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The program covered a wide range of topics in nonlinear PDE theory. Among them were
problems from geometric analysis and geometric flows, regularity results for fully nonlinear
equations and elliptic systems as well as analytic problems from physics such as elasticity
theory, micromagnetics or fluid flows.

In total there were 25 talks, among them an evening session where recent developments
concerning the Ricci flow were presented. The participants enjoyed very much the good
working atmosphere at the institute and there were a lot of scientific discussions and ex-
change also between the talks.

The following abstracts are in chronological order.
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Abstracts

Surgery for mean curvature flow

Gerhard Huisken

(joint work with Carlo Sinestrari)

Let Mn
t be a family of smooth, closed hypersurface immersions moving by mean curvature

flow in Rn . We show that for 2-convex surfaces, i. e. surfaces where the sum of the lowest
two principal curvatures is positive the flow can be combined with finitely many surgeries
to exist on a finite time interval until all the area is extinct. As a corollary we derive
that such Mn ⊂ Rn+1, n ≥ 3, 2-convex, is diffeomorphic either to Sn or a connected
sum of S2 × S1’s. A key new ingredient in the result are a priori estimates on the second
fundamental form and its gradient, together with a surgery construction for ”necks”.

Some properties of the Born-Infeld equations

Yann Brenier

The Born-Infeld system is a nonlinear version of Maxwell’s equations. We first show that,
by using the energy density and the Poynting vector as additional unknown variables, the
BI system can be augmented as a 10x10 system of hyperbolic conservation laws. The result-
ing augmented system has some similarity with Magnetohydrodynamics (MHD) equations
and enjoy remarkable properties (existence of a convex entropy, galilean invariance, full
linear degeneracy). In addition, the propagation speeds and the characteristic fields can
be computed in a very easy way, in contrast with the original BI equations. Then, we in-
vestigate several limit regimes of the augmented BI equations, by using a relative entropy
method going back to Dafermos, and recover, the Maxwell equations for low fields, some
pressureless MHD equations for high fields, and pressureless gas equations for very high
fields.

Epiperimetric inequalities and the regularity of almost-complex cycles

Tristan Rivière

The epiperimetric inequality introduced by E.R.Reifenberg gives a rate of decay at one
point for the decreasing k-density of area of an area minimizing integral k-cycle. While
dilating the cycle at that point, this rate of decay holds once the configuration is close to a
tangent cone configuration and above the limiting density corresponding to that configura-
tion. This is why such an inequality could be named “upper-epiperimetric” inequality. A
direct consequence of this “upper-epiperimetric” inequality is the statement that says that
any point passes a unique tangent cone. The “upper-epiperimetric” inequality was proved
by B. White for area minimizing 2-dimensional integer multiplicity rectifiable cycles in Rn.
We present in this talk the notion of “lower-epiperimetric” inequality. This inequality gives
this time a rate of decay for the decreasing k-density of area of an area minimizing integral
k-cycle, while dilating the cycle at a point, once the configuration is close to a tangent
cone configuration – in flat norm – but this time below the limiting density corresponding
to that configuration. We present a proof of this lower-epiperimetric inequality for area
minimizing 2-dimensional integer multiplicity rectifiable cycles in Rn we explain how this
inequality plays a central role in the proof of the regularity of almost-complex 2-cycles.
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Branch points of Willmore surfaces

Reiner Schätzle

(joint work with Ernst Kuwert)

We prove that point singularities of Willmore surfaces with finite density consist in codi-
mension one of finitely many branching singularities each over a unique tangent plane and
with second fundamental form estimated by

|A(x)| ≤ Cε|x|−1+1/θ0−ε ∀ε > 0,

where θ0 is the maximal branching order assuming the point singularity being at 0 .
This estimate is optimal up to ε > 0 , as examples of minimal surfaces with branch points
show.

Constructing convex solutions via Perron’s method

John McCuan

(joint work with Mikhail Feldman)

We show the existence of convex solutions (in the weak-viscosity sense) for fully nonlinear
elliptic equations F (x, u, Du, D2u) = 0 under the Alvarez-Lasry-Lions structure condition
that for fixed p the map (x, z, A) −→ F (x, z, p, A−1) is convex on Ω×R×S+

n×n. We require
no comparison principle, and this solutions constructed may be non-unique. The main idea
is that given an element of the closure of the subject of a convex function (probably not
smooth) which gives the strict subsolution inequality in the operator, one can find a local
modification resulting in a convex function that is larger on some neighbourhood and
admitting estimates on derivatives up to second order on that neighbourhood. (See related
works by Ishii, Alvarez-Lasry-Lions, and Andrews-Feldman.)

Symmetry in anisotropic media

Bernd Kawohl

Imagine a carpet woven out of one-dimensional elastic strings whose deformation energy is

given by
∫

Ω

∑
i |uxi

|p dx. The first eigenvalue λ̃p of the pseudo-p-Laplace operator ∆̃pu =∑
i

∂
∂xi

(∣∣∣ ∂u
∂xi

∣∣∣p−2
∂u
∂xi

)
is characterized as minimizing

∫
Ω

∑
i |uxi

|p dx on W 1,p
0 (Ω)∩{|u|p dx =

1}. In contrast to the p-Laplace operator ∆pu =
∑

i
∂

∂xi
(|∇u|p−2 ∂u

∂xi
), the pseudo-p-Laplace

operator is not rotation-invariant. Consequently its first eigenfunction is not radially sym-
metric on a ball. In the lecture I prove uniqueness, symmetry and log concavity results of
these eigenfunctions, a Faber-Krahn type inequality, and study the limit cases p →∞ and
p → 1. Most of the results were obtained in cooperation with M. Belloni from Parma and
V. Ferone from Napoli.
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Functionals with a gap: regularity and relaxation

Giuseppe Mingione

Functionals with (p, q)-growth conditions are variational integrals that are coercive in a
Sobolev space which is strictly lager than the one in which they are finite:∫

Ω

f(x, Du(x)) dx, |z|p ≤ f(x, z) ≤ L(|z|q + 1), p < q, Ω ⊂ Rn.

Functionals with such a gap have been the object of intensive investigation during the
last years; the main issues are: regularity of minimizers (in the case the energy density
is convex or quasiconvex) and representation results for the relaxed functional. The aim
of this talk is to present a unified approach to these issues discovering that a unique,
unexpected assumption, namely x → f(x, z) if Hölder continuous with exponent α ∈ (0, 1]
and

(1)
q

p
< 1 +

α

n

leads to obtain both regularity results for minimizers and lower semicontinuity/relaxation
results, for most of such functionals ([1], [2], [4]). This reveals a subtle interplay between the
regularity of f with respect to x and the gap between growth and coercivity/ellipticity; such
a phenomenon cannot be observed in the standard case p = q, of course. The assumption
(1) is also sharp in that failure causes irregularity of minimizers. Finally, in such a case, I
shall present an example of a scalar, convex and smooth functional of the type

u ∈ W 1,p(Ω) →
∫

Ω

|Du|p + a(x)|Du|q dx 0 ≤ a(x) ∈ C0,α

(with α ∈ (0, +∞)) admitting a wild minimizer with a singular set being a Fractal set with
Hausdorff dimension nearly maximal, that is ≥ n− p− ε, for ε small at will ([3]).

References

[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth, Arch.
Rational Mech. Anal. 156 (2001), pp.121–140

[2] L. Esposito, F. Leonetti, G. Mingione: Sharp regularity for functionals with (p, q) growth, Journal
of Differential Equations, to appear

[3] I. Fonseca, J. Maly, G. Mingione: Scalar minimizers with fractal singular sets, preprint CNA 02-
CNA-004, March 2003, Carnegie-Mellon-University

[4] G. Mingione, D. Mucci: Integral functionals and the gap problem: sharp bounds for relaxations and
energy concentration, preprint Dip. Mat. Univ. Parma, 2003
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Solutions of the isoperimetric problem and of the Cahn-Hilliaird equation

Frank Pacard

Some nonlinear problems (depending on a small parameter ε) have solutions whose energy
density concentrates along submanifolds (of dimension ≥ 1) as ε tends to 0. We give ex-
amples of such concentration sets.

1) Constant mean curvature hypersurfaces in Riemannian manifolds are shown to arise
as concentration sets for smooth families of critical points of Eε(u) = ε

∫
|∇u|2 +

1
ε

∫
W (u) under the constraint V (u) = ∞, as ε → 0 (joint work with M. Ritoré).

2) Geodesics are shown to arise as condensation sets of sequences of constant mean
curvature embeddings of S1 × Sn−1 in (n + 1)-dimensional Riemannian manifolds
as ε := 1

H
tends to 0 (joint work with R. Mazzeo).

Rigidity of immersed stable minimal hypercones

Neshan Wickramasekera

This talk presents a proof and applications of the following theorem: If a cone that arises
as the weak (i.e. varifold) limit of a sequence of smooth stable minimal hypersurfaces
immersed in a Euclidean space (of arbitrary dimension) has vertex density strictly between
1 and 3, and its support is weakly close to a pair of hyperplanes (two transverse hyperplanes
or a multiplicity 2 hyperplane), then it is equal to a pair of hyperplanes.

Some results about Bose-Einstein condensates

Robert Jerrard

This talk deals with the relationship between the Gross-Pitaevsky functional Gε, which
characterizes the wave function of a Bose-Einstein condensate, and a reduced functional
E, proposed as a model for the energy of a vortex filament in such a condensate. I prove the
existence of large numbers of local minimizers of E, when the condensate is subjected to
suitable rotational forcing, and I show that for any such local minimizer J , when a scaling
parameter ε is sufficiently small, there exists a local minimizer of Gε whose vorticity is
close to J , in an appropriate sense. I also present results (joint work with A. Aftalion)
describing various properties of local minimizers of the reduced functional E.

Ginzburg-Landau-type vortices for thin ferromagnetic films

Roger Moser

We consider variational problems from the theory of micromagnetics for thin films of fer-
romagnetic materials, represented by domains of the form Ωδ = Ω′ × (0, δ) with Ω′ ⊂ R2.
The corresponding energy functional is

Eδ(m) =
1

2δ

∫
Ωδ

|∇m|2 dx +
1

2δ2

∫
R3

|∇uδ(m)|2 dx

for magnetization vector fields m ∈ H1(Ωδ, S
2), where uδ ∈ H1(R3) is determined by

∆uδ(m) = div m in R3.
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Here m is extended by 0 outside of Ωδ. We consider first minimizers, and then solutions of
an evolution equation belonging to Eδ, the so-called Landau-Lifshitz-Gilbert equation. We
determine their asymptotic behaviour for δ ↘ 0. The analysis is a generalization of the
classical Ginzburg-Landau asymptotic analysis of F. Bethuel, H. Brezis, and F. Hélein. In
particular we observe the development of vortices in the limit. In contrast to the classical
problem, however, the vortices appear on the boundary of Ω′, not in the interior.

Partial regularity for minimizers of degenerate quasi-convex variational
integrals

Frank Duzaar

(joint work with G.Mingione)

We present a new method to prove regularity of solutions to certain degenerate elliptic
problems. The method is based on the p-harmonic approximation lemma, recently proved
by the author and G.Mingione (Parma), that allows to approximate functions with p-
harmonic functions as the classical harmonic approximation lemma (going back to De
Giorgi) does via harmonic functions. The method presented also bypasses certain difficul-
ties arising when treating degenerate and singular problems with a weak structure, such as
degenerate and singular quasi-convex variational integrals, and provides transparent and
elementary proofs.

Sharp rigidity estimates for nearly umbilical surfaces

Camillo De Lellis

(joint work with Stefan Müller)

A classical theorem in differential geometry states that if Σ ⊂ R3 is a closed connected
smooth surface and the surface is umbilical (i.e. the principal curvatures are equal at every
point of Σ), then Σ must be a round sphere, and therefore its second fundamental form
must be a constant multiple of the identity.

We give a sharp quantitative generalization of this theorem. Namely, we prove the
existence of a universal constant C such that, for every smooth closed connected surface
Σ ⊂ R3, the following inequality holds

(2) min
λ∈R

∫
Σ

|A− λId|2 ≤ C

∫
Σ

∣∣∣∣A− tr A

2
Id

∣∣∣∣2 .

The exponent 2 in the inequality cannot be replaced by p < 2. When the right hand side
of (2) is smaller than a geometric constant, Σ is diffeomorphic to a sphere. In this case we
can estimate the W 2,2 distance of Σ to a round sphere with a universal constant times the
right hand side of (2).

The proof is divided into three steps. First, combining a result of Müller and Sverak
with elementary geometric considerations, we find conformal coordinates which enjoy good
estimates (i.e. these estimates depend only on the right hand side of (2)). Then we use
Codazzi–Mainardi equations and PDE estimates from the classical theory of the Laplacian
to prove that

min
λ∈R

‖A− λId‖L2,∞(Σ) ≤ C

(∫
Σ

∣∣∣∣A− tr A

2
Id

∣∣∣∣2
)1/2

.

Finally, with the aid of Gauss–Bonnet Theorem and Wente–type estimate on suitable
wedge products, we are able to improve the L2,∞ bound to the desired L2 bound (2).
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Recent developments for the harmonic map flow

Peter Topping

We describe some recent results about the harmonic map flow from 2D domains. These
concern questions of uniqueness (and reverse bubbling), rate of blow-up, regularity of the
flow u(T) at a singular time T, and their interrelations.

Gradient estimates for convex functions and applications

Oliver Schnürer

(joint work with Hartmut Schwetlick)

We consider convex functions on a bounded domain that fulfil a Neumann boundary con-
dition and prove a gradient estimate that does not depend on the oscillation. Our estimate
generalizes a gradient estimate of Lions, Trudinger and Urbas.

We obtain that solutions to the parabolic flow equation{
∂

∂t
u = log det D2u− log f(x, Du)

Dνu = ϕ

converge to translating solutions.

Aspects of the Hamilton-Perelman Ricci flow

Klaus Ecker

(joint work with Gerhard Huisken)

Thurston’s geometrization conjecture states that any closed 3-manifold M can be decom-
posed along 2-spheres and incompressible 2-tori into pieces which are modelled by the 8
homogeneous geometries given by S3, H3, R3, S2 × R, H2 × R, Nil, SL(2, R) and Solv
and their quotient by discrete, properly discontinuous groups. Of these 8 models which
are all simply connected, only S3 is closed. Therefore, if M is simply connected it has to
correspond to S3. This is the Poincaré conjecture.

In the early 80’s, Hamilton proposed the Ricci flow as a method of attacking Thurston’s
conjecture. This flow evolves a metric on M by the equation

∂

∂t
gij = −2Rij

where Rij is the Ricci curvature of gij, or by a normalized version of it which keeps the
volume of M fixed during the evolution. The curvature operator of gij which in 3 dimen-
sions is determined by the Ricci tensor satisfies a reaction–diffusion system with quadratic
nonlinearity. One therefore expects singularities to form during the flow due to the reaction
term with the diffusion resulting in a particularly simple structure of the singularity. For
instance after rescaling near a singularity the curvature operator becomes nonnegative.

Hamilton’s programme now proceeds as follows: Run normalized Ricci flow with some
initial metric. Singularities which form in finite time (near points where the curvature
blows up) should locally look like S2 ×R or S3. In infinite time, further singularities may
form which look locally like T 2 × R cusps. In other words, Ricci flow is expected to find
exactly the right places in the 3-manifold where a decomposition should be performed.
Near the S2 × R singularities one performs a surgery by removing an S2× interval neck,
capping off the resulting boundary components by spheres in a quantitatively very specific
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way. After that one re-starts the flow. Near the T 2 × R singularities, the manifold is
separated into “thick” pieces on which the metric converges to a hyperbolic one and “thin”
pieces where it collapses. The latter pieces correspond to Seifert fibred pieces and therefore
admit a geometrization type decomposition.

There are however a number of technical problems which have hindered the completion
of Hamilton’s programme. One of them is the question whether on any finite time interval
only finitely many singularities can arise. Related to this issue are difficulties in controlling
the ratio of injectivity radius to square root of maximum curvature of the evolving metric
locally near a singularity. This information is essential for ensuring that a rescaling limit
of solutions of Ricci flow near a singularity exists in the first place, but also for ruling
out undesirable limits such as Σ× R where Σ is the 2-dimensional translating solution of
Ricci flow called the cigar solution. Near such a singularity, it is not clear how to perform
surgery. The metric on Σ × R has the property that there are families of geodesic balls
Vrk

= Brk
(pk) for which |curv| ≤ 1

r2 on Brk
but

vol(Brk
)

r3
k

k→0−→ 0.

This is where Perelman’s recent work has led to a major breakthrough: Perelman has
established that a certain entropy functional on M increases during Ricci flow. This

functional can essentially be controlled from above by log
(

vol(Br)
rn

)
on balls Br on which

|curv| ≤ 1
r2 and therefore has the value −∞ on Σ × R. On the other hand it is bounded

below on any manifold M . Combining these facts leads for such solutions to a lower bound
on the volume ratio in balls on which the curvature is controlled. Since this information
is scaling invariant, Σ × R can therefore not arise as a rescaling limit near singularities.
There are many other important new geometric/analytic tools provided in Perelman’s work
which have resulted in major progress in Hamilton’s programme but there are also many
technical points in his work which still need to be checked.

Stability of travelling waves in the Fermi-Pasta-Ulam model

Gero Friesecke

The FPU model (1947) describes the evolution of a 1D chain of atoms interacting via an
interatomic potential,

q(j, t)tt = V ′(q(j + 1, t)− q(j, t)− V ′(q(j, t)− q(j − 1, t)
)

e. g. V (r) =
(
(1 + r)−α − 1

)2
, α > 0.

Formally, for small amplitude slow-time long-wave solutions to the system of conservation
laws of electrodynamics,

qtt = V ′(qx)x or (r := qx, p := qx)

(
r

p

)
t

+

(
−p

−V (r)

)
x

= 0.

Whereas for conservation laws, existence/uniqueness for the Cauchy pb, is difficult and
shock dynamics is easy, for FPU the Cauchy problem is trivially well posed but the anal-
ogon of shock dynamics (travelling wave dynamics) is difficult.

Main result (joint with R. Pego, Maryland):
Small-amplitude FPU travelling waves are stable globally in time (start close, stay close),
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and in fact asymptotically stable (start close, approach unique nearby travelling wave ex-
ponentially fast) in a suitable weighted norm.

(Ideas of pf: 1) Find a conserved simple dz form for the FPU equations, use to decom-
pose any nearby state uniquely into a travelling wave part and a “radiation” part. Show
both parts decouple at linearized level and infer that decay of radiation under nonlinear
FPU equations follows from decay under linearized equation. 2) Reduce decay of linearized
equation to stable continuous and discrete Floquet spectrum. 3) Rule out unstable con-
tinuous spectrum by explicit computation and unstable discrete spectrum by deforming
equation into a KdV continuum limit, and “lifting” in)o about KdV back onto the lattice.
4) Figure out the asymptotic profile of FPU travelling waves, which enters the equation
for Floquet modes as “coefficients”).

Connections and differences between FPU and a backward-discretization scheme for
conservation laws studied recently (2003) by Bianchini were indicated.

Geometry and nonconvex variational problems

Shankar Venkataramani

We consider the variational problem for the elastic energy

E =

∫
‖DuT · Du− g‖2 + σ2‖A2‖

where u : (S, g) → Ω is a W 1,4 ∩W 2,2 immersion of a n-dimensional Riemannian manifold
(S, g) into Ω ⊆ Rd equipped with the standard Euclidean metric. We present a heuristic
relation between the singularity structure of the minimizers as σ → 0 with the geometry of
the isometric immersions φ : (S, g) → Ω. We flesh out this relation rigorously for a single
line singularity of a 2-sheet immersed in R3.

Long-time behaviour of kinetic equations

Cédric Villani

(joint work with Laurent Desvillettes)

Kinetic equations describe the time-evolution of the distribution f(x, v) of particles in
position-velocity space, and are typically of the form

∂f

∂t
+ v · ∇xf + force term = collisions + diffusion + drift ,

where the operators on the right-hand side only act on the velocity dependence. A simple
but fundamental example is the kinetic (collisionless) Fokker-Planck equation

∂f

∂t
+ v · ∇xf −∇V (x) · ∇vf = ∆vf +∇v · (fv),

where V is a confining potential, satisfying certain growth conditions at infinity.
Because there is no diffusion in the x direction, regularization effects and rates of con-

vergence to equilibrium are interesting and nontrivial problems. The whole thing is to
understand how the first-order terms on the left combine with the second-order operator
on the right, so as to produce a diffusion-like behaviour in the x variable.

In this talk, I presented two general methods for controlling rates of convergence to
equilibrium for such equations. The first one is based on commutators and limited to
linear equations; it is reminiscent of Hörmander’s hypoelliptic regularity theorem (it is
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in fact a “hypocoercivity” theorem). The second one, based on first-order and second-
order differential inequalities in time, coupled with functional inequalities of log Sobolev
or Poincaré type, carries over to nonlinear models, and in particular enables to prove
convergence to equilibrium for nonlinear Boltzmann or Vlasov-Fokker-Planck equations,
as soon as one has strong smoothness/moment a priori estimates, uniform in time.

Partial regularity of almost minimizers of quasi-convex variational integrals
with subquadratic growth

Joseph F. Grotowski

(joint work with Frank Duzaar and Manfred Kronz)

We prove a small excess regularity theorem for almost minimizers of a quasi-convex vari-
ational integral of subquadratic growth. The proof is direct, and it yields an optimal
modulus of continuity for the derivative of the almost minimizer. The result is new for
general almost minimizers, and in the case of absolute minimizers it considerably simplifies
the existing proof.

Ricci flow of L∞ metrics on three manifolds

Miles Simon

We consider the Ricci flow
∂

∂t
gij = −2Ricci(g)ij,

of Riemannian metrics whose initial value g0 = g(0) is not necessarily smooth but which
is controlled by a smooth background metric, in the sense that

1

c
h ≤ g0 ≤ ch,

for some smooth metric h. In particular we prove the following theorems.

Theorem 1. Let (Mn, g(t))t∈[0,T ) be a smooth solution to the Ricci-flow, where
1
c
h ≤ g(·, t) ≤ ch, for all t ∈ [0, T ). Then the solution may be extended to (M, g(t))t∈[0,T+ε)

for some small ε > 0.

As an application we obtain the following theorem.

Theorem 2. Let (M3, ig),i ∈ N be a family of smooth metrics which satisfy
1
c
h ≤ ig ≤ ch, for some constant c independent of i, and sec(ig) ≥ −ε(i) where ε(i) → 0

as i → ∞. Then there exists a smooth metric g′ on M3 such that sec(g′) ≥ 0 and so M3

may be differentially/topologically classified using the theorem of R.Hamilton [Ha].

[Ha ] Hamilton, R. Four-manifolds with positive isotropic curvature, Comm. Anal.
Geom. 5 (1997), no. 1, pp. 1–92.
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One-dimensional domain wall models in thin-film micromagnetics

Christof Melcher

Most mathematical models for interfaces and transition layers in materials science exhibit
sharply localized and rapidly decaying transition profiles. We show that this behaviour
can largely change when non-local interactions dominate and internal length scales fail
to be determined by dimensional analysis, as in reduced models for micromagnetic Neel
walls: The main analytical feature in this model is that the variational principle gives
uniform control only in H1/2 but incorporates pointwise constraints. We show that critical
estimates based on the associated Euler-Lagrange equation imply the existence of uniform
logarithmic tails of transition profiles.

Viscosity solutions and problems in classical mechanics

Diogo Gomes

It is well known that smooth solutions to the Hamilton-Jacobi equation

H(P + Dxu, x) = H̄(P )

yield, at least formally, a change of coordinates X(p, x) and P (P, x) defined by the equa-
tions

(1) p = P + Dxu X = x + Dpu,

which simplifies the Hamilton dynamics

ẋ = −DpH(p, x) ṗ = DxH(p, x)

into
Ṗ = 0 Ẋ = −DpH̄(P ).

Unfortunately, this procedure may fail. However, by considering viscosity solutions, instead
of classical solutions, one may recover some weaker versions of these statements.

In fact, viscosity solutions yield important information concerning certain measures, the
Mather measures, which are invariant under the Hamiltonian flow. For instance, for each
such measure, µ, there is a value P for which µ is supported on the graph (x, P + Dxu).

Of particular interest is the study of integrable Hamiltonian systems under small per-
turbations. We consider Hamiltonians of the form

H(p, x) = H0(p) + εH1(p, x),

in which ε is a small parameter. We prove a weak form of the KAM theory for viscosity
solutions of Hamilton-Jacobi equations. In particular, we show that under suitable hy-
pothesis approximated solutions, obtained through formal expansion are needed in order
to obtain uniform control both for the function and its derivatives. Therefore there are no
convergence issues involved. An application of these results is to show that Diophantine
invariant tori and Mather sets are stable under small perturbations.
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Geometric Paneitz-Branson operator: concentration phenomenon and
fourth-order PDE’s

Frédéric Robert

(joint work with Michael Struwe)

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4. The Paneitz-Branson
operator (that we will denote P n

g ) is a geometric operator, the principal part of which is the
square of the Laplacian. For a Euclidean metric, P n

g reduces to the square of the Euclidean
Laplacian.

The operator P n
g is conformally invariant and is attached to a specific curvature, namely

the Q−curvature. This Q−curvature plays the same role for P n
g as the scalar curvature

plays for the conformal Laplacian. An important issue in the domain is to prescribe this
Q−curvature in a conformal class. When n ≥ 5 and given f ∈ C∞(M), this amounts to

finding u ∈ C∞(M), u > 0, solution to the equation P n
g u = n−4

2
fu2]−1, where 2] = 2n

n−4
:

in this case, f is the Q−curvature for the metric g̃ = u
4

n−4 g. The exponent 2] is critical
from the viewpoint of second-order Sobolev embeddings. Needless to say that one of the
difficulties is the lack of compactness of the Sobolev embedding involved in our problem.
We will then be mainly interested in describing the concentration phenomenon attached
to it. This will allow us to prescribe the Q−curvature in many situations.

Among the specificities of the bi-Laplacian, let us mention that the regularity issues and
the lack of comparison principle make the study more intricate.

The hyperbolic Monge-Ampère equation in the plane

Bernd Kirchheim

We discuss the structure of solutions to

det(∇2u) = −1, u ∈ W 2,∞(Ω, R2),

more precisely, the possible singularities of u. The “singular transformation”

(∇u)±(z) = ∇u(z)± iz

provides local coordinates which describe the vector field ∇u, its singular branch points
and shows that they are discrete. It allows also a exhaustive analysis of the situation when
det(∇2u) = 0.

On the other hand, the “partial Legendre transform” allows a good understanding of
the solutions away from singular branch points and here also for the Hessian determinant
close to but not necessarily equal to minus one.

In this way, Chaudhuri-Müller could prove that quasi- and rank-one convexity agree on

{X ∈ R2×2
symm ; det X = −1 and X11 > 0}

and we can extend this result to the three dimensional surface

{X ∈ R2×2 ; det X = 0 and X11 > 0}.

Edited by Tobias Lamm
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D–50923 Köln
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Dept. de Mathématiques, U.M.P.A.
Ecole Normale Supérieure de Lyon
46, Allée d’Italie
F-69364 Lyon Cedex 07

Prof. Dr. Neshan Wickramasekera
neshan@math.mit.edu

Department of Mathematics
M.I.T.
77 Massachusetts Avenue
Cambridge, MA 02139-4307 – USA

16


