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The conference “Coding Theory” intended to be a platform where the rather inhomo-
geneous coding community could exchange ideas. Both the engineers could present their
mathematical problems and the mathematicians could report their progress. The result
was a lively meeting with an open exchange of ideas and lots of discussion. Madhu Sudan
presented his wonderful idea of using coding theory in computer science and mathematics
for showing that problems are “hard”. Another interesting development reported at the
conference was the construction of asymptotically good towers of curves over finite fields
over cubic extensions. Besides that new and interesting developments were reported about
space-time codes and LDPC codes. The theme ‘sequences’ also got a fair share of atten-
tion. A number of talks were devoted to Codes over Galois rings. There were also a few
informal talks outside the official program dealing with Weierstrass points on curves over
finite fields and the Kissing Number in dimension 4.

In the view of the organizers it was a highly successful meeting in a good atmosphere
with lots of discussions. Everybody was pleased with the excellent working conditions
offered by Oberwolfach. Thanks are due to the staff for their very efficient and pleasant
help.
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Abstracts

Codes over Galois Ring

Gilberto Bini

We shall briefly recall some basic facts on trace codes over finite fields. In particular, we
will focus on generalizations of dual Melas codes. After such an overview, we will introduce
the Galois ring set-up in which we try to extend some of the techniques over fields. For
these purposes, we need some results on exponential sums over Galois rings. Finally, we
give a lower bound on the minimum Hamming distance of the generalized (Gray) image of
our trace codes over rings.

Weight distribution of cyclic codes

Hans Dobbertin

Self-Dual Divisible Codes

Iwan Duursma

The best known asymptotic upper bound for binary self-dual codes is due to Krasikov-
Litsyn (2000), with a different proof by Rains (2003). As n →∞

d

e
≤ 1

2

(
1− 1

4
√

5

)
<

1

6
.

We give a short elementary proof of this result. It uses a new description of the relation
on the low weight coefficients of a self-dual divisible code.

An Explicit Tower over Cubic Finite Fields and Zink’s Lower Bound

Arnaldo Garcia

(joint work with Juscelino Bezerra and Henning Stichtenoth)

For an infinite sequence F of curves Cn over Fl, n ∈ N, with increasing genera we are inter-
ested in the asymptotic behaviour of the ratios (number of rational points of Cn)/(genus
of Cn); the limit of the ratios above is called the limit of the sequence and it is denoted by

λ(F). It follows from Weil’s theorem that λ(F) ≤ 2
√

l, for any F over Fl. Ihara was the
first one to notice that the bound above can be improved significantly, and his ideas lead
to the following bound due to Drinfeld-Vladut: λ(F) ≤

√
l − 1, for any F over Fl

When l = q2 the bound of Drinfeld-Vladut is sharp, i.e. there are sequences F over Fq2

with λ(F) = q− 1. Using degenerations of Shimura modular surfaces, Zink has shown the

existence of sequences F over Fp3 , p a prime number, such that λ(F) ≥ 2(p2−1)
p+2

.

The goal of the talk is to present a new sequence F over Fq3 , q any prime power, such

that its limit satisfies λ(F) ≥ 2(q2−1)
q+2

. This new sequence is recursively defined by the

following equation over Fq3 :
1− y

yq
=

xq + x− 1

x
This new sequence gives rise to long linear codes, through Goppa’s construction, with limit
parameters above the so-called Gilbert-Varshamov bound.
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On the Missing Evaluation Codes from Order Domain Theory

Olav Geil

(joint work with Henning E. Andersen)

We introduce new classes of evaluation codes related to order domains of any transcendence
degree. In particular we introduce improved constructions of a class of one-point geometric
Goppa codes. The new constructions take into account not only the value semigroup of
the order function but take into account also the size of the field as well as the actual
polynomials that defines the order domain. The methods also reveals the fact that many
one-point geometric Goppa codes have in fact much better parameters than predicted by
the usual Goppa bound.

Additive Autocorrelation of Binary Sequences and Functions

Guang Gong

We investigate the additive autocorrelation of binary periodic sequences and functions
which are their trace representations. A function from GF (2n) to GF (2) or a boolean
function in n valuables has two-level autocorrelation if and only if it is bent which only
exists for n even. We discuss the odd case of n. By introducing the indicator function of
the Hadamard transform of a binary sequence of period N |2n−1, we are able to determine
the additive autocorrelation of some known binary sequences with 2-level (multiplicative)
autocorrelation. We also present the resiliency and propagation properties of booleans of
the binary sequences with 2-level (multiplicative) autocorrelation.

On the Weights of 2-D Cyclic Codes

Cem Güneri

Extending the approach used for cyclic codes we give a trace representation for 2-D cyclic
codes via Delsarte’s Theorem. This relates the weight of a codeword to the number of
rational points on several Artin-Schreier curves. Using this relation, we state a lower
bound on the minimum distance of a large class of 2-D cyclic codes.

List Decoding: Recent Progress and Challenges Ahead

Venkatesan Guruswami

List decoding is the problem of finding all codewords of a code that are within a certain
distance of the received word. Though introduced independently by Elias and Wozencraft
in the late 50’s, only recently is the development of list decoding algorithms getting the
attention that it deserves. List decoding permits recovery beyond that possible using
classical unique decoding algorithms, and enables approaching capacity even when the
noise model is “adversarial” as opposed to obeying an assumed probabilistic model. This
talk is a tutorial/survey into the subject of list decoding — it will briefly discuss the
combinatorial results that indicate the potential of list decoding and set the stage for
new algorithmic questions, followed by a peek into the substantial recent progress on the
algorithmic front. The talk will also highlight several intriguing challenges (combinatorial,
algorithmic, and complexity-theoretic) concerning list decoding that lie ahead of us.
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On the Algebraic Design of Space-Time codes

A. Roger Hammons Jr.

General binary design criteria are presented for BPSK and QPSK modulated space-time
codes. The rank of (binary projections of) the unmodulated codewords, as binary matri-
ces over the binary field, is a sufficient criterion: full binary rank guarantees full spatial
diversity. This leads to fundamental stacking constructions that include optimal dfree con-
volutional codes, Galois field theoretic block codes, and dyadic constructions that guarantee
full spatial diversity for an arbitrary number of transmit antenna.

Crosscorrelation of m-sequences: New 4-valued decimations

Tor Helleseth

(joint work with Hans Dobbertin, Patrick Felke and Petri Rosendahl)

Let {s(t)} and {s(dt)} be two binary m-sequences of period 2n−1 that differ by a decima-
tion d where gcd(d, 2n− 1) = 1. The crosscorrelation function between two m-sequences is
defined by

Cd(τ) =
2n−2∑
t=0

(−1)s(t+τ)−s(dt).

It is well known that the crosscorrelation function takes on at least three distinct values
when the two sequences are cyclically distinct i.e., when d 6= 2i (mod 2n−1) for all integers
i . Several decimations d giving exactly three values are known. The main result here is
to find new values of d for which exactly four values occur.

Let n = 2k and let d be of the form d = (2k−1)s+1 where s = 2r ·(2r±1)−1 (mod 2k+1).
Let v2(x) be the largest positive integer u such that 2u divides x. In the case when
v2(r) < v2(k) the decimations above give four valued crosscorrelation functions. The
complete distribution of the values and the number of occurrences of each value is also
calculated. We conjecture that these decimations include all 4-valued cases with n = 2k
and d of the form d = (2k − 1)s + 1.

Concatenated Codes and Their Decoding

Jorn Justesen

(joint work with Tom Hoholdt, Christian Thommesen)

Concatenated codes remain the most important tool for constructing long binary codes.
We consider constructions from I outer Reed-Solomon (or algebraic geometry) codes over
F2m and binary inner (n,mI) codes. The inner codes are decoded ML by trellis decoding
or a similar technique. The error-correcting capability can be improved by using methods
that extend the decoding of the outer codes. The Bleichenbacher-Kaiyias-Yung algorithm
is considered in particular, and a simplified version based on syndrome equations is pre-
sented.
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Graph covers and iteratively decodable codes

Ralf Koetter

(joint work with P.O. Vontobel)

Codes on graphs commonly refer to codes over a suitably chosen alphabet that are de-
scribed in graphical models. Given a bipartite graph one vertex class is identified with
variables and the other class represents local constraints on subsets of the variables. The
most important classes of codes on graphs are the so called Low-density Parity-Check codes
by Gallagher and the enormously important turbo codes. While the performance of codes
on graphs is unsurpassed — due to a very efficient, locally operating decoding algorithm
— the understanding of these codes is still far from complete. We address the problem of
characterizing the performance of finite length LDPC codes utilizing the notion of pseu-
dodistance which is a function of the code, the graph, and the decoding algorithm. It turns
out that the erratic behavior of the decoding algorithm is caused by code configurations
in finite graph covers which have a nice an elegant description over the real numbers.

Error-correction capability of binary linear codes beyond half the minimum
distance

Vladimir I. Levenshtein

(joint work with Tor Helleseth and Torleiv Klove)

The monotone structure of correctable and uncorrectable errors given by the complete
decoding for a binary code is investigated. New bounds on the error-correction capability
of linear codes beyond half the minimum distance are presented, both for the best codes
and for arbitrary codes under some restrictions on their parameters. It is proved that some
known families of linear codes of low rate are as good as the best codes in an asymptotic
sense. A construction of a linear code is given which has the same length and dimension
as the simplex code but smaller probability of error decoding on the binary symmetric
channel for all p, 0 < p < 1/2.

Mathematical problems related to PAPR reduction

Simon N. Litsyn

We consider the problem of decreasing peak-to-average power ratio reduction in multicar-
rier communication systems. In the mathematical setting it reduces to analysis of trigono-
metric polynomials with coefficients restricted to some finite subset of complex plain. We
start with an analysis of ratio between continuous and discrete maxima achieved by the
values of these polynomials. We further relate constructions of codes to estimates of some
mixed exponential sums, and provide an improvement on earlier known results.

On Structured-Summary Propagation and LFSR Synchronization

Hans-Andrea Loeliger

(joint work with Justin Dauwels, Matthias Frey, Patrick Merkli, Maja Ostojic, Benjamin
Vigoda)

The talk has two themes. The first theme is the synchronization (state estimation) of
linear-feedback shift register (LFSR) sequences that are observed via a noisy channel. An
extremely simple (suboptimal) estimation algorithm is obtained by forward-only message
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passing through an obvious factor graph. This algorithm may be viewed as passing the
received noisy sequence through a “soft” version of the LFSR. It is also shown that this
idea can be extended to continous-time dynamical systems.

The second theme is the general idea to improve message passing algorithms on graphs
with annoying short cycles by introducing messages with some nontrivial Markov structure.
The idea is worked out for the synchronization of noisy LFSR sequences.

Rate-Diversity Tradeoff of Space-Time Codes and Optimal Constructions

Hsiao-Feng Lu

(joint work with P. Vijay Kumar)

Let M be the number of transmit antennas and let T be length of a channel fading block,
an (M ×T ) space-time code S is a collection of (M ×T ) matrices with components drawn
from a finite fixed set A, the signal alphabet. The transmit diversity gain d achieved by
the code S is defined as the minimal rank of the difference between any two code matrices.
Assuming M ≤ T , there is a tradeoff between the code rate R and the transmit diversity
gain d achieved by S.

We present a unified space-time code construction that gives rise to classes of block and
convolutional codes achieving this optimal tradeoff over a wide variety of signal alphabet
A and over any number of transmit antenna. We also show that when coding is applied
simultaneously to several consecutive fading blocks, one is governed by a different rate-
diversity tradeoff, where larger diversity gains and higher rates can be jointly obtained.
Systematic constructions of codes that achieve this new tradeoff are also provided.

Codes on the Fiber Products of Kummer Covers

Hiren Maharaj

We give a simple technique to obtain explicit bases for Riemann-Roch spaces of invariant
divisors G of curves which are fiber products of Kummer covers of the projective line. As
a bonus one obtains exact dimensions and good codes on such curves. Similar techniques
can be used to obtain information on the weight distribution of these codes. Moreover, if
none of the places in the support of G ramify, it can be shown that Goppa’s lower bound
on the minimum distance is exact.

Cyclic Codes and Genus 2 Curves

Gary McGuire

(joint work with J. F. Voloch)

We discuss a class of binary cyclic codes and their dual codes. We relate the weights
appearing in the dual codes to the numbers of rational points on a family of genus 2
curves. We determine all the possibilities for the number of points on a genus 2 curve with
2-rank 1 over a finite field of order 2m. This determines the weights in the corresponding
cyclic code.
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Construction of Sequences and Cyclic Difference Sets Using d-Homogeneous
Functions with Difference-balanced Property

Jong-Seon No

Let n, m, k, and l be positive integers such that n = (2m + 1)k, l|k and p an odd prime.
Let H(x) be a d-homogeneous function from the finite field Fpn with pn elements to its
subfield Fpl with difference-balanced property. Let α be a primitive element in Fpn . Let

trpn

pl (·) be the trace function from Fpn to Fpl . Using Helleseth-Gong sequences [IEEE

Trans. Inform. Theory, pp. 2868-2872, Nov. 2002], a d-homogeneous function from Fpn to

Fpl with difference-balanced property can be constructed as H(x) =
∑m

i=0 uitr
pn

pl (x
p2ik+1

2 ),

for ui ∈ Fp, which is the only d-homogeneous function with difference-balanced property
except for p-ary m-sequences and GMW sequences. Then we can construct the cyclic

difference set with Singer parameters (pn−1
pl−1

, pn−l−1
pl−1

, pn−2l−1
pl−1

) defined by D1 = {αt | H(αt) =

0, 0 ≤ t < pn−1
pl−1

} and the cyclic relative difference set with Singer parameters (pn−1
pl−1

, pl −
1, pn−l, pn−2l) defined by D2 = {x | H(x) = 1, x ∈ F ∗pn}. Using Helleseth-Gong sequences,
p-ary extended sequences with ideal autocorrelation property, p-ary d-form sequences with
ideal autocorrelation property, and p-ary unified (extended and d-form) sequences with
ideal autocorrelation property can be constructed.

Constructive Asymptotic Codes with an Improvement on the
Tsfasman-Vlăduţ-Zink and Xing Bounds

Ferruh Özbudak

(joint work with Harald Niederreiter)

Let Fq be the finite field of order q and αq be the well-known function ([2], Section 1.3.1)
in the theory of asymptotic algebraic codes. A central problem in algebraic coding theory
is to find lower bounds on αq(δ) for 0 < δ < (q − 1)/q. A classical lower bound is the
asymptotic Gilbert-Varshamov bound which says that

αq(δ) ≥ 1− δ logq(q − 1) + δ logq δ + (1− δ) logq(1− δ) for 0 < δ <
q − 1

q
.

Let Nq(g) denote the maximum number of rational places that a global function field of
genus g with full constant field Fq can have. We recall the quantity

A(q) = lim sup
g→∞

Nq(g)

g

from the theory of global function fields. In an important breakthrough Tsfasman, Vlăduţ,
and Zink [3] showed that one can beat the asymptotic Gilbert-Varshamov bound by using
Goppa’s algebraic-geometry codes [1]. The Tsfasman-Vlăduţ-Zink bound in [3] says that

αq(δ) ≥ 1− δ − 1

A(q)
for 0 ≤ δ ≤ 1.(1)

Recently Xing [4] improved Tsfasman-Vlăduţ-Zink bound (1) and he showed that for any
δ ∈ (0, 1) we have

αq(δ) ≥ 1− δ − 1

A(q)
+

∞∑
i=2

logq

(
1 +

q − 1

q2i

)
.(2)

The proof of (2) given in [4] proceeds in a nonconstructive manner.
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In this talk we present an improvement on the Xing bound (2) and thus also on the
Tsfasman-Vlăduţ-Zink bound (1). Moreover, the proof of our bound is obtained construc-
tively in a certain range for δ. Namely we prove constructively that

αq(δ) ≥ 1− δ − 1

A(q)
+ logq

(
1 +

1

q3

)
(3)

for any δ in the range

δ ∈
(

0, 1− 2

A(q)
− 4q − 2

(q − 1)(q3 + 1)

]
.

References

[1] Goppa, V.D.: Codes on algebraic curves (in Russian). Dokl. Akad. Nauk SSSR 259, 1289–1290 (1981)
[2] Tsfasman, M.A., Vlăduţ, S.G.: Algebraic-Geometric Codes. Kluwer, Dordrecht (1991)
[3] Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves, and Goppa codes, better

than Varshamov-Gilbert bound. Math. Nachr. 109, 21–28 (1982)
[4] Xing, C.P.: Nonlinear codes from algebraic curves improving the Tsfasman-Vlăduţ-Zink bound. IEEE

Trans. Inform. Theory 49, 1653–1657 (2003)

Information-Lossless Space-Time Block Codes From Division Algebras

B. Sundar Rajan & B. Al Sethuraman

(joint work with V. Shashidhar)

We describe a very general technique for constructing space-time block codes over any
signal set S ⊆ C and for any number of transmit antennas, using representations of finite-
dimensional cyclic division algebras (K/F, σ, δ) in Mn(K), where n = [K : F ] and < σ >=
Gal(K/F ). Here, F is a suitable subfield of C containing Q(S); we show that by choosing
F , K, and δ appropriately, we can obtain codes that are information-lossless. We exhibit
performance characteristics of our codes that show that our codes outperform previously
known codes in terms of both information-losslessness and error probability.

Algebraic Constructions of Low Density Parity Check Codes

Joachim Rosenthal

(joint work with Pascal Vontobel, Christine Kelley and Deepak Sridhara)

Low density parity check codes perform outstanding and can be decoded with a complex-
ity which grows linearly in the block length. The performance was shown for randomly
constructed codes of large block length. Algebraically constructed codes should possess
several properties. In this talk it is shown how to construct LDPC codes with large girth
and good expansion rate using Ramanujan graphs. The idea of these constructions comes
from work of Margulis who showed how to design codes without short cycles starting from
a Cayley graph. Mimicking this construction we describe a new class of powerful regular
and irregular LDPC codes.
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LDPC Codes

Mohammad Amin Shokrollahi

The theory of LDPC codes has attracted a lot of attention lately. In this talk I will describe
the basic concepts of these codes, their analysis, and some of their applications.

Cyclic codes over rings and pseudo-random sequences

Patrick Solé

Recently we have explored cyclic codes over cyclic rings Zpm , with either p = 2 and m > 2
[2, 3], or m = 2 and p > 2 [1].
The tools used to bound the correlation include the local Weil bound, a Galois property
of the generalized Gray map, analogues of the Nechaev permutation, but also the Most
significant Bit map, and the Discrete Fourier Transform.
Three notions of non-linearity in the sense

• block codes
• linear shift registers
• boolean functions

respectively, will be explored in turn. Applications to PAPR reduction will be sketched
out [4, 5].

References

[1] (with S. Ling) “Non-linear p−ary sequences”, J. of the AAECC, J. of the AAECC 14 (2003) 117–125.
[2] (with J. Lahtonen, S. Ling, D. Zinoviev) “Z8-Kerdock codes and pseudo random binary sequences”,

J. Of Complexity, to appear
[3] (avec D. Zinoviev) “The Most Significant Bit of Maximum Length Sequences Over Z2l : Autocorre-

lation and Imbalance”, IEEE Transactions on Information Theory, submitted.
[4] (avec D. Zinoviev) “Low Correlation, High Nonlinearity Sequences for multi-code CDMA”, IEEE

Transactions on Information Theory submitted.
[5] (avec D. Zinoviev) “Weighted degree trace codes for PAPR reduction”, IEEE Transactions on Com-

munications submitted.

List Decoding and Computational Complexity

Madhu Sudan

We describe the notion of list-decoding and show how it is intimately connected to questions
in computational complexity, by giving three examples. The first shows how it relates
complexity of general functions to that of Boolean functions, while preserving quantitative
hardness. The second shows how it can be used to amplify the hardness of functions in
certain complexity classes. The third shows how a dramatic improvement to the state of
the art with respect to list-decoding could lead to an efficient solution to the problem of
factoring integers.
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Recent Advances in Algebraic Decoding of Reed-Solomon Codes

Alexander Vardy

(joint work with Ralf Koetter, Jun Ma, Farzad Parvaresh)

Reed-Solomon codes are the most widely used error-correcting codes in digital communica-
tions and data storage. Recently, several breakthroughs have been achieved in improving
the error-correction capability of Reed-Solomon decoders. The story begins with the work
of Sudan [18], who showed that list-decoding of Reed-Solomon can be viewed as a bivari-
ate interpolation problem, thereby correcting more errors than previously thought possible.
The second key achievement was the work of Guruswami-Sudan [5]. Guruswami-Sudan [5]
correct even more errors by interpolating through each point not once, but m times, where
m is an arbitrary integer. For m → ∞, the list-decoding algorithm of [5] corrects up to

n−
√

kn errors, which is better than (n− k)/2 for all rates k/n. The third step was taken
in the work of [8, 9], which showed how the interpolation multiplicities in the algorithm
of [5] should be chosen to achieve soft-decision decoding of Reed-Solomon codes. These
developments have the potential to drastically change the way Reed-Solomon codes are
decoded, and have sparked a flurry of research in the area. This research can be roughly
subdivided into two major thrusts.
Multiplicity assignments: The choice of interpolation multiplicities in the algorithm
of [5] determines the decoder performance, and remains a key problem in the area. Koetter-
Vardy [9] derive an efficient multiplicity assignment scheme that maximizes the so-called
expected score, and show that this assignment is optimal for n →∞ if the goal is to mini-
mize the probability of decoding failure. The work of [15] improves substantially upon [9],
by recasting the problem into a geometric framework in Euclidean space or, alternatively,
by approximating the distribution of the score by a Gaussian. Finally, the problem of
assigning interpolation multiplicities so as to maximize the cost of a correctable error pat-
tern with respect to an arbitrary additive cost structure is introduced and essentially solved
in [10].
Fast interpolation and factorization: The main computational steps in list-decoding
of [5, 18] as well as algebraic soft-decoding of [9] are bivariate interpolation and factoriza-
tion. Various efficient algorithms for this purpose were proposed in [1, 2, 4, 6, 13, 14, 17].
While polynomial-time, these algorithms are still far too complex for practical implemen-
tation. In [11, 7], we present a series of transformations that convert the original interpo-
lation problem into another reduced interpolation problem, whose computational cost N is
orders of magnitude smaller. This reduces the decoding complexity by a factor of at least
n2/(n−k)2, and makes soft-decision RS decoding quite feasible in practice. Moreover, Feng-
Giraud [3] propose a divide-and-conquer method that reduces the asymptotic complexity
of interpolation and factorization from O(N2) to O(N log2N). The divide-and-conquer
approach of [3] is extended in [16] and improved upon in [12].
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[1] A.Ahmed, R. Koetter, and N. Shanbhag,“VLSI architectures for soft-decision decoding of Reed-

Solomon codes,” IEEE Trans. VLSI Systems, submitted for publication, March 2003.
[2] D. Augot and L.Pecquet,“A Hensel lifting to replace factorization in list-decoding ofalgebraic-

geometric and Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 46, pp. 2605–2614, November
2000.
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Self-dual doubly even group codes

Wolfgang Willems

(joint work with Conchita Mart́ınez-Pérez)

In the literature on coding one hardly find methods from representation theory though
representations naturally come in if the automorphism group of the code is non-trivial.
Exploiting such methods we are able to reprove known facts on group codes like the Sloane-
Thompson theorem which says that a binary self-dual group code is never doubly even
provided the Sylow 2-subgroups of the underlying group are cyclic. But we also get new
interesting results in which representation theory and coding theory is very much related.
For instance, there exists C = C⊥ ≤ K ⊕ KG where K is a binary field and G a finite
group if and only if all irreducible representations of G over K are of odd dimension. Such
self-dual codes are doubly even if |G| ≡ −1 mod 8 which proves the converse of Gleason’s
theorem for extended group codes.

Maximal Curves

Michael Zieve

A celebrated result of Andre Weil asserts that the number of Fq-rational points on a
genus-g curve is at most q + 1 + 2g

√
q. The curves achieving this upper bound are called

maximal curves. I surveyed the known maximal curves, described some new results (joint
with Emrah Çakçak and Eric Rains), and gave evidence towards a precise new conjecture
which would explicitly describe all maximal curves.
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Abstracts of Informal Evening Talks

A family of caps of order 3q2 in AG(4, q)

Jürgen Bierbrauer

(joint work with Yves Edel)

Caps in projective spaces are sets of points no 3 of which are collinear. They are equiv-
alent with linear codes of minimum distance 4. The maximum cardinality of a cap in
PG(n, q) is known in general only for projective dimension n ≤ 3, due to the presence of
quadratic forms of Witt index 1.

We construct a family of complete (3q2 +4)-caps in AG(4, q) for q = 2odd as an extended
dual BCH-code of length 3(q2 + 1). The determination of the weight distribution of the
corresponding 5-dimensional code with dual distance 4 relies on the spectrum of the number
of rational points of a family of elliptic curves. These representation numbers also determine
the weight distributions of the Kloostermann codes, the Zetterberg codes and two famous
families of constacyclic quaternary codes [2]. The cap also can be described as union of the
pairwise intersections of three parabolic quadrics. Over F8 we obtain an [200, 5, 168]-code.
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Analysis of one-point Goppa codes from the Weierstrass semigroup
perspective

Maria Bras-Amorós

In this talk we study the minimum distance bounds and the different improvements of
one-point Goppa codes from the perspective given by the Weierstrass semigroups. We
introduce a new class of numerical semigroups, which we call the class of acute semigroups
and we prove that they generalize symmetric and pseudo-symmetric numerical semigroups,
Arf numerical semigroups and the semigroups generated by an interval. For a numerical
semigroup Λ = {λ0 < λ1 < . . . } denote νi = #{j | λi−λj ∈ Λ}. Given an acute numerical
semigroup Λ we find the smallest non-negative integer m for which the order bound on
the minimum distance of one-point Goppa codes with associated semigroup Λ satisfies
dORD(Ci)(:= min{νj | j > i}) = νi+1 for all i ≥ m. We prove that the only numerical
semigroups for which the sequence (νi) is always non-decreasing are ordinary numerical
semigroups. Furthermore we show that a semigroup can be uniquely determined by its
sequence (νi).
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The kissing number in four dimensions

Oleg R. Musin

The kissing number τn is the maximal number of equal size nonoverlapping spheres in n
dimensions that can touch another sphere of the same size. The number τ3 was the subject
of a famous discussion between Isaac Newton and David Gregory in 1694. The Delsarte
method gives an estimate τ4 ≤ 25. In this paper we present an extension of the Delsarte
method for spherical codes and use it to prove that τ4 = 24. We also present a new proof
that τ3 = 12.

Edited by Cem Güneri and Ferruh Özbudak
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