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Gegenstand der Tagung waren die neuen Resultate und Entwicklungen im Gebiet der klas-
sischen dynamischen Systeme. Themen waren unter anderem Stabilität und Instabilität
von Hamilton’schen Systemen, Arnold Diffusion, Mather Theorie, Fragen der Ergoden-
theorie und der nicht uniformen Hyperbolizität, Komplexität von Symplektomorphismen,
das Newhouse Phänomen, wie auch neue interessante Lösungen des n-Körperproblems
der Himmelsmechanik. Weiter das Chord Problem in der Kontakt-Geometrie, periodische
Bahnen in Magnetfeldern, und Floer Homologie.
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Abstracts

The Chord problem in Contact Geometry

Casim Abbas

Let M be a three dimensional manifold with contact form λ, and let L be a Legendrian
knot. The Chord problem is concerned with the existence of a trajectory x(t) of the Reeb
vector field Xλ such that x(0), x(T ) ∈ L for some T > 0 and x(0) 6= x(T ). In Hamil-
tonian mechanics these trajectories are also known as brake–orbits which are trajectories
oscillating between two states of the system with zero momentum. In the general case
on a contact manifold existence could only be established for very special three manifolds
like the three dimensional sphere and often only without the condition x(0) 6= x(T ). The
subject of this talk was to introduce a new filling method by pseudoholomorphic curves
developed by the author which can detect Reeb Chords on more general three dimensional
contact manifolds.

Reducible and non-uniformly hyperbolic quasiperiodic Schroedinger cocycles

Artur Avila

(joint work with Raphael Krikorian)

The study of the spectral properties of the Schroedinger equation with quasiperiodic po-
tential in dimension one is intimately related to a dynamical problem: the understanding
of a certain family of cocycles (parametrized by the energy) with values in SL(2, R) over
a rotation of the circle. Using the wide range of techniques of the field, including com-
plexification, renormalization, and local theory (KAM), we prove the following theorem
(which can be seen as the analogue of Lyubich’s “regular or stochastic” dichotomy for
the quadratic family): if the potential is sufficiently smooth and if the frequency of the
rotation satisfies an arithmetic condition of full measure then for almost every value of the
energy the cocycle is either reducible (that is, conjugate to a constant) or non-uniformly
hyperbolic. This result is connected to a rigidity statement whose proof involves getting
“a priori bounds” for renormalization under convenient hypothesis. Among the spectral
consequences of this result is a proof of a conjecture of Aubry and Andre on the measure
of the spectrum of the Almost Mathieu operator.

Recurrence of generic diffeomorphisms

Sylvain Crovisier

We consider the generic dynamics of C1 diffeomorphisms over a compact connected mani-
fold M . Two important perturbation lemmas were proven in order to study this problem:
Pugh’s closing lemma and Hayashi’s connecting lemma. We proved with C. Bonatti an
other perturbation lemma, a connecting lemma for pseudo-orbits: for any generic diffeo-
morphism f and any two points x and y in M that may be joint by pseudo-orbits with
arbitrarily small jumps, it is possible to perturb f in the C1 topology so that x and y
belong to the same orbit. This result is also true for conservative diffeomorphisms. We
have then extended it with M.-C. Arnaud and C. Bonatti to symplectic diffeomorphisms.
As a consequence, a generic conservative or symplectic diffeomorphism is transitive (i.e.
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has a dense orbit). As an other consequence of this perturbation lemma, the chain re-
current set and the non-wandering set of a generic diffeomorphism coincide. We hope to
give a generalization of Smale’s spectral decomposition theorem. In this direction, we give
a decomposition of the non-wandering set into pieces that are maximal weakly transitive
sets and separated by a filtration.

The fixed ends problem and symmetric periodic solutions of the n-body
problem

Alain Chenciner

Let x = (~r1, . . . , ~rn) denote a configuration of n positive point masses in a Euclidean space
and let U(x) =

∑
i<j

mimj

|~ri−~rj | be the Newtonian potential. Using the kinetic energy metric,

Newton’s equations read ẍ = ∇U(x) and are immediately seen to be the Euler-Lagrange

equations of the Lagrangian action
∫ t′′

t′
(1

2
|ẋ|2 + U(x))dt.

Theorem. Let x′ = (~r′1, . . . , ~r
′
n) and x′′ = (~r′′1 , . . . , ~r

′′
n) be two configurations of n positive

point masses in the plane or in space, possibly with collisions. Let x(t) = (~r1(t), . . . , ~rn(t))
be a path of configurations such that x(t′) = x′ and x(t′′) = x′′. If x is a local minimizer of
the Lagrangian action among paths y(t) such that y(t′) = y′ and y(t′′) = y′′, it is collision-
free on the open interval ]t′, t′′[.

This theorem is essentially due to Christian Marchal. His original proof applied only to
rule out isolated collisions with a limit configuration. Using ideas of Richard Montgomery,
Susanna Terracini and Andrea Venturelli which are worked out in Venturelli’s thesis, I was
able to complete the proof and presented it in the proceedings of the ICM 03. Marchal’s
idea is to show that if a minimizer x has a collision, the average of the actions of the
members of a well chosen family of modified paths is lower than the original action, which
is a contradiction. Through the choice of a fundamental domain, this theorem leads to non-
collision assertions for periodic local minimizers of the action under symmetry constraints.
Examples of application are the choreographies (Z/nZ action) and the generalized Hip-
Hops (Z/2Z action). Davide Ferrario and Susanna Terracini recently generalized Marchal’s
theorem to paths invariant under group actions which possess the so-called “rotating circle
property”. This increased significantly the applicability of the theorem. The theorem and
its generalization were illustrated by two examples: the Z/2Z×Z/4Z-symmetric Hip-Hop,
discovered with Venturelli, and the D6-symmetric Eight, discovered with Montgomery.

Interacting particles in dispersive domains

Dmitry Dolgopyat

We consider a heavy particle in a box moving under collisions with the particles of the
fluid. We describe the effective dynamics of the heavy particle and present several open
problems.
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Mixing real analytic flows with singular spectrum

Bassam Fayad

Mixing is one of the principal characteristics of stochastic behaviour in dynamical systems.
It is a spectral property and in the great majority of cases it is either a consequence of
much stronger properties such as K-property or fast correlation decay which imply that the
spectrum is Lebesgue. The only previously known examples where mixing was accompanied
by singular spectrum were Gaussian and related systems which by their nature do not
come from differentiable dynamics. In this talk we will describe geometric constructions
of smooth volume preserving mixing systems where we are able to show that the maximal
spectral type is singular. More specifically, we have a criterion for singular spectrum
based on periodic approximations that is compatible with mixing and our examples can
be obtained as analytic reparametrizations of some Liouvillean linear flows on the torus
T3. By Host’s theorem, we get by the same token examples of reparametrizations that are
mixing of all orders.

Historical account on reparametrizations. In his I.C.M. address of 1954, Kolmogorov
raised the problem of understanding the ergodic and spectral properties of reparametriza-
tions of linear flows on Tn, n ≥ 2. Since then and starting with the work of Kolmogorov
himself, this problem has been intensively studied and a surprisingly rich variety of be-
haviours were discovered to be possible for the reparametrized flows. We say surprisingly
because at the time Kolmogorov raised the problem, some strong restrictions on the spec-
tral type of the reparametrized flow were expected to hold, such as absence of mixed
spectrum, especially in the case of real analytic reparametrizations (cf. the appendix of
Fomin to the Russian version of Halmos’ book on ergodic theory).

We denote by Rt
α the linear flow on the torus Tn given by dx/dt = α, where x ∈ Tn

and α is a vector of Rn. Given a continuous function φ : Tn → R∗
+ we define the

reparametrization flow T t
α,φ by dx/dt = φ(x)α. If the coordinates of α are rationally in-

dependent the linear flow Rt
α is uniquely ergodic as well as the reparametrized flow that

preserves the measure with density 1/φ. Other properties of the linear flow may change
under reparametrization. While the linear flow has discrete spectrum with the group of
eigenvalues isomorphic to Zn, reparametrizations with continuous time change φ may have
a wide variety of spectral properties. This follows from the theory of monotone (Kakutani)
equivalence and the fact that every monotone measurable time change is cohomologous
to a continuous one. However, for smooth reparametrizations the possibilities are more
limited and they depend on the arithmetics of α.

If α is Diophantine and the function φ is C∞ then the reparametrized flow is smoothly
isomorphic to a linear flow. This was first noticed by Kolmogorov, and later Herman found
sharp results of that kind for the finite regularity case. Kolmogorov also knew that for a
Liouvillean vector α a smooth reparametrization could be weakly mixing, or equivalently
have a continuous spectrum. Later, Shklover proved existence of analytic weakly mixing
reparametrizations of some Liouvillean linear flows on T2; his result being optimal in that
he showed that for any analytic reparametrization φ other than a trigonometric polynomial
there is α such that T t

α,φ is weakly mixing. About the same time A. Katok found a
general criterion for weak mixing. For a Liouvillean α the reparametrized flow often has
a continuous spectrum. Specifically, B. Fayad showed that for any Liouvillean translation
flow Rt

α on the torus Tn, n ≥ 2, the generic C∞ reparametrization of Rt
α is weakly mixing.

Discrete and continuous spectra are not the only possibilities: B. Fayad, A. Katok and
A. Windsor have proved that for every α ∈ R2 with a Liouvillean slope there exists
a strictly positive C∞ function φ such that the flow T t

α,φ on T2 has a mixed spectrum
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since it has a discrete part generated by only one eigenvalue. They also construct analytic
examples for a more restricted class of Liouvillean α. Recently, M. Guenais and F. Parreau
achieved analytic reparametrizations of linear flows on T2 that have an arbitrary number
of eigenvalues. They even construct an example of a reparametrization of a linear flow
on T2 that is isomorphic to a linear flow on T2 with ”exotic” eigenvalues, i.e. not in the
span of the original eigenvalues. Nevertheless, unlike continuous and discrete spectra, it is
possible to formulate some regularity conditions on the Fourier coefficients of φ to preclude
a mixed spectrum for all α and have the following dichotomy: T t

α,φ either has a continuous

spectrum or is L2 isomorphic to a constant time suspension.
Reparametrizations and mixing. A. Katok showed that on the torus T2 a reparametriza-

tion having some finite fixed regularity of any linear flow has a simple spectrum, a singular
maximal spectral type, and can not be mixing. The latter conclusion was extended by A. V.
Kochergin to Lipschitz reparametrizations. The argument is based on a Denjoy–Koksma
type estimates which fail in higher dimension as shown by J.-C. Yoccoz in an appendix to
his thesis. B. Fayad showed that there exist analytic mixing reparametrizations of linear
flows. Recently Kochergin showed that for Hölder reparametrizations of some Diophantine
linear flows on T2 mixing is also possible (oral communication). On another hand, a re-
stricted display of mixing features can lead to pathological examples such as topologically
mixing flows with a discrete spectrum.

The mixing examples obtained by reparametrizations of linear flows belong to a vari-
ety of slowly mixing systems, also including the mixing flows on surfaces constructed by
Kochergin in the seventies, for which the characteristics of the spectrum remain unde-
termined. Modifying the construction of mixing analytic reparametrizations on T3 it is
possible to maintain mixing while the spectrum is forced to be singular.

On the conjugacy problem for measured foliations on higher genus surfaces

Giovanni Forni

An orientable foliation on an orientable compact surface M is a foliation F(η) := η = 0
defined by a 1-form η on M with a finite set Σ(η) of saddle singularities. Two orientable
foliations F(η), F(η̂) are (smoothly) conjugate if there exist a diffeomorphism φ : M → M
and a strictly positive function α : M → R+ such that η̂ = α φ∗(η). An orientable foliation
F(η) is a measured foliation, i.e. it has a smooth transverse invariant measure iff the 1-
form η is closed. The space of (orientable) measured foliations can be endowed with a
(Lebesgue) measure class via the map into the relative cohomology H1(M, Σ(η);R) given
by the so-called Katok’s fundamental class.

In this talk we outline an approach based on renormalization and on the Nash-Moser
implicit function theorem to proving the following result on the local conjugacy problem
for measured foliations on surfaces of genus higher than 2:

There exist integers r >> γ > 3 such that for almost all closed 1-form η and for all s > r
there exists a closed local submanifold N s(η) in the space of all 1-forms on M such that
the following holds.

(a) The closed 1-form η ∈ N s(η);

(b) for every 1-form η̂ ∈ N s(η) the foliation F(η̂) is W s−γ-conjugate to F(η), i.e. the
conjugating diffeomorphism φ and function α belong to Sobolev spaces of order s− γ;

(c) the local manifold N s(η) has finite codimension (roughly proportional to s) in the
space of all 1-forms on M with a finite set of saddle singularities;
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(d) the tangent space TηN
s(η) of the manifold N s(η) coincides with the kernel of the

space of all basic currents of Sobolev order up to s for the measured foliation F(η);

(e) the local manifold N s(η) is locally invariant under the action by pull-back of the
group of diffeomorphisms and the multiplicative action of the group of strictly positive
functions on M on the space of all 1-forms.

We remark that if M is the 2-dimensional torus the above result is a classical theorem by
Kolmogorov (in the analytic category) and Moser (in finite differentiability). It is in fact
one of the simplest applications of the KAM method to dynamical systems. A significant
difference between the result for the torus and the above extension to higher genus surfaces
is that in the torus case the codimension of the submanifold N s(η) is independent of s (it
is in fact equal to 1 for all s > r).

On the geodesic flow on surfaces of non-positive curvature

Federico Rodriguez Hertz

Let S be a surface of non-positive curvature of genus bigger than 1 (i.e. not the torus). We
prove that any flat strip in the surface is in fact a flat cylinder. Moreover we prove that
the number of homotopy classes of such flat cylinders is bounded. A flat strip is an open
set, bounded by two geodesics, where the curvature vanishes.

The theorem is a first step in order to answer the following

Problem. Call K = {x ∈ S | K(x) = 0} where K is the curvature of g. Let γ be a geodesic
in S. Then if γ ⊂ K then γ is a closed geodesic. Moreover there are only finitely many
homotopy classes of such geodesics.

In the talk we gave an outline of the proof of the theorem that uses techniques of complex
analysis, and we also discussed some consequences of the theorem and the problem. A
preprint can be found in arXiv:math.DS/0301010.

On the Newhouse phenomenon (of infinitely many coexisting sinks)

Vadim Kaloshin

Consider the space of Cr diffeomorphisms (smooth invertible self-maps) of a compact sur-
face M (e.g. S2 or T 2) Diffr(M) with r ≥ 2. A sink of f : M → M is a periodic point
x ∈ M which attracts all points from its neighbourhood (as in your kitchen). Points at-
tracted to x are called basin of attraction of x. In the 60-th Thom conjectured that a
generic diffeomorphism cannot have infinitely many coexisting sinks. Indeed, each sink
has an open basin of attraction and infinitely many of those seems too much. In the
70-th Newhouse constructed an open set of diffeomorphisms N ⊂ Diffr(M) such that a
generic diffeomorphism in N does have infinitely many coexisting sinks. It is an amaz-
ing phenomenon, called Newhouse phenomenon. It disproves Thom’s conjecture and is a
significant obstacle to describe ergodic properties of surface diffeomorphisms. We discuss
this phenomenon and closely related results of Benedicks-Carleson, Mora-Viana, Wang-
Young, Morreira-Yoccoz. The main result indicates that in some sense this phenomenon
has ”probability zero”. This is a restricted particular case of the so-called Palis conjecture.
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An example related to the Conley Index

Krystyna Kuperberg

(joint work with G. Kozlowski and K. Wójcik)

We construct a dynamical system (an R-action) on R3 whose only compact invariant set
A consists of a fixed point and such that no isolating block for A is a 3-cell. There are
handle-body isolating blocks for A, but the smaller the isolating block, the more handles
are needed.

It is known that an isolated compact invariant set A of a C1 flow on a manifold possesses
an isolating block that is a manifold with boundary. If A is a one-point set and the manifold
is R3, does there always exist an isolating block for A that is a handle-body?

On small divisors in infinite dimensions

Thomas Kriecherbauer

We prove the existence of families of multiphase travelling wave solutions (periodic in time,
quasi-periodic in space) for infinite lattices of particles with non-linear nearest-neighbour
interactions. The construction is based on an approach to KAM theory in infinite di-
mensions which was introduced by W. Craig and C.E. Wayne and further extended by J.
Bourgain. The main technical issue in this approach is to establish bounds on the inverses
of parameter dependent matrices which grow at most subexponentially with the size of the
matrices for non-resonant parameters and to control the size and the geometry of the set
of resonant parameters. We explain the multiscale analysis used to address this issue.

An example of hyperbolic diffusion

Mark Levi

We demonstrate the existence of motions with unbounded energy for billiards whose walls
move periodically with time, under the crucial assumption that the walls are concave. It
turns out, furthermore, that the energy approaches infinity exponentially.

The solutions gain energy by always bouncing between the approaching walls. The ex-
istence of such solutions depends on our ability to prescribe arbitrarily the sequence of
collisions; this freedom comes from the hyperbolic structure of the associated “frozen”
problem and depends crucially on the assumption of concavity of the walls. The construc-
tion of such “shadowing” solutions is done by a variational approach of minimizing the
action for a prescribed sequence of collisions. We construct a box (in configuration space)
which is invariant under the (negative) gradient flow of the action. The uniqueness of this
minimizer follows from the positive definiteness of the Hessian; this positivity, in turn,
depends on the assumption of concavity.
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Geometric mechanisms for instability in Hamiltonian systems

Rafael de la Llave

(joint work with A. Delshams and T. M. Seara)

We present several mechanisms for diffusion in Hamiltonian systems. They are based
on identifying geometric objects and how do they fit together. The techniques used are
standard in the geometric theory of Hamiltonian dynamical systems: normally hyperbolic
manifolds, averaging theory, KAM theory and obstruction properties. It is to be noted
that we only need assumptions about hyperbolicity of certain objects but there is no need
for convexity. We first discuss a mechanism overcoming the large gap problem. The obser-
vation is that, whenever there are resonances that cause gaps, we can also find secondary
tori or stable manifolds of lower dimensional tori which dovetail in the gaps. Incorporating
them in the transition chains allows to obtain diffusion of order 1 for generic polynomial
perturbations of penduli cross rotators, a model which indeed presents gaps. Preprints are
available from www.ma.utexas.edu/mp−arc. The preprint #03 − 137 is a short sketch of
the steps and #03− 182 presents full details. We also present a mechanism based on the
existence of normally hyperbolic laminations. When applied to the problem of geodesic
flows + periodic potentials, this mechanism establishes the existence of orbits of Haus-
dorff dimension larger than one on which the diffusion is linear. In surfaces of negative
curvature, the only potentials for which there is no diffusion are trivial.

A Computer-Assisted Proof of Saari’s Conjecture for the Planar Three-Body
Problem

Richard Moeckel

The five central configurations of the three-body problem give rise to solutions where the
bodies rotate rigidly around their centre of mass. For these solutions, the moment of iner-
tia of the bodies with respect to the centre of mass is clearly constant. Saari conjectured
that these rigid motions are the only solutions with constant moment of inertia. The talk
described an unusual proof for the planar problem which makes use of both symbolic alge-
braic computations and geometric computations involving polyhedra. First, the problem is
reduced to showing that a certain system of three polynomial equations in three unknowns
has a finite number of solutions. A finiteness test from the theory of sparse polynomial
systems (or BKK theory) is applied. This involves constructing the Minkowski sum of
the Newton polytopes of the three polynomials and then testing many reduced polynomial
systems, one for each face of the Minkowski sum polyhedron.

Growth of maps, distortion in groups and symplectic geometry

Leonid Polterovich

We present applications of Floer homology to symplectic dynamics. The results include
lower bounds on the growth rate of symplectic maps and obstructions to symplectic actions
of discrete groups. In particular, we prove that certain lattices do not admit non-trivial
actions on surfaces by area-preserving maps, and thus confirm some cases of the 1986
Zimmer conjecture. We discuss a multi-dimensional symplectic version of the Zimmer
program.

8



Critical points for surface diffeomorphisms

Enrique Pujals

(joint work with Federico Rodriguez Hertz)

For f ∈ Diffr (M2) with r ≥ 2 we study the following map G acting on the unit tangent
bundle (TM)1,

(TM)1 → (TM)1 , G(v) =
Df(v)

|Df(v)|
.

It is shown that G is non-uniformly hyperbolic, and using this we introduce a notion of
critical point. We then prove some dynamical consequences related to the presence or
absence of such critical points.

Aubry–Mather type results for PDE’s

Paul Rabinowitz

(joint work with Edward Stredulinsky)

The study of such results was initiated by J. Moser and extended by V. Bangert. We
describe results motivated by the work of Bangert in the setting of

−∆u + Fu(x, u) = 0, x ∈ Rn

where

(F1) F ∈ C2 in its arguments
(F2) F is 1-periodic in x1, . . . , xn and in u
(F3) F is even in x1, . . . , xn.

First a variational minimization argument is used to find the basic heteroclinic solutions
obtained in a different fashion by Bangert. Then constrained minimization arguments are
used to obtain more complex homoclinic and heteroclinic solutions. In somewhat the spirit
of work on dynamical systems of Mather, “renormalized” functionals are required to keep
critical values finite.

Closed orbits of a charge in a magnetic field

Felix Schlenk

(joint work with Urs Frauenfelder)

We study the motion of a unit charge on a closed Riemannian manifold subject to a
magnetic field and prove that for almost every small enough number c there exists a closed
contractible orbit on the energy level Ec. The proof uses methods of Hofer geometry which
imply a general energy-capacity inequality.
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Floer Homology and the Loop Product for the Free Loop Space

Matthias Schwarz

(joint work with Alberto Abbondandolo)

We consider Floer homology for the cotangent bundle of a given Riemannian manifold
(Mn, g) and the associated geodesic flow Hamiltonian H : T ∗M → R, H(q, p) = 1

2
|p|2g. The

associated Floer homology HF∗ (T ∗M, ωLiouville, H) carries additionally a ring structure,
the so-called pair-of-pants ring structure mpop : HFk×HFl → HFk+l−n, where n = dim M
and HF∗ is graded by the Conley-Zehnder index.

The main result is a ring isomorphism with the homology of the free loop space ΛM of
M , with the loop product structure ∗loop as defined by Chas-Sullivan.
Theorem. There exists an explicit ring isomorphism

Φ: (HF∗ (T ∗M, ωLiouville, H) , mpop) →
(
Hsing

∗ (ΛM) , ∗loop

)
.

This theorem reproves the result due to Viterbo of the module-isomorphism ignoring the
ring structure, and extends it as an isomorphism result for the two algebras.

A family of spatial periodic solutions for 2N bodies with equal masses

Andrea Venturelli

(joint work with Susanna Terracini)

By minimizing the Lagrangian action functional, we prove the existence of a family of
spatial periodic solutions for 2N bodies with equal masses interacting with a gravitational
Newtonian force. Solutions of this kinds were discovered numerically in 1983 by Davies,
Truman and Williams, and in 1999 by Hoynant. We give a rigorous analytic proof of their
existence. The conditions we impose on the set of loops where we minimize the action
functional are both symmetry conditions and topological conditions. It’s one of the very
few cases where it is possible to find new solutions by minimizing the action with topological
conditions. The greatest difficulty in this variational approach is to show that minimizers
are collision free. Our proof uses a method well known in nonlinear analysis called the
”blow-up”, that allow us to reduce to a planar Kepler problem. The simplest solutions of
our family are, for the 4 body problem, the Hip-Hop solution found in a previous work
with Alain Chenciner, and the first example of spatial choreography.

Symplectic intersections and Hamiltonian Dynamics

Zhihong Jeff Xia

Special submanifolds, such as Lagrangian submanifold, isotropic and coisotropic submani-
folds, in a symplectic manifold have some special intersection properties; these intersection
properties have interesting consequences in Hamiltonian dynamics. We first apply the in-
tersection theory for Lagrangian submanifolds to obtain the existence and persistence of
homoclinic points for hyperbolic periodic points and (normally) hyperbolic invariant tori
for near integrable symplectic diffeomorphisms. We also obtain chaotic invariant sets near
these homoclinic points when they have certain weak transversalities. We then prove an
intersection theorem for isotropic and coisotropic submanifolds in symplectic manifolds
and apply the theorem to the intersections of the strong stable manifold and the centre
unstable manifold of points on a normally hyperbolic invariant manifold.

Edited by Felix Schlenk
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