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Die Tagung fand unter der Leitung von A. Beauville (Nice), F. Catanese (Bayreuth),
E. Looijenga (Utrecht) und Ch. Okonek (Zürich) statt.

Wie schon bei früheren Tagungen über komplexe Geometrie in Oberwolfach haben auch
dieses Jahr viele bedeutende Mathematiker aus verschiedenen Ländern an der Tagung
teilgenommen. So fiel es nicht schwer, ein interessantes Tagungsprogramm zusammen-
zustellen.

Neben schon bald klassisch zu nennenden Themen, als da zu nennen wären Gromov-
Witten Invarianten, abgeleitete Kategorien und Fourier-Mukai Transformationen, wurden
neueste Entwicklungen wie offene Gromov-Witten Invarianten erörtert, weitere Beispiele
der Spiegelsymmetrie beschrieben und der Versuch gewagt, diese Symmetrie in einen neuen
Zusammenhang zu stellen. Als besonders befruchtend erwies sich dabei die Zusammenar-
beit mit Physikern. Darüber hinaus wurden aber auch Fragestellungen aus der Eichtheorie
und zur Klassifikation komplexer projektiver Mannigfaltigkeiten behandelt.
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Abstracts

Open Gromov-Witten invariants

Sheldon Katz

The existence of open Gromov-Witten invariants is predicted by open string theory. I
surveyed the relations predicted by physics between closed Gromov-Witten invariants, open
Gromov-Witten invariants, and Chern-Simons invariants. Some of these relationships, such
as gluing formulae, do not involve Chern-Simons, so are conjectures purely about open and
closed Gromov-Witten theory. Several ideas were illustrated concretely in the example of
a Calabi-Yau threefold X, the total space of O(−1) ⊕ O(−1) over P1, together with a
Lagrangian L, which is a particular R2 bundle over S1 ⊂ P1 obtained as the fixed point
locus of an antiholomorphic involution on X.

I then surveyed mathematical progress to understanding these invariants including

- moduli space
- tangent-obstruction theory
- virtual fundamental relative class.

If (X,L) admits an S1 action, free on L, then C.C. Liu has defined an invariant that
cannot yet be computed. Ad hoc definitions using localizations have been proposed by
Katz-Liu and Li-Song; these are conjectured to agree with Liu’s invariant. Possible con-
nections between open Gromov-Witten invariants and relative Gromov-Witten invariants
were discussed in conclusion.

tt∗ geometry for singularities

Claus Hertling

tt∗ geometry is a generalization of the notion of variation of (polarized mixed) Hodge
structures. It turned up around 1990 in work of Cecotti and Vafa on N = 2 supersymmetric
field theories and independently in the work of Simpson on harmonic bundles; implicitly
the semisimple case had turned up already 1979 in the holonomic quantum fields of Jimbo-
Miwa-Mori-Sato.

The notion of a single polarized Hodge structure is generalized in terms of a vectorbun-
dle on C with a flat connection ∇ on C∗, with a pole of order ≤ 2 at 0, with a ∇-flat
real subbundle on C∗, and with a pairing, such that a series of conditions are satisfied
(“(TERP)-structures”). To formulate them one has to construct an extension of the bun-
dle to P1 and -if this is the trivial bundle- to define a real structure and a Hermitian pairing
on the zero fibre.

A result by Cattani-Kaplan-Schmid (’73 and ’86) gives a correspondence between polar-
ized mixed Hodge structures and nilpotent orbits of Hodge structures. This conjecturally
generalizes to (TERP)-structures. It units work of Schmid with work of McCoy-Tracy-Wu
and Ita-Novokshiniv on Painlevé III (for the semisimple rank 2 case).

In the case of singularities (holomorphic function germs as well as tame functions on
affine manifolds), one has variations of (TERP)-structures (=tt∗ geometry) on the base
space of a semiuniversal unfolding, coming from a Fourier-Laplace transform of the Gauss-
Manin system. In the case of a tame function on an affine manifold one may conjecture
that the (TERP)-structure is positive definite. Evidence comes from physics and from the
known mixed Hodge structures.
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Mirror symmetry via logarithmic degeneration data

Mark Gross

We study mirror symmetry by studying degenerations X → S of Calabi-Yau manifolds
over a disk S, with X0 being singular. The basic idea is that the knowledge of X0 by itself
is not enough to find a mirror family, however in many cases, knowing X0 with the log
structure on X0 induced by the inclusion X0 ⊂ X is.

We discuss forthcoming joint results with B. Siebert in this direction. We consider special
sorts of degenerations which we will call toric degenerations. These are degenerations such
that X0 is a union of toric varieties meeting along toric strata and such that X → S is
log smooth away from some well-behaved bad set Z ⊂ X . Toric log Calabi-Yau spaces are
then log spaces which “look like” the central fibre of a toric degeneration. We then develop
a mirror symmetry construction for toric log Calabi-Yau spaces, and this construction is an
algebro-geometric, or discrete version of SYZ. The next step will be to study smoothability
of toric log Calabi-Yau spaces, which will enable us to give a quite general mirror symmetry
construction.

A comparison theorem for virtual fundamental classes

Andrei Teleman

(joint work with Ch. Okonek)

We show that Quot spaces over curves have a natural virtual fundamental class in tha
algebraic geometry sense (Fulton, Behrend-Fantechi).

Let QuotEE0 be the quot space of quotients of E0 with kernels of fixed topological type E. A
special case of the Kobayashi-Hitchin correspondence identifies QuotEE0 with a moduli space
of generalized vortices. This identification endows QuotEE0 with a virtual fundamental class
in the differential geometric sense. We show that, if rank E = 1, these two fundamental
classes coincide via the cycle class map.

This result can be generalized in the following way (work in progress):
Let ρ : G → Gl(V ) be a representation of a reductive group such that A(V )G = C.

Fix a differentiable principal G-bundle P on a curve Y . The classification problem for
pairs (H, ϕ) consisting of a holomorphic structure H on P and a H-holomorphic section
ϕ ∈ Γ(Y, P ×ρ V ) has a stability theory and one can construct with complex geometric
methods a moduli space Msst of semistable objects, which can be identified to a moduli
space MHE of solutions of a generalized Hermite Einstein equation. We state:

1. Msst has a GIT construction and is a projective variety
2. Mst has a natural algebraic geometric virtual fundamental class [Mst]vir

3. The Kobayashi-Hitchin identification maps the differential geometric virtual fun-
damental class of MHE onto [Mst]vir.
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Mirror symmetry for K3

Werner Nahm

(joint work with K. Wendland)

For Calabi-Yau manifolds X which are not hyperkähler, the moduli space of conformal
quantum field theories in 2 dimension (CFT2) which can be described by sigma models
on X has the form Mcplx(X)×MKähler(X), where Mcplx(X) is the classical moduli space
of complex structures on X and MKähler(X) is the moduli space of quantum corrected
complexified Kähler structures on X. Mirror symmetry means Mcplx(X) = MKähler(X̌),
MKähler(X) = Mcplx(X̌), with a mirror manifold X̌. For hyperkähler X the quantum
corrections are absent, but the correspondent CFT2 moduli space has no product structure,
so the meaning of mirror symmetry is not clear. On the other hand the SYZ construction
of mirror symmetry (dualising the fibres in a torus fibration) is applicable. We investigated
these questions for X = K3.

The moduli space of Ricci flat matrices on K3 is

SO(3)×O(19)\O+(3, 19)/Aut(Λ3,19) × R+.

Here Λ3,19 is a even self-dual lattice of signature (3,19). One may write R+ =O(1) \O+(1, 1).
To implement conventional mirror symmetry one can consider subspaces

O+(2, ρ1)×O+(2, ρ2) ⊂ O+(2, 20), ρ1 + ρ2 ≤ 20

and the S2 × S2 bundle SO(2)×SO(2)\SO(4), which yields(
SO(2)×O(ρ1)\O+(2, ρ1)/A1

)
×

(
SO(2)×O(ρ2)\O+(2, ρ2)/A2

)
where Ai = O+(2, ρi)∩Aut(Λ4,20). For Kummer orbifolds (T 2×T 2)/Z2 one finds a stratum
with ρ1 = ρ2 = 1.

More generally, classical data which yield equivalent CFT2, can be joined by a path in
moduli space, which yields an element of Aut(Λ4,20). We found this element for the torus
fibrations (with singular fibres) (T 2 × T 2)/ZN , N = 2, 3, 4, 6.
(1) On the subgroup of Heven(X, Z) ∼= Λ4,20 which comes from Heven(T 2×T 2, Z) the action
of the mirror symmetry is known by SYZ. The action on the exceptional divisor can be
determined (up to obvious symmetries) by unique extension of this action to Λ4,20.
(2) In CFT2, the corresponding data are the transformations of the twist fields. For CFT2

on T 4 with period lattice Λ, one has (for B-field B = O) vertex operators for the elements
of Λ ⊕ Λ4. Let Tt be a twist field for θ ∈ ZN , V (p, z) a vertex operator with p ∈ Λ ⊕ Λ4,
z ∈ C, Tt(w) a twist field. Then V (p, z) 7−→ V (θp, z) for a path around w. One finds

V (p, z)Tt(w) ∼
∑

t′

Wtt′Tt′(w),

where the matrices W (p) form a Weyl algebra W . For maximal commutative subalgebras of
W , the the representation splits into one-dimensional irreducible representations generated
by Tx, where t corresponds to classical fixed points of θ. Mirror symmetry selects a different
commutative subalgebra of W , which leads to a mirror symmetry action on the Tt.
(3) Comparing the transformation on the exceptional divisors as in (1) and the transfor-
mation on the twist field as in (2), one gets a transformation between twist fields and
exceptional divisors which just is the McKay correspondence between representations of
Sl2 ⊃ ZN (∼ ZN -covariant flat line bundles on the torus) and the exceptional divisors.
The approach should generalize to other hyperkähler manifolds. Moreover, if allows to cal-
culate the CFT’s for several strata in the moduli space of the sigma models on K3 which
eventually should lead to a complete understanding of the corresponding family of CFT’s.
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Conclusion: mirror symmetry for K3 are elements of Aut(Λ4,20) and many γ ∈ Aut(Λ4,20)
of finite even order (not only order 2) have geometric interpretations as mirror symmetries
in the SYZ sense.

Symplectic resolutions for symplectic singularities

Baohua Fu

A complex variety W , smooth in codimension 1, is said to have symplectic singularities,
if there exists a holomorphic symplectic 2-form ω on Wreg, such that for any resolution
of singularities π : X → W , π∗ω can be extended to be a holomorphic symplectic 2-form
on the whole of X. If furthermore π∗ω can be extended to be a holomorphic symplectic
2-form, then π is said to be symplectic. In this talk, we will discuss the following aspects
(and corresponding results) for symplectic resolutions:

(I) Existence:

Theorem 1. Let O be a nilpotent orbit in a semisimple complex Lie algebra g. Suppose
that π : Z → Ō is a symplectic resolution. Then Z is isomorphic to T ∗(G/P ) for some
parabolic subgroup P of G and π is the collapsing of the zero section.

(II) Uniqueness:

Theorem 2. Let S be a symplectic smooth surface and S(n) its n-th symmetric product.
Then any symplectic resolution of S(n) is isomorphic to the classical one: S[n] → S(n).

(III) Finiteness:

Conjecture 3. Any symplectic singularity admits at most finitely many non-isomorphic
symplectic resolutions.

This conjecture is true in the following cases:

- Nilpotent orbit closures
- dimension = 4

(IV) Deformations

Conjecture 4. Suppose we have two symplectic resolutions π and π′ of a symplectic sin-
gularity. Then there exists deformations ϕs and ϕ′s of π and π′ respectively, such that ϕs

and ϕ′ are isomorphic for s 6= 0.

This conjecture is true in the following cases:

- if the singularity is projective
- if the singularity is a nilpotent orbit closure in sl(n + 1, C) for some n.

Remark 5. For a nilpotent orbit closure Ō in a simple Lie algebra of classical type, X is
deformation equivalent to X+, if X → Ō and X+ → Ō are two symplectic resolutions for
Ō.
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Twisted Fourier-Mukai transforms for homomorphic symplectic manifolds

Sawon

Studying fibrations on holomorphic symplectic manifolds seems to be one of the most
promising approaches to understanding them. Matsushita has proved that for a (irre-
ducible, projective) holomorphic symplectic manifold X2n and a proper morphism X → B,
with 0 < dim B < dim X, the generic fibre must be an n-dimensional abelian variety and
the base B must be fano with the same Hodge numbers as Pn. In particular, for n = 2 B
must be P2. Similar results for n = 2 were obtained by Markushevich, who also showed
that if a holomorphic symplectic fourfold X is fibred by Jaconians of genus 2 curves then
it is birational to the Hilbert scheme Hilb2S of two points on a K3 surface (if it admits a
section).

in my talk I discussed deformations of this fibration by Jacobians, ny using the techniques
of twisted Fourier-Mukai transforms. A Fourier-Mukai transform is an equivalence between
the derived category of some space X and the derived category of some fine moduli space
M of sheaves on X. Examples include the case when X is an elliptic curve E and M is its
dual Pic0E (more generally abelian varieties). In the relative case, i.e. an elliptic fibration,
the universal sheaf need not extend globally to a universal sheaf on X × J , where X is the
elliptic fibration and J its relative Jacobian. However, the failure of the existence of a global
universal sheaf is “controlled” by a gerbe β ∈ H2(J, O∗). This gerbe can be incorporated
into the construction to give a twisted Fourier-Mukai transform: an equivalence between
the derived category of X and the derived category of β-twisted sheaves on J . These ideas
were described in Andrei Căldăraru’s thesis. My talk described an example extending the
technique to fibrations by abelian surfaces, namely the fibration by Jacobians over P2 which
comes from a deformation of Hilb2S. It should be possible to extend the ideas further, to
abelian fibrations on deformations of HilbnS for larger n.

Vertex algebras and mirror symmetry on tori

Christian van Enckevort

We discuss two aspects of mirror symmetry, the mirror map between the moduli spaces
and the homological mirror conjectures. For 2-tori both aspects are well understood, but
for higher dimensional tori there are problems. Computing Hodge numbers shows that the
number of deformations of the Kähler structure is not equal to the number of complex
structure deformations. So the mirror map cannot simply interchange complex structure
and Kähler deformations. Following Kapustin and Orlov we show that for special tori of
dimension 4 the lattice of charges of holomorphic D-branes can have rank 6, whereas for
Lagrangien D-branes the rank is at most 5. This shows that it is necessary to extend
the definition of Lagrangian D-branes to include coisotropic D-branes. We then propose
solutions for these problems based on input from physics. Using CFT we motivate the
introduction of two independent complex structures j1 and j2,one for the left-moving sector
and one for the right-moving sector. Both have to be compatible with the metric G.
Encoding the data B, G, j1, j2 in a different way, we discuss a nice description od how
isomorphisms and mirror morphisms act on the moduli. Before we only discussed the
geometric part of the moduli space defined by j1 = j̄2. The problem is that this condition
is not preserved by mirror morphisms. For the mirror morphism corresponding to the
SYZ-fibration, the restriction of the Kähler form and the B-field to the fibre of the SYZ-
fibration has to vanish for the mirror image to be in the geometrical part again. Returning
to homological mirror symmetry we discuss the CFT description of D-branes using a gluing
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map. This allows for a nice description of the transformation of D-branes under mirror
symmetry. However, the gluing matrix has to satisfy a list of conditions. To check the
compatibility of these conditions with mirror symmetry, we replace the gluing map with
a lattice motivated by boundary states. Finally, we discuss BPS-branes and point out
that mirror symmetry interchanges the conditions defining Lagrangian and holomorphic
D-branes.

Branes in Poisson manifolds

Giovanni Felder

There are two places in mathematics where the idea from string theory of integrating over
the space of maps from a disk (or a 2-manifold with boundary) to a manifold is relevant.
One is the open Gromov-Witten invariants or Fukaya category, where one considers maps to
symplectic manifolds with boundary conditions on Lagrangian submanifolds. The other is
Kontsevich’s deformation quantization of Poisson manifolds, where one has a perturbative
evaluation of a path integral over maps close to the trivial map to a point.

One should expect these to be two special cases of a more general theory of coisotropic D-
branes in a Poisson manifold. Such submanifolds give allowed boundary conditions for the
poisson σ-model. Gauge invariant observables are functions on a coisotropic submanifold
which are constant along its characteristic foliation. In the case where the coisotropic
submanifold is the manifold itself, we get the Kontsevich formula. In hte general case we
get a generalization of this formula which gives (under certain assumptions) a quantization
of the algebra of functions on the leaf space. For a pair of coisotropic submanifolds, we
obtain a quantization of the functions on the intersection constant along the intersection
of the foliations as abimodule over the algebras associated to the two submanifolds.

Derived equivalence of algebraic varieties

Yujiro Kawamata

I considered finitely log version of derived equivalence conjecture in the following sense: let
(X, B) and (Y,C) be pairs of normal projective varieties with Q-divisors having standard
coefficients. Assume that they have smooth Deligne-Mumford stack covering X and Y and
a common birational resolution satisfying f ∗(KX + B) ≤ g∗(KY + C). Then there exists
a fully faithful exact functor D(X ) → D(Y). In particular, if they are log K-equivalent,
then they have equivalent derived categories. There is a small list of evidences.

For the opposite direction, if there exists such a functor, then there exists an object on
the product stack which represents the given functor. In this way, the existence of the
functor has geometric implications.
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The Brauer group of analytic K3 surfaces

Stefan Schröer

(joint work with D. Huybrechts)

We show that for a complex analytic K3 surface any torsion class in H2(X, O∗
X) comes

from an Azumaya algebra. In other words the Brauer group equals the cohomological
Brauer group. For algebraic surfaces, such results go back to Grothendieck.

In our situation, we use twistor spaces to deform a given K3 surface to a suitable
projective K3 surface, and then stable bundles and hyperholomorphy conditions to pass
back and forth between the members of the twistor families.

Genus one Gromov-Witten invariants of quintic manifolds

Jun li

(joint work with A. Zinger)

We derived a formula for genus 1 Gromov-Witten invariants of quintic manifolds. Based
on this formula one can use localization method to compute the genus one Gromov-Witten
invariants and the number of primitive elliptic curves in a quintic manifold.

Let Q ⊂ P4 be a quintic manifold. We consider the moduli space M1,0(Q, d) ⊂
M1,0(P4, d). Let X f→ P4 be the universal family over M1,0(P4, d). Then

M1,0(Q, d) = f ∗s−1(0) ⊂M1,0(P4, d),

where s−1(0) = Q. Let M1,0(P4, d)∗ be the irreducible component of M1,0(P4, d) consisting
of maps whose genus 1 domain components are not ghost components. Then

GW1(d) =

∫
[M1,0(P4,d)∗]

e(π∗f
∗O(5)) +

1

12
GW0(d),

where π : X → M1,0(P4, d) is the projection and e(π∗f
∗O(5)) is defined to be the Euler

class of a desingularisation of π∗f
∗O(5) after pull back to some blowing up of M1,0(P4, d)∗.

All the constructions can be done equivariantly, thus given a C∗ action on P4 we can use
localization to evaluate the above integral.

Large absolute and relative Gromov-Witten invariants

Andreas Gathmann

Let Y be a smooth hypersurface in a smooth projective variety X. Our current research
is focused on the question how to compute the Gromov-Witten invariants (in any genus)
of Y in terms of those of X. The most important case is X = Pn: as the Gromov-Witten
invariants of projective spaces are all known, we can then hope to access the higher genus
Gromov-Witten invariants of hypersurfaces in projective spaces, most prominently of the
quintic threefold.

Our strategy is to blow up Y ×{0} in X × P1, which realizes X as a deformation of the
normal crossing scheme X ∪Y N , where N denotes the projective closure of the normal
bundle of Y in X. Using Jun Li’s theory of relative Gromov-Witten invariants we can then
express the (absolute) invariants of X in terms of the relative invariants of X and N relative
Y . The relative invariants of the bundle N can in turn be related to the invariants of the
base Y using localization techniques. Combining these ideas we get relations between the
Gromov-Witten invariants of X and Y .
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The most important results that we have obtained so far are:

(1) For curves of genus 0 the invariants of Y can always be reconstructed from those
of X. In the case when −KY is nef we reprove the well-known “mirror theorem”.

(2) In genus 1 our strategy computes the elliptic Gromov-Witten invariants of the
quintic threefold and verifies the numbers conjectured by physicists.

On Seifert matrices

Duco van Straten

(joint work with Ch. Meyer)

Unimodular integral bilinear forms S : H × H → Z first arose in the classical work of
Seifert. In the theory of vanishing cycles and exceptional collections on Fano manifolds
such forms also arise and have the additional properties of upper triangularity and quasi-
unipotence of the monodromy. According to Cecotti-Vafa this matrices up to braid group
equivalence classify N = 2 supersymmetric theories. A list of such 4 × 4 matrices was
presented.

Hamiltonian Gromov-Witten invariants for toric varieties

Mihai Halic

The purpose of the talk was that of presenting the algebraic construction of the Hamiltonian
GW-invariants of a smooth and projective toric variety. The presentation was divided into
two parts:

(i) the description of the compactification of the space of morphisms from a curve into
a toric variety and of its virtual fundamental class, and

(ii) the construction of the natural classes which live on this compactification.
The invariants are obtained by intersecting the natural cycles with the virtual fundamental
class.

Fourier-Mukai partners of K3 surfaces and applications

K. Oguiso

I reported my joint work with S. Hosono, B. Lian and S.T. Tau about Fourier-Mukai
partners of K3 surfaces. In this talk, after recalling a fundamental result due to Mukai
and Orlov, which characterizes Fourier-Mukai partners of K3 (reps. abelian surfaces) from
three viewpoints:

(1) categorical: Y ∈ FM(X)
(2) arithmetic: (T (Y ), CωY ) ∼= (T (X), CωX) Hodge isometric
(2’) (H̃(Y, Z), CωY ) ∼= (H̃(X, Z)), CωX)
(3) geometrical: Y ∼= MH((r, H, s)) 2-dimensional compact fine moduli space of stable

sheaves on X with respect to ∃ ample H

I derived the following counting formula:

|FM(X)| =
m∑

i=1

|(Si)\O(ANS(X))/OHodge(T (X),CωX)|,

where X is a K3 surface and {S1 = NS(X), S2, . . . , Sm} is the genus of NS(X).
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From this formula, we have |FM(X)| = 2T (n)−1 when X is a K3 of ρ(X) = 1 and and
NS(X) = ZH, H2 = 2n (Here T (n) is the number of prime factors of n). Moreover,

FM(X) = {MH(r, H, s) | rs = n, r ≥ s > 0, (r, s) = 1}.
I also discussed the meaning of the number 2T (n)−1 from the view of Homological mirror
symmetries.

Movable curves

Thomas Peternell

(joint work with S. Boucksom, J.P. Demailly, and M. Paun)

A central conjecture in classification theory of algebraic varieties states: A projective
manifold X has Kodaira dimension κ(X) = −∞ if and only if X is uniruled, i.e. covered
by rational curves. This is known for threefolds by the work of Mori, Miyaoka, and others,
using the existence of minimal models.

In general the conjecture can be split into two parts:
A. KX is not pseudo-effective =⇒ X is uniruled.
B. KX is pseudo-effective =⇒ κ(X) ≥ 0.

The statement A. follows from the more general

Theorem 6. L is a pseudo-effective line bundle, i.e. c1(L) is in the closure of the cone of
classes of effective divisors, iff c1(L) · Ct ≥ 0 for all covering families of curves in X.

This in turn is the consequence of a duality theorem of “the cone of pseudo-effective
divisors” and “the cone of movable curves”.

Finally I mention results concerning (B.) in dimension 4.

Self-dual manifolds and Mirror Symmetry for the quintic threefold

Michele Grassi

We develop the theory of self-dual manifolds, which are a natural generalization of almost-
Kahler manifolds. We then construct a two-dimensional family of them, which interpolates
between the anticanonical family in Pn and its mirror dual.

Sectional curvatures of Kähler moduli

Pelham M.H. Wilson

We investigate a new property for compact Kähler manifolds. Let X be such a manifold
of complex dimension n and H1,1 denote the (1, 1) part of its real second cohomology. On
this space, we have a degree n form given by cup product. Let K denote the open cone of
Kähler classes in H1,1, and K1 the level set consisting of classes in K on which the form
takes value one. This is a Riemannian manifold, with tangent space at a given point being
the primitive classes of type (1, 1), and the metric defined via the Hodge Index Theorem.
In the Calabi–Yau case, we conjecture that K1 has non-positive sectional curvatures. This
would place new restrictions on the possible location of the Kähler cone in cohomology,
giving potentially useful information as to which smooth manifolds may support Calabi–
Yau structures.

The conjecture is motivated by a Mirror Symmetry argument; this argument suggests
that one should develop a mirror version of the Weil–Petersson theory of complex moduli.
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The outline of such a theory will be described, and the Conjecture verified under certain
extra assumptions. Finally, we investigate in more detail the case when X is a Kähler
threefold with h1,1 = 3, where we only have the one sectional curvature on K1 to consider.
We prove a formula (5.1) relating this curvature to the classical invariants of the ternary
cubic form given by cup product, and we discuss various implications of this formula.

Edited by Markus Dürr
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