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The 2003 
onferen
e on Singularity theory in Oberwolfa
h was organised by J. Steenbrink

(Nijmegen), D. van Straten (Mainz) and V. Vassiliev (Moskow). A total of 23 le
tures was

held on a variety of re
ent results and methods in the theory of singularities of mappings

and spa
es. Besides more 
lassi
al questions on the topology of normal surfa
e singularities

and three-manifolds, appli
ations of the newer te
hniques related to tropi
al geometry and

motivi
 integration were dis
ussed in various le
tures. A 
ouple of talks were held on

topi
s in the neighbouring �elds of 
lassi
al algebrai
 geometry, homologi
al algebra and

mixed Hodge Theory. Some le
tures were devoted to algorithmi
 aspe
ts and appli
ations

of 
omputer algebra.
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Abstra
ts

A Tropi
al Approa
h to Enumeration of Singular Algebrai
 Curves

E. Shustin

The tropi
al algebrai
 geometry is an algebrai
 geometry over the tropi
al semiring (R;�;�)

with a � b = a + b, a � b = maxfa; bg. For example, tropi
al 
urves in R

2

are non-

Ar
himedean amoebas, the images of algebrai
 
urves in (K

�

)

2

, K being an algebrai
ally


losed �eld of 
hara
teristi
 0 with a non-Ar
himedean valuation � : K

�

! R su
h

that �(ab) = �(a) + �(b), �(a + b) � maxf�(a); �(b)g, �(K

�

) = R and the map is

(z

1

; z

2

) 2 (K

�

)

2

7! (�(z

1

; z

2

)) 2 R

2

. It is known that non-Ar
himedean amoebas are

1-dimensional graphs, the 
orner lo
i of 
onvex pie
e-wise linear fun
tions

N

f

(x) = max

!

(x � ! + �(a

!

))

where f =

P

!

a

!

z

!

2 K[z℄. Kontsevi
h proposed to 
ount nodal algebrai
 
urves passing

through respe
tive number of generi
 points via enumeration of "nodal" amoebas passing

through generi
 points in R

2

. Mikhalkin realized this for nodal 
urves on tori
 surfa
es

asso
iated with 
onvex latti
e polygons in R

2

, in the form: degree of the 
orresponding

Severi variety is equal to the number of spe
i�
 \nodal" amoebas passing through generi


points in the plane and 
ounted with weights. Furthermore, the 
ounting of amoebas

redu
es to 
ounting of 
ertain latti
e paths in the given Newton polygon. We suggest an

algebrai
-geometri
 proof of the theorem:

(1) We show that a singular 
urve over K is an equisingular family of 
omplex 
urves.

(2) We de�ne tropi
al limits of su
h families, whi
h are 
urves on redu
ible surfa
es,

whose 
omponents 
orresponds to polygons in subdivisions of the given Newton

polygon.

(3) The pat
hworking 
onstru
tion restores an equisingular family of 
urves out of the

tropi
al data.

As an appli
ation we present

Theorem 1. (Itenberg, Kharlamov, Shustin) Through any 3d � 1 generi
 points in RP

2

there exist �

d!

2

real rational 
urves of degree d.

Iterated vanishing 
y
les and a 
onje
ture of J. Steenbrink

Mi
hel Merle

(joint work with G. Guibert and F. Loeser)

Given an algebrai
 variety X over C and a fun
tion f : X ! C one 
an de�ne, fol-

lowing Loeser and Denef, the motivi
 Milnor �bre S

f;x

of f at x 2 X for any point x

where f vanishes. They also de�ne S

�

f;x

as (�1

d�1

) (S

f;x

� [C

�

℄). S

f;x

is an element of a

Grothendie
k ring M

C

�

X�C

�

of varieties above X � C

�

, with a C

�

-a
tion and a map to C

�

,

whi
h is C

�

-equivariant.

If one is given another fun
tion g : X ! C, g(x) = 0, one wants to de�ne S

g

(S

f

). This

is an element of the Grothendie
k ringM

(C

�

)

2

X�(C

�

)

2

of varieties with (C

�

)

2

-a
tion and a map

to X � (C

�

)

2

, whi
h is (C

�

)

2

-equivariant.
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When a variety A has two maps u; v : A! C

�

the 
onvolution is de�ned as

A

u

����
��
��
��
�

v

��
//

//
//

//
/

�

= �

2

6

6

6

6

4

An(u+ v)

�1

(0)

u+v

��

C

�

3

7

7

7

7

5

+

2

6

6

6

6

4

C

�

� (u+ v)

�1

(0)

pr

1

��

C

�

3

7

7

7

7

5

If A 2 M

(C

�

)

2

(C

�

)

2

, then the 
onvolution belongs to M

C

�

C

�

.

Theorem 1. Let X be an algebrai
 variety, x 2 X, f; g algebrai
 maps to C su
h that

f(x) = g(x) = 0. Then for N suÆ
iently large

�

h

S

g;x

(S

�

f

)

i

= S

�

f;x

� S

�

f+g

N

;x

As an appli
ation, we give a new proof of Steenbrinks 
onje
ture (�rst proved by M.

Saito): If dim(Sing(f)) = 1 and g, say, a linear form, 
ompute the di�eren
e between the

Spe
trum(f; x) and Spe
trum(f + g

N

; x) in terms of the sheaf of vanishing 
y
les of f on

the smooth part of Sing(f).

Global Euler obstru
tion and polar invariants

Mihai Tibar

(joint work with Pepe Seade and Alberto Verjovsky)

We de�ne a global Euler obstru
tion Eu(Y ) for an aÆne singular variety Y � C

N

of pure

dimension d in a similar manner as the lo
al Euler obstru
tion introdu
ed by Ma
Pherson,

i.e., as the obstru
tion to extend a radial ve
tor, de�ned on the link at in�nity of Y , to a

non-zero se
tion of the Nash bundle.

We prove that Eu(Y ) 
an be expressed as an alternating sum

(1) Eu(Y ) = (�1)

d

�

(1)

Y

+ : : :� �

(d)

Y

+ �

(d+1)

Y

where �

(1)

Y

is the number of Morse points of Y

reg

of a Lefs
hetz pen
il on Y and the following

ones are similar numbers de�ned on su

essive generi
 hyperplane sli
es of Y . For instan
e,

if Y is non-singular, then Eu(Y ) = �(Y ).

The invariants �

(i)

Y


an be viewed as global polar multipli
ities. Lo
al polar multipli
ities

where used by L and Teissier in the formula [LT, Annals of Math., `81℄ for the lo
al Euler

obstru
tion. Our proof of (1) has di�erent 
avour than L-Teissier's proof in the lo
al 
ase.

It relies on the repeated use of the Lefs
hetz sli
ing method and on extending a radial

ve
tor �eld starting from a sli
e.

On a �ltration de�ned by ar
s on a variety

Wolfgang Ebeling

(joint work with Sabir M. Gusein-Zade)

Let (V; 0) be a germ of a 
omplex analyti
 variety and let O

V;0

be the ring of germs of

fun
tions on it. We de�ne a �ltration on O

V;0

whi
h we 
all ar
 �ltration. An ar
 ' on

(V; 0) is a germ of a 
omplex analyti
 mapping ' : (C; 0) ! (V; 0). For a germ g 2 O

V;0
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its order v

'

(g) on the ar
 ' is de�ned as the order of the 
omposition g Æ ' at the origin.

Let v(g) be the minimum over all ar
s ' on (V; 0) of the orders v

'

(g). The ar
 �ltration

O

V;0

= F

0

� F

1

� F

2

� : : :

on the ring O

V;0

is the �ltration by the ideals F

i

:= fg 2 O

V;0

j v(g) � ig.

We 
ompute the Poin
ar�series of this �ltration for the surfa
e singularities from Arnold's

lists in
luding the simple and the uni- and bimodular ones. The 
lassi�
ation of the

unimodular singularities by these Poin
ar�e series turns out to be in a

ordan
e with the

hierar
hy de�ned by E. Brieskorn using the adja
en
y relations. Besides that, we give a

general formula for the Poin
ar�e series of the ar
 �ltration for isolated surfa
e singularities

whi
h are stabilizations of plane 
urve singularities.

Poin
ar�e series and zeta fun
tions

Jan Stevens

Several 
ases are known when the �-fun
tion of the monodromy of a singularity is related

to the Poin
ar�e series of its 
oordinate ring. The �rst instan
e of this phenomenon was

observed by Campillo, Delgado and Gusein-Zade: For an irredu
ible plane 
urve singularity,

the �-fun
tion equals its Poin
ar�e series. There are several �-fun
tions around in singularity

theory. The monodromy is a dire
t analogue to �-fun
tions from number theory.

For quasi-homogeneous 
omplete interse
tions, a formula of Ebeling and Gusein-Zade


omputes the Poin
ar�e series (multiplied with an orbit invariant) in terms of the �-fun
tions

of the fun
tion f

j

on the zero set of f

1

; : : : ; f

j�1

.

>From this we derive the original formula for irredu
ible 
urves. Key ingredients are that

the monomial 
urve with the same semi-group is a 
omplete interse
tion and that the plane


urve is a deformation of it. This enables us to give a model for the monodromy knowing

the singular quasi-homogeneous Milnor �bre and the lo
al Milnor �bres of its singularities.

In this way, the quasi-homogeneous formula be
omes the primary obje
t, whi
h has to

be explained 
on
eptually.

Betti numbers of semi- and subalgebrai
 sets

A. Gabrielov

(joint work with N. Vorobjov (Bath, UK) and T. Zell (Purdue))

Spe
tral sequen
es asso
iated with surje
tive maps and Hausdor� limits allow one to


ompute or at least to obtain an upper bound for the Betti numbers of sets de�ned by

expressions with semialgebrai
 
onditions and quanti�ers, preserving additional stru
ture

su
h as sparsity of the semialgebrai
 
onditions.

Degeneration of the Leray spe
tral sequen
e for 
ertain quotient mappings

J. Steenbrink

(joint work with Chris Peters)

We 
onsider an aÆne 
omplex algebrai
 group G a
ting on a smooth algebrai
 variety X

with geometri
 quotient � : X ! Y . We give geometri
 
onditions ensuring that the Leray

spe
tral sequen
e of � in rational 
ohomology degenerates at E

2

. We show that these are

ful�lled for X = V n�, V = C[z

0

; : : : ; z

n

℄

d

, � = dis
riminant, G = GL(n + 1;C), d � 3.

We 
ommuni
ate the result of Orsola Tommasi, proved using similar methods: The Betti

numbers b

i

of the moduli spa
e M

4

of smooth Riemann surfa
es of genus four are equal

to one if i 2 f0; 2; 4; 5g and zero else.

4



Hurwitz numbers of generalized polynomials

S. Shadrin

A Hurwitz number is the number of 
overings with �xed rami�
ation types over �xed

points in the target. We give some relations for Hurwitz numbers 
oming from the inter-

se
tion theory of the moduli spa
es of 
urves. In fa
t, these relations are just geometri
al

interpretation of some formulas. The initial formulas for interse
tion numbers on the mod-

uli spa
es of 
urves are a powerful tool for 
omputation of 
on
rete integrals. We generalize

this approa
h to give an algorithm for 
al
ulation of the simplest Hodge integrals.

Monodromy and \Dessin d'Enfants"

Norbert A'Campo

A generi
 relatively immersed 
urve P in the unit dis
 D

2

� R

2

de�nes by L(P ) =

TP \ S

3

a knot or link in S

3

. Indeed, think of the tangent spa
e TP as a subset in R

4

via

the 
hain of in
lusions TP � TD � TR

2

= R

4

and S

3

as unit sphere in R

4

. Links of type

L(P ) are very spe
ial: (We assume P to be 
onne
ted)

(1) The 
omplement S

3

nL(P ) is �bred over S

1

. The monodromy is a produ
t of � =

h

1

(fibre) positive Dehn twists. The position of the 
ore 
urves of the twists on the

�bre is read o� from the 
ombinatori
s of P � D.

(2) The 
onta
t stru
ture of the �bred link as 
onstru
ted by Emanuel Gi
oux is tight.

(3) If P is the image of [0; 1℄ in D

2

, then the unknotting number u(L(P )) of the knot

L(P ) equals Æ(P ) := number of double points of P . The 4-genus g

4

(L(P )) = Æ(P ).

The 
onstru
tion fP � D

2

g ! fL(P ) � S

3

g of 
lassi
al links �ts with singularity theory:

The saddle points level P

e

f

on R

2

\D

�

of a real morsi�
ation

e

f of a plane 
urve singularity

ff = 0g with real equation and with Milnor ball B

�

� C

2

is an immersed 
urve to whi
h

the 
onstru
tion applies. We get

Theorem 1. The links L(P

e

f

) � S

3

and ff = 0g \ �B

�

� �B

�

are equivalent as oriented

links.

As topologi
al appli
ation we have

Theorem 2. The higher Milnor linking invariants of the link L(P ) of P � D

2

with three

or more 
omponents vanish.

A graph in D

2

as � de�nes an immersed 
urve P (�) by putting on ea
h edge

an \X" to obtain . It is a lot of fun to draw these 
urves.

We study espe
ially immersed 
urves of planar trees in D. It seems that links of planar

trees �

1

;�

2

that are related by the a
tion of Gal(Q=Q) on isotopy types of planar trees

have mu
h in 
ommon. The a
tion of Gal(Q=Q) on isotopy types of trees is de�ned in the

theory of \dessin d'enfants", espe
ially by using Belyi's theorem. We spe
ulate that the

knot groups of L(P

�

1

) and L(P

�

2

) are isomorphi
 after pro�nite 
ompletion, if �

1

and �

2

are 
onjugated by Gal(Q=Q). We give a 
onstru
tion to support this spe
ulation without

proving it. Re
ent work of A. Shumakovit
h shows that the se
ond Vassiliev invariant

v

2

(L(P )) is related to the J

�

and \strangeness" invariants of Arnold of the underlying

immersed 
urve P .
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The Casson Invariant Conje
ture

Walter Neumann

(joint work with J. Wahl)

The Casson Invariant Conje
ture asserts that if (V; 0) is an isolated 
omplete interse
-

tion surfa
e singularity, F its Milnor �bre and � its link, and if � is an integral homology

sphere, then

�(�) =

1

8

sign(F )

where � is the Casson invariant.

We formulated this 
onje
ture 15 years ago and proved some spe
ail 
ases. At the

time, �nding expli
it examples was diÆ
ult as well as then 
on�rming the 
onje
ture. The


onje
ture 
an be strengthened by weakening \
omplete interse
tion" to \Gorenstein" and

repla
ing the equation by

�(�) = �p

g

(V; 0)�

1

8

(


2

1

+ 


2

� 1)(

e

V )

where

e

V is a resolution.

However, we 
onje
ture:

Classi�
ation 
onje
ture: If (V; 0) is a Gorenstein surfa
e singularity with homology

sphere link �, then (V; 0) is in fa
t a 
omplete interse
tion and even of \spli
e type".

\Spli
e type" is a natural generalization of Brieskorn-Pham 
omplete interse
tions. Very

many, but not all homology sphere singularity links o

ur as links of spli
e type 
omplete in-

terse
tions. The name \spli
e type" 
omes from the fa
t that the relevant homology spheres

are 
lassi�ed by 
ertain weighted trees 
alled \spli
e diagrams" (Eisenbud-Neumann, Ann.

Math. Studies 110, 1985).

Among the results dis
ussed:

Theorem 1. The Casson Invariant Conje
ture holds for a spli
e type singularity whose

spli
e diagram has all its nodes in a line.

Theorem 2. If (V; 0) has a homology sphere link and ea
h knot K � � 
orresponding to a

leaf of the spli
e diagram is 
ut out by a fun
tion ff(x) = 0g on V then (V; 0) is a 
omplete

interse
tion of spli
e type.

Theorem 3. We have a 
onje
tured topologi
al des
ription of the Milnor �bre of a 
omplete

interse
tion with homology sphere link � just in terms of � whi
h would imply the Casson

Invariant Conje
ture and whi
h is valid at least for suspension hypersurfa
es: z

n

= f(x; y).

Some other 
ases of the Casson Invariant Conje
ture have been proved by Collin and

Saveliev. Nemethi and Ni
olaes
u have a generalization to Q-homology sphere links.
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Invariants of normal surfa
e singularities

Andrs Nmethi

(joint work with L. Ni
olaes
u)

Assume that (X; 0) is a normal surfa
e singularity whose link M is a rational homology

sphere. If

e

X is a resolution with s irredu
ible ex
eptional divisors and 
hara
teristi
 
lass

K, then K

2

+ s is independent of the resolution, it is a topologi
al invariant of (X; 0).

Let sw

�

M;
an

be the (or any 
andidate for) Seiberg-Witten invariant ofM asso
iated with

the 
anoni
al spin




-stru
ture. (Here, one 
an 
onsider the modi�ed topologi
al Seiberg-

Witten invariant; or the Turaev-Reidemeister torsion normalized by the Casson-Walker

invariant, or the Ozsv�ath-Szab invariant. Conje
turally, these are all equal.) Finally, let

p

g

be the geometri
 genus of (X; 0). Then the following fa
ts holds 
onje
turally:

Conje
ture 1. (1) p

g

� �sw

�

M;
an

�

K

2

+s

8

(2) the right hand side is an optimal topologi
al upper bound: if (X; 0) is Q-Gorenstein,

then p

g

= �sw

�

M;
an

�

K

2

+s

8

.

The 
onje
ture was veri�ed for quotient singularities, suspension singularities (f(a; b) +

z

n

= 0, f irredu
ible) and singularities with good C

�

-a
tion. The 
ase of singularities with

C

�

-a
tion was dis
ussed in some details.

Spli
e diagram 
omplete interse
tion singularities

Jonathan Wahl

(joint work with Walter Neumann)

Suppose (V; 0) is a normal surfa
e singularity whose link � is a QHS (\rational homology

sphere"), i.e. H = H

1

(�;Z) is �nite. The UAC (\universal abelian 
overing")

e

� ! � is

realized by a map (

e

V ; 0) ! (V; 0), an H-
overing o� the 0, and is also 
alled the UAC.

From the resolution diagram � of V (a tree of rational 
urves), one asso
iates another

graph � 
alled a \spli
e diagram", e.g.

−2 −2 −2

−2−2

−3
4 2

2

7

2

3

Most of the time, one 
an asso
iate equations to �, de�ning \spli
e diagram 
omplete

interse
tion singularities" X(�).

Further, \mu
h of the time" there is an a
tion of the group H on X(�). Spe
i�
ally,

there are 
onditions on � that equations and an H-a
tion exists.

Theorem 1. X(�) has an isolated singularity, H a
ts freely on X(�)nf0g, X(�) !

X(�)=H is the universal abelian 
overing and � is a resolution dual graph for X(�)=H.

In other words, we 
onstru
t equations of a singularity with given topologi
al type

(determined by �).

Conje
ture 2. Let (V; 0) be Q-Gorenstein, with QHS link. Then the UAC of (V; 0) is a


omplete interse
tion, an equisingular deformation of X(�).

This generalizes a 1982 theorem of W. Neumann: if (V; 0) is in addition weighted ho-

mogenous, the UAC is a Brieskorn 
omplete interse
tion (a spe
ial 
ase of X(�))).
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Algorithmi
 resolution of singularities from a pra
ti
al point of view

Anne Frhbis-Krger

(joint work with Gerhard P�ster)

In the 1990s, algorithmi
 proofs of resolution of singularities were found independently by

Bierstone and Milman and by Villamayor. But it is still one more step from an algorithmi


proof to an implementable algorithm. In this talk, we have a look at the elements of Villa-

mayor's proof and 
onsider the modi�
ations that are ne
essary to obtain an implementa-

tion whi
h 
an handle interesting examples. On a few examples, the SINGULAR library


ontaining the (
urrent state of) the implementation is presented. (work in progress)

Polynomial Lie algebras and versal deformations

V. Bu
hstaber

(joint work with D. V. Leikin)

We introdu
e and study a spe
ial 
lass of in�nite-dimensional Lie algebras that are modules

of �nite type over a polynomial ring. They have 
anoni
al representations as moving frames

with polynomial stru
ture fun
tions. For simple singularities, the �elds form moving frames

with polynomial 
onne
tion on the subspa
e of parameters of positive weight.

A parti
ular result is the dire
t 
omputation of 
onvolution of matri
es. Convolution

matri
es de�ne moving frames related to the potential �elds 
oming from the Vita mapping.

Under this map, we may loose the polynomiality of the 
onne
tion 
oeÆ
ients, however,

the stru
ture fun
tions stay polynomial. The nature of this kind of results is due to the

fa
t that the theory of polynomial Lie algebras 
ombines the properties of Lie algebroids

(studied in di�erential geometry) and free divisors (studied in singularity theory).

Pen
ils of K3-surfa
es with maximal Pi
ard number

A. Sarti

(joint work with W. Barth)

I des
ribe three parti
ular pen
ils of K3-surfa
es with maximal Pi
ard number. More

pre
isely the general member in ea
h pen
il has Pi
ard number 19 and ea
h pen
il 
ontains

four surfa
es with Pi
ard number 20. These surfa
es are obtained as the minimal resolution

of quotients X=G, where G � SO(4;R) is some �nite subgroup and X � P

3

(C ) denotes

a G-invariant surfa
e. The singularities of X=G 
ome from �x points of G on X or from

singularities of X. In any 
ase the singularities on X=G are A�D�E surfa
e singularities.

The rational 
urves whi
h resolve them give almost all the generators of the Neron-Severi

group of the minimal resolution.
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Exterior Algebra Methods and Appli
ations

Frank-Olaf S
hreyer

(joint work with D. Eisenbud and G. Fl�stad)

It is well known that the derived 
ategory of 
oherent sheaves on P

n

is equivalent to the

stable module 
ategory of graded modules over the exterior algebra (Bernstein, Gel'fand,

Gel'fand, 1979):

mod(E)

�

=

D

b

(P

n

)

by P 7�!

℄

L(P ) with

℄

L(P ) : : : :! P

i


O(�i)! P

i�1


O(�i + 1)! : : :

In this talk we answer the question how to �nd an element P 2 mod(E) 
orresponding to

a sheaf and whi
h P 
orrespond to sheaves.

The se
ond part is an appli
ation to Chow forms and resultants. For example, the

Sylvester matrix for the resultant of two binary forms of the same degree 
an be thought

of as the syzygy matrix of the Bzout determinant of the resultant.

Def 6= Di� for 1-
onne
ted Surfa
es

Fabizio Catanese

(joint work with B. Wajnryb)

Def = Di� was a spe
ulation of Friedman-Morgan in the 80's, namely that two smooth

algebrai
 surfa
es are deformation equivalent i� they are di�eomorphi
. Indeed, X �

def

Y

implies the existen
e of a di�eomorphism � : X ! Y s.t.

�

�

(K

Y

) = K

X

(�)

where K

X

is the 
lass of the 
anoni
al divisor in H

2

(X;Z).

Counterexamples were given by Manetti in '97, later by Kharlamov-Kulikov and myself.

The later are obtained by exhibiting surfa
es with S 6�

def

�

S, and indeed have the drawba
k

that there does not exist a di�eomorphism � satisfying (�). Moreover, in these examples,

there is a �nite etale 
over

^

S of S for whi
h there is only one deformation type. I reported

on the following:

Theorem (C, Wajnryb). 8r 9r di�erent deformation types with the same di�erentiable

type, and moreover they are 1-
onne
ted, i.e. �

1

(S) = 0.

The examples are very simple, they are given by taking equations

z

2

= f

2a;2b

(x; y)

w

2

= g

2
;2b

(x; y)

yielding a (Z=2)

2

-
over of P

1

�P

1

denoted by S(a; b; 
). Here f

n;m

(x; y) denotes a bihomo-

geneous polynomial of bidegree (n;m).

Theorem 2 (C, Wajnryb). S

0

= S(a+ 1; b; 
� 1) is di�eomorphi
 to S = S(a; b; 
).

Theorem 1 (C, Manetti; through a series of papers). Assume a � 2
 + 1, a � b + 2,


 � b+ 2 and a; b; 
 even. Then the family of natural deformations

z

2

= f + w 

w

2

= g

yields a 
omplete deformation 
lass.
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Note: Z=2 a
ts by z 7! �z, and by w 7! �w on the quotient. I sket
hed the ideas

behind the proof: For theorem 1 one uses that if S

t

! S

0

, the limit M

t

�

=

P

1

� P

1

,

M

t

=

�

(S

t

)=(Z=2)

�

=(Z=2)!M

0

.

A 
lassi�
ation of the singularities of M

0

, plus the fa
t that we have a Q-Gorenstein

smoothing and the Milnor �bre is � P

1

� P

1

shows that M

0

is smooth.

For theorem 2 we observe that S; S

0

are �bre sums N

1

#N

2

and N

1

#

 

N

2

of 2 SLF

(Symple
ti
 Lefs
hetz Fibrations) over

�

�.

A lemma of Auroux shows that the �bre sum is independent of  if the monodromy on

�� is trivial and  is a produ
t of the Dehn twists asso
iated to N

1

!

�

�. I showed some

pi
tures of  and of the vanishing 
y
les.

Limits of Hodge stru
tures in several variables

Taro Fujisawa

I talked about a generalization of the famous results by J. Steenbrink on limits of Hodge

stru
tures. Here I treat a morphism over a higher dimensional polydis
 whi
h is proper,

surje
tive and satis�es some 
onditions (something like semi-stable degeneration). I ex-

plained how to 
onstru
t a 
ohomologi
al mixed Hodge 
omplex whi
h gives the limit

mixed Hodge stru
ture. L.-H. Tu's previous work suggested a 
andidate whi
h I proved to

be the 
orre
t one for the C-stru
ture level. But I had to 
onstru
t a new Q-stru
ture. I

talked about the 
onstru
tion of the Q-stru
ture by using the log-stru
ture asso
iated to

the morphism whi
h I 
onsidered.

Pat
hworking Singular Algebrai
 Curves

Ilya Tyomkin

(joint work with E. Shustin)

In the talk we will dis
uss a method (
alled Geometri
 Pat
hworking) for 
onstru
ting

algebrai
 varieties with pres
ribed \lo
al" geometry. This method 
an be tra
ed ba
k to

Viro's method (and its modi�
ations suggested by Shustin). From our point of view Pat
h-

working (both Viro's and Shustin's versions) is equivalent to the study of deformations of

pairs 
onsisting of a surfa
e X

t

and a 
urve C

t

� X

t

(either real or 
omplex; either smooth

or singular, depending on the 
ontext). More pre
isely, we study deformations of surfa
es

(equipped with a line bundle L) having redu
ible 
entral �ber and given generi
 �ber, i.e.

the surfa
e X

0

is a union of some surfa
es �

i

and the generi
 �ber is the given surfa
e �.

We 
onstru
t a 
urve in the 
entral �ber, given by a se
tion of L

0

and having required

geometry, and we ask whether one 
an deform this 
urve into a 
urve on the generi
 �ber

preserving the geometry. As a result we will generalize some results of Greuel, Lossen,

Shustin, Keilen, Ciliberto and Chiantini.

Symple
ti
 singularities from the Poisson point of view

Dmitry Kaledin

Symple
ti
 singularities are a new kind of singularities re
ently introdu
ed by A. Beauville;

very important 
ontributions were also made by Y. Namikawa. By de�nition, X has

symple
ti
 singularities i�

(1) There is a non-degenerate 
losed two-form 
 on the smooth lo
us U � X (we

assume X to be a normal algebrai
 variety over C).
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(2) The form 
 extends without poles to a smooth resolution

e

X ! X.

This de�nition does not depend on the resolution; it is easy to see that symple
ti
 singu-

larities are Gorenstein, 
anoni
al and rational. Examples in
lude:

(1) Quotient singularities V=G, G � Sp(V )

(2) so-
alled quiver varieties of Nakajima

(3) the nilpotent 
one N � g of a semi-simple Lie algebra g

There is vague hope that all symple
ti
 singularities are of \this type", but it is too early

to formulate a pre
ise 
onje
ture.

There is one thing 
ommon to all the examples: In all the 
ases X admit a strati�
ation

X

i

su
h that all the open strata X

Æ

i

are smooth and symple
ti
. The goal of the talk is

to produ
e su
h a strati�
ation in the general setting. To be able to tie together all the

symple
ti
 stru
tures on all strata we make use of a Poisson s
heme. Unlike the symple
ti


form, the Poisson bra
ket requires no assumption of smoothness. It is easy to see that

a symple
ti
 singularity is Poisson. We 
all a Poisson s
heme holonomi
 if the indu
ed

Poisson stru
ture on every Poisson subs
heme is non-degenerate in the generi
 point. Our

main result states that every symple
ti
 singularity is holonomi
 as a Poisson s
heme. The

strati�
ation we are looking for then follows easily: The singular lo
us Sing(X) � X is a

Poisson subs
heme, whi
h is also holonomi
. We take XnSing(X) as the �rst open stratum

and stratify Sing(X) by indu
tion.

Matveev-Piergallini theorem and singularities of 
ut lo
i

Sergei Anisov

A spine P of a 3-manifoldM is a subpolyhedron of dimension� 2 su
h that the manifoldM

(either with boundary or pun
tured in one point) 
an be 
ollapsed onto P . Spe
ial spines

ofM

3

(spines that satisfy some generi
ity 
onditions) inherit all the information aboutM

3

.

A manifold always has a spe
ial spine (in�nitely many ones, in fa
t). Transformations T

and T

�1

are lo
al surgeries 
onverting spe
ial spines to other spe
ial spines of the same

3-manifold:

EBCD

A

B

C

E

D

A

B

C

E

D

A

C

D

E
ADEB

ABEC

, and
,

ACED

B

A

B

C

D

E

ABCD and

In 1988, Matveev and Piergallini independently have proved that all spe
ial spines of the

same 3-manifold 
an be 
onverted into ea
h other by several T

�1

-moves. This fa
t is


ru
ial, e.g. for the 
onstru
tion of Turaev-Viro invariants: a state sum de�ned for a spine

is an invariant of a manifold if T

�1

-moves do not 
hange it. Both Matveev and Piergallini

proofs are rather sophisti
ated, te
hni
ally as well as 
on
eptually.

>From the singularity point of view, spines are 
ut lo
i for appropriate metri
s on M

3

.

This observation leads to a knew proof of the Matveev-Piergallini theorem, still not very

short but more transparent.
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Multipoint Seshadri Constants

Joaquim Ro

�

e

(joint work with B. Harbourne)

Working over C and formalizing and sharpening approa
hes introdu
ed by Xu, Szemberg

and Tutaj-Gasi�nska, we give a method for verifying when a divisor on a blow up of P

2

at

general points is nef. The method is useful both theoreti
ally and when doing 
omputer


omputations. The main appli
ation is to obtaining lower bounds on multipoint Seshadri


onstants on P

2

. In 
ombination with methods previously developed to estimate the degree

of singular 
urves, signi�
antly improved expli
it lower bounds are obtained.

Engel-like identities 
hara
terizing �nite solvable groups

Gert-Martin Greuel

(joint work with T. Bandman, F. Grunewald, B. Kunyavskii, G. P�ster, E. Plotkin)

We report on a result by the above six (!) authors, 
hara
terizing �nite solvable groups by

an indu
tively de�ned Engel-like sequen
e of two-variable identities.

Let G be a group and x; y 2 G. De�ne

u

1

(x; y) := x

�2

y

�1

x

and u

n+1

(x; y) := [xu

n

(x; y)x

�1

; yu

n

(x; y)y

�1

℄ for n � 2,

where [a; b℄ = aba

�1

b

�1

is the 
ommutator for all x; y 2 G.

Theorem 1. A �nite group G is solvable if and only if for some n the identity u

n

(x; y) = 1

holds for all x; y 2 G.

Note that this theorem is analogous to Zorn's result whi
h 
hara
terizes the �nite nilpo-

tent groups by the 
ondition that for some n, e

n

(x; y) = 0 for all x; y 2 G, where e

n

(x; y)

is the Engel sequen
e de�ned by e

1

(x; y) = [x; y℄, e

n+1

(x; y) = [e

n

(x; y); y℄. The above

theorem was 
onje
tured by Plotkin in a slightly modi�ed form.

Clearly, in every solvable group the identities u

n

(x; y) = 1 are satis�ed for all n � some

n

0

. The non-trivial \if" part will be dedu
ed from the following.

Theorem 2. Let G be one of the following groups:

(1) G = PSL(2;F

q

), where q � 4 (q = p

n

, p a prime),

(2) G = Sz(2

n

), n � 3 and odd,

(3) G = PSL(3;F

3

).

Then there are x; y 2 G su
h that u

1

(x; y) 6= 1 and u

1

(x; y) = u

2

(x; y).

Sin
e the groups in theorem 2 
ontain Thompsons list of �nite simple groups all of whose

subgroups are solvable, theorem 1 follows easily from theorem 2.

For small groups from the list in theorem 2 it is an easy 
omputer exer
ise to verify the

statement. The general proof of theorem 2 is however surprisingly 
omplex and involves

not only group-theoreti
 methods but also methods from algebrai
 geometry, arithmeti


geometry and 
omputer algebra, in parti
ular the 
omputer algebra systems SINGULAR

and MAGMA. Not only proofs but even the pre
ise statements of our results would hardly

have been found without extensive 
omputer experiments.

The general idea is roughly as follows: ForG in the above list, use a matrix representation

over F

q

and interpret solutions of the equation u

1

(x; y) = u

2

(x; y) as F

q

-rational points of an

12



algebrai
 variety. To ensure that u

1

(x; y) 6= 1 holds, we take x; y from appropriate Zariski-


losed subsets only. In the PSL(2;F

q

)-
ase, we obtain a 
urve de�ned over Z for whi
h

the Hasse-Weil bound guaranties F

q

-rational points if q is big enough and if the redu
tion

mod q is absolutely irredu
ible. The expli
it bound for q and the absolute irredu
ibility

(for all q!) are proved by Grbner basis methods using SINGULAR. The Suzuki groups

Sz(q), q = 2

n

, n odd, provide the most diÆ
ult 
ase. Indeed, we 
onstru
t a 2-dimensional

variety V � A

8

de�ned over F

2

whi
h is aÆne, smooth, absolutely irredu
ible and whi
h

is �-invariant where � : A

8

! A

8

is the square root of the Frobenius su
ht that non-zero

�xed points of �

n

give rise to solutions of 1 6= u

1

(x; y) = u

2

(x; y) in Sz(2

n

). The existen
e

of su
h �xed points follows from the Lefs
hetz tra
e formula as 
onje
tured by Deligne and

proved by Fujiwara. To apply all this, SINGULAR was an indispensible tool.

Edited by Konrad M�ohring and Christian Sevenhe
k
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