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Twenty years ago D. Mumford conjectured that the rational cohomology of the stable
moduli spaces of Riemann surfaces is a polynomial algebra generated by certain classes κi

of dimension 2i. For the purpose of calculating rational cohomology, one may replace the
stable moduli space of Riemann surfaces by BΓ∞, where Γ∞ is the group of isotopy classes
of automorphisms of a smooth oriented connected surface of “large” genus. Tillman’s
insight that the plus construction makes BΓ∞ into an infinite loop space led to a stable
homotopy version of Mumford’s conjecture, stronger than the original. In 2002 Madsen
and Weiss proved this integral Mumford’s conjecture, using Harer’s stability theorem,
Vassiliev’s theorem concerning spaces of functions with moderate singularities and methods
from homotopy theory. The goal of our meeting was to go over this proof. The material
was divided into 17 talks.

The Arbeitsgemeinschaft was organized by Michael Weiss (Aberdeen) and Søren Galatius
(Aarhus).
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Abstracts

Mapping class groups and homological stability

Jens Hornbostel

We define the mapping class group Γg,b := π0(Diff (Fg,b)), where Fg,b is a Riemannian
manifold of genus g with b boundary circles, and Diff denotes orientation-preserving dif-
feomorphisms that restrict to the identity on the boundary. For b = 0, this is related
(i.e. we have an H∗( , Q)-isomorphism)) to the moduli space of complex curves. This
follows as the zero component Diff 0(Fg,b) is contractible for g > 1 by a Theorem of Earle-
Eells-Schatz, and there is a Diff 0-principal bundle with total space given by the smooth
complex structures on Fg,0 and base space the 6g− 6-dimensional Teichmüller space, both
being contractible and the Teichmüller space coming with a virtually free action of Γg,0.
We then discuss the stability isomorphism of Harer-Ivanov which implies that Hn(Γg,b) is
independent of g and b for g, b � n. Moreover Γg,b is perfect for g > 2. Next, we recall
the theorems about plus construction and group completion. Putting all this together, we
deduce a homotopy equivalence ΩB(

⊔
g≥0 BΓg,1+1) ' Z×BΓ+

∞,1+1.

Tillmann’s theorem

Jarek Kedra

The goal of the talk is to explain the proof of the following fact:

ΩB(
⊔

g BΓg,2) is an infinite loop space.

The argument consists of the following steps:

(1) ΩB(
⊔

g BΓg,2) ' Z×BΓ+
∞,2 [first talk];

(2) Z×BΓ+
∞,2 ' ΩBY , where Y is certain category;

(3) Y is a symmetric strict monoidal 2-category;
(4) BY is its own group completion;
(5) According to a theorem of May and Segal, there exist an Ω-spectrum whose asso-

ciated infinite loop space is the group completion of BY .

Taking the above steps together we get the statement.

Thom-Pontryagin construction and MMM classes

Ivan Izmestiev

We construct a map

α∞ : ΩB(
⊔
g

BΓg,2) ∼= Z×BΓ∞,2 −→ Ω2+∞Th(L⊥∞)

which allows us to formulate the integral Mumford conjecture: α∞ is a homotopy equiva-
lence. A proof of this statement will be carried out in subsequent talks. Via calculation of
H∗(Ω2+∞Th(L⊥∞); Q) this implies the original Mumford conjecture.

In the second part of the talk (that actually took place at the evening catch-up session)
we define the Miller-Morita-Mumford classes

κi ∈ H2i(BΓg; Z), i > 0, g � i
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which are viewed as characteristic classes of surface bundles. Then we indicate a relation
of MMM classes to the map α∞. Namely, we find elements κi ∈ H2i(Ω2+∞Th(L⊥∞); Z) such
that κi = α∗∞(κi).

Classifying spaces: what they classify

Sigrid Wortmann

The first part of the talk was concerned with homotopy theory of sheaves on the category
X of smooth manifolds (with boundary). After introducing the notion of concordance,
the representing space |F| of a sheaf F was defined and its name justified. In the second
part of the talk sheaves with category structure, i.e. taking values in the category of small
categories, were discussed. The classifying space B|F| of such a sheaf is the geometric
realization of the nerve of |F|. The answer to the question in the title was given. The
main theorem of this talk states that B|F| ' |βF| (homotopy equivalent). Here βF is
a set–valued sheaf on X . Its definition uses a generalization of Steenrod’s description of
principal G-bundle in terms of bundle charts. Due to lack of time no details of the proof
were given.

First desingularization procedure

Nathalie Wahl

Consider the sheaves hV , V and Vc defined on the category of smooth manifolds as follows:
for a manifold X, hV(X) is the set of pairs

(π, f̂)

with π : E → X a graphic submersion with 3-dimensional oriented fibres and f̂ a fibrewise
non-singular section of the vertical jet bundle J2

π(E; R) with constant part f : E → R,
such that (π, f) : E → X × R is proper. The set V(X) is the integrable version, that is
the set of pairs (π, f) with f : E → R such that (π, j2

π(f)) ∈ hV , and Vc(X) is the subset
of V(X) of (π, f) with connected fibres.

Following Madsen-Weiss, we show that the representing spaces |Vc| and |hV| are re-
spectively equivalent to

∐
g≥0 BDiff (Fg) and Ω∞CP∞

−1. The first result uses Ehresmann’s
fibration lemma, whereas for the second we use the Thom-Pontryagin construction and
Phillips’ submersion theorem. The natural map |Vc| → |hV| induces the map studied by
Madsen and Tillmann, α∞ : Z×BΓ+

∞ → Ω∞CP∞
−1 .

Interpolation theory on manifolds

Alexander Schmidt

Let M be a compact smooth manifold and let R = C∞(M, R) be the ring of smooth
real-valued functions on M together with its natural Frechet-topology. Let E be a finite-
dimensional R-vector space. We consider the free R-module Z = C∞(M, E). We show
that there exist finite dimensional subvector spaces PN in Z such that for every closed
R-submodule Y in Z of finite R-codimension less or equal to N the following properties
(i) and (ii) are satisfied:

(i) PN + Y = Z (as R-vector spaces)
(ii) Y is the closed R-submodule in Z generated by PN ∩ Y .
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We use this to show that there exists a natural compact Hausdorff topology on the set
K(N) of closed R-submodules of codimension N in Z.

Finally we discussed openness properties, meaning that if V is a finite dimensional vector
space satisfying property (i) above, then the same is true for every finite dimensional vector
space V ′ sufficiently near to V .

Advanced transversality

Katharina Ludwig

In the first part of my talk the definition of transversality as given in the book [GG] of
Golubitsky and Guillemin was recalled. The basic fact about transversality was proven:
Given a smooth family of smooth maps which intersects a submanifold of the target trans-
versely, for a dense set of parameters the individual mappings also intersect this subman-
ifold transversely. From that one can deduce the Thom transversality theorem and the
multijet Thom transversality theorem.

In the second part the first main theorem of Vassiliev, [V1] or [V2], was (roughly) stated
(see also Talk 8) and one theorem feeding into the proof was explained in more detail: Given
a m-dimensional manifold M with boundary and a set of “forbidden” singularities. The
goal is to find an ascending chain of affine finite dimensional subspaces Dr of C∞(M, Rn)
lying sufficiently generic with respect to the set of functions with forbidden singularities
such that the cohomology of Dr \ {functions with forbidden singularities} approximates
that of C∞(M, Rn) \ {functions with forbidden singularities}. These spaces, consisting
of some sort of polynomials, were defined. That these spaces are generic follows by an
application of multijet Thom transversality. The idea is to define submanifolds in a multijet
bundle of functions M → Rn such that transversality implies the generic position of the
affine space.

[GG] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, Graduate
Texts in Math. Series, revised version (1980).

[V1] V. A. Vassiliev, Topology of spaces of functions without compound singularities, Funktsional Anal. i
Prilozhen 93 no. 4 (1989), p. 24-36; English translation in Funct. Analysis Appl. 23 (1989), p.277-286.

[V2] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Transl. of
Math. Monographs Vol. 98, revised edition, Amer. Math. Soc. (1994).

Spaces of functions with moderate singularities

Dan Fulea

The talk used the results and techniques of the last two talks in order to touch the main
points in the proof of the following

Theorem [First Main Theorem, [V1], [V2] as in preceding abstract]:
Fix k,m, n. Let A be a closed, semialgebraic set inside the jet space Jk(Rm, Rn), which

is invariant under the action of the diffeomorphisms of Rm. (A models the singularities
and its complement the moderate ones.)

Let M be a smooth manifold of dimension m. Consider Z, the space of smooth functions
M → Rn, and W , the space of sections of the jet bundle Jk(M, Rn).

Local coordinate transport of A from Rm to M introduces the subspaces ZA ⊂ Z and
WA ⊂ W of elements with A–singularities inside Z,W .
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The jet prolongation map Z → W , f → (x → (jkf)x), realizes Z as the integrable
sections inside W . The theorem claims that the map

Z \ ZA → W \WA

is an isomorphism in integral homology in case codim A ≥ m + 2.
Using the excellent guide [We], I explained the following steps of the proof:
(1) Approximation by finite dimensional subspaces of functions D ⊂ Z (and D′ ⊂ W ),

d := dim D < ∞, and reduction of the problem to the explicit computation of the homology
of D \DA for a suitable D in “general position”.

(2) Alexander Duality gives H•(D \DA) ∼= H lf
d−1−•(DA).

(3) Let RDA be the “resolution” of DA given by the following construction of simplicial
type: RDA is the set of all (x, w; f) ∈

⊔
p≥1 Mp × ∆p−1 × DA, such that f ∈ DA has

singularities in x = (x1, . . . , xp) and w is an element of the simplex ∆p−1 ⊂ Rp. Then the
map RDA → DA, (x, w; f) → f is an H•–isomorphism.

(4) An appropriate truncation RDp
A of RDA leads to a spectral sequence

H lf
d−1+p+q(RDp

A, RDp−1
A ) ⇒ H lf

d−1+p+q(RDA). Its convergence needs codim A ≥ m + 2.

(5) Observe that H lf
d−1−•(RDp

A, RDp−1
A ) ∼= H lf

d−1−•(RDp
A \RDp−1

A )
(6) Consider in parallel to (3) the space ∆(A(M)) of all (x, w) ∈

⊔
p≥1 Mp ×∆p−1 and

the appropriate truncation ∆(A(M))p.
(7) There is an H lf

• –isomorphism RDp
A \ RDp−1

A → ∆(A(M))p \∆(A(M))p−1, given by
(x, w; f) → (x, w).

(8) Collecting all isomorphisms, we can functorially express H•(D\DA) by a convergent
spectral sequence with relevant entries, which are independent of D approximating Z.
Same independence can be transposed for H•(D′ \D′

A) with D′ approximating W .

[We] M Weiss Cohomology of the stable mapping class group, to appear in Topology, Geometry and
Quantum Field theory, proceedings of 2002 Oxford conf., Cambridge University Press.

Second desingularization procedure

Dag Olav Kjellemo

We define the sheaves W and hW , for each manifold X consisting of pairs (π, f̂), similarly

to the sheaves V and hV , but with f̂ being of Morse type on the fibres of π : E → X.
The first main result is that the classifying space hW is homotopy equivalent to Ω∞hW,
where hW is a certain Thom spectrum. This space fits in the fibre sequence of talk 10.
The second main result is to show that the jet prolongation map j2

π : W → hW induces a
homotopy equivalence on classifying spaces. The steps to do this are summarized by the
diagram

|W|

��

' // |W0|

��

|βWA|'oo

��

' B|WA|
'

��
|hW| ' // |hW0| |βhWA|'oo ' B|hWA|

The sheaves W0 and hW0 only require f̂ to be fibrewise Morse in a neighbourhood of
f−1(0) (where f is underlying function of f̂); this gives the right codimension conditions

required by Vassilievs theorem applied below. WA and hWA are sheaves of triples (π, f̂ , A),

where (π, f̂) are in W0 or hW0, and A ⊂ R is an “armlet” for (π, f̂). f−1(A) are then
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fibre bundles over X, and we essentially apply Vassiliev’s theorem fibrewise. Technically
this is achieved by defining a sheaf T A and maps p and q giving a commutative diagram

WA

p ""EE
EE

EE
EE

j2
π // hWA

q{{xxxxxxxx

T A

We define fibre sheaves p−1(τ) and q−1(τ) over elements τ ∈ T A(∗). Their representing
spaces are homology equivalent by Vassiliev’s theorem, and this in turn induces a homol-
ogy equivalence B|WA| //B|hWA| . (These spaces are actually homotopy co-limits of

functors from T A.) Lastly, this map must also be a homotopy equivalence since we know
that |hW| is group complete.

Localisation

Christian Serpé

In this talk we introduce the sheaves Wloc and hWloc and have a look at the diagram

|V| //

jet

��

|W| //

jet

��

|Wloc|
jet

��
|hV| // |hW| // |hWloc|.

The horizontal maps are just inclusions of the sheaves and the vertical maps come from
the jet prolongation. We show that the bottom row is a homotopy fibre sequence and
that the map in the right column is a homotopy equivalence. The main ingredients for the
proofs are the Thom–Pontryagin construction, obstruction theory, immersion theory and
submersion theory.

Homotopy Co-limits

Markus Szymik

The homotopy co-limit of a diagram of spaces is much like a co-limit. However, it is
invariant under objectwise equivalences. In the talk, homotopy co-limits were defined as
actual co-limits of suitable resolutions. To show existence, transport categories were used.
These lead to good functoriality properties, which were also discussed in some detail. At
the end, an application to sheaves was presented.
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Homotopy co-limit decomposition
and

return to surface bundles

Maria Castillo, Balasz Visy, Sebastian Grensing,
Carl-Friedrich Bödigheimer, Hannes Ebert

The three talks 12, 13 and 14 were concerned with the following diagram of sheaves:

W // Wloc

'

��
L //

'

OO

Lloc

hocolim
T in K

LT
//

'

OO

'

��

hocolim
T in K

Lloc,T

'

OO

'

��
hocolim

T in K
WT

// hocolim
T in K

Wloc,T

All sheaves in this diagram, apart fromW andWloc, and all maps with exception of the top
horizontal one were defined. Then all vertical maps were shown to be weak equivalences.
The final result is therefore: One can replace the top map

W // Wloc

by the bottom map

hocolim
T in K

WT
// hocolim

T in K
Wloc,T .

For fixed T , the fibre of the map

WT
// Wloc,T

is known to be a sheaf of surface bundles.

Surgery, I

Paul Mitchener

We have seen in the earlier talks that we have a commutative diagram of sheaves

W → Wloc

↓ ↓
hV → hW → hWloc

where the lower row is a homotopy fibre sequence, and the vertical arrows are weak equiv-
alences. In order to prove the Mumford conjecture, we need to identify the sheaf V with
the homotopy-fibre of the canonical map W →Wloc.

In this talk, we indicate the first steps of this process. The obstacle is that the space
|W| is a classifying space for certain surface bundles; we need to do some sort of surgery
to replace |W| by the corresponding classifying space for connected surface bundles.
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Surgery, II

Thomas Schick

The goal of this talk is a proof of theorem 6.1.4. This is the basic theorem which explains
how to pass from not necessarily connected surfaces to connected surfaces.

This is done by a well organized surgery (i.e. connected sum) process. To be able to do
this, we have to enlarge our sheaves by adding the corresponding surgery data. One half of
the task is to show that this does not change the homotopy type of the classifying space.

The second half of the task is to show that the connected sum procedure gives rise to
a homotopy inverse to the map induced by the inclusion of the set of connected surfaces
into the set of all surfaces.

Reduction to Harer’s theorem and conclusion

Thilo Kuessner

We show that there is a homotopy fibration

Z×BΓ+
∞,2 →| W |→| Wloc | .

This finishes the proof of Mumford’s conjecture.
The proof relies on the homology stability of surface mapping class groups.

Other activities during the meeting:

• evening sessions after the dinner with the purpose to catch up on the untold and
clarify the told;

• walk to a restaurant 10 kilometres away from MFO in order to have some cakes;
• discussion of the subject for the next Arbeitsgemeinschaft;
• piano and flute concert performed by Paolo Salvatore and Michael Weiss.

Edited by Ivan Izmestiev
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