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In the late 1970’s William Thurston came up with a stunning conjecture which completely
changed the landscape of 3-dimensional topology:

Geometrization Conjecture: Every compact orientable 3-manifold can be decomposed
along spheres and incompressible tori into geometric 3-manifolds.

This conjecture is supported by the work of Thurston (who proved it in the case of
Haken manifolds), and of many other people. The Geometrization Conjecture includes the
Poincaré Conjecture as a special case. The Seifert Fibered Space Conjecture/Theorem,
the Orbifold Geometrization Theorem and the Geometrization Theorem for irreducible
manifolds homotopy-equivalent to hyperbolic manifolds are relatively recent examples of
success in proving various special cases of the Geometrization Conjecture.

The goal of this conference was to bring together people from different areas of math-
ematics — Riemannian geometry, 3-dimensional topology, geometric analysis, geometric
group theory, theory of hyperbolic 3-manifolds — whose work in one way or another is
related to Thurston’s Geometrization Conjecture. The appearance of Perelman’s preprints
on Ricci flow and Geometrization was a major source of interest and excitement during
the meeting, and led one of the organizers (Bruce Kleiner) to give a series of expository
lectures on Perelman’s work.

The meeting was organized by Misha Kapovich (University of Utah), Bruce Kleiner
(University of Michigan) and Bernhard Leeb (LMU Miinchen). The participants enjoyed
the wonderful atmosphere at the institute.



Abstracts

Cannon’s Conjecture and metric 2-spheres
MARIO BONK

Cannon’s conjecture predicts that for every Gromov hyperbolic group G whose boundary
at infinity d,,G is homeomorphic to S? there exists an isometric action of G on hyperbolic
3-space H? which is discrete and cocompact. This is equivalent to showing that .G is
quasisymmetrically equivalent to the standard 2-sphere S?. In my talk I discussed joint
work with B. Kleiner related to this problem.

The geometry of the curve complex
BRIAN BowDITCH

We describe a simplified proof of the result of Masur and Minsky, that the Harvey com-
plex associated to a compact surface is hyperbolic in the sense of Gromov. We can obtain
certain refinements, for example the hyperbolicity constant is bounded by a logarithmic
function of the complexity.

Geometric inflexibility of hyperbolic 3-manifolds
KEN BROMBERG
(joint work with Jeff Brock)

McMullen’s geometric inflexibility theorem describes how the bilipschitz constant of
a map between hyperbolic 3-manifolds decays exponentially deep in the convex core. His
original version only applied to manifolds whose convex core had injectivity radius bounded
above and below. We described some new versions of this theorem that didn’t require this
lower bound on injectivity radius.

The Orbifold Theorem
DARrRYL COOPER
(joint work with Craig Hodgson and Steve Kerckhoff)

We discuss part of the proof of Thurston’s orbifold theorem. The case that the orbifold
fundamental group is finite involves different arguments to the other case. We show how
to define a notion of complexity for such orbifolds and show that a counter-example to the
orbifold theorem with finite orbifold fundamental group and minimal complexity must be
a relabelling of one of the 18 spherical 3-orbifolds which do not admit an orbifold Seifert
fibering. The proof in this case is completed by examining these finitely many cases.

Amalgamated product and negative curvature
GILLES COURTOIS
(joint work with G. Besson and S. Gallot)

A theorem of Y. Shalom says if a lattice ' C PO(n,1) is an amalgamated product,
I' = A x¢ B, then the critical exponent d of C' satisfies 0c > n — 2. We give a geometric
proof of this inequality and settle the equality case, namely 0o = n — 2 if and only if there
exists a separating compact totally geodesic hypersurface embedded in I'\H". Our proof
extends to variable curvature.



Homotopy and isotopy finiteness of tight contact structures
EMMANUEL GIROUX

The goal of the talk is to discuss the proof of the following result:

i) On a closed 3-manifold, only finitely many homotopy classes of plane fields contain
tight contact structures.

ii) On a closed atoroidal 3-manifold, there exist only finitely many isotopy classes of
tight contact structures.

Monotone quantities, singularities and surgery for mean curvature flow
GERHARD HUISKEN
(joint work with Carlo Sinestrari)

Consider a smooth closed n-dimensional hypersurface of Euclidean space and let H = X\
be the mean curvature, i.e. the sum of the principal curvatures of the surface. We study
how an initial surface evolves under mean curvature flow %F = Hv and show that in
certain cases the flow decomposes an initial surface into pieces while allowing complete
control of topology changes. One major consequence is the following result:

Theorem (G. Huisken and C. Sinestrari): Suppose that on the closed, smoothly immersed
hypersurface Fy : M™ — R™! the sum of any two principal curvatures is positive at each
point of the surface. Then M™ 1is diffeomorphic to either S™ or to a connected sum of
finitely many copies of S"1 x S*.

The result follows from an explicit algorithm, that deforms the given initial surface by mean
curvature flow, interrupted by finitely many surgeries taking place at instances where the
curvature blows up. Crucial steps of the proof are new a priori estimates for the curva-
ture and its derivatives allowing complete control of all possible singularities. There is a
quantitatively explicit surgery procedure replacing cylindrical necks just before a singular-
ity occurs, preserving the a priori estimates and reducing the maximum curvature by a
fixed factor. This allows control of the number of surgeries necessary and guaranties the
finiteness of the algorithm. In case n = 3 the assumption of the theorem is equivalent to
positive scalar curvature, in case n = 4 to positive isotropic curvature; thus the result is
analogous to the results obtained by Hamilton and Perelman for the Ricci flow in those
cases.

Strong convergence of Kleinian groups
GERO KLEINEIDAM

If (p;) is a sequence of discrete and faithful representations of a finitely generated torsion-
free non-abelian group I' into PSLy(C), then one can study several types of convergence.
The sequence (p;) converges algebraically if p;(y) converges in PSLy(C) for every v € T.
The algebraic limit p : I' — PSLy(C) defined by p(y) = lim p;(7y) is then a discrete and
faithful representation. The sequence converges geometrically if the groups p;(I") converge
with respect to the Hausdorff-topology on compact subsets to a discrete subgroup I'g of
PSLy(C). The group 'y is called the geometric limit. Up to passing to a subsequence, one
may always assume that an algebraically convergent sequence also converges geometrically.
In general, p(I") is then a proper subgroup of I'¢. One says that (p;) converges strongly if
it converges algebraically and geometrically, and p(I') = I's.



For simplicity, we restrict to the case that I' is the fundamental group of a closed surface
S. Then the Ahlfors-Bers map parameterizes the space QF(S) of (conjugacy classes) of
quasi-fuchsian representations by two copies of the Teichmuller space 7(S). We consider
sequences of representations p; in QF(.S) which converge algebraically to p : ' — PSLy(C)
and give conditions for strong convergence in terms of their Ahlfors-Bers parameterizations.
If p(I") does not contain parabolic elements and the discontinuity domain of the action of
p(I') on C is not empty, then the convergence is always strong [AC96]. In particular, this
holds for interior points of QF(.5).

If p € 0QF(S) and p(I') contains parabolic elements, then every parabolic subgroup of
p(I') is cyclic. We will be interested in those primitive elements ¢ € I' such that p(d) is
represented by a simple closed curve around a puncture of a boundary surface of the convex
core of H?/p(T"). We denote by D. = D.(p) C I' a maximal collection of such elements &
whose images under p generate non-conjugate parabolic subgroups of p(I).

Assume now that the sequence (p;) C QC(po) is parameterized under the Ahlfors-Bers
map by surface X; = (X}, X?) € T(S) x T(S). For every § € T' we define Ix,(d) to be
the minimum of the hyperbolic lengths of the corresponding geodesics in X} and X?. We
prove the following criterion for strong convergence.

Theorem 1. Let S be a closed surface and (p;) C QF(S) a sequence of quasi-fuchsian
representations which converge algebraically to p. Assume that p; is parameterized under
the Ahlfors-Bers map by surfaces X; = (X}, X?) € T(S) x T(S). Then p; converges
strongly to p if and only if for every § € D.(p), the length lx,(0) tends to zero.

The Theorem contrasts examples of non-strong convergence, as constructed by Kerckhoff-
Thurston [KT90], Bonahon-Otal [BO88| and Brock [Bro01].
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An introduction to Perelman’s work on Ricci flow
BrucE KLEINER

The lecture gave an overview of Perelman’s preprints on Ricci flow, sketching some of the
highlights of his argument for Thurston’s Geometrization conjecture.



The Dehn filling space of a certain hyperbolic 3-orbifold
SADAYOSHI KoJIMA

We construct the first example of a cusped hyperbolic 3-orbifold for which we see the true
boundary of the space of hyperbolic Dehn fillings.

The virtually Haken conjecture, Heegaard splittings and Property (1)
MARC LACKENBY

The goal of my talk was to explain the interaction of the above seemingly unrelated topics.
The virtually Haken conjecture asserts that any closed hyperbolic 3-manifold has a finite
Haken cover. Property (7) is a concept from geometric group theory that can be defined
in terms of differential geometry, graph theory or representation theory. Lubotzky and
Sarnak conjectured that hyperbolic 3-manifolds fail to have Property (7). I have shown
that this, together with a conjecture about Heegaard splittings, implies the virtually Haken
conjecture. The conjecture about Heegaard splittings asserts that the Heegaard genus of
the manifold’s finite covering spaces grows sub-linearly in the degree of the covering if and
only if the manifold is virtually fibred. I concluded my talk by outlining recent progress
on this conjecture: the virtually fibred conclusion holds if the Heegaard genus grows more
slowly than the fourth root of the degree.

The Orbifold Theorem
JOAN PORTI
(joint work with Michel Boileau and Bernhard Leeb)

The Orbifold Theorem says that every compact orientable irreducible and atoroidal 3-
orbifold is geometric provided that its singular locus is non-empty. We sketch our proof,
which differs from Thurston’s one in several aspects. We reduce to small orbifolds, to
simplify, and we give a different approach for collapses. Namely we study the geometric
properties of thin parts of cone manifolds when cone angles are less than 7, and we use
simplicial volume when they approach to w. Cooper, Hodgson and Kerckhoff propose
another approach closer to Thurston’s.

Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation
RACHEL ROBERTS
(joint work with John Shareshian and Melanie Stein)

We investigate group actions on simply connected (second countable but not necessarily
Hausdorff) 1-manifolds and describe an infinite family of closed hyperbolic 3-manifolds
whose fundamental groups do not act nontrivially on such 1-manifolds. As corollary we
conclude that these 3-manifolds contain no Reebless foliations. In fact, these arguments
extend to actions on oriented R-order trees and hence these 3-manifolds contain no tran-
versely oriented essential laminations; in particular, they are nonHaken.



Taut and hyperbolic ideal triangulations
JoAcHIM HYAM RUBINSTEIN
(joint work with Ensil Kang)

Casson in 1995 described a program to try to directly find complete hyperbolic structures
on the interiors of compact orientable irreducible atoroidal 3-manifolds, by solving the
hyperbolic gluing equations for a suitable ideal triangulation. We start with Lackenby’s
taut triangulations and try to deform the taut structure into angle structures (sometimes
called semihyperbolic structures). We first show that such taut triangulations admit no
immersed normal tori (incompressible or not) using sweepouts in covering spaces. We then
go on to prove there are no branched normal surfaces with formal Euler characteristic zero,
if and only if a taut structure can be deformed to an angle structure. (Thanks to Cooper
and Lackenby for a very helpful conversation at Oberwolfach on the latter result!).

Variations of McShane’s identity for punctured surface groups
MAKOTO SAKUMA
(joint work with Hirotaka Akiyoshi, Miyachi Hideki and Caroline Series)

G. McShane described a remarkable identity concerning the lengths of simple closed geo-
desics on a once-punctured torus with a complete hyperbolic structure of finite area. This
identity was extended by B. Bowditch to an identity for quasifuchsian punctured torus
groups. He also described a formula which applies to hyperbolic once-punctured torus
bundles.

We gave a formula which expresses the “width” of the limit set of a geometrically finite
punctured surface group in terms of the complex transformation lengths of closed geodesics.
We also proposed a conjectural identity for hyperbolic cone manifolds which have 2-bridge
knot complements as underlying spaces where upper and lower tunnels are cone axes.

Algebraic limits of geometrically finite hyperbolic manifolds are tame
JUAN SouTo

Let G be a finitely generated fundamental Kleinian group. and assume that there is
a sequence of geometrically finite Kleinian groups which converge to G. We show that
the quotient manifold H?®/G is homeomorphic to the interior of a compact 3-manifold
with boundary. As a consequence we prove Ahlfors’ conjecture for algebraic limits of
geometrically finite Kleinian groups.

This is a joint work with Jeff Brock, Ken Bromberg and Richard Evans in the case that
the discontinuity domain of G is not empty. The general case is a joint work with Jeft
Brock.

A Bassackward Counterexample in Convergence Groups
ERIC SWENSON

We give an example of a Kleinian group G which is the amalgamation of two closed
hyperbolic surface groups along a simple closed curve. The limit set AG is the closure of
a "tree of circles” (adjacent circles meeting in pairs of points). We alter the action of G
on its limit set such that G no longer acts as a convergence group, but the stabilizers of



the circles remain unchanged, as does the action of a circle stabilize on said circle. This is
done by first separating the circles and then gluing them together backwards.

We then show that in some sense, this is the only obstruction to bootstrapping. As a
corollary we prove that GG, acting by homeomorphism on S”, acts as a convergence group
on S™ provided there is a collection A of embedded S™~!s satisfying:

i) A is null.
ii) Any two points of S™ are separated by a finite. collection of elements of A.
iii) For each b € A, the stabilizer of b acts on b as a convergence group.

The algebraic and the geometric rank of graph manifolds
R1CHARD WEIDMANN

For all orientable closed 3-manifolds M the Heegard genus g(M) is at least at large as
the rank of its fundamental group r(M). There is a class of Seifert manifolds exhibited by
Boileau and Zieschang and extended by Moriah and Schultens for which these two numbers
do not coincide, i.e. for which (M) < g(M). We show that these examples are in fact part
of a much larger class of manifolds with this property, all of which are graph manifolds,
and that the difference can be arbitrarily large (joint work partly with J. Schultens, partly
with M. Boileau).

Local rigidity of 3-dimensional cone-manifolds
HARTMUT WEISS

Let C be a 3-dimensional cone-manifold of curvature x € {—1,0,1} and cone-angles < .
Then the singular locus 3 C C is a trivalent graph. The smooth part M = C'\ X carries
a smooth Riemannian metric of constant sectional curvature x. Let & — M be the flat
vector-bundle of infinitesimal isometries. In the flat case E;,.q4ns C £ is a parallel subbundle.
I discuss the following results:

Theorem 1. Let C' be a cone-manifold of curvature k € {—1,0, 1} with cone-angles < 7.
Then the following holds:

D) HL,(M,E) =0ifr = +1
i) Hio(M, Eprans) = {w € QYM,E)|[Vw =0} if k=0

The proof uses a Bochner formula for £-valued 1-forms and a Hodge theorem for the de
Rham complex on M with values in £. It essentially consists of the study of the selfadjoint
extensions of the corresponding Hodge-Laplace operator.

From Theorem 1 I deduce local rigidity in the hyperbolic and the spherical case via an
analysis of the variety of representations of m3 M into SL(2,C), resp. SU(2) x SU(2):

Theorem 2. Let C' be a cone-manifold of curvature k = +1 with cone-angles < w. Then
the family of cone-angles provides a local parametrization of the space of cone-manifold
structures of curvature k near the given structure.



Volume collapsed three-manifolds with a lower curvature bound
TAKAO YAMAGUCHI
(joint work with Takashi Shioya)

In this talk, I have reported on the structure of complete three-manifolds which collapse
with a lower sectional curvature bound in the sense of having small volume, where we
assume no upper diameter bound. The main result is : such an orientable three-manifold is
either homeomorphic to a graph manifold, or having small diameter with finite fundamental
group. This result is related with an announcement in Perelman’s paper “Ricci flow with
surgery on three-manifolds”, where he claims that if a three-manifold collapses under a
“local” lower sectional curvature bound, then it is a graph manifold. This result also
follows from our result without an extra assumption there, since our gluing argument is
only local.

Edited by Hartmut Weif3
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