
Mathematisches Forschungsinstitut Oberwolfach

Report No. 40/2003

Topologie

September 14th – September 20th, 2003

The conference was organized by Cameron Gordon (Austin, Texas, USA), Wolfgang
Lück (Münster, Germany), and Bob Oliver (Paris, France). It was attended by more than
forty mathematicians from all over Europe and North America.

A highlight of the meeting was a series of three lectures by Ib Madsen (Århus, Denmark),
and an expository talk by Michael Weiss (Aberdeen, UK), about their proof of the Mumford
Conjecture on the stable cohomology of the mapping class group—surely one of the highest
achievements in topology of the past years.

In line with the well-established tradition of the “Topologie Tagung”, the remaining
fifteen talks covered a wide variety of areas of current research in algebraic topology and
related fields—such as algebraic K-theory, (stable) homotopy theory, p-compact groups,
geometric group theory, L2-cohomology, three and four dimensional manifolds, positive
scalar curvature, and topological quantum field theory.

With an average of four one-hour lectures a day, the participants also had plenty of time
for discussion and research. As usual the staff of the Mathematisches Forschungsinstitut
Oberwolfach provided all the ideal conditions for a successful meeting.
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Abstracts

Homotopy algebraic K-theory and groups acting on trees

Arthur Bartels

(joint work with Wolfgang Lück)

The isomorphism conjecture in algebraic K-theory predicts that the algebraic K-theory
of a group ring RΓ consists of two summands: the first comes from the algebraic K-theory
of finite subgroups of Γ; the second comes from Nilgroups of virtually cyclic subgroups.
Homotopy algebraic K-theory is a variant of algebraic K-theory that does not contain
Nilgroups. The isomorphism conjecture for homotopy algebraic K-theory predicts then
that the homotopy algebraic K-theory of a group ring comes from the homotopy algebraic
K-theory of finite subgroups. We prove the following stability property of this conjecture:
If a group Γ acts on a tree such that all isotropy subgroups satisfy the conjecture, then Γ
satisfies the conjecture. A corollary is that the conjecture holds for one relator groups.

Nullification and cellularization of H-spaces
with respect to p-torsion Eilenberg-MacLane spaces

Natàlia Castellana

(joint work with Juan A. Crespo and Jérôme Scherer)

A result obtained by C. Broto, J.A. Crespo and L. Saumell on the structure of Hopf
spaces (H-spaces) shows that, under certain mod p cohomological finiteness conditions (p a
prime number), p-completed H-spaces fit into fibrations

K(Z∧p , 2)m ×K(π, 1) → X → Y

where π is a finitely generated abelian p-group and Y is a p-completed BZ/pZ-null space
(that is, Map∗(BZ/pZ, X) ' ∗).

The assumptions on X can be generalized in a way that we consider H-spaces such that
ΩmX is K(BZ/pZ, n)-null for some m, n.

Results of Bousfield allow us to generalize the previous statement for H-spaces X sat-
isfying these conditions. It is shown that they fit into fibrations with K(BZ/pZ, n)-null
base space and whose fibre is a p-torsion finite Postnikov piece.

In particular, these structure results allow us to compute the K(BZ/pZ, m)-cellular-
ization of those H-spaces for m ≥ n, which will be an (m− 1)-connected finite Postnikov
piece.

Decompositions of Hecke-von Neumann algebras
and the L2-cohomology of buildings

Mike Davis

(joint work with Jan Dymara, Tadeusz Januszkiewicz, and Boris Okun)

The reduced L2-cohomology of a CW complex lies somewhere between its ordinary
cohomology and its cohomology with compact support. One of the most interesting in-
terpretations of the previous sentence involves the theory of “weighted L2-cohomology”
of the complex Σ associated to a Coxeter system (W, S). The weight function is of the
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form qd, where d is the combinatorial distance to a base point and q is a positive real
number. The corresponding weighted L2-cohomology spaces are modules over the “Hecke-
von Neumann algebra” associated to W with parameter q. Consequently, these spaces
have a von Neumann dimension; the resulting real numbers are the L2

q-Betti numbers of Σ.

Dymara proved that the L2
q-Betti numbers of Σ are equal to the L2-Betti numbers of any

building of type (W, S) and thickness q + 1 (with respect to the von Neumann algebra
of a chamber-transitive automorphism group G.) As q goes from 0 to ∞, these weighted
L2-cohomology spaces interpolate between the ordinary cohomology of Σ and its cohomol-
ogy with compact support. There is a precise formulation of this involving the radius of
convergence of the growth series of W .

Positive curvature and index theory

Anand Dessai

I wanted to discuss potential index theoretical obstructions to positive Ricci and positive
sectional curvature. More precisely, I discussed what is known about the following

Problem. Which characteristic numbers (i.e. linear combinations of Pontrjagin numbers)
vanish on a closed manifold with positive sectional (resp. positive Ricci) curvature?

At present this problem is wide open: Besides the vanishing of the Â-genus for spin man-
ifolds of positive scalar curvature no other obstructions (in the above sense) are known—
even if one restricts to manifolds of positive sectional curvature.

In the first part of the talk I recalled Stolz’ conjecture for the Witten genus of string
manifolds with positive Ricci curvature and gave an update on the evidence (in terms of
examples) for this conjecture.

In the second part I discussed potential index theoretical obstructions to positive sec-
tional curvature for a spin manifold M of dimension > 8. These obstructions come as a
series given by an expansion of the elliptic genus. The first two terms are the Â-genus
and Â(M, TM), the index of the Dirac operator twisted with the tangent bundle. It is

conceivable that Â(M, TM) vanishes on any such manifold. The main evidence for this is
the following result.

Theorem. Let M be a spin manifold of dimension > 8 with positive sectional curvature.
Then the twisted Dirac index Â(M, TM) vanishes if

(1) b2(M) = 0 and the dimension of the isometry group is > 0 or
(2) the dimension of the isometry group is > 1.

On the topological side the proof relies on consequences of the rigidity theorem for cyclic
group actions. On the geometrical side we use results of Frankel and Wilking about totally
geodesic submanifolds in positive sectional curvature.
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L2-Betti numbers and measured equivalence relations

Damien Gaboriau

When a group acts on a space X, it defines an equivalence relation: “to be in the same
orbit”, Rα := {(x, y) ∈ X ×X : Γ.x = Γ.y}.

We are interested in the situation where X is a standard Borel space with a probability
measure µ, Γ is discrete countable and the action is measure preserving. Considering
the equivalence relation amounts to forget about the action and the group, and the basic
question is: “what does the equivalence relation remember from that?” Two actions of two
groups Γ1 and Γ2 are said to be orbit equivalent (OE) if they define the same equivalence
relation.

(1) I present a small account of the theory of OE, by first isolating the amenable
world (Dye and Ornstein-Weiss theorems) and then describing some rigidity results
connected with Kazhdan property (T) or higher rank in semi-simple Lie groups.

(2) The notion of `2 Betti numbers βn, introduced by Atiyah (1976) for coverings of
a compact manifold, has been gradually extended to other contexts: to measured
foliations (Connes 1979), to any continuous action via singular `2 cohomology, with
the consequence of being defined for every discrete group (Cheeger-Gromov 1986),
and also to measured equivalence relations R (i.e. of the kind considered above)
(G. 2000). I describe how to define the βn for groups with finite K(Γ, 1) and list
their main properties.

(3) We focus on some applications of the theory of `2 Betti numbers for equivalence
relations.
• To foliations: when the leaves are contractible, the βn only depend on

the equivalence relation generated by the holonomy pseudogroup on a total
transversal.

• To group theory: proportionality of the βn of any two lattices in a given
l.c.s.c. group; vanishing of some βn of a group, given finiteness conditions on a
normal subgroup; a Schreier-like result: “a finitely generated normal subgroup
of a group with β1 6= 0 has to be finite or of finite index”.

• To von Neumann algebras: due to a simple formula relating the βn of R with
the βn of a restriction, it happens that the dynamical fundamental group F(R)
of R (= a witness of the self-similarities of R) is reduced to {1} as soon as
one of the βn is different from 0 and ∞. This is the case, for instance, for
the natural action α of SL(2,Z) on the 2-torus. S. Popa (2002) proved that
in this example the associated von Neumann algebra Mα has its fundamental
group F(Mα) (= a witness of the self-similarities of Mα) that coincides with
that of Rα. This leads to the first example of a factor von Neumann algebra
with trivial fundamental group.

(4) I eventually introduce a joint work with N. Bergeron. Let K be a finite simplicial
complex. We are interested in the asymptotic behaviour of the Betti numbers of a
sequence of finite sheeted covers of K, when normalized by the index of the covers.
W. Lück has proved that for regular covers, these sequences of numbers converge
to the `2 Betti numbers of the associated (in general infinite) limit regular cover
of K. For non normal finite coverings, the sequences of normalized Betti numbers
still converge, but the “good” limit object is no longer the associated limit cover,
but a lamination by simplicial complexes and its `2 Betti numbers.
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Dissolving four manifolds and positive scalar curvature

Bernhard Hanke

(joint work with Dieter Kotschick and Jan Wehrheim)

For every finite cyclic group G of odd order we construct closed smooth four manifolds M
with fundamental group isomorphic to G and such that M does not admit a metric of
positive scalar curvature, whereas the universal cover of M does admit such a metric.
This contradicts a conjecture of J. Rosenberg (1986). Our construction uses results from
Seiberg-Witten theory. Both spin and non spin examples can be obtained. For the spin case
it is important to know the existence of a simply connected spin symplectic four manifold
of zero signature which after taking the connected sum with S2 × S2 is diffeomorphic to
a connected sum of copies of S2 × S2. This leads to the geography problem for almost
dissolving simply connected spin symplectic four manifolds.

Derived functors of modular forms via group cohomology

Hans-Werner Henn

Derived functors of modular forms form the E2-term of a spectral sequence converging
towards the homotopy groups of the spectrum TMF of topological modular forms intro-
duced by Hopkins. After completing at a prime p (which is implicit in the notation below)
this spectrum can be described as a pullback of the form

TMF //

��

LK(2)TMF

��

LK(1)TMF // LK(2)LK(1)TMF

where LK(n) denotes Bousfield localization with respect to the n-th Morava K-theory at
the prime p. From a homotopy theoretic point of view TMF is particularly interesting at
the primes p = 2 and p = 3. In this case LK(2)TMF can be identified with the “higher real
K-theory” spectrum EO2 of Hopkins and Miller, while LK(1)TMF can be identified with
real K-theory with coefficients in p-adic modular forms. Conversely, it has been proposed
that TMF can be constructed as pullback of the above diagram.

In this talk I presented an approach to a calculation of these derived functors (completed
at p = 2 resp. p = 3) which reflects the construction of TMF in terms of this pullback
diagram. In fact, there is a pullback diagram of p-complete graded comodule algebras over
the Hopf algebroid of Weierstrass equations of the form

A∗ //

��

B∗

��

A∗[c
−1
4 ] // B∗[c

−1
4 ]

where A∗ represents the functor which associates to a commutative ring the set of Weier-
strass equations of smooth elliptic curves together with an invariant differential on the
curve. B∗ is the completion of A∗ at the ideal defining the locus of supersingular curves.
If p = 2 resp. p = 3 this ideal is the maximal ideal of A∗ and is generated by p and the
modular form c4.

The diagram should be thought of as a Mayer-Vietoris diagram corresponding to the
covering of the “space of all Weierstrass equations” by a formal neighbourhood of the
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locus of supersingular curves and its open complement. The pullback diagram gives rise
to a long exact Mayer-Vietoris sequence relating the cohomology of these comodules. The
cohomology of A∗ is, by definition, derived functors of modular forms. The cohomology of
the other modules can be identified with the cohomology of suitable finite groups acting on
suitable rings and then in turn with the E2-terms of previously known homotopy fixed point
spectra (which serve as candidates for the localizations of TMF in the homotopy theoretic
pullback diagram above). For example, the cohomology of B∗ can be identified with the
cohomology of the automorphism group of “the” supersingular curve with coefficients in
the ring classifying its deformations. It is the E2-term of the homotopy fixed point spectral
sequence converging towards the homotopy groups of the spectrum EO2.

Isotopies of surfaces in triangulated 3-manifolds

Simon King

We presented proof techniques based on isotopies of surfaces in a closed orientable tri-
angulated 3-manifold (M, T ) that can be used in various contexts. The “thin position”
technique is well-known: Roughly, a thin position isotopy H : S × [0, 1] → M of a sur-
faces S yields some level surface H(S × {ξ}) that interacts with T in a “nice” way. The
“reduction” technique is in some sense complementary to thin position: We start with
a “nicely” embedded surface S ⊂ M and read off from S ∩ T 2 an isotopy with useful
properties.

The main application in the talk was a new and rather short proof of a result of Stock-
ing [2000].

Theorem. Any strongly irreducible Heegaard surface of a closed orientable triangulated
3-manifold is isotopic to either

(1) a 2-normal surface with exactly one octagon, or
(2) an almost 1-normal surface with exactly one unknotted tube.

This theorem is part of Rubinstein’s approach to prove that any non-Haken 3-manifold
has only finitely many isotopy classes of Heegaard surfaces of minimal genus.

We also presented applications to knot theory. Let T be a triangulation of S3 with
n tetrahedra, and let L ⊂ T 1 be a link formed by edges of T . With a generalization of the
bridge number, b(·), to the 1-skeleton T 1 (which is a spatial graph), we obtain

Theorem. b(L) ≤ b(T 1) < 2200n2
, and there is no general sub-exponential upper bound

for b(L) in n.

Note that Lickorish [1991] and Armentrout [1994] obtained b(L) < const · n, under the
strong additional hypothesis that T or its dual is shellable.

Surprisingly, b(T 1) is closely related to notions from Discrete Geometry. This led to the
following estimate for the crossing number, cr(·).

Theorem. cr(L) < const · (b(T 1))4 < 2const·n2
.

Such a bound holds for only finitely many links, and was out of reach even in the case
of shellable triangulations.
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The stable moduli space of Riemannian surfaces

Ib Madsen

The three lectures outlined the proof of the Madsen-Weiss theorem about the stable co-
homological structures of Riemann surfaces or, what is roughly the same thing, the stable
mapping class group.

Let F = Fg,b be a surface of genus g and with b (parametrised) boundary circles, and
let Γg,b be the associated mapping class group:

Γg,b = π0 Diff(Fg,b).

Here Diff(Fg,b) is the topological group of orientation preserving diffeomorphisms of F that
keeps the boundary pointwise fixed. There is a map

ρ : BΓg,b →M(Fg,b)

into the moduli space of hyperbolic surfaces of type Fg,b. H∗(ρ;Z) is an isomorphism when
b > 0 and H∗(ρ;Q) is an isomorphism for b = 0.

The Harer-Ivanov stability theorem tells us that the natural maps

BΓg,b → BΓg+1,b , BΓg,b → BΓg,b−1 (b > 0)

induce isomorphisms on H∗(−;Z) for 2∗ < g − 1. Take b = 2 for convenience. Gluing
along a boundary component gives a pairing Γg,2 × Γh,2 → Γg+h,2 and

⊔
BΓg,2 becomes a

topological monoid with group completion

Z×BΓ+
∞,2 = ΩB

( ⊔
g≥0

BΓg,2

)
.

Main Theorem (Madsen-Weiss). There is a homotopy equivalence

j1 : Z×BΓ+
∞,2

'−→ Ω∞CP∞
−1.

The source is an infinite loop space (U. Tillmann) and j1 is an infinite loop map (Madsen-
Tillmann). The target Ω∞CP∞

−1 is the infinite loop space associated with the spectrum
CP∞

−1. There is a fibration sequence

Ω∞CP∞
−1 → Ω∞S∞(CP∞

+ ) → Ω∞+1S∞

and since Ω∞+1S∞ is rationally a point (Serre), it is easy to see that

H∗(Ω∞CP∞
−1;Q) = Q[κ1, κ2, . . .], deg κi = 2i.

The main theorem thus implies Mumford’s conjecture about the stable cohomology of the
mapping class group.

There is a geometric interpretation of the spaces in the theorem. Consider the following
two sets associated with a smooth m-manifold Xm. The first set V(X) consists of pairs
(π, f) with:

1) π : Em+3 → Xm a submersion,

2) f : Em+3 → R fibrewise regular (i.e. d(f |Ex) is surjective for all x ∈ E and Ex =
π−1(x)),

3) f × π : E → X ×R proper,

4) ∂E = X × {0, 1} × S1 ×R; f |∂E = prR, π|∂E = prX , and

5) f−1(0) ∩ Ex connected.
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The concordance classes V [X] of these structures form a representable functor in the ho-
motopy category. Its representing space is |V| '

⊔
BΓg,2.

The second set hV(X) consists of pairs (π, f̂) with π as above and

f̂ : TπE → R fibrewise affine, non-singular,

i.e., f̂z = f(z) + `z for z ∈ E with f ∈ C∞(E,R) and `z a non-zero linear map. (π, f)
is required to satisfy 3) and 4) above. The associated classifying space |hV| is homotopy
equivalent to Ω∞CP∞

−1. The map

j1 : V(X) → hV(X), j1(π, f) = (π, f + df)

induces the map of the theorem, which can therefore be interpreted as an “integrability
result up to group completion”.

Inspired by Vassiliev’s “first main theorem” one enlarges V(X) resp. hV(X) from fibre-
wise regular functions to fibrewise Morse functions reps. Morse type tangential maps. Call
these sets W(X) and hW(X). The map

j2 : W(X) → hW(X), j2f = “f + dπf + d2
πf ”

induces a map of classifying spaces, and

Theorem 2. j2 : |W| → |hW| is a homotopy equivalence.

(The proof uses Vassiliev’s theorem and an interpretation of W [X] and hW [X] as con-
cordance classes of “Steenrod type coordinate bundles”.)

Given (π, f) ∈ W(X) we have the singularity set

Σ(π, f) =
⋃
x∈X

Σ(fx).

It is a codimension 3 submanifold of E, and

p = π|Σ: Σ(π, f) → X

is a local diffeomorphism (étale).
A parametrised form of the Morse lemma tells us that the normal bundle V =

TπE|Σ(π, f) of Σ(π, f) ⊂ E has a Riemannian metric 〈−,−〉, an orthogonal decompo-
sition V = V + ⊕ V −, and a tubular embedding λ : V → E so that

f ◦ λ(v) = f(z) + |v+|2 − |v−|2 (for small |v|).

This local information is collected in the set Wloc(X). There is also an analogous set
hWloc(X). These constructions lead to the diagram

|V| //

j1

��

|W| //

j2

��

|Wloc|
j

��

|hV| // |hW| // |hWloc|

The two right-hand j-maps are homotopy equivalences. The lower sequence is (by cal-
culation) a homotopy fibration, and finally we have the key result, based in part on the
Harer-Ivanov stability theorem:
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Theorem 3. The homotopy fibre of |W| → |Wloc| is homology equivalent to Z×BΓ∞,2.

But |hW| turns out to be an infinite loop space, and the same will be the case for |W|
according to Theorem 2. It follows that the homotopy fibber in Theorem 3 is an infinite
loop space. It is homology equivalent to Z×BΓ∞,2, thus homotopy equivalent to Z×BΓ+

∞,2.
A five-lemma argument completes the proof of the Main Theorem.

All the above represents joint work with Michael Weiss, cf. arXiv math. AT/0212321.

New finite loop spaces

Erik Pedersen

(joint work with Kasper Anderson, Tilman Bauer, and Jesper Grodal)

In their paper, Finite H-spaces and algebras over the Steenrod algebra, Adams and
Wilkerson mention the following problem as an old problem in Homotopy Theory: Does
there exist an H-space with a classifying space so that the rational cohomology is different
from the rational cohomology of every Lie-group? It was mostly believed that such H-
spaces do not exist. We do however construct such an H-space. The rank, the number of
exterior generators in the rational cohomology, in our example is 66, which by a computer
calculation is minimal. The dimension is 1254. We do know an example of higher rank
but dimension 1250. We do not know the minimal dimension.

Eta invariants and applications to positive scalar curvature
and homotopy invariants

Thomas Schick

Given the Dirac operator D on a closed spin manifold M and a finite dimensional
representation σ of the fundamental group, we can define the eta-invariant of Dσ, D twisted
by the flat bundle associated to the representation. Using the regular representation (which
is infinite dimensional if π is infinite) and an appropriate normalization procedure, in a
similar way the L2-eta invariant is defined.

The difference of the L2-eta invariant and the ordinary eta-invariant is the L2-rho in-
variant ρ(2)(D).

We discussed the following two theorems.

Theorem. If π contains odd torsion and the dimension of M is congruent to 3 mod 4, then
there are infinitely many different bordism classes of metrics of positive scalar curvature
on M , provided at least one such metric exists.

Theorem. If π is torsion free and the assembly map KO(Bπ) → KO(C∗
maxπ) is an

isomorphism, then the L2-rho invariant vanishes.

Key ingredients are appropriate versions of the Atiyah-Patodi-Singer index theorem, to-
gether with Gromov-Lawson surgery constructions for metrics of positive scalar curvature.
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Units of ringspectra and their traces in algebraic K-theory

Christian Schlichtkrull

When R is a discrete ring the natural map from the units of R to the algebraic K-theory
is realized by a map of spaces

BGL1(R) → K(R)

and if R is commutative this is split by the determinant. In the case of a ring spectrum
the above map still exists, but is in general not split even if R is commutative. In this talk
we identify the composition

BGL1(R) → K(R) → THH(R) → Ω∞(R)

when R is a commutative ring spectrum. As a corollary we show that classes in πiR not
annihilated by the stable Hopf map give rise to non-trivial classes in πiK(R).

From sporadic simple groups to exotic p-local finite groups

Antonio Viruel

The theory of p-local finite groups is a generalization of the classical theory of finite
groups in the sense that every finite group leads to a p-local finite group, but there exist
exotic p-local finite groups which are not associated to any finite group. Therefore, the
classification of p-local finite groups has interest not only by itself but as an opportunity
to enlighten one of the highest mathematical achievements of the last decades: The Clas-
sification of Finite Simple Groups. This Classification of Finite Simple Groups provides
26 mathematical gems, 26 sporadic finite simple groups that enjoy an intriguing property:
if G is a sporadic finite simple group with p-Sylow S ≤ G, p > 2, of order p3, then S is iso-
morphic to the extraspecial group of order p3 and exponent p, denoted by p1+2

+ , and p ≤ 13.
This fact, partially explained in this lecture, is the starting point for the classification of
p-local finite group over the p-groups of type p1+2

+ .

Outer space, graph homology, and the rational cohomology of Out(Fn)

Karen Vogtmann

Outer space is a contractible space on which the group Out(Fn) acts with finite stabi-
lizers. It was introduced in the mid-1980’s and has proved very useful in particular for
studying the cohomology of Out(Fn). In this talk I will recall the definition of Outer space
and several of the major cohomological applications. I will then describe two other aspects
of Outer space. First, I will define Kontsevich’s graph homology, and show how to identify
the graph homology chain complex with the relative chains of Outer space modulo its sim-
plicial boundary, twisted by the determinant action of Out(Fn) on the reals. In joint work
with Jim Conant, we show how this geometric realization can be used to produce a chain
complex quasi-isomorphic to the graph homology chain complex. This new chain complex
carries a Lie bialgebra structure, and is considerably smaller than the graph homology
chain complex, so can be used to simplify the computation of graph homology. I will then
define surface subcomplexes of Outer space, each of which can be identified with the ribbon
graph complex of a surface with punctures. These subcomplexes cover Outer space, and
it is a theorem of M. Horak that intersections are either empty or contractible. Thus the
action of Out(Fn) on the nerve of this cover produces a spectral sequence converging to
the cohomology of Out(Fn). The stabilizer of a surface subcomplex is the mapping class
group of the associated surface, so that this spectral sequence relates the cohomology of
the mapping class subgroups of Out(Fn) with the cohomology of Out(Fn).
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Minimal generating sets of Fuchsian groups

Richard Weidmann

The rank of a group G is the minimal number of elements needed to generate G. In
this talk we discuss the rank of Fuchsian group. For Fuchsian groups not containing
reflections the rank was computed by Zischang, Rosenberger and Peczynski, furthermore
all 2-generated Fuchsian groups were classified by Klimenko and Sakuma. In this talk we
show how to compute the rank of Fuchsian groups generated by reflections, i.e the rank
of planar Coxeter groups. This also gives a complete solution for non-cocompact Fuchsian
groups.

We reduce the computation of the rank of a planar Coxeter group to the computation
of a simple combinatorial complexity of an associated labeled graph. This reduction is
achieved by approximating the given Coxeter group with fundamental groups of graphs of
groups that are related by folding moves as discussed by Stallings, Bestvina-Feighn and
Dunwoody.

Vassiliev’s theorem on spaces of functions with moderate singularities

Michael Weiss

This expository talk was about a theorem due to V.Vassiliev. It served as background to
the three talks given by Ib Madsen at this meeting. Vassiliev’s theorem is one of the most
important ingredients in the proof of the Mumford conjecture given by Ib and myself.

To state Vassiliev’s theorem we need positive integers m, n, k and a closed semi-algebraic
subset A of the jet space Jk(Rm, Rn). The jet space Jk(Rm, Rn) can be described as the
space of pairs (z, f) where z ∈ Rm and f is a polynomial map of degree at most k from Rm

to Rn. But it is better to view f as an equivalence class of germs of maps from Rm to Rn,
defined near z; two such are equivalent if their k-th Taylor expansions at z agree. Then it
is clear that the group of smooth automorphisms of Rm acts on Jk(Rm, Rn). See the book
by Golubitsky and Guillemin, Stable mappings and their singularities, for more details on
jets.

We now require that A be invariant under the action of the group of smooth auto-
morphisms of Rm. For a smooth closed m-manifold M without boundary, let A(M) ⊂
Jk(M, Rn) consist of those jets which, in local coordinates near z ∈ M , belong to A. We
say that a smooth f : M → Rn has no A-singularities if its k-jet prolongation jkf , which
is a section of the jet bundle projection Jk(M, Rn) → M , avoids A(M). Now we have a
comparison map Φ, given by f 7→ jkf , from the space of smooth maps f : M → Rn which
have no A-singularities to the space of sections of Jk(M, Rn) → M which avoid A(M).

Theorem. The map Φ induces an isomorphism in integer cohomology if the codimension
of A in Jk(Rm, Rn) is at least m + 2.

It follows easily that Φ is a weak homotopy equivalence if that codimension is at least m+
3. There is also a version for compact smooth M with boundary; for that case we fix a
smooth ϕ : M → Rn which has no A-singularities in the interior of M near ∂M , and
allow only smooth maps f : M → Rn which agree with ϕ near ∂M . The theorem was
announced in 1989 with an outline of proof; more details can be found in Vassiliev’s book
on Complements of discriminants of smooth maps. It is a typical h-principle in the sense
of Gromov. But Vassiliev’s proof is untypical. It relies on the method which has made
Vassiliev’s name so popular in knot theory: learn something about a space of “good”
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smooth maps from a manifold M to Rn by studying and stratifying its complement in the
space of all smooth maps from M to Rn. (Here the good maps are the maps M → Rn

without A-singularities; in knot theory, they are the embeddings from S1 to R3.)
I concentrated on the special case where M is closed and tried to emphasize the impor-

tance of interpolation theory and transversality theory in Vassiliev’s proof. According to a
point of view which is explained in an article by Glaeser (Proceedings of Liverpool Singu-
larities Symposium, SLN 192), an interpolation problem consists in specifying a C∞(M, R)-
submodule Y of C∞(M, Rn) which has finite R-codimension c, and sometimes an element
of the finite dimensional vector space C∞(M, Rn)/Y . We look for “canonical” represen-
tatives in C∞(M, Rn) of the prescribed element of C∞(M, Rn)/Y . More to the point, we
might want to solve many interpolation problems using relatively few canonical elements.
So we fix the codimension c and search for a single finite dimensional R-linear subspace D
of C∞(M, Rn) which has the transversality property D + Y = C∞(M, Rn) for every codi-
mension c submodule Y as above. It turns out that many such D exist for given c. This can
be used to define a topology on the set of the codimension c submodules Y of C∞(M, Rn).
Conversely, the fact that this topology is compact Hausdorff implies that the set of finite
dimensional R-linear subspaces D of C∞(M, Rn) which are transverse to all codimension c
submodules Y as above is “open”. This combines well with the generic nature of other
good properties which such a D might have. For example, we might want the evaluation-
prolongation map (f, z) 7→ jkf(z) from D ×M to Jk(M, Rn) to be transverse to A(M),
assuming or hoping that A(M) has a good stratification inside Jk(M, Rn).

Rozansky-Witten theory: Lie algebras and complex manifolds

Simon Willerton

(joint work with Justin Roberts)

A 3-dimensional topological quantum field theory (3-d TQFT) is a mathematical object
comprising a 3-manifold invariant, knot invariants, and representations of mapping class
groups of surfaces. Chern-Simons theory is a 3-d TQFT associated to a fixed compact Lie
group (such as SU(2)), with origins in physics. This gives rise to quantum invariants of
knots such as the Jones polynomial.

Rozansky-Witten theory is a non-rigorously defined TQFT associated to a fixed hyper-
kähler (or holomorphic symplectic) manifold. Here a hyper-kähler manifold is a 4n-
dimensional Riemannian manifold with three complex structures, I, J and K, each com-
patible with the metric and satisfying the quaternion relations, such as IJ = K; and a
holomorphic symplectic manifold is a complex manifold with a non-degenerate, holomor-
phic two-form. Any hyper-kähler manifold gives a holomorphic symplectic manifold by
fixing one of the complex structures and using the other two to form a symplectic form.
Conversely any compact holomorphic symplectic manifold can be given a hyper-kähler
metric.

A weight system is in some sense an infinitesimal knot invariant. It is a combinatorial
invariant of certain graphs and in Chern-Simons theory is obtained from the structure
constants and Killing form of the Lie algebra. The Rozansky-Witten weight systems were
rigorously written down by Rozansky and Witten in terms of the curvature tensor of
the hyper-kähler manifold. Kapranov showed that in the holomorphic symplectic world
they could be defined using the holomorphic symplectic form and the Atiyah class of the
holomorphic tangent bundle. Where the Atiyah class αE ∈ H1(X, T ∗ ⊗ End(E)) of a
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holomorphic vector bundle E → X is a characteristic class which can be viewed as a
holomorphic version of curvature.

The bounded derived category of coherent sheaves on a complex manifold X is the
category whose objects are complexes of coherent sheaves and whose morphism sets are
homotopy classes of maps, with the quasi-isomorphisms formally inverted. A sheaf E can
be considered as an object in the derived category which is concentrated in degree zero,
similarly E[−i] denotes the sheaf concentrated in degree i. If E and F are sheaves on X then
the morphism set has the interpretation: Mor(E[−i], F ) ∼= Exti(E, F ) ∼= H i(X, E∗ ⊗ F ).

Theorem. Suppose X is a complex manifold, T is the holomorphic tangent bundle, αT is
the Atiyah class.

(1) The Atiyah class αT ∈ Mor(T [−1]⊗ T [−1], T [−1]) makes T [−1] into a Lie algebra
object in the derived category of X.

(2) If E is an object of the derived category then its Atiyah class in Mor(E⊗T [−1], E)
makes E into a module over T [−1].

(3) If ω is a holomorphic symplectic form on X, then, considered as an element of
Mor(T [−1]⊗ T [−1],OX [−2]), gives an “invariant inner product” on T [−1].

¿From this the derived category can be considered to be the representation category
of T [−1], and the Rozansky-Witten weight systems can be recovered exactly as they are in
Chern-Simons theory. One can then try to do with this object T [−1] whatever one would
do with usual Lie algebras.

¿From here, with Justin Sawon, we are trying to rigorously construct the entire Rozansky-
Witten TQFT.

Edited by Marco Varisco
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