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The present conference was organized by

Jörg Brüdern (Stuttgart),
Hugh L. Montgomery (Ann Arbor),
Yuri V. Nesterenko (Moscow),
Robert C. Vaughan (State College).

Thirty mathematicians from twelve countries participated. The range of topics was excep-
tionally broad, and involved such things as the vector sieve, the asymptotic large sieve,
ergodic theory, Smirnov–Pyke statistics, automorphic functions, attacks on the Riemann
Hypothesis, consequences of the Alternative Hypothesis, the integer Chebyshev problem,
values of quadratic forms, moments of the Riemann zeta function, sums of sets, divisors in
short intervals, and small gaps between prime numbers.

Simultaneously, in a session organized by Prof. Nesterenko, twelve mathematicians from
five countries studied polylogarithms from the standpoint of transcendence. The ultimate
object of this line of work would be to show that ζ(2n+1) is transcendental for all positive
integers n.

The stimulating atmosphere of the Institute was appreciated by all participants. The
organizers and participants are grateful to the Land Baden-Württemberg, to the Director,
Prof. Greuel, and to the staff of the Institute, for their support at this time when number
theory is especially active.
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Die Tagung fand unter der Leitung von

Jörg Brüdern (Stuttgart),

Hugh L. Montgomery (Ann Arbor),

Yuri V. Nesterenko (Moskau),

Robert C. Vaughan (State College)

statt, an der dreißig Mathematiker aus zwölf Ländern teilnahmen.

Das Spektrum der Vorträge war ausgesprochen breit und umfasste Themen wie das
Vektorsieb, das asymptotische grosse Sieb, Ergodentheorie, automorphe Funktionen, das
Čebyšev Problem mit ganzzahligen Koeffizienten, Funktionswerte quadratischer Formen,
Momente der Riemannschen Zetafunktion, Summen von Mengen, Teiler in kurzen Inter-
vallen und kurze Lücken zwischen Primzahlen.

Die besonders angenehme und anregende Atmosphäre am Institut wurde von allen
Tagungsteilnehmern hervorgehoben. Die Tagungsleiter und die Teilnehmer danken hi-
erfür dem Land Baden–Württemberg, Herrn Prof. Greuel, dem Direktor des Instituts, und
dem gesamten Institutspersonal für Ihre Unterstützung im besonderen in einer Zeit in der
Zahlentheorie ein besonders aktives Forschungsgebiet ist.
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Abstracts

The Fractional Part Function and the Riemann Hypothesis

Michel Balazard, Université Bordeaux I

(joint work with Eric Saias)

The Nyman criterion, which is necessary and sufficient for the Riemann Hypothesis (RH)
to hold, states that χ = χ(1,∞) is arbitrarily well approximable by functions of the type∑
cα{x/α} , α ≥ 1 , in H = L2(0,∞; t−2dt) . To study this approximation problem Michel

Balazard, Luis Báez-Duarte, Bernard Landreau, and Eric Saias studied the function

A(λ) =

∫ ∞

0

{t}{λt} t−2 dt

with the help of Estermann’s function. In particular, we know that A has a strict local
maximum at each rational point. Let eα(t) = {t/α} , and set

d2
n = dist2

H

(
χ, Vect(e1, . . . , en)

)
=

Gram (e1, . . . , en, χ)

Gram (e1, . . . , en)
.

Báez-Duarte proved that Nyman’s criterion can be strengthened. He proved that RH is
equivalent to dn = o(1) . Consider

Gram (e1, . . . , en)

Gram (e1, . . . , en−1)
= dist2

H

(
en, Vect(e1, . . . , en−1)

)
=: n−2Ln .

Numerical estimates suggest that Ln � log n . We proved

6/5 + o(1) ≤ Ln ≤ log n+O(1) .

Some Galois Theory Associated to Zudilin’s Recurrences

Frits Beukers, Universiteit Utrecht

In this lecture we discuss some of the background underlying the recently discovered re-
currence relations for ζ(n) and Catalan’s constant. For example, the differential Galois
group associated to the differential equation of the ζ(4)--recurrence turns out to be O(5) .
Also differential equations associated to such recurrences are G--operators with all due
consequences for the arithmetic of the solutions.

Sums of Two Squareful Integers

Valentin Blomer, Universität Stuttgart

A positive integer n is called squarefree if p | n implies p2 | n for all primes p. An old
problem of Erdős asks for the number of integers not exceeding x that can be written as
a sum of two squareful integers. Here we present an almost best possible answer.
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Theorem 1. Let V be the set of integers that can be written as a sum of two squareful
numbers, and let α = 1− 2−1/3 = 0.206 . . . Then

x

(log x)α+ε
�

∑
n≤x

n∈V

1 � x

(log x)α−ε
.

Theorem 1 is derived from Theorem 2 which gives sharp uniform bounds for the number
of integers represented by systems of quadratic forms.

Theorem 2. Let x be large and F1, . . . , Fm ∈ Z[x, y] be positive primitive quadratic
forms of discriminant Dj = Dj,0f

2 respectively (Dj,0 a fundamental discriminant) such
that (Di, Dj) |4 , (Di, Dj) = 1 for i 6= j , and Dj ∼ (log x)2κj log 2 for some κ ∈ (0, 1)m .
Then

x

(log x)f(‖κ‖∞)+ ε
�

∑
n≤x

n represented by

F1,...,Fm

1 � x

(log x)f(‖κ‖1)− ε

where f(u) = 1/2m if u ≤ 1/2m and f(u) = 1 + u
(
log(2mu)− 1

)
otherwise.

Single-Valued Multiple Polylogarithms

Francis Brown, École Normale Supérieure, Paris

Various single-valued versions of the classical polylogarithm functions Lin(z) have been
studied by Ramakrishnan, Wotjkowiak, Zagier, Deligne, and others. These functions gen-
eralise the Bloch-Wigner dilogarithm. They occur in the computation of volumes of hy-
perbolic manifolds, regulators in algebraic K --theory, and special values of L--functions.

Multiple polylogarithms in one variable Liw(z) are multi-valued functions on the cut
punctured plane P1(C) \ {0, 1,∞} , indexed by a binary word w . They are natural
generalisations of the ordinary polylogarithms Lin(z) .

Multiple polylogarithms in one variable Liw(z) are multi-valued functions on the cut
punctured plane P1(C) \ {0, 1,∞} , indexed by a binary word w . They are natural
generalisations of the ordinary polylogarithms Lin(z) . We study the differential structure
of the algebra generated by these functions, and construct a unique single-valued version
of each multiple polylogarithm by taking linear combinations of the functions

Liw(z)Liw′(z).

We prove that the functions thus obtained are linearly independent, and that every possible
single-valued version of polylogarithms occurs in this way. The differential algebra they
generate is canonically isomorphic to the algebra of multiple polylogarithms. In this manner
we obtain a canonical realisation of a universal, abstract algebra of polylogarithms in terms
of uniform functions on P1(C) \ {0, 1,∞} .
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Equal Sums of Two Powers

Tim Browning, Oxford University

(joint work with Roger Heath--Brown)

A new paucity result is established for the equation wk + xk = yk + zk for integers
k ≥ 4 . This improves upon a long-standing result of Hooley for k ≥ 5 , and is the best
result available for k = 5 . The underlying tool, which this application can be seen as
advertising, is a bound for the number of integer points which lie on plane curves in very
lopsided regions.

Sums of Three Squares

Jörg Brüdern, Universität Stuttgart

(joint work with Valentin Blomer)

We consider the quantity

r(n; γ) = #
{
x = (x1, x2, x3) ∈ Z3 : x2

1 + x2
2 + x2

3 = n, p |n⇒ p > nγ
}

where p denotes a prime. The main result is as follows.

Theorem. If γ ≤ 5/5218, then

r(n; γ) � S(n)

√
n

(log n)3(log log n)2

for all n ∈ N with 5 -n, n ≡ 3(mod 8) where S(n) denotes the singular series for three
squares.

The result is derived via the vector sieve from a result on the number of solutions of the
diophantine equation d2

1y
2
1 + d2

2y
2
2 + d2

3y
2
3 = n in positive integers y1, y2, y3 . If one writes

ω(d)S(n)

√
n

d1d2d3

+ E(n, d)

with S(n) from above and ω(d) multiplicative with respect to d1, d2, d3 , then the success
of the method depends on the following bound.

Lemma. If n satisfies the congruence conditions of the above theorem, µ(dj)
2 = 1 for

j = 1, 2, 3, and 2 - d1d2d3, then

E(n, d) � n13/28 + ε
(
d1d2d3

)45/14
.

An Algebraic Theory of Polylogarithms

Pierre Cartier, Inst. des Hautes Etudes Scientifiques

We consider the class of functions known as multiple polylogarithms in one variable. For
completeness, we include the ordinary logarithm. These functions are multivalued holo-
morphic functions (defined on the universal covering space of the complex plane with 0
and 1 removed) satisfying a certain system of differential equations. I introduce an ab-
stract algebra encompassing their differential properties, in the form of a certain differential
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ring extension of the field of rational functions in one variable. The main result is that
this differential ring is differentially simple, and is the minimal differential ring solving all
differential equations with rational coefficients regular except possibly at 0 and 1, which
can be put into a triangular form. As a corollary, we identify the corresponding differential
Galois group, and prove the linear independence of the analytic polylogarithmic functions.
This lecture is also a preparation for the lecture of Francis Brown.

Asymptotic Large Sieve

Brian Conrey, American Institute of Mathematics and Oklahoma State
University

(joint work with Henryk Iwaniec)

The large sieve inequality, character version, asserts that∑
q≤Q

q

φ(q)

∑∗

χ mod q

∣∣∣ N∑
n=1

anχ(n)
∣∣∣2 ≤ (N +Q2)

N∑
n=1

|an|2.(1)

This inequality allows for the estimation of character sums of length N � Q2 . It should
be compared with the mean value theorem of Montgomery and Vaughan:∫ T

0

∣∣∣ N∑
n=1

ann
it
∣∣∣2 dt =

(
T +O(N)

) N∑
n=1

|an|2 ,

which allows for the estimation of the mean of Dirichlet polynomials of length N = o(T ) .
Note that this formula gives an asymptotic, whereas (1) does not. In this work we prove
an asymptotic formula for the left side of (1) for certain sequences (an) which satisfy the
assumptions:

(i)
∑
n≤x

(n,g)=1

an`χ(n) � (xgq`)ε for all χ 6= χ0 (mod q)

(ii)
∑
n≤x

(n,g)=1

an` = Ag,`(x) + αg`(x)

with d
dx
Ag,`(x) � (g`x)εx−1/2 and αg`(x) � (g`x)ε .

(iii) M`1,`2,u,v(s, w, z) =
∑

1≤r1,r2,g<∞

µ(r1r2)A′
`1,g(r1u)A′

`2,g(r2v)

r
1/2+w
1 r

1/2+z
2 gs+1

is analytic for <s,<z,<w > 1/2+ε apart from a finite set of poles in |s|, |z|, |w| < δ
for some small δ .

Applications include:

• Assume the Generalized Riemann Hypothesis (GRH). Then there are � Q2/ log2Q
characters χmod q with q ∼ Q and zeros 1

2
+iγχ , 1

2
+iγ′χ such that |γχ|, |γ′χ| � 1

and |γχ − γ′χ| < (0.37)2π/ logQ .
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• Assume the Generalized Lindelöf Hypothesis (GLH). Then∑
q≤Q

w(q/Q)

φ(q)

∑∗

χ mod q

|L(1/2, χq)|6 ≥ (41 + o(1))ŵ(1)b3Q
log9Q

9!
,

∑
q≤Q

w(q/Q)

φ(q)

∑∗

χ mod q

|L(1/2, χq)|6 ≤ (43 + o(1))ŵ(1)b3Q
log9Q

9!
.

Lerch Generalized Functions and Diophantine Approximation

Jacky Cresson, Université de Franche--Comte

(joint work with Tanguy Rivoal)

Classical results about diophantine approximation of multiple zeta values (MZV) are ob-
tained, following Beuker’s proof of Apery’s result on the irrationality of ζ(3) , by consid-
ering multiple integrals with specific symmetry properties. A generalisation of Beuker’s
integrals is given by Sorokin. A first step, to understand these integrals is to give an
algorithmic way to decompose it in linear combination of MZV. Such an algorithm can
be developed by introducing a generalization of MZV called Lerch generalized functions
(LGF). Moreover, by introducing multiple variables in Sorokin’s integrals, we are able to
explain why some MZV doesn’t appear, using asymptotic properties of these functions.
As a byproduct, we obtain precise decomposition theorem for Sorokin’s integrals, a new
proof of Vasilyev theorem and a proof of “non-enrichment arithmetic”, which say that ev-
ery LGF with negative exponents is a linear combination of LGF with positive exponents
(generalizing Ecalle’s result on MZV).

Polynomial Bounds for Equivalence of Quadratic Forms

Rainer Dietmann, Universität Stuttgart

Let Q1, Q2 ∈ Z[X1, . . . , Xs] be nonsingular, classically integral quadratic forms given by

Q1(X1, . . . , Xs) =
s∑

i,j=1

aijXiXj, Q2(X1, . . . , Xs) =
s∑

i,j=1

bijXiXj

for symmetric integer coefficient matrices A = (aij)1≤i,j≤s and B = (bij)1≤i,j≤s with
detA 6= 0 and detB 6= 0 . We call Q1 and Q2 equivalent if there is a unimodular
transformation R : Zs → Zs with Q1(R(X1, . . . , Xs)) = Q2(X1, . . . , Xs) , which can be
expressed in the form B = RTAR for a unimodular integral s × s matrix R . By using
special properties of ternary quadratic forms we recently established for s = 3 a polynomial
bound for equivalence of quadratic forms: If Q1 and Q2 are equivalent, which means
B = RTAR for some unimodular R , then there is such an R with ‖R‖ � H900 where
‖ · ‖ denotes the maximum norm and H = max{‖A‖, ‖B‖} . In our talk we indicated how
this result can be extended inductively to forms in more than three variables satisfying a
not too restrictive extra condition:
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Theorem. Suppose that detA is cubefree, not divisible by 4 , and that A satisfies some
further 2-adic condition. If B = RTAR for some unimodular R , then there is such R
with

‖R‖ �s


H9900| detA|19000 when s = 4 ,

H500000| detA|1250000 when s = 5 ,

H(4(s+5))s | detA|30(1+4/(s−4))(4s+16)s−1
when s ≥ 6 .

This improves on earlier bounds which have been exponential in H for given s . The
proof relies on local–global techniques from the theory of integral quadratic forms and
bounds for the least solution of a quadratic diophantine equation.

Primes and Products

Peter D.T.A. Elliott, University of Colorado

A survey was given of results concerning product representations of positive rationals by
integers of the form (p+1)f(q)−1 and their reciprocals, where f is a polynomial with
rational/integer coefficients, and p, q are primes. In particular results of Wirsing, Meyer
and Tenenbaum, Wolke, Dress and Volkmann, Berrisbeitia and myself.

Conjecture 1 (Dickson). Given r ∈ N , then there are infinitely many representations
r = (p+1)(q+1)−1 with p, q prime.

Conjecture 2. If f ∈ Z[x], deg f ≥ 1, r ∈ Q, r > 0 , then there are infinitely many

representations r = (p1+1)f(q1)
−1

(
(p2+1)f(q2)

−1
)−1

with (pi+1)f(qi)
−1 ∈ Z , pi, qi prime.

Theorem 1. If f ∈ Q[x], deg f ≥ 1, c > 0, then at least one of the equations

(x1+1)f(x2)− rk(x3+1)f(x4) = 0 (k = 1, 2, 3)

for a given positive rational r, has infinitely many solutions with x2 > xc
4 , and all xi

prime.

Doubtless this result holds with k = 1 (Conjecture 2). The condition x2 > xc
4 is of

interest when r = 1 .

Theorem 2. Let a be a power of an odd prime. Then there are infinitely many repre-
sentations

ak =
p+ 1

q + 1
a2k < q ≤ a55k ,

with positive integers k, and primes p, q .

There is a similar result, valid for every a ≥ 2 , with another absolute constant in place
of 55.
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Hilbert Cubes in the Set of Primes

Christian Elsholtz, Universität Clausthal

Let a0, a1, . . . , ad denote positive integers, and let H = {a0 +
∑d

i=1 εiai : εi ∈ {0, 1}} .
H is called a Hilbert cube.

Theorem 1. For B⊆ [1, N ] and ε > 0 there is a Hilbert cube H⊆B of dimension d
with

d =
1

log 2

(
log logN − log log

((2 + ε)N

|B|

))
.

This improves the constant in Szemerédi’s cube lemma. Hegyvári and Sárközy proved
that a Hilbert cube in the set P ∩ [1, N ] where all base elements a1, . . . , ad are distinct
has dimension d < (16 + ε) logN . We improve this to

Theorem 2. Let d be the maximal dimension of a Hilbert cube in P ∩ [1, N ] with
distinct base elements. Then d = O(logN/ log logN) .

The proof of Theorem 1 is a refinement of existing proofs. The proof of Theorem 2 uses
results on the addition of distinct residue classes modulo primes.

We are able to show that in this situation the worst case distribution of the frequency
of the occurring residue classes is not when all occurring residue classes modulo p occur
with about the same frequency (as is usually the case). This asymmetric distribution can
successfully be used in a sieve bound, based on Gallagher’s larger sieve.

Padé Approximates and Poised Hypergeometric Series

Stephane Fischler, École Normale Supérieure

(joint work with Tanguy Rivoal)

We present and solve some very general new Padé approximate problems, whose solutions
can be expressed with hypergeometric series. These series appear in the proof of the
irrationality of ζ(3) , of infinitely many ζ(2n+1) , and in essentially all results of this kind
in the literature. Let Lis(x) =

∑∞
n=1 x

nn−s be the s-th polylogarithm. Then

Theorem 1. Let α ∈ Q, 0 < α < 1, and µ ∈ R. Then

{Lis(α) + µ logs α

(s− 1)!
, s ∈ N}

spans an infinite dimensional vector space over Q .

Theorem 2. Among the three numbers

Lis(1/2) +
logs(1/2)
(s− 1)!

, s ∈ {2, 3, 4},

at least one is irrational.
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Distribution of Integers with a Divisor in a Given Interval

Kevin Ford, University of Illinois

Denote by ε(y) the density of integers which have a divisor in (y, 2y] , and let εr(y) be
the density of integers which have exactly r divisors in (y, 2y] .

Theorem. We have

ε(y), εr(y) �
1

(log y)δ(log log y)3/2

where δ = 1− 1 + log log 2
log 2

= 0.08607 . . .

Corollary. For each r ≥ 1

lim inf
y→∞

εr(y)

ε(y)
> 0 .

The corollary answers in the negative a question of Erdős from 1960 (see the M.F.O
book “Mathematical Problems”, p. 3–4). Among the new tools are uniform upper bounds
for the Smirnov--Pyke statistics from the theory of uniform statistics.

On Sign Changes of Klosterman Sums

Etienne Fouvry, Université Paris XI

(joint work with Philippe Michel)

Let Kl(a, b;n) be the usual Kloosterman sum

Kl(a, b;n) =
∑

x (mod n)

(x,n)=1

exp
(
2πi

ax+ bx

n

)

where x is the multiplicative inverse of x modulo n . We are concerned with the sign
changes of the Kloosterman sums Kl(1, 1;n) with n almost prime, and prove the

Theorem. Let g ∈ C∞
c

(
[1, 2],R

)
, g positive, and u ≥ 23.9 . Then there exist X0(u, g)

and δ0(u, g) > 0 such that, for X > X0 , we have∣∣∣ ∑
n

p|n⇒p≥X1/u

g(n/x)
Kl(1, 1;n)√

n

∣∣∣ ≤ (1− δ0)
∑

n

p|n⇒p≥X1/u

g(n/x)
|Kl(1, 1;n)|√

n
.

This theorem implies the

Corollary. There exists c0 > 0 such that, for X > X0 , we have

#
{
n : X < n ≤ 2X, p|n⇒ p ≥ X1/23.9, Kl(1, 1;n) > 0

}
≥ c0

X

logX
.

(The same corollary holds for negative Kloosterman sums.)

The proof uses sieve techniques, modular forms (sums of Kloosterman sums), Katz’s
result about the vertical Sato–Tate distribution of angles of Kloosterman sums, study of
exponential sums via Deligne–Katz techniques.

10



A Theorem with Finite Shelf Life

John B. Friedlander, University of Toronto

(joint work with Henryk Iwaniec)

In this work we study the very strong statements (beyond even the capabilities of GRH)
which can be deduced concerning the distribution of primes in arithmetic progressions
under the (admittedly unlikely) assumption of the existence of exceptional zeros of Dirichlet
L-functions.

Let χ be a real, primitive Dirichlet character of conductor D.

Theorem 1. Let q ≥ 1 , and let a be integers with (a, q) = 1 . Let x ≥ max{Dr, q462/233}
where r = 554,401 . Then

ψ(x; q, a) =
ψ(x)

φ(q)

(
1− χ

( aD

(q,D)

)
+O

(
L(1, χ)(log x)rr))

.

Note that 462/233 < 2 . The theorem is only useful if L(1, χ) is very small.

Assume
(i) logD � log x

(ii) q 6≡ 0 (mod D)

(iii) L(1, χ) ≤ (logD)−(rr+1).

Then

ψ(x; q, a) =
ψ(x)

φ(q)

(
1 +O

( 1

log x

))
.

Corollary. Let p(q, a) denote the least prime p ≡ a (mod q) . Let Dr ≤ q ≤ exp
(
L(1, χ)−c

)
where c = rr + 1 . Then p(q, a) � q2−1/59 , under the assumptions (i)− (iii) .

We also have a similar statement for primes in short intervals.

Theorem 2. Let x ≥ Dr with r = 18,290 and x39/79 < y ≤ x . Then

ψ(x)− ψ(x− y) = y
(
1 +O

(
L(1, χ)(log x)rr))

.

Some day it will be proved that there are no exceptional characters. But perhaps the shelf
life of these theorems will be rather long!

Lattice Point Problems and Distribution of Values of Quadratic Forms

Friedrich Götze, Universität Bielefeld

Let Q(x) denote a positive definite quadratic form in Rd . We prove that the number
of lattice points in the ellipsoid Es = {x ∈ Rd : Q(x) ≤ s} for s large is equal to its
volume up to an error of order O

(
sd/2−1

)
in general. For irrational ellipsoids the error is

of order o
(
sd/2−1

)
depending on the diophantine properties of the coefficients. This result

implies a conjecture of Davenport and Lewis that the gaps between consecutive values
of Q(m) , m ∈ Zd , tend to zero at infinity for irrational positive definite forms in d ≥ 5
variables. For indefinite forms recent joint work with G. Margulis provides effective bounds
for dimensions d ≥ 5 on the existence of lattice points m∈Zd\{0} such that |Q(m)| < 1
and |Q+(m)| �δ,d | detQ|γd+δ for some not yet optimal constant γd > 1 . These results
are based on analytic bounds and methods developed in Eskin, Margulis, and Mozes.
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Small Gaps Between Primes

Daniel A.Goldston, San Jose State University

(joint work with Cem Y.Yıldırım)

Let pn denote the n-th prime. As a first step in the direction of the twin prime conjecture
one would like to prove that

lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0 .

This conjecture itself may be very difficult to prove. The best result presently is due to
Maier who proved the infimum above is ≤ 0.24846 . . . .

Over the last few years we have been developing a moment method based on ap-
proximating prime tuples by short divisor sums. Given a positive integer h , let H =
{h1, h2, . . . , hk} , with 1 ≤ h1, h2, . . . , hk ≤ h distinct integers, and let νp(H) denote the
number of distinct residue classes modulo p the elements of H occupy. Define the singular
series

S(H) =
∏

p

(
1− 1

p

)−k (
1− νp(H)

p

)
.

If S(H) 6= 0 then H is called admissible. Thus H is admissible if and only if νp(H) < p
for all p. Letting

Λ(n;H) = Λ(n+ h1)Λ(n+ h2) · · ·Λ(n+ hk) ,

with Λ(n) the von Mangoldt function, the Hardy–Littlewood prime tuple conjecture states
that for H admissible,∑

n≤N

Λ(n;H) = N
(
S(H) + o(1)

)
, as N →∞ .

(This is trivially true if H is not admissible.) We can approximate Λ(n) by using the
truncated divisor sum

ΛR(n) =
∑
d|n

d≤R

µ(d) log R

d
,

and then approximate Λ(n;H) by

ΛR(n;H) = ΛR(n+ h1)ΛR(n+ h2) · · ·ΛR(n+ hk) .

This approximation mimics the Hardy–Littlewood prime tuple conjecture if R is a small
enough power of N. Suppose R = o(N1/k) . Then we have for 1 ≤ h � logN and
R,N →∞ , ∑

n≤N

ΛR(n;H) = N
(
S(H) + o(1)

)
.

To obtain information about primes, we prove similar but more complicated asymptotic
formulas for ∑

n≤N

ΛR(n;H1)ΛR(n;H2) ,

∑
n≤N

ΛR(n;H)Λ(n+ h0) ,
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and ∑
n≤N

ΛR(n;H1)ΛR(n;H2)Λ(n+ h0) .

Using these formulas we can improve on Maier’s result somewhat. The method can also
be substantially improved by more complicated choices for ΛR(n,H). At present we have
not determined if the method is sufficiently strong to prove the conjecture or not.

Incomplete Sums of Multiplicative Functions

George Greaves, Cardiff University

Consider
Gz(x) =

∑
n≤x

p|n⇒ p<z

g(n) ,

where g(n) ≥ 0 , g is multiplicative, and there exist constants κ > 0 , A ≥ 1 , and L ≥ 1
such that

−L ≤
∑

u≤p<v

g(p)− κ log v
u ≤ A(1)

when 2 ≤ u ≤ v < z . Largely for convenience, suppose that g
(
pν

)
= 0 when ν ≥ 2 ,

although weaker assumptions such as
∑

p

∑
ν≥2 g

(
pν

)
= O(1) would suffice. Observe that

Gz(x) =
∏
p<z

(
1 + g(p)

)
= Gz(∞)

as soon as x is large enough. The standard estimation in the literature is of the type

Gz(x)

Gz(∞)
= σ(s) +O

(E(s)

log z

)
,

where x = zs , σ = σκ a certain function, and E(s) ≥ 1 is nondecreasing. For large
s these entries E(s) are somewhat unsatisfactory since σ(s) = 1 + O

(
e−s log s

)
, and an

application of Rankin’s trick shows that

Gz(x)

Gz(∞)
≥ 1− e−s log s+O(s)

for x = zs . In the lecture a method was described which shows

Gz(x)

Gz(∞)
≥ σ(s) +

e−s log s+O(s)

log z

where in (1) we need assume only the right-hand inequality.
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Linear Statistics of Zeros of Dirichlet L--Functions

Chris Hughes, American Institute of Mathematics

We consider the moments of the smooth counting function of low-lying scaled zeros of
Dirichlet L--functions. If the test function f satisfies supp f̂ ⊂ [−α, α] then the first b2/αc
moments of the counting function are the Gaussian moments with mean

∫∞
−∞ f(x) dx and

variance
∫∞
−∞ min(|u|, 1)f̂(u)2du . But the overall distribution is not Gaussian. This same

behaviour is seen in random matrix theory. As an application we show that there are an
infinite number of L--functions whose lowest zero is less than 1/4 times its expected height.

Integer and Rational Points Close to Curves

Martin N.Huxley, Cardiff University

Let C be a curve in the plane. Estimate the maximum number of possible integer points
on the enlarged curve MC as a function of M . Bombieri and Pila showed that a constant
B(C, d) exists, the maximum number of intersections of C with any algebraic curve of
degree at most d ; if C is itself an algebraic curve with no component of degree at most
d , then B(C, d) is an intersection number. Bombieri and Pila estimated the number of
integer points on MC when the curve C is algebraic or real-analytic.

Using conditions (bounds on determinants of derivatives) that ensure B(C, d) takes its
minimum value 1

2
d(d + 3) , we extend the result to smooth curves (in Ck) and to count

integer points within a very small distance δ of the curve MC . In analogous questions
about rational points, the relevant algebraic curves are rational functions of x .

On the Moments of Hecke Series at Central Points

Aleksandar Ivić, University of Belgrade

Let Hj(s) denote the Hecke series attached to the j --th Maass wave form ψj(z) , and
let αj = |ρj(1)|2(coshπκj)

−1 , where ρj(1) is the first Fourier coefficient of ψj(z) , and
{κ2

j + 1/4} ∪ {0} is the discrete spectrum of the hyperbolic Laplacian. It is proved that

∑
κj≤K

αjH
3
j (1/2) = K2P3(logK) +O

(
K5/4(logK)37/4

)
and ∑

κj≤K

αjH
4
j (1/2) = K2P6(logK) +O

(
K3/2(logK)25/2

)
where P3(z) is a cubic polynomial in z with leading coefficient 4/(3π2) , and P6(z) is a
polynomial in z of degree six with leading coefficient 16/(15π4) .

It is conjectured that, for k ∈ N fixed, and suitable 0 ≤ ck < 1 ,∑
κj≤K

αjH
k
j (1/2) + 2

π

∫ K

0

∣∣ζ(1
2

+ it)
∣∣2k∣∣ζ(1 + 2it)
∣∣2 dt

= K2P(k2−k)/2(logK) +Oε,k

(
K1+ck+ε

)
where P(k2−k)/2(z) is a polynomial of degree (k2 − k)/2 in z whose coefficients depend
on k.
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Spectral Averages of Hecke Series Attached to Maass Wave Forms

Matti Jutila, University of Turku

Let

Hj(s) =
∞∑

n=1

tj(n)n−s (σ > 1)

be the Hecke series related to the j -th Maass wave form, where tj(n) are corresponding
Hecke eigenvalues. Let the j -th eigenvalue of the hyperbolic Laplacian be written as
1/4 + κ2

j . We consider the following

Conjecture.

Hj(1/2 + it) � (|t|+ κj)
1/3+ ε .

This has been proved by Y. Motohashi and the author for |t| � κ
2/3− ε
j . On the other

hand it follows from the estimate∑
K≤κj≤K+G

∣∣Hj(1/2+ it)
∣∣2 � (

GK + t2/3
)
(t+K)ε (1 � G� K)

for t� κ
3/2
j . Also the estimate∑

κj≤K

Hj(1/2)12 � K4 + ε

was discussed. This implies the bound

Hj(1/2) � κ
1/3 + ε
j

due to A. Ivić for individual Hecke L--functions.

On Zeros off the Critical Line

Jerzy Kaczorowski, A.Mickiewicz University, Poznan

(joint work with M.Kulas)

Problem. Suppose an L-function from the extended Selberg class S# satisfies GRH. Is
it true that then the L-function has an Euler product expansion, up to a finite number of
primes?

We say that F ∈ S# has the density property if for every 1/2 < σ < 1 we have
NF (σ, T ) = o(T ) as T →∞ .

We prove the following theorem solving the above problem in degree 1 .

Theorem. Let F ∈ S# have degree 1. Then F has the density property if and only
if F (s+ iθ) = P (s)L(s, χ) for certain real θ, a Dirichlet character χ, and a Dirichlet
polynomial P (s) satisfying RH.

Corollary. If F ∈ S# of degree 1 satisfies GRH then it has an Euler product expansion
apart from at most a finite number of primes.

The proof is based on the general converse theorem for degree 1 L-functions belonging to
the extended Selberg class [J.Kaczorowski and A.Perelli, Acta Math. 182 (1999), 207-241]
and on a suitably generalized Voronin type universality theorem for Dirichlet L-functions.
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An Estimate for a Cubic Weyl Sum over Primes

Koichi Kawada, Iwate University, Morioka

Let k be a natural number greater than 1, and let the letter p denote a prime number.
We introduce the multiplicative function wk(q) by defining its value for prime powers
as follows; wk(p

uk+1) = kp−u−1/2 for u ≥ 0 , and wk(p
uk+v) = p−u−1 for u ≥ 0 and

2 ≤ v ≤ k . Recently Kawada and Wooley proved that if k ≥ 4 , X ≥ 2 , α is a real
number, and q and a are coprime integers satisfying 1 ≤ q ≤ Xk/2 and |qα−a| ≤ X−k/2 ,
then for each ε > 0 one has∑

X<p≤2X

e(pkα) � X1−2−k−1+ε +
qεwk(q)

1/2X(logX)4

(1 + P k|α− a/q|)1/2
,

where e(α) = e2πiα as usual. Our aim here is to obtain the corresponding bound for the
case k = 3 .

The argument of Kawada and Wooley faces a substantial obstacle when k = 3 , con-
cerning the treatment of sums of the form∑

M<m≤2M

am

∑
X/m<n≤2X/m

bne((mn)3α),

with certain sequences {am} and {bn} . Actually their method works satisfactorily when
X4/7 �M � X , but our goal requires to deal with the cases where X1/2 �M � X4/7 ,
too. By a different approach, it becomes possible to get a desired bound for the latter
cases, if we impose an additional condition upon the sequence {bn} that bn = 0 whenever
n is not a prime power. In fact, this is a key lemma to our purpose.

Now set z = 2X1/8 , let Π(z) be the product of all primes less than z , and for a
natural number x , write ν(x) for the number of distinct primes p such that p|x and
z ≤ p < 2X3/7 . We use the identity∑

X<p≤2X

e(p3α) =
∑

X<x≤2X
(x,Π(z))=1

e(x3α) −
∑

X<x≤2X
(x,Π(z))=1

ν(x)>0

e(x3α)

−
∑

X<p1p2≤2X
2X3/7≤p1≤p2≤X4/7

e((p1p2)
3α).

As for the first sum on the right hand side, one may express the condition (x,Π(z)) = 1
by means of the Möbius function in the familiar way. As for the second sum on the right
hand side, one may rewrite it using the fact that x has a prime factor of appropriate size.
In any case, the first and second sums may be estimated by known techniques. And the
last sum on the right hand side takes a shape to which we can apply the above key lemma.
In this way we may show that the above result of Kawada and Wooley is valid for k = 3 ,
as well.
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Combinatorial Problems with Squarefree Numbers

Sergei V.Konyagin, Moscow State University

Let S0 be the set of positive squarefree integers, N ∈ Z . Denote

ESN = max{#A : A ⊂ {1, 2, . . . , N} , a, a′ ∈ A⇒ a+ a′ ∈ S0} ,
and

BRN = max
P

 max
u∈[0,1]

|P (u)|∫ 1

0
|P (u)| du


where the maximum is taken over nonzero polynomials

P (u) =
∑
n∈S0

n≤N

ane(nu)

with e(z) = e2πiz . It is easy to see that ESN ≤ BR2N . For N ≥ 3 we prove the following
estimates:

(logN)2 log logN � ESN �ε N
11/15 + ε,

BRN �ε N
11/15 + ε.

The upper estimate uses an improvement of the large sieve over prime squares, based
on the recent result of Bombieri and Zannier: For every ε > 0 , for every X ≥ 1 and
for every Y ≥ 1 , the number of quadruples (a1/p

2
1, a2/p

2
2, a3/p

2
3, a4/p

2
4) where the pj are

primes, pj ≤ X , 1 ≤ aj < p2
j , a1/p

2
1 < a2/p

2
2 < a3/p

2
3 < a4/p

2
4 , a4/p

2
4 − a1/p

2
1 ≤ Y/X4 is

�ε X
εY 4 .

Beurling Primes with Large Oscillations

Hugh L.Montgomery, University of Michigan

(joint work with Harold G.Diamond and Ulrike M.A.Vorhauer)

In 1903, Landau gave the first proof of the Prime Number Theorem that did not use the
analytic continuation of the Riemann zeta function. We now show that Landau’s method
is best possible.

Let λ1 ≤ λ2 ≤ . . . be a sequence of real numbers, with λ1 > 1 and λi →∞ , taken to
be a set of generalized primes (Beurling primes), and the finite products λk1

1 λ
k2
2 · · ·λkr

r are
considered to be the generalized integers arising from these primes. Let NB(x) denote the
number of such products not exceeding x (counted with appropriate multiplicity in case
some real numbers are represented as Beurling integers in more than one way). Let πB(x)
denote the number of Beurling primes λi not exceeding x, and let

ζB(s) =
∑

k

1(
λk1

1 λ
k2
2 · · ·

)s =

∫ ∞

1−
x−s dNB(x) =

∞∏
i=1

(
1− λ−s

i

)−1
(σ > 1)

be the associated generalized zeta function, where k = (k1, k2, . . .) is a vector with non-
negative integer components, all but a finite number of which are zero.

Theorem. Suppose that 1/2 < θ < 1 and a > (4/e)(1 − θ) are fixed. Then there is a
system of Beurling primes such that
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(i) NB(x) = κx+O
(
xθ

)
with κ > 0 ;

(ii) ζB(s) is analytic for σ ≥ θ, apart from a simple pole at s = 1 with residue κ ;

(iii) ζB(s) has infinitely many zeros on the curve σ = 1 − a/ log t , 2 ≤ t < ∞ , and
no zero to the right of this curve;

(iv) ψB(x)− x = Ω±
(
x exp(−2

√
a log x )

)
;

(v) ψB(x) = x+O
(
x exp(−2

√
a log x )

)
.

A New Way to Treat the Fourth Moment of the Riemann Zeta--Function

Yoichi Motohashi, Nihon University, Tokyo

(joint work with Roelof W.Bruggeman)

We proved the following

Theorem. Let Γ = PSL 2(Z) , G = PSL 2(R) , and let

M(ζ2, g) =

∫ ∞

−∞

∣∣ζ(1
2

+ it)
∣∣4g(t) dt .

Then there exists a family {ψ} ⊂ L2(Γ \G) such that ψ(1) tends to the nondiagonal part
of M(ζ2, g) .

The argument works with a Pointcaré series on G. Thus its spectral decomposition
gives that of M(ζ2, g) . The spectral decomposition or the orthogonal projection to each
irreducible subspace of L2(Γ \G) is computed with the use of the Kirillov map. No
Kloosterman sums are involved. This solves the basic problem posed in my book, namely
to find a way to prove the explicit formula for M(ζ2, g) without using the spectral theory
of sums of Kloosterman sums.

A peculiar role of the Bessel function of representations of G is stressed as a mean to
understand the geometric structure of mean values of automorphic L-functions in general.

Linear Forms in Values of Polylogarithms

Yuri V.Nesterenko, Moscow State University

The talk presents a review of results about arithmetic properties of values of polyloga-
rithmic functions Lik(z) =

∑∞
n=1 z

k/nk , k ≥ 1 , at rational points, and also it presents
methods used for their proof. In particular, results about values of the Riemann zeta func-
tion are described. Criteria of irrationality and linear independence of numbers that are
known in the theory of transcendental numbers are based on constructions of linear forms
from examined numbers. Linear forms should have integer coefficients not so big in size
and to be small enough. For values of polylogarithms such constructions may be realized
as follows. For each rational function R(s) having poles only at negative integers and zero
at infinity, the following identity holds:

G(z) =
∞∑

ν=1

R(ν)zν = A0(z
−1) +

q∑
k=1

Ak(z
−1) Lik(z)
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where Ak(x) are polynomials. Then the value G(a/b) is a linear form in Lik(a/b) having
rational coefficients. All applications of this construction use rational functions

R(s) = γ

n∑
j=1

Γ(s+ aj)

Γ(s+ bj)

where aj, bj are positive integers, and γ is a rational number, or derivatives of such
functions. The correct choice of the paramaters aj, bj enables one to obtain arithmetic
results. Some theorems derived in such a way by Nikishin in 1979, Gutnik in 1979 and
1982, Kessanii Pilerud in 1999, Rivoal in 2000, and Zudilin in 2001 are discussed.

Gelfond–Schnirelman Method in Prime Number Theory

Igor Pritsker, Oklahoma State University

The original Gelfond–Schnirelman method, proposed in 1936, uses polynomials with integer
coefficients and small norms on [0, 1] to give a Chebyshev--type lower bound in the Prime
Number Theorem. We study a generalization of this method for polynomials in many
variables. Our main result is a lower bound for the integral of Chebyshev’s ψ--function,
expressed in terms of the weighted capacity. This extends previous work of Nair and
Chudnovsky, and connects the subject to the potential theory with external fields generated
by polynomial--type weights.

Approximation of Values of Zeta Functions at Integers

George Rhin, Université de Metz

In the first part I explain how Apéry’s method of ‘accelerating the convergence of series
of rational numbers’ had been used 20 years ago by H.Cohen and myself to construct a
sequence of good rational approximations to ζ(4) . This sequence does not give a new proof
of the irrationality of ζ(4) . But surprisingly it is the same sequence as the one given by
W. Zudilin (with a different normalization) and also, independently, by V.N. Sorokin. The
numerators and the denominators of these approximations are both proved to be rational
numbers which satisfy a nice linear recurrence relation of order 2 with coefficients which are
polynomials in n of degree 5. We explain why Apéry’s method does not provide a proof
that the denominators of the approximations are integers, as conjectured by W. Zudilin
after numerical computations. In the second part we give (for the moment at least ex-
perimentally by use of Mathematica) for all k ≥ 2 a sequence of rational approximations
to ζ(k) by means of integrals of dimension 1, involving classical Padé approximations of
log(1 − z) . Here the denominators are clearly integers and generalize the classical Apéry
sequence for ζ(3) :

qn =
n∑

j=0

(n
j

)2(n+ j

n

)2

.
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Padé Approximants and Catalan’s Constant

Tanguy Rivoal, Université de Caen

In this lecture we discuss some recent (unsuccessful) attempts in order to prove the irra-
tionality of Catalan’s constant G =

∑
n≥0(−1)n/(2n+1)2 .

One approach uses the hypergeometric method to produce linear forms Sn = anG + bn
with 24nd2nan ∈ Z , 24nd3

2nbn ∈ Z , but unfortunately 24nd3
2nSn does not tend to zero.

The second approach uses a method first used by Prévost in 1994 to prove the irrational-
ity of ζ(2) and ζ(3) . It is based on a Padé approximate to the remainder term ψ of the
expansion

G =
n−1∑
k=0

(−1)k

(2k+1)2
+ (−1)nψ

( 1
2n

)
.

This produces another linear form S̃n = ãnG + b̃n with 24nãn ∈ Z , 24nd2
2nb̃n ∈ Z , but

again 24nd2
2nS̃n does not tend to zero. As a by-product we see that an = ãn , and bn = b̃n ,

which improves the denominator bounds for an and bn above.

Central Limit Theorems for Lattice Point Counts and for Eigenvalues of
Hyperbolic Laplacians

Zeev Rudnick, Tel Aviv University

We consider the number N(t, %) of eigenvalues of
√

∆ which lie in an interval [t, t+%] ,
% = %(t) , and ∆ is the Laplacian on either the flat torus R2/Z2 or the modular surface
H/ SL 2(Z) . If %(t) tends to 0 sufficiently slowly, we show that, suitably normalized,
N(t, %) has a Gaussian distribution (in the modular case, one takes a ‘smooth’ counting
function).

A Three Primes Theorem with Congruence Conditions

Jan-Christoph Schlage--Puchta, Universität Freiburg

Let n be sufficiently large, Q < n1/2 log−A n . We give a simple proof for the fact that for
almost all q ≤ Q and all a with (a, q) = 1 the number rq(n) of representations of n as
a sum of three primes n = p1 + p2 + p3 with p1 ≡ a (mod q) satisfies

rq(n) = S(n, q)
n2

φ(q) log3 n
+O

(
n2

φ(q) logB n

)
,

proving a conjecture of Tolev. Moreover, we show that congruential restrictions may be
imposed on p2 and p3 as well.
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A Turán–Kubilius Inequality for Friable Integers, with Applications

Gerald Tenenbaum, Université de Nancy

(joint work with Régis de la Bretèche)

This talk was devoted to provide an account on two recent joint papers, in which we
investigate the local behaviour of the counting function of friable (i. e. without large prime
factors) integers that are coprime to a given integer and applied the resulting estimates to
a general form of the Turán–Kubilius inequality over friable integers that is valid without
any restriction on the friability parameter.

Several consequences of the above described estimates have been presented, including:
friable extensions of the Erdős–Wintner theorem and of Daboussi’s theorem and an effective
theorem for describing the structure of the set of prime factors of a stochastic friable integer.

Mean Value Theorems for Primes in Arithmetic Progression

Robert C.Vaughan, Pennsylvania State University

Let
ψ(x; q, a) =

∑
n≤x

n≡a(mod q)

Λ(n)

where Λ is von Mangoldt’s function. Let

FR(n) =
∑
r≤R

µ(r)

φ(r)

r∑
b=1

(b,r)=1

e(bn/r)

and
%1(x; q, a) =

∑
n≤x

n≡a(mod q)

FR(n)

and let

Mk(x,Q, ω, %1) =
∑
q≤Q

ω(q)

q∑
a=1

(
ψ(x; q, a)− %1(x; q, a)

)k
.

Then the following theorems are established.

Theorem 1. Suppose that ω0(q) = 1, Q ≤ x, and R ≤ (log x)A where A is a fixed
positive real number. Then

M2(x,Q, ω0, %1) = Qx log(x/R)− cQx+O
(
QxR−1/2 + x2(log x)2R−1

)
where c = 1 + γ +

∑
p

log p

p(p− 1)
.

Theorem 2. Suppose that ω1(q) = q, Q ≤ x, and R ≤ (log x)A where A is a fixed
positive real number. Then

M3(x,Q, ω1, %1) = 1
2
Q2x(log x)2 − 3

2
Q2x log x(logR + c)

+O
(
x3(log x)5R−1 +Q2x(logR)3 +Q2x(log x)R−1/2

)
where c = γ + 2

3
+

∑
p

log p

p(p− 1)
.
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The Group Method for the Dilogarithm

Carlo Viola, Universita di Pisa

(joint work with G. Rhin)

Let

Li2(z) =
∞∑

n=1

n−2zn =

∫ z

0

− log(1− t)

t
dt

denote the dilogarithm. M. Hata [Trans. Amer. Math. Soc. 336 (1993), 363–387] proved
that Li2(1/q) is irrational for all integers q ≤ −5 or q ≥ 7 and gave irrational measures
of these numbers. For example, µ(L2(1/7)) < 95.0605 . . . , µ(L2(−1/5)) < 228.612 . . . .
Hata’s method is a technically difficult modification of his own method for the irrationality
of Li2(1) = ζ(2) = π2/6 . We extend our algebraic method for ζ(2) and ζ(3) [Acta
Arith. 77 (1996), 23–56; Acta Arith. 97 (2001), 269–293], based on the study of the
actions of suitable permutation groups on double or triple integrals of Euler’s type. The
corresponding group action on the double integrals related to Li2(1/q) is generated by a
unidimensional birational transformation, as well as by suitable hypergeometric integral
transformations obtained through Euler’s integral representation of Gauß’s hypergeometric
function. In this way we extend Hata’s results. We prove that Li2(1/6) is irrational, and
that µ(L2(1/6)) < 997.882 . . . . We also improve upon Hata’s irrationality measures for
Li2(1/q) for any q ≤ −5 or q ≥ 7 . For instance, we get µ(L2(1/7)) < 69.688 . . . , and
µ(L2(−1/5)) < 158.5 .

Twisted Hoffman Algebras

Michel Waldschmidt, Université Paris VI

Let H = K〈x0, x1〉 be the free algebra on the alphabet {x0, x1} . For λ ∈ K, denote by
ψλ the endomorphism of H which fixes x0 and maps x1 onto x1 + λx0 . We study the
endomorphism ϕλ on H1 = Ke+Hx1 such that ϕλ(wx1) = ψλ(w)x1 and ϕλ(e) = e .

We extend ϕλ to an automorphism of H by ϕλ(wx0) = ϕλ(w)x0 for w ∈ H. Next we
transport the shuffle and stuffle structures from H by means of this automorphism. For
λ = −1 this yields the shuffle and stuffle products related to functions∑

n1≥...nk≥1

zn1n−s1
1 · · · n−sk

k

and their values at z = 1 .

Mean Value Estimates for Thin Sets

Trevor D.Wooley, University of Michigan

(joint work with Jörg Brüdern)

We investigate mean values of the shape
∑

n∈B c(n)2 where c(n) is an arithmetically
interesting Fourier coefficient, and B is a thin subset of Z .

Examples: With

f(α) =
∑

1≤x≤P

e(αx3) , h(α) =
∑

x∈A(P,P η)

e(αx3) ,
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wherein A(X, Y ) denotes the set of all integers up to X all of whose prime divisors are
at most Y, consider

c1(n) =

∫ 1

0

|f(α)|6e(−nα) dα , c2(n) =

∫ 1

0

|h(α)|5e(−nα) dα ,

and the mean values ∑
1≤x,y≤P

c1(x
3 − y3)2 ,

∑
x,y∈A(P,P η)

c2(x
3 − y3)2 .

We discuss three methods for estimating these mean values: (1) use of underlying arith-
metic structure, (2) trivial use of Bessel’s inequality, and (3) none of the above.

One can show using (1):∑
1≤x,y≤P

c1(x
3− y3)2 =

∫ 1

0

∫ 1

0

∣∣f(α)6f(β)6f(α+ β)2
∣∣ dα dβ ,

∑
x,y∈A(P,P η)

c2(x
3− y3)2 =

∫ 1

0

∫ 1

0

∣∣h(α)5h(β)5h(α+ β)2
∣∣ dα dβ .

Then applying the ideas of (2) one obtains∑
1≤x,y≤P

c1(x
3− y3)2 � P 8 ,

and a minor arc analogue with P 8(logP )ε−2 in place of P 8 . This permits the proof of

Theorem 1. Let s ≥ 14 and bi, di (1 ≤ i ≤ s) be fixed integers. Then the number of
solutions N(P ) of

s∑
i=1

bix
3
i =

s∑
i=1

dix
3
i = 0(1)

with |xi| ≤ P (1 ≤ i ≤ s) satisfies

N(P ) ∼ CSP s−6

where C is the volume of the manifold (1) with |xi| ≤ 1 (1 ≤ i ≤ s) and S =
∏

p vp

with

vp = lim
h→∞

ph(2−s) #
{
x∈(Z/phZ)s :

s∑
i=1

bix
3
i ≡

s∑
i=1

dix
3
i ≡ 0 (mod ph)

}
.

Finally, using estimates for the frequency of large values (method (3)), one obtains the
estimate ∑

x,y∈A(P,P η)

c2(x
3− y3)2 � P 6+ξ+ε

where ξ = (
√

2833− 43)/41 = 0.24941 . . . . This permits the proof of

Theorem 2. Let s ≥ 13 . Then the Hasse principle holds for (1) , and in particular,
whenever (1) possesses a nontrivial 7--adic solution, then (1) possesses a nontrivial inte-
gral solution.
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Euler--Type Multiple Integrals as Linear Forms in Zeta Values

Wadim Zudilin, Moscow Lomonosov State University

In 1978 Apéry showed that ζ(3) is irrational. A few months later, Beukers gave another
proof by means of multiple integrals∫∫∫

[0,1]3

∏3
j=1 x

n
j (1−xj)

n(
1− x1(1−x2x3)

)n+1 dx1dx2dx3 ∈ Q ζ(3) + Q ,

and independently another hypergeometric series approach was put forward for showing
ζ(3) 6∈ Q in the works of Gutnik and Nesterenko. Recently, a very simple observation
of Ball together with the generalization of the Gutnik–Nesterenko construction allowed
Rivoal to prove that infinitely many numbers in the list ζ(3), ζ(5), ζ(7), . . . are irrational.
Rivoal’s construction is based on the well--poised property of hypergeometric series. This
property originated by classical works of Barnes, Whipple, and many others. We prove the
general theorem that states a relationship between the Rivoal--type well--poised hyperge-
ometric series and the Euler--type multiple integrals that generalize those of Beukers. By
means of this theorem we give an answer to Vasilyev’s question:∫

· · ·
∫

[0,1]k

∏k
j=1 x

n
j (1−xj)

n(
1− x1(1− x2(1− . . . (1−xk−1(1− xk)) . . .)

)n+1 dx1 . . . dxk

∈ Q ζ(k) + Q ζ(k−2) + · · ·+ Q ζ(3) + Q
for odd integers k , and similarly for even k. Another consequence of the theorem is the
connection with the new arithmetic group--structure approach introduced by Rhin and
Viola. And the theorem gives a link between classical analysis of hypergeometric series
and diophantine problems of ζ(s) for integers s > 1 .

Edited by Ulrike M.A.Vorhauer
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Université Bordeaux I
351, cours de la Libération
F-33405 Talence Cedex

Prof. Dr. Brian Conrey
conrey@best.com

conrey@aimath.org

American Institute of Mathematics
360 Portage Ave.
Palo Alto, CA 94306 – USA

Dr. Jacky Cresson
cresson@univ-fcomte.fr

cresson@math.jussieu.fr
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