenomena
• The Gromov-Eliashberg theory of Stein manifolds
• CR-geometry and CR mappings
• Analytic continuation of holomorphic and CR mappings
• Integral kernels for the Cauchy-Riemann operator
• The Oka principle
• Subellipticity and compactness in the ∂̄-Neumann problem
• Complex dynamics
• Calabi-Yau surfaces and Kähler - Einstein manifolds
• Geometry of weakly pseudoconvex domains of finite type

The abstracts of the talks follow below in alphabetical order.
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Abstracts

The Bergman metric and the pluricomplex Green function

Zbigniew B locki

We start with the following result:

Theorem 1: If Ω is a bounded pseudoconvex domain in Cn, and w, w̃ ∈ Ω are such that
{gΩ,w < −1} ∩ {gΩ,w̃ < −1} = ∅, then distΩ(w, w̃) ≥ cn > 0.

Here, gΩ,w is the pluricomplex Green function with pole at w and distΩ denotes the
distance w.r.t. the Bergman metric of Ω.

Improving methods from a paper of Herbort we obtain the following estimate:

Theorem 2: If Ω is a bounded pseudoconvex domain in Cn with C2-boundary, then there
exist constants a, C > 0, such that, for w ∈ Ω sufficiently close to ∂Ω we have

{gΩ,w < −1} ⊂ { 1

C
r| log r|−1/a ≤ δΩ ≤ Cr | log r|n/a},

where r = δΩ(w), (the euclidean distance from w to ∂Ω).

If ∂Ω ∈ C2, then, combining theorems 1 and 2, we can improve an estimate due to
Diederich and Ohsawa as follows:

Theorem 3: If Ω is as in theorem 2, then there exists a constant C > 0 such that, for a
fixed z0 ∈ Ω and z ∈ Ω sufficiently close to ∂Ω, we have

distΩ(z, z0) ≥
log 1

δΩ(z)

C log log 1
δΩ(z)

Nonexistence of higher codimensional Levi-flat CR manifolds in compact
symmetric spaces

Judith Brinkschulte

An old problem in complex dynamics asks about the existence of minimal sets of holo-
morphic foliations on CIP n. The problem is closely related to the existence of Levi-flat CR
manifolds in complex projective spaces. Siu proved recently that in CIP n, (n ≥ 2), there
exist no smooth Levi-flat real hypersurfaces.

We discuss the generalization of this result to higher codimensional CR manifolds. We
have presented the following theorem:

Theorem: Let X be an irreducible compact Hermitian symmetric space of complex di-
mension n whose bisectional curvature is (s−1)-nondegenerate. Then in X there exists no
smooth Levi-flat CR manifold M of real codimension n− s and complex dimension s ≥ 2,
such that det(N1,0

M,X) is smoothly trivial.
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Adjoint line bundle convexity and lower bound estimates on holomorphic
sections

Bo - Yong Chen

We give differential geometric conditions that imply line bundle convexity of certain
complex manifolds and also give a lower bound estimate for the Bergman kernel function
of the line bundles.

We sketched proof of the following results:

Theorem 1: Let (X, g) be a complete Kähler manifold such that

−a2 ≤ sectional curvature ≤ b2

and its injectivity radius is bounded from below by some positive constant τ . Let (L, h)
be a positive line bundle such that Θ(h) ≥ c g. Then X is holomorphically convex with
respect to (KX + mL, g∗hm) for any

m >
9n

cτ 2
0

(1 +
1

2
log 3)

where τ0 = min{τ, π/2b}.
Theorem 2: Let (X, g) be a complete Kähler manifold such that

sectional curvature ≤ b2

with an injectivity radius that is everywhere ≥ τ for some number τ > 0. Let (L, h) be a
positive line bundle as in theorem 1. Then the Bergman kernel of the bundle KX + mL
can be estimated by

Bg∗hm(x) ≥ 1

28πτ 2
0

for any

m >
9n

cτ 2
0

(1 +
1

2
log 3)

where τ0 is as in theorem 1.

On boundary measures of subharmonic and holomorphic functions in several
complex variables

Evgeni Chirka

(joint work with Claudio Rea)

Some generalizations of the classical F. and M. Riesz theorem for holomorphic func-
tions of several complex variables are proved using the correspondent generalizations for
subharmonic functions and the methods from CR - theory.

Theorem 1: Let Γ be a real hypersurface of class C1+α, (α > 0), in a complex manifold
and f a measure-type CR-distribution on Γ. Then indeed f ∈ L1

loc(Γ).

Theorem 2: Let M be a CR-manifold in Cn of class C2+α, (α > 0), and f a measure-type
CR-distribution on M . Then f is in L1 in a neighbourhood of any minimal point of M .

Theorem 3: Let f be a holomorphic function of class H1(W, M) in a wedge W ⊂ Cn with
the edge M . Then f has boundary distribution f∗ on M and f∗ ∈ L1

loc(M). Here M ∈ C∞.
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A smooth family of holomorphic support functions for lineally convex domains

John E. Fornæss

(joint work with Klas Diederich)

A smoothly bounded domain in Cn is lineally convex, if the complex tangent plane of
any boundary point does not intersect the domain. If z ∈ ∂Ω, the function φz(ζ) is a holo-
morphic support function, if {ζ ∈ Cn |φz(ζ) = 0} does not intersect Ω in a neighbourhood
of z, and φz(z) = 0.

We proved that by perturbing the complex tangent planes and assuming that Ω has
finite type, one can find φz(ζ), z ∈ ∂Ω, ζ ∈ Cn with optimal order of tangency with ∂Ω. In
particular, the order of tangency is constant in each complex line in each complex tangent
plane.

Holomorphic submersion of Stein manifolds to affine spaces

Franc Forstneric

We prove that every Stein manifold of dimension n admits [n+1
2

] holomorphic functions
with pointwise independent differentials and this number is maximal for every n. Further-
more, every surjective complex vector bundle map from the tangent bundle TX onto the
trivial bundle X × Cq, for q < dim X is homotopic to the differential of a holomorphic
submersion X −→ Cq (the so-called ”homotopy principle for holomorphic submersions”).
This implies that any complex subbundle E ⊂ TX with a trivial quotient TX/E is homo-
topic to an integrable subbundle of the form ker(df), where f is a holomorphic submersion
X −→ Cq, ( q = dim X − dim E).

A technical result of independent interest is a lemma on compositional splitting of biho-
lomorphic maps.

Spectral theory of the ∂̄-Neumann and Kohn Laplacians

Siqi Fu

We discuss the several complex variables version of Mark Kac’s question: ”Can one
”hear” the shape of a drum?”.

We explain how one can ”hear” the pseudoconvexity, strictly pseudoconvexity, finite
type (in the sense of Kohn-D’Angelo) in C2, and absence of analytic structures for certain
domains via the ∂̄-Neumann and Kohn Laplacians.

Estimates for ∂̄ on convex domains depending on Catlin’s multitype

Torsten Hefer

Let D ⊂⊂ Cn be a smooth convex domain of finite type m and Catlin multitype
M(bD) = (1, m2, ...,mn). We show that the optimal estimates for the ∂̄ operator on (0, q)-
forms in Lp and Hölder spaces are determined by the entry mn−q+1 = ∆q(bD) as follows:

Theorem: Let λq := mn−q+1(n − q + 1) + 2q. Then there are linear continuous solution
operators for the ∂̄ equation on D between the following spaces:
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• 1) Lp
0,q −→ Ls

0,q−1, for 1
s

= 1
p
− 1

λp
, if 1 ≤ p < λq,

• 2) Lp
0,q −→ Ls

0,q−1, for all s < ∞, if p = λq,

• 3) Lp
0,q −→ Λα

0,q−1, for α = 1
mn−q+1

(1− λq

p
), if p > λq.

The Hölder-space estimates are optimal; in Lp-spaces, the estimates are optimal for
(0, 1)-forms.

The proof is based on constructions by K. Diederich-J.E.Fornæss-B.Fischer and J. Mc-
Neal. A modification of McNeal’s ε-extremal bases is introduced.

Localization lemmas in Bergman theory

Gregor Herbort

Let D ⊂⊂ Cn be a domain and w ∈ D; let E = {T1, ..., Tk} denote a set of linear
constant coefficient differential operators, and Y ∈ Ck. Assume that

AD(E, Y, w) := {f ∈ H2(D) | (T1f(w), ..., Tkf(w)) = Y } 6= ∅
(where H2(D) is the space of square-integrable holomorphic functions on D) . Furthermore,
let GD(·, w) denote the pluricomplex Green function on D with pole at w and Aw = {z ∈
D |GD(z, w) < −1 }. We sketched a proof of the following

Theorem 1: Assume that D is pseudoconvex and ζ ∈ ∂D a point, such that diam(Aw) −→
0, when w −→ ζ.

a) Then we have for any R > 0:

‖MD∩B(ζ,R)(·, w)‖
‖MD(·, w)‖

−→ 1, when w −→ ζ

b) The concentration of mass property holds at ζ, i.e.: For any s, R > 0 there exists
δ > 0, such that

‖MD(·, w)‖D∩B(ζ,R)c ≤ s‖MD(·, w)‖D

whenever w ∈ D ∩B(ζ, δ).

Here, MD(·, w) denotes a ”minimal function”, i.e.: a function in AD(E, Y, w) of minimal
L2-norm.

This theorem applies to smooth bounded pseudoconvex regular domains (in the sense of
Diederich-Fornæss). We further communicated:

Theorem 2: Let ∂D be C2-smooth and pseudoconvex and ζ ∈ ∂D a point that admits a
Hölder-continuous plurisubharmonic peak function. Then diam(Aw) −→ 0, when w tends
to ζ in a non-tangential way.

Newton polyhedra and the Bergman kernel

Joe Kamimoto

We study the singularities of the Bergman kernel at the boundary for pseudoconvex do-
mains of finite type from the viewpoint of the theory of singularities. Under some assump-
tions on the domain Ω = {(z, w) ∈ Cn+1 | Im (w) > F (z)} (where F is a plurisubharmonic
smooth function in Cn), the Bergman kernel B(z) of Ω takes near a boundary point p the
form:

B(z) =
Φ(z, ρ)

ρ2+ 2/dF (log(1/ρ) )mF−1
,
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where (w, ρ) denotes some polar coordinates on a non-tangential cone with apex at p and
ρ means the distance from the boundary. Here Φ admits some asymptotic expansion with
respect to the variables ρ1/m and log(1/ρ) as ρ −→ 0 in Λ.

The values of dF > 0, mF ∈ ZZ+ and m ∈ IN are determined by geometrical properties
of the Newton polyhedron of the defining function of the domain, and the limit of Φ, as
ρ −→ 0 in Λ, is a positive constant depending only on the Newton principal part of the
defining function. Analogous results are obtained in the case of the Szegö kernel.

Fundamental solutions for ∂̄b

Christine Laurent-Thiébaut

Let M be a q-concave CR generic submanifold of Cn of class C3 and real codimension k.
For each z0 ∈ M there exists a neighborhood Uz0 of z0 in M and some kernel RM , defined
on Uz0 × Uz0 \∆(Uz0), such that for n− k − q + 1 ≤ r ≤ n− k one has

∂̄b,zR
n,r−1
M + ∂̄b,ζR

n,r
M = [∆(Uz0)],

where Rn,r
M denotes the part of bidegree (n, r) in z of RM and [∆(Uz0)] the integration

current on the diagonal ∆(Uz0) of Uz0 × Uz0 .

Moreover, if M is of class C `+2, the operator

R̃M : f 7−→
∫

ζ∈M

f(ζ) ∧RM(z, ζ)

is continuous from the set (C`
c)

n,r(Uz0), of (n, r)-forms of class C ` with compact support
in Uz0 into ( C `+1/2 )n,r−1(Uz0), and this estimate is sharp.

We deduced the following homotopy formula: Let f be a C1-form with compact support
in Uz0 , then

(−1)(k+1)(r+n)f = ∂̄b,zR̃Mf + (−1)k+1R̃M(∂̄bf).

By exchanging z and ζ, we get the same results for 0 ≤ r ≤ q − 1.

A relative Oka-Grauert principle on 1-convex spaces

Jürgen Leiterer

(joint work with Viorel Vâjâitu )

Let X be a 1-convex complex space and S the exceptional set of X. The following
generalization of the Oka-Grauert principle was proved:

Theorem: (i) Suppose E, F are two holomorphic vector bundles on X such that there is
a continuous isomorphism between E and F which is holomorphic over some neighborhood
of S. Then E and F are holomorphically isomorphic.

(ii) Suppose E is a complex vector bundle on X and there is given a holomorphic
structure on E|U for some neighborhood U of S. Then there exists an extension of this
holomorphic structure to a holomorphic structure on X.

For S = ∅, i.e.: X is Stein, this is the well-known theorem of Grauert from 1957. If X is
smooth it was obtained in a joint paper with G. M. Henkin ( Math. Ann. 311, (1988) ).

On open question is whether this theorem can be generalized to Banach space bundles
(for S = ∅ this is possible, as was proved L. Bungart in 1972).
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Plurisubharmonic domination

László Lempert

Consider a Banach space X over the complex numbers, that has a so-called unconditional
basis, and a pseudoconvex open Ω ⊂ X.

We have presented the following two theorems:

Theorem 1: Suppose u : Ω −→ IR is continuos. Then

(a) There is a plurisubharmonic v : Ω −→ IR, such that v ≥ u

(b) There is a Banach space Z and a holomorphic map f : Ω −→ Z, such that ‖f(x)‖Z ≥
u(x), for all x ∈ Ω.

Theorem 2: If E −→ Ω is a holomorphic Banach bundle and q ≥ 1, then Hq(Ω, E) = 0.

L2-cohomology on some Kähler manifolds

Jeffery D. Mc Neal

Let (M, ω) be a complete Kähler manifold, dimM = n, and suppose ω = i∂∂̄λ, for some
λ ∈ C2(M). If the complex gradient ∂λ of λ grows slower than λ, i.e.:

(∗) |∂λ(p) ∧ ∂̄λ(p)| ≤ (A + B λ(p) ) i ∂∂̄λ(p), ∀p ∈ M,

for some constants A and B, then we show

Hp,q
(2)(M) = 0, if p + q 6= n

where Hp,q
(2)(M) denotes the space of L2-harmonic forms on M . Additionally, if one can

choose B < 1 in (*), then we obtain the vanishing of ∂̄-cohomology, measured in the
ω-metric.

This work generalizes earlier results of Gromov. I also presented examples of situations
where (*) holds for metrics of interest in complex analysis, e.g. the Bergman metric on
some weakly pseudoconvex domains in Cn.

Symmetries of partial differential equations: Application to CR geometry

Joël Merker

Let n ≥ 1, m ≥ 1, x = (x1, ..., xn) ∈ IKn, u = (u1, ..., um) ∈ IKm, with IK = IR or C.
Consider a completely integrable system of the form

(E) uj
xα = F j

α

(
x, u, (ui

xβ)1≤i≤m
|β|≤k−1

)
where j = 1, ...,m, α ∈ INn, |α| = k.

Theorem: Assume k ≥ 2. Then the following bounds hold for the dimension of the
symmetry group of (E) (in the sense of S. Lie):

• k = 2: dimIK( Sym(E) ) ≤ (n + m)(n + m + 2) (A. Sukhov)

• k ≥ 3: dimIK( Sym(E) ) ≤ n2 + 2n + m2 + m (n+k−1)!
n!(k−1)!

(H. Gaussier, J. Merker)
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Applications to local symmetry groups of real-analytic CR-manifolds were given: In the
direction of CR mappings the following was quoted:

Theorem: (Ann. Inst. Fourier ,52 (2002), 1443-1523) Let h : M −→ M ′ be a C∞-smooth
CR mapping between connected real-analytic hypersurfaces in Cn which are essentially
finite at every point. Assume that h is of rank equal to dimIR(M) in at least one point of
M . Then h is real-analytic at every point of M .

A real-analytic hypersurface M ⊂ Cn, n ≥ 2, is called locally algebraizable if it can be
represented as a Nash algebraic hypersurface in some holomorphic coordinates system.

Theorem: (H. Gaussier, J. Merker, to appear in Math. Z.). Let M ⊂ Cn be a real-analytic
Levi non-degenerate hypersurface whose equation is of the form

Im w =
n−1∑
k=1

εkzkzk + χ(z, z)

where εk = ±1 and χ(0, z) ≡ 0, and χzk
(0, z) ≡ 0. Assume that M is strongly rigid, namely

AutCR(M) is of dimension 1, generated by ∂
∂w

+ ∂
∂w

. If M is locally algebraizable, then the
derivatives χzk

(z, z) are all algebraic.
The Chern-Moser theory is imcomplete in many respects:

• there is lack of explicit formulas
• it does not provide information on AutCR(M)
• it is not suitable for homogeneous models

For sociological reasons its influence has been too wide. Instead, one has to come back to
S. Lie and É. Cartan ’s original works.

Envelopes of holomorphy of immersed real surfaces in complex surfaces

Stefan Nemirowski

The generalized adjunction inequality

[Σ] · [Σ]− 2(κ+ − κess
− ) + |c1(X) · [Σ]| ≤ 2g(Σ)− 2

is established for an immersed real surface Σ # X in a Stein complex surface X which is
not a homotopically trivial 2-sphere.

This result is then used to study analytic continuation from immersed real surfaces and
to show that the sufficient conditions for the existence of Stein neighborhoods (due to
Kharlamov-Eliashberg-Forstneric) of real surfaces are in fact necessary for the existence of
topologically small Stein neighborhoods.

Optimal Lipschitz estimates for the ∂̄-equation on a class of convex domains

Nguyen Viêt Anh

(joint work with El Hassan Youssfi)

In this talk we considered the Cauchy-Riemann equation ∂̄u = f in a new class of convex
domains ΩN in Cn. The domains ΩN are defined as follows:

For any N = (n1, ...., nm) ∈ INm, (with 1 ≤ n1 ≤ n2 ≤ ... ≤ nm) let

ΩN := {z = (z(1), ...., z(m)) ∈ Cn1 × ...× Cnm |
m∑

j=1

(
|z(j) • z(j)|+ |z(j)|2

)
< 1}
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where z • w =
∑n

`=1 z`w`, for z, w ∈ Cn, and |z(j)| is the euclidean norm of z(j) ∈ Cnj .

We prove that, given Lp-data f , we can choose a solution in the Lipschitz space Λα,
where α is an optimal positive number, that can be given explicitly in terms of p:

α =

{
1
2
− |N |+m−`+1

p
, if N 6= (2, 2, ..., 2), and p > 2(|N |+ m− ` + 1)

1
2
− 3m

2
, if N = (2, 2, ..., 2), and p > 6m

Here ` denotes the minimal integer with n`+1 > 1.

The Mabuchi energy functional and stability

Duong H. Phong

A well-known conjecture of Yau is that the existence of Kähler-Einstein metrics should
be equivalent to stability in the sense of geometric invariant theory. In the variational
approach, it is natural to try to link the energy functional for Kähler-Einstein metrics to
the orbit of the Chow vector. We describe joint work with J. Sturm providing such a link.
A new key feature emerges, which is a current term associated to the singular locus of
the Chow variety. We discuss several applications and related developments, including the
Lu-Yotav formulas for the Futaki invariant of complete intersections, the corresponding
Futaki and Mabuchi functionals, and asymptotics for the Mabuchi functional for curves.

Regularity of CR mappings

Sergey Pinchuk

(joint work with Klas Diederich)

In my talk I discussed the main ideas of the proof of the following joint result with K.
Diederich

Theorem: Let M, M ′ ⊂ Cn be real-analytic smooth hypersurfaces of finite type and
f : M −→ M ′ a continuous CR map. Then f extends holomorphically to a neighborhood
of M .

This result was not previously known even under the additional conditions that M and
M ′ are pseudoconvex and f ∈ C∞(M).

On the Hartogs phenomenon on nowhere strictly pseudoconvex hypersurfaces
of class C2

Egmont Porten

We proved the following

Theorem: Let M −→ Cn be a nowhere strictly pseudoconvex C2-hypersurface, given as
the graph

M = {yn = h(z′, xn) | (z′, xn) ∈ M̃}
where M̃ ⊂ Cn−1× IR is a domain such that M̃ × (i IR) is pseudoconvex. For any compact
K ⊂ M with M \ K connected the functions f ∈ O(M \ K) extend simultaneously to
functions in O(M).

A global result can be proved for weakly 2-concave hypersurfaces.
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Segre varieties and analytic continuation of holomorphic mappings

Rasul Shafikov

We showed that, given bounded domains D, D′ ⊂⊂ Cn such that

• ∂D is real-analytic, smooth, and simply connected
• ∂D′ is real-algebraic, smooth, and connected

then the following are equivalent:

(1) There exists a proper holomorphic correspondence F : D −→ D′

(2) There exist points p ∈ ∂D and p′ ∈ ∂D′, and small neighborhoods U 3 p and U ′ 3 p′,
and a biholomorphic mapping f : U −→ U ′ such that f(p) = p′ and f(U ∩∂D) = U ′∩∂D′

Thus equivalence of domains modulo proper holomorphic correspondences can be cha-
racterized in terms of local CR equivalence of the boundaries of these domains.

Pluripolar graphs are holomorphic

Nikolay Shcherbina

We proved the following

Theorem: Let Ω be a domain in Cn and f : Ω −→ C a continuous function. Then the
graph Γ(f) of f is a pluripolar set in Cn+1 if and only if f is holomorphic.

Semi-classical anlysis of Schrödinger operators and compactness in the
∂̄-Neumann problem

Emil J. Straube

(joint work with Siqi Fu)

We study the asymptotic behavior, in a ”semi-classical limit” of the first eigenvalues of
a class of Schrödinger operators with magnetic fields and the relationship of this behavior
with compactness in the ∂̄-Neumann problem on Hartogs domains in C2.

Simultaneous linearization of attracting and semi-attracting fiexd points in
two complex variables

Tetsuo Ueda

Let M be a complex manifold of dimension 2 and F a holomorphic automorphism of M
with a fixed point p0. We denote by λ, µ the eigenvalues of the differential F ′(p0) of F at
p0. The basin of (locally uniform) attraction of p0 is defined by

D = {p ∈ M | F ◦n(p) −→ p0, (locally uniformly ) when n −→∞}

In the cases

• p0 is attracting (|λ|, |µ| < 1)
• p0 is semi-attracting (λ = 1, |µ| < 1) , with an additional condition
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it is known that there is a biholomorphic map Φ : D −→ C2.

In this talk we treat a family of holomorphic automorphisms Ft depending holomorphi-
cally on a parameter t ∈ T ⊂ C. Suppose that, for all t ∈ T the mapping Ft has a fixed
point p0, such that the eigenvalues λ(t), µ(t) of F ′

t(p0) satisfy λ(t0) = 1, and |µ(t)| < 1
(where t0 ∈ T is an interior point).

Our result is that there is a family of biholomorphic maps Φt : Dt −→ C2 , where
t ∈ {t ∈ T | |λ(t)| < 1}, which has a non-tangential limit, as t −→ 1 from inside the unit
disc, and such that Ft|Dt is reduced to the form

(x, y) 7−→ (λ(t)x + 1, µ(t)y + ht(x) )

where ht is an entire function.

Prescribing automorphism groups of complex manifolds

Jörg Winkelmann

Generalizing earlier results of Bedford, Dadoc, Saerens, and Zame, we prove

Theorem: Let G be a real Lie group and G0 the connected component of e. Assume that
• G = G0 (G is connected)

or

• G0 = {e} , (G is discrete)

Then there exists a Stein, complete hyperbolic, complex manifold X such that

Aut (X) ∼= G.

We conjuctured that this result holds for arbitrary real Lie groups as well.

Calabi-Yau hypersurfaces, discriminants, and Quillen metrics

Ken-Ichi Yoshikawa

Let X be a Calabi-Yau manifold, i.e. a compact Kähler manifold with trivial canonical
line bundle. We set

λ(ΩX) =
⊗
p≥0

λ(Ωp
X)(−1)p p =

⊗
p,q≥0

(det Hq(X, Ωp
X) )(−1)p+q p

By modifying the Quillen metric on λ(ΩX), we introduce a hermitian structure ‖ · ‖λ(ΩX), Q

on λ(ΩX), which is independent of the choice of a Kähler metric on X. Hence, there exist
two hermitian lines

( H0(X, Ωtop
X ), ‖ · ‖L2 ), (λ(ΩX), ‖ · ‖λ(ΩX),Q )

associated to X. When X is a hypersurface of a Fano manifold V , a member of the anti-
canonical system |K−1

V |, we can compare these two intrinsic hermitian lines. We prove that
the difference of them can be identified with the discriminant of the linear system |K−1

V |.
The hermitian structure ‖ · ‖λ(ΩX),Q is constructed as follows:

‖ · ‖2
λ(ΩX),Q = A(X, K) · τ(X, K) · ‖ · ‖2

L2 ,
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where

τ(X, K) = exp

(
−
∑
p,q≥0

(−1)p+qpq · ζ ′p,q(0)

)
where

ζp,q(s) =
∑

λ∈σ(�p,q)

λ−s

here �p,q denotes the Laplacian acting on (p, q)-forms. Furthermore

A(X, K) = exp

(
1

12

∫
X

log

(
Kn/n!

η ∧ η
· ‖η‖L2

Vol(X, K)

)
cn(X, K) +

1

12
χtop(X) · Vol(X, K)

)
Here, cn(X, K) is the top Chern form of (TX,K) and χtop(X) the Euler number, and
η ∈ H0(X, Ωn

X) \ {0}.

Edited by Gregor Herbort

12



Participants

Prof. Dr. Bo Berndtsson
bob@math.chalmers.se

Department of Mathematics
Chalmers University of Technology
S-412 96 Göteborg
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