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April 13th – April 19th, 2003

The conference ”Geometrie der Banachräume” was organized by H. König (Kiel), J. Lin-
denstrauss (Jerusalem) and N. Tomczak-Jaegermann (Edmonton) and attended by 44 peo-
ple from 14 countries including 10 from Germany. Many of the participants are among the
leaders in the area but also a large number of young mathematicians actively participated
in the meeting.

Altogether 24 lectures were presented, one third of which were given by young re-
searchers. The lectures outlined important areas of research in the theory of Banach
spaces such as structure theory of infinite-dimensional Banach spaces, non-linear Banach
space theory, asymptotic theory of normed spaces and connections with convex geometry.
The lectures were well attended all week long. We just mention a few contributions. Ar-
gyros described some deep constructions closely related to a celebrated example of Gowers
and Maurey and the dichotomy theorem of Gowers. Interesting new results concerning
approximation properties of Banach spaces were obtained by Lusky and Johnson. Rudel-
son outlined new random constructions of euclidean subspaces of Banach spaces generated
by ±1 matrices requiring new probabilistic tools and Vershynin reported on important de-
velopments concerning restricted invertibility introduced and studied earlier by Bourgain
and Tzafriri. Godefroy gave a new and elegant approach to the Lipschitz classification of
Banach spaces, Lindenstrauss presented new ideas and new results on the Fréchet differ-
entiability of Lipschitz maps. The participants spent much time on informal discussions
resulting in new questions, projects and progress done on existing problems.
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Abstracts

Mixing conditional and unconditional structures

Spiros Argyros

By “mixing conditional and unconditional structures” we understand Banach spaces on
which coexist such structures. There are some recent results in this direction. The first is a
reflexive Banach space Xius which is indecomposable and unconditionally saturated. This
is a joint work with A. Manoussakis (to appear in Studia Math.). Moreover this space has
few operators, namely every T ∈ L(Xius) is of the form T = λI +S with S strictly singular.
The second, a joint work with A. Tolias, is a dual pair (Xuh, X

∗
uh) with Xuh being a reflexive

unconditionally saturated Banach space and X∗
uh hereditarily indecomposable. The space

Xuh has the the additional property that every quotient of it has a further quotient which
is hereditarily indecomposable. More recently, in a joint work with I. Gasparis and A.
Tolias, we have constructed a non reflexive analogue of the last result. The norms of these
spaces are obtained by a general method which extends the Gowers Maurey method of
constructing H.I. Banach spaces.

Gelfand numbers and metric entropy
of convex hulls in Hilbert spaces

Bernd Carl

(joint work with David E. Edmunds)

For a precompact subset K of a Hilbert space we prove the following inequalities:

n1/2cn(cov(K)) ≤ cK(1 +
n∑

k=1

k−1/2ek(K)) , n ∈ N,

and

k1/2ck+n(cov(K)) ≤ c

[
(log(n + 1)1/2εn(K) +

∞∑
j=n+1

εj(K)

j(log(j + 1))1/2

]
,

k, n ∈ N , where cn(cov(K)) is the nth Gelfand number of the absolutely convex hull
of K and εk(K) and ek(K) denote the kth entropy and kth dyadic entropy number of
K, respectively. The inequalities are, essentially, a reformulation of the correspond-
ing inequalities given in Carl, Kyrezi and Pajor which yield asymptotically optimal es-
timates of Gelfand numbers cn(cov(K)) provided that the entropy numbers εn(K) are
slowly decreasing. For example, we get optimal estimates in the non-critical case where
εn(K) � (log(n + 1))−α, α 6= 1

2
, 0 < α < ∞, as well as in the critical case where α = 1

2
.

For α = 1
2

we show the asymptotically optimal estimate cn(cov(K)) � n−
1
2 log(n + 1)

which refines the corresponding result of Gao obtained for entropy numbers. Furthermore,
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we establish inequalities similar to that of Creutzig and Steinwart in the critical as well
as non-critical case. Finally, we give an alternative proof of a result by Li and Linde for
Gelfand and entropy numbers of the absolutely convex hull of K when K has the shape
K = {t1, t2, . . .}, where ‖tn‖ ≤ σn , σn ↓ 0. In particular, for σn ≤ (log(n + 1))−

1
2 , which

corresponds to the critical case we get a better asymptotic behaviour of Gelfand numbers,
cn(cov(K)) � n−

1
2 .

Some remarks on purely unrectifiable sets

Marianna Csörnyei

(joint work with G. Alberti and D. Preiss)

A set A is called purely unrectifiable (PU) if it meets every Lipschitz curve in a set of
length zero; A is uniformly purely unrectifiable (PUPU) if for every ε > 0 there exists an
open set G covering A such that G meets every 1-Lipschitz curve in a set of length at most
ε. (A set is called a 1-Lipschitz curve if it is a rotated copy of a graph of a Lipschitz function
with Lipschitz constant at most 1). A basic open question is whether PU = PUPU .

The class of PUPU sets is closely related to the class of sets of width 0: a set A has
width 0 if there exists a convex cone C and for every ε > 0 there exists an open set G ⊃ A
such that every Lipschitz curve that goes in the direction of C intersects G in a set of
length at most ε.

In the planar case the σ-ideal of the Lebesgue null sets and the σ-ideal generated by sets
of width zero coincide. This leads to the following theorem: For any probability measure
µ on R2,

(i) if µ is absolutely continuous with respect to the Lebesgue measure, then every Lips-
chitz map f : R2 → R2 is differentiable almost everywhere with respect to µ;

(ii) if µ is singular then there exists a Lipschitz map f : R2 → R2 that is non-differentiable
almost everywhere with respect to µ.

In fact for any probability measure µ on Rn there exists a Lipschitz map f : Rn → Rn

that is non-differentiable almost everywhere with respect to µ, if and only if there are sets
A1, A2, . . . of width zero with µ(

⋃
Ai) = 1. However, in dimension greater than 2, it is

still not known whether these are precisely the singular measures.

Maximal inequalities and almost sure convergence in Lp-spaces: commutative
and non-commutative

Andreas Defant

The by now classical theory of general orthogonal series provides deep theorems on almost
everywhere convergence. Probably the most prominent result is the fundamental Menchoff-
Rademacher theorem: For an arbitrary orthonormal system (xn) in L2(µ), the Fourier
series

∑
λkxk converges almost everywhere provided

∑
|λk log k|2 < ∞. It is well known

that the latter condition can be weakened if other summation procedures are considered,
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for example Cesaro, or more generally, Riesz summation. Parts of the theory have been
extended to Lp-spaces, p 6= 2. For instance, Maurey-Nahoum and independently Bennett
proved that for each unconditionally convergent series

∑
xk in L1, the series

∑ xk

log(k+1)

converges almost everywhere.
The aim of this talk is to present a sort of machinery which allows to transfer a va-

riety of classical commutative maximal theorems on orthogonal series together with their
implications on almost everywhere convergence into results which live in non-commutative
Lp-spaces Lp(M, φ), 1 ≤ p < ∞, build over non commutative probability spaces (M, φ).
We reformulate commutative L2-results in terms of a maximal inequalities and use in a
second step operator theory and the theory of tensor products in Banach spaces to derive
appropriate commutative Lp-inequalities, p 6= 2. Now recent techniques based on Pisier’s
`∞-valued non-commutative Lp-spaces enable us to prove non-commutative Lp-maximal
inequalities. In the final step, we use non-commutative Chebycheff type inequalities in
order to deduce the anticipated almost everywhere results.

Two examples: (1) For every unconditionally convergent series
∑

xk in L1(M, φ) (the
predual of M) there is a summation process given by a lower triangle matrix (ajk) such
that

∑
ajkxk converges to

∑
xk bilaterally almost surely in the sense of Jajte. This is

a natural analogue of a result on orthogonal series due to Zygmund, and even in the
commutative case it seems to be unknown. (2) Given an orthonormal series

∑
λkxk in a

non-commutative L2(M, φ), the Cesaro means of the partial sums of this series bilaterally
almost surely sum

∑
λkxk provided

∑
|λk log log k|2 < ∞. In the commutative situation

this is another fundamental result due to Kaczmarz and Menchoff. This talk reports on
joint work with Marius Junge and continues our previous work from: Maximal theorems
of Menchoff-Rademacher type in non-commutative Lp-spaces; to appear in J. Funct. Anal.
2003.

Non-linear geometry of Banach spaces

Gilles Godefroy

The space of real-valued Lipschitz functions on a Banach space X is a dual space
in a canonical way. The predual, which enjoys nice functorial properties, is called the
Lipschitz-free space over X. In a joint work with N. J. Kalton, we use this space to
prove the following: if a linear quotient map from a Banach space Y onto a separable
Banach space X has a Lipschitz right inverse, then it has a linear continuous right inverse.
The proof relies on convolution with smooth measures and weak Gateaux differentiability.
Separability is essential in this result, since it fails e.g. for every non separable WCG space
X. This provides canonical examples of pairs of non separable spaces which are Lipschitz-
isomorphic but not linearly isomorphic. Another corollary is the following: if there is an
isometric embedding from a separable Banach space X into a Banach space Y , then there
is a linear isometric embedding from X into Y . This last statement fails as well for every
non separable WCG (e.g. reflexive) space.
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Localization method in geometry of convex bodies

Olivier Guedon

(joint work with Matthieu Fradelizi)

In this talk, I have presented a joint work with Matthieu Fradelizi concerning the study of
extreme points of the set of s-concave probabilities measures satisfying a linear constraint.
This work gives a new approach to a localization theorem due to Kannan, Lovász and
Simonovits which happens to be very useful in geometry to obtain inequalities for integrals
like concentration and isoperimetric inequalities. Roughly speaking, the study of such
inequalities is reduced to these extreme points and the theorem states that these extreme
points are some Dirac measures and some s-affine probabilities supported by a segment.
This tool appeared in the literature as very powerful to get dimension free inequalities for
log-concave measures.

I have also presented a generalization of this result to the study of the extreme points
of the set of log-concave probabilities satisfying p linear constraints. They are some Dirac
measures, some log-concave probabilities supported by a segment with a density equal to
emaxi=1,...,p `i where `i are some affine functions, some log-affine probabilities supported in
a p-dimensional subspace and it remains an open question to characterize these extreme
points when the support of the measure generates a k-dimensional affine subspace, when
2 ≤ k ≤ p− 1.

A quantitative version of Krein’s theorem

Petr Hajek

(joint work with M. Fabian, A. Granero, V. Montesinos, and V.
Zizler)

We say that a bounded subset M ⊂ X, where X is a Banach space, is ε-weakly relatively
compact (ε-WRK), if S = w∗ − cl(M) satisfies S ⊂ X + εBX∗∗ . In our work we show the
following theorem:

Theorem 1 Let M ⊂ X be bounded, ε-WRK. Then co(M) is 2ε-WRK subset of X.

The statement of the above theorem when ε = 0 coincides with the classical Krein’s
theorem. In some cases (e.g. WCG spaces) it is possible to preserve the WRK constant
when passing to convex hulls, regardless of the the set M and the renorming of X. However,
in general this is false and we give examples of sets in l∞ for which it is necessary to add
the constant 2 when passing to the convex hull. We can also demonstrate renormings of
the space l1([0, 1]) ⊕ c0 under which we preserve the WRK constant for every bounded
set M , or different renormings under which passing to the double value for convex hulls is
unavoidable for some sets M .
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Non-Equivalence of Rearranged Walsh and Trigonometric Systems in Lp

Aicke Hinrichs

(joint work with Jörg Wenzel)

The subject of the talk is the question whether the trigonometric system can be equiv-
alent to some rearrangement of the Walsh system in Lp for some p 6= 2. It is shown that
this problem is closely related to a combinatorial problem involving the permutation and
the structure of the underlying groups. This makes it possible to prove non-equivalence of
trigonometric system and rearranged Walsh-system for p 6= 2 for a number of rearrange-
ments including the original Walsh order, the Walsh-Kaczmarz order, general dyadically
linear and piecewise linear rearrangements and perturbations thereof. Previously, this was
only known for the Walsh-Paley order. The method is not limited to the case of the Walsh
functions but can be used for systems of characters on compact abelian groups.

Carleson Embeddings for Weighted Bergman Spaces

Hans Jarchow

(joint work with Urs Kollbrunner)

We consider analytic functions on D = {z ∈ C : |z| < 1}. A q-Carleson measure µ
for the classically weighted Bergman space Ap

α is a finite, positive Borel measure µ on D
such that the operator I : Ap

α → Lq(µ) : f 7→ f is well-defined (‘Carleson embedding’).
Typical examples come from e.g. pointwise multipliers, composition operators, ... . Such
measures have been characterized by D.H. Luecking and others in terms of properties of

the function z 7→ µ(B(z))1/q

(1− |z|2)(α+2)/p
. Here B(z) is the hyperbolic ball centered at z of radius

1/2, say. For several operator theoretic properties, the cases p ≤ q and p > q are very
different. For example, if p > q then I is always compact. But there is no difference
for order boundedness and certain related summing properties. Order boundedness of
I : Ap

α → Lq(µ) is equivalent to µ-integrability of z 7→ (1 − |z|2)−(α+2)q/p. It leads to
extensions of I to certain larger function spaces. In many cases it is equivalent to the
property that a related Carleson embedding A2

α′ → L2(µ) is a Hilbert-Schmidt operator.
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Stochastic approximation property

William B. Johnson

(joint work with V. P. Fonf, G. Pisier, and D. Preiss)

We show that a Banach space X has the stochastic approximation property iff it has the
stochasic basis property, and these properties are equivalent to the approximation property
if X has non trivial type. If for every Radon probability on X, there is an operator from an
Lp space into X whose range has probability one, then X is a quotient of an Lp space. This
extends a theorem of Sato’s which dealt with the case p = 2. In any infinite dimensional
Banach space X there is a compact set K so that for any Radon probability on X there is
an operator range of probability one that does not contain K.

BMO-regularity is a self-dual property

S.V. Kislyakov

A Banach lattice X of measurable functions (ideal space) on the unit circle is said to
be BMO-regular if for every nonzero function f in X there exists g ∈ X with

|f | ≤ g, ‖g‖ ≤ C‖f‖, ‖ log g‖BMO ≤ C.

This property has turned out to be intimately related to interpolation of Hardy-type sub-
spaces in lattices of measurable functions.

It is shown in the talk that, if X has the Fatou property and X is BMO-regular, then the
order dual X ′ is also BMO-regular. Surprisingly, the proof involves the Ky Fan–Kakutany
fixed point theorem for multivalued maps.

Minimal slabs in the cube

Alexander Koldobsky

(joint work with Franck Barthe)

We study the volume of symmetric slabs in the unit cube. We show that, for t < 3/4,
the slab parallel to a face has the minimal volume among all symmetric slabs with width
t. For large width, we prove the asymptotic extremality of the slab orthogonal to the main
diagonal. The proof is based on certain concavity properties of the Laplace transform
and on several limit theorems from probability: the central limit theorem and classical
principles of moderate and large deviations. Finally, we extend some of the results to more
general classes of bodies.
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Frechet differentiability of Lipschitz functions between Banach spaces

Joram Lindentrauss

There are two important types of differentiability for Lipschitz functions between infi-
nite dimensional Banach spaces. For Gâteaux differentiability of such functions there is a
satisfactory general existence theorem. However, Gâteaux derivatives are only weak linear
approximations of a function. It is much more desirable to have points of Frechet differen-
tiability. It turns out that it is very hard to prove the existence of such points. One source
of the difficulty is to find a proper notion of ”almost everywhere”. In a joint recent work
with David Preiss we introduced a new notion of null sets which enables to prove existence
results for points of Frechet differentiability in some important special cases (e.g. convex
continuous functions from an Asplund space to the reals and any Lipschitz function from
a C(K) space with K countable to a space with the RNP).

On Banach spaces with the commuting bounded approximation property

Wolgang Lusky

We consider separable Banach spaces X with a sequence of bounded linear finite rank
operators Rn : X → X which satisfy limn→∞ Rnx = x for all x ∈ X and RnRm = Rmin(n,m)

whenever n 6= m. Such a sequence will be called a commuting approximating sequence
(c.a.s.). We study under which additional conditions on Rn the space X has a basis or even
an unconditional basis. For example, if the operators Rn −Rn−1 factor uniformly through
lmn
p -spaces then X has a basis. If in addition there is λ > 0 such that, for any sequence
of indices kn with kn 6= kn′ whenever n 6= n′ and any linear Un : X → X with ||Un|| ≤ 1,
we have ||

∑
n(Rkn − Rkn−1)Un(Rn − Rn−1)|| ≤ λ then X has an unconditional basis. If

X is a subspace of a Lp-space Z such that Z = X + Y for some subspace Y ⊂ Z, (R̂n)

is a c.a.s. of Z with R̂n|X = Rn and R̂n|Y are the projections of a basis of Y then X ⊕ lp
has a basis. We apply these results to certain subspaces of C(T) and L1(T) of the form
span{ zk : k ∈ Λ }, where T = { z ∈ C : |z| = 1 } and Λ ⊂ Z is a given subset.

Reflexivity and approximate fixed points

Eva Matouskova

A Banach space X is reflexive if and only if every bounded sequence {xn} in X contains
a norm attaining subsequence. This means that it contains a subsequence {xnk

} for which
supf∈SX∗ lim supk→∞ f(xnk

) is attained at some f in the dual unit sphere SX∗ . A Banach
space X is not reflexive if and only if it contains a normalized sequence {xn} with the
property that for every f ∈ SX∗ , there exists g ∈ SX∗ such that lim supn→∞ f(xn) <
lim infn→∞ g(xn).

Combining this with a result of Shafrir, we conclude that every infinite-dimensional
Banach space contains an unbounded closed convex set which has the approximate fixed
point property for nonexpansive mappings.
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L log L spaces and convergence of Fourier series associated with 1D periodic
Dirac operators

Boris Mityagin

We study Dirac operators on the interval [0, 1] with periodic, antiperiodic or Dirichlet
boundary conditions. For any compact set of potentials in L2 we present a domain in C (a
rectangle and a sequence of small discs centered at kπ, k integers), which contains spectra
of Dirac operators. Spectral decompositions converge in Lp, 1 < p < ∞ if a potential
lies in L2. Under more strict conditions on the potential we guarantee unconditional L2-
convergence and uniform convergence of spectral decompositions of Dirac operator.

Conditioned Brownian Motion and Multipliers into SL∞

Paul F. X . Müller

(joint work with Peter W. Jones)

We show how to construct bounded harmonic functions which obey pointwise constraints
and also satisfy uniform estimates for their Littlewood - Paley square function: Given a
measurable set E, contained in the boundary of the unit disk T, we constructively determine
a multiplier m : T → [0, 1] with the following property:

h = m · 1E

is non trivial, and its mean value satisfies the following lower bound,∫
h(eiα)dα ≥ e−1

∫
u(eiα)dα,

h is also smooth enough so that its Littlewood-Paley square function is uniformly bounded,
that is

sup
α

(
1

π

∫
D
|∇h(z)|2 1− |z|2

|eiα − z|2
log

1

|z|
dA(z)

)1/2

≤ A0

where A0 is a universal constant. A large proportion of the presentation was devoted to
finding an explicite formula for the multiplier m : T → [0, 1].

On some operator property related to power-boundedness

Krysztof Oleszkiewicz

(joint work with N. Kalton, S. Montgomery-Smith and Y. Tomilov)

Let T : F → F be a bounded operator on a Banach space F. Let

L = lim sup
n→∞

n‖T n+1 − T n‖.
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We prove that L < 1/e implies that T is power bounded and that the constant 1/e cannot
be improved. We also prove an Esterle type theorem: Let C = lim infn→∞ n‖T n+1 − T n‖.
If both C < 1/e and spectrum of T is equal to {1} then T = Id. The constant 1/e again
is optimal (Esterle and Berkani proved it for C < 1/96 and C < 1/12 respectively).

Achievements and failures of operator theory in Banach spaces

Albrecht Pietsch

This historical survey deals with the following topics:

• finite-dimensional pattern from linear algebra:
diagonal form, Jordan form, triangular form, Cramer’s rule

• infinite-dimensional phenomena:
non-complemented subspaces, spaces without basis,
quasi-nilpotent operators

• Riesz–Schauder theory of compact operators

• Fredholm operators

• completeness of root vectors

• invariant subspaces

• spectral operators, decomposable operators

• Fredholm determinants

• eigenvalue distributions

• the relationship between spaces and operators

Random ±1 matrices generate Kashin’s subspaces

Mark Rudelson

(joint work with A. Litvak, A. Pajor and N. Tomczak-Jaegermann)

Let δ > 0 and let m, n be integer numbers such that m < (1− δ)n. Kashin’s theorem
states that if S : Rn → Rn is a random orthogonal matrix, then with high probability
the L1 and L2 norms are equivalent on the subspace E = SRm. There was a question
whether a random orthogonal matrix can be replaced by a matrix of a simpler structure,
in particular by one having a small number of different entries. We prove that if S is a
matrix whose entries are i.i.d. random variables taking values 1 and −1 with probability
1/2, then the subspace SRm satisfies Kashin’s theorem with probability close to 1.
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Strictly convex renorming

Stanmir Troyanski

(joint work with A. Moltó and J. Orihuela)

For a set A by D(A) we denote the diagonal of A2, i.e. D(A) = {(x, x) : x ∈ A}.

Definition. Let X be a linear topological space and let M be a symmetric subset of X2,
i.e. if (x, y) ∈ M then (y, x) ∈ M . We say that M is

a) quasidiagonal if x = y whenever (x, x), (y, y) ∈ conv M .

b) strictly quasidiagonal if x = y whenever either (x, x) ∈ conv M or (y, y) ∈ conv M .

Theorem. Let X be a normed space and F a subspace of X∗ which is 1–norming for X.
Let us consider the following conditions

(i) the norm of X is strictly convex;

(ii) S2
X is a countable union of strictly quasidiagonal sets with respect to (X, σ(X, F ));

(iii) S2
X is a countable union of quasidiagonal sets with respect to (X, σ(X, F ));

(iv) X2 is a countable union of quasidiagonal sets with respect to (X, σ(X, F ));

(v) X admits an equivalent σ(X, F ) strictly convex norm.

Then (i)⇒(ii)⇒ (iii)⇔(iv)⇔(v).

Using the above theorem we obtain some necessary and some sufficient condition for
the existence of dual strictly convex norm in C(K)∗ in terms of the compact K.

Restricted Invertibility of Operators on Random Subspaces

Roman Vershynin

The principle of the restricted invertibility due to Bourgain and Tzafriri finds a large
set of isomorphism of a given linear operator T on ln2 , that is a coordinate subspace on
which T is a nice isomorphism. A natural question is - how many such sets (subspaces)
are there? In particular, can this subspace be chosen at random? I will present a sharp
positive result. It is dimension free and more general than Bourgain-Tzafriri’s principle.
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Narrow operators on Banach spaces

Dirk Werner

(joint work with V. Kadets, N. Kalton and R. Shvidkoy)

An operator T : X → Y between Banach spaces is called narrow if for every ε > 0, for
every slice S of the unit ball of X, every x in the unit sphere of X and every y ∈ S there
exists some v ∈ S such that ‖x− v‖ ≥ 2− ε and ‖Ty − Tv‖ ≤ ε. A Banach space X has
the Daugavet property if ‖Id − T‖ = 1 + ‖T‖ for every rank-1 operator T : X → X. It
can easily be shown that X has the Daugavet property if and only if there exists a narrow
operator on X and that on a space with the Daugavet property, every narrow operator
satisfies ‖Id− T‖ = 1 + ‖T‖.

The talk at the meeting discussed examples of narrow operators (e.g., weakly compact
operators, Radon-Nikodym operators, `1-singular operators and their sums), characterisa-
tions of such operators on C(K)- and L1-spaces, applications to unconditional expansions
(leading to another argument that L1 does not sign-embed into a space with an uncondi-
tional basis), and counterexamples, based on a construction by Bourgain and Rosenthal,
that show that a completely continuous operator need not be narrow.

Geometry of weakly Lindelöf determined spaces

Vaclav Zizler

(joint work with M. Fabian, G. Godefroy, P. Hájek and V. Montesinos)

A Banach space X is weakly Lindelöf determined if its dual ball in its weak star topology is
homeomorphic to a set S in some [−1, 1]Γ so that every element of S is countably supported
on Γ (Corson compacts). In this class of Banach spaces we give a characterization of spaces
that are subspaces of weakly compactly generated spaces in two ways.

First, by using a countable splitting biorthogonal systems in such spaces and second,
by using a certain uniformity in the directions of Gâteaux derivatives of norms on such
spaces.

This is used in giving new short elementary proofs to several results on Eberlein com-
pacts and on uniform Eberlein compacts (sets homeomorphic to weak compact sets in
Banach spaces, resp. Hilbert spaces). This applies to the result on continuous images and
to the result on containment of dense metrizable subsets in such compacts.

The methods can be used for other spaces like Vašák spaces, Hilbert generated spaces
and their subspaces, etc.

Edited by Carsten Schütt
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