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Abstracts

Curvature flow in conformal mapping
Kenneth Stephenson

(joint work with Charles Collins and Tobin Driscoll)

In joint work with Charles Collins (Tennessee) and Tobin Driscoll (Delaware), the
author investigates the conformal mapping of a non-planar Riemann surface to
a rectangle in the plane. The methods involve circle packing, and the discussion
centres on a simple prototype problem: A Riemann surface S is created as a
nonplanar cone space by pasting 10 equilateral triangles together in a specified
pattern. Four vertices on the boundary are designated as “corners”. It is well
known classically that there is a conformal map F : S −→ R mapping S to a plane
rectangle R with corners going to corners, as suggested in Figure 1.

v1

v2

v10v9v8v7
v6 v3

v4v5

Figure 1. Conformally mapping an equilateral surface to a rectangle

Circle packing provides a means for numerically approximating F . A sequence
of ever finer insitu circle packings Qn are created in S based on its equilateral
structure and a “repacking” computation then lays out circle packings Pn in the
plane having the same combinatorics but with carriers that form rectangles Rn.
For each n the associated map fn : Qn −→ Pn is defined as a “discrete conformal
map”. It has been established by Phil Bowers and the author that as n grows,
appropriately normalized rectangles Rn converge to R and the discrete conformal
maps fn converge uniformly on compact subsets of S to F . (See [1] and for
background, [3, 4].) The circle packing on the left in Figure 2 is P6; the images of
the 10 faces of S here are very close to their correct conformal shapes.

In studying this mapping, the authors parametrized the flattening process, both
classical and discrete, in a natural way to obtain a continuous family of surfaces
stretching from S to R. One can observe experimentally the ”flow” of radius ad-
justments as the circle packings are computed from one discrete surface to the
next; that flow reflects the movement of “curvature” at the circle centres during
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Figure 2. The packing P6 and the associated “flow” field

the adjustment process. The surprise came in our observation that this flow was
essentially independent of the parametrization stage. In other words, from the be-
ginning to the end of the parametrization the circles seemed to move in accordance
with an unchanging prescription about how to coordinate their size adjustments.
On the right in Figure 2 is one of these simulated flow fields.

This field ultimately describes the flow of cone angle (curvature) among the
ten cone points of S during the flattening process. The authors looked for a
classical parallel and obtained it via a modification of the Schwarz-Christoffel
(SC) method [2]. That modification introduces interior cone points and cuts to
allow mapping to a non-planar surface. The experimental flows are nearly exact
copies of the gradient field ∇ log |Φ′(z)|, where Φ′ is the derivative of the mapping
function generated by our modified SC method (and then lifted to R). This raises
a number of questions about the classical interpretation and the possible uses for
this “curvature” flow.
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Julia polynomials and the Szegő kernel method
Igor Pritsker

Let G be a Jordan domain bounded by a rectifiable curve L of length l. The
Smirnov space of analytic functions E2(G) is defined by the product 〈f, g〉 =
1
l

∫
L f(z)g(z)|dz| (see [2], [3] and [10]). Consider the associated contour orthonor-

mal polynomials {pn(z)}∞n=0. If G is a Smirnov domain, then polynomials are dense
in E2(G) [2]. In this case, the Szegő kernel is given by K(z, ζ) =

∑∞
k=0 pk(ζ)pk(z) =

l
2π

√
ϕ′(z)ϕ′(ζ), z, ζ ∈ G, where ϕ is the conformal map of G onto the unit disk,

normalized by ϕ(ζ) = 0, ϕ′(ζ) > 0 [11]. Julia polynomials approximate ϕ, with a
construction resembling Bieberbach polynomials in the Bergman kernel method,

J2n+1(z) =
2π

l

∫ z

ζ

(
n∑

k=0

pk(ζ)pk(t)

)2

dt /

n∑
k=0

|pk(ζ)|2, n ∈ N.

The uniform convergence of Bieberbach polynomials has been extensively studied,
but methods based on the Szegő kernel did not receive a comprehensive attention.
It is not difficult to see that J2n+1 converge to ϕ locally uniformly in G. We show
in [9] that J2n+1 converge to ϕ uniformly on the closure of any Smirnov domain.
This class contains all Ahlfors-regular domains [8], allowing arbitrary (even zero)
angles at the boundary. For the piecewise analytic domains, we also give the
estimate

(1) ‖ϕ − J2n+1‖L∞(G) ≤ C(G) n− λ
4−2λ , n ∈ N,

where λπ, 0 < λ < 2, is the smallest exterior angle at the boundary of G. The
rate of convergence for J2n+1 on compact subsets of G is essentially squared com-
paring to (1). These results have standard applications to the rate of decay for
the contour orthogonal polynomials inside the domain, and to the rate of locally
uniform convergence of Fourier series.

The approximating polynomials of this kind were first introduced via an ex-
tremal problem by Keldysh and Lavrentiev (cf. [5], [6] and [7]), who developed
the ideas of Julia [4]. Set ‖f‖p =

(∫
L |f(z)|p|dz|)1/p for f ∈ Ep(G), 0 < p < ∞,

where Ep(G) is the Smirnov space [2]. Let Qn,p be a polynomial minimizing ‖Pn‖p

among all polynomials Pn such that Pn(ζ) = 1. Julia [4] showed that the corre-
sponding extremal problem in the class of all Ep(G) functions is solved by (φ′)1/p,
where φ is the conformal map of G onto a disk {z : |z| < R}, normalized by
φ(ζ) = 0 and φ′(ζ) = 1. Keldysh and Lavrentiev [7] proved that Qn,p converge to
(φ′)1/p locally uniformly in G if and only if G is a Smirnov domain. Thus the poly-
nomials Jn,p(z) :=

∫ z

ζ Qp
n,p(t)dt provide an approximation to φ(z). If p = 2 then

Jn,2 differ from J2n+1 just by a constant factor. This case was studied by Ahlfors
[1], Warschawski [12] and Gaier [3]. Again, the locally uniform convergence of Jn,p

to φ in Smirnov domains is immediate for any p ∈ (0,∞). We prove the uniform
convergence on G in arbitrary Smirnov domains, and give the convergence rates
generalizing (1) for piecewise analytic domains.
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Conformal Pseudo–metrics and a free boundary value problem for
analytic functions

Daniela Kraus

The starting point is the following free boundary value problem for analytic func-
tions f which are defined on a domain G ⊂ C and map into the unit disk
D = {z ∈ C : |z| < 1}.
Problem 1 Let z1, . . . , zn be finitely many points in a bounded simply connected
domain G ⊂ C and let φ : ∂G → (0,∞) be a continuous function. Show that
there exists a holomorphic function f : G → D with critical points zj (counted
with multiplicities) and no others such that

lim
z→ξ

|f ′(z)|
1 − |f(z)|2 = φ(ξ)

for all ξ ∈ ∂G.

If G = D, φ ≡ 1, Problem 1 was solved by Kühnau [5] in case of one critical
point, which is sufficiently close to the origin, and for more than one critical point
by Fournier and Ruscheweyh [2]. The method employed by Kühnau, Fournier and
Ruscheweyh easily extends to more general domains G, say bounded by a Dini–
smooth Jordan curve, but does not work for arbitrary bounded simply connected
domains.

We present a completely new approach to Problem 1, which shows that this
boundary value problem is not an isolated question in complex analysis, but is
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intimately connected to a number of basic (open) problems in conformal geometry
and non–linear PDE. To solve Problem 1 for arbitrary bounded simply connected
domains we divide it into the following two parts.

In a first step we construct a conformal metric in a bounded regular domain
G ⊂ C with prescribed non–positive Gaussian curvature κ(z) and prescribed sin-
gularities by solving the first boundary value problem for the Gaussian curvature
equation ∆u = −κ(z)e2u in G with prescribed singularities and continuous bound-
ary data. More precisely, we have

Theorem 1 Let G ⊂ C be a bounded and regular domain, let z1, z2, . . . , zn ∈ G be
finitely many distinct points and let α1, . . . , αn ∈ (0,∞). Let φ : ∂G → (0,∞) be a
continuous function and κ : G → (−∞, 0] a bounded and locally Hölder continuous
function with exponent α, 0 < α ≤ 1. Then there exists a unique pseudo–metric
λ : G → [0,∞) of curvature κ(z) in G\{z1, z2, . . . , zn} with zeros of orders αj at
zj and no others such that λ is continuous on G with λ(z) = φ(z) for z ∈ ∂G.

Theorem 1 is related to the Berger–Nirenberg problem in Riemannian geometry,
that is, the question which functions on a surface R can arise as the Gaussian
curvature of a Riemannian metric on R. The special case, where κ(z) ≡ −4 and
the domain G is bounded by finitely many analytic Jordan curves was treated by
Heins [4].

In a second step we show every conformal pseudo–metric on a simply connected
domain G ⊆ C with constant negative Gaussian curvature and isolated zeros of
integer order is the pullback of the hyperbolic metric on D under an analytic map
f : G → D:

Theorem 2 Let E = {z1, z2, . . .} be a discrete set in a simply connected domain
G ⊆ C, let α1, α2, . . . be positive integers, and let λ : G → [0,∞) be a pseudo–
metric of constant curvature κ = −4 in G\E with zeros of orders αj at zj and
no others. Then λ is the pullback of the hyperbolic metric under a holomorphic
function f : G → D, i.e.

λ(z) =
|f ′(z)|

1 − |f(z)|2 , z ∈ G .

If g : G → D is another holomorphic function such that

λ(z) =
|g′(z)|

1 − |g(z)|2 , z ∈ G ,

then g = T ◦ f , where T is a conformal automorphism of the unit disk D.

This extends a theorem of Liouville [6] which deals with the case that the
pseudo–metric has no zeros at all.
Theorem 1 and Theorem 2 together allow in particular a quick and complete
solution of Problem 1.
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Critical points of discrete potentials in space
J.K. Langley

(joint work with J. Rossi)

The following was conjectured in [1]: let zk ∈ C, ak > 0,

(1) zk → ∞,
∑
zk �=0

∣∣∣∣ak

zk

∣∣∣∣ < ∞, f(z) =
∞∑

k=1

ak

z − zk
.

Then f has infinitely many zeros.
The zeros of f correspond to equilibrium points of the electrostatic field gen-

erated by wires carrying charge density ak/2, perpendicular to the plane at zk.
The conjecture is known to be true in two contrasting cases: (i) if the total charge∑∞

k=1 ak is finite (or, more generally, if
∑

|zk|≤r ak = o(
√

r) as r → ∞) [1]; (ii) if
inf{ak} > 0 [2].

For point charges in space, the following was proved in [1]. Let xk ∈ R3, with

(2) xk → ∞,
∑
xk �=0

ak

|xk| < ∞, u(x) =
∞∑

k=1

ak

|x − xk| .

If inf{ak} > 0 then u has infinitely many critical points in R3.
In this case the critical points of u are equilibrium points of the electrostatic

field generated by charges ak at xk. Langley and Rossi [5] have recently shown that
instead of the condition inf{ak} > 0 it suffices that the xk have finite exponent
of convergence, which follows at once from (2) if inf{ak} > 0. The Cartan lemma
[3, p.366] is used to prove that there exist spheres |x| = rn → ∞ on which the
maximum of u(x) tends to 0, following which the method of [1] is applied.

The talk concludes with some results from [4] concerning zeros of f(z) when the
ak are complex in (1). A number of methods are applied, including quasiconformal
surgery.
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Efficient Discretization of Green Energy and Grunsky-Type
Development of Functions Univalent in an Annulus

Marcus Stiemer

Let Γ be an analytic Jordan curve in the complex plane. In 1970, K. Menke
introduced an extremal point system on Γ and applied it to approximate the log-
arithmic capacity of Γ and the conformal mapping Φ from the outer domain of
the unit circle onto the outer domain of Γ with Φ(z) = dz + O(1), z → ∞, d > 0
geometrically fast [2, 3, 4, 5, 6]. D. Gaier introduced the notation Menke points
for systems of this type. In contrast to Fekete-points, which possess a worse dis-
tribution on analytic Jordan curves [10, 11], Menke-points consist of two sets of
points that alternate on the curve Γ. An extension to the hyperbolic situation (see
below) has been developed in [9].

Let now F ⊂ Ĉ be a set with connected complement Ω, such that the Green
function G(z, ζ) in Ω with pole in ζ ∈ Ω exists. Moreover, let Γ be an analytic
Jordan curve in Ω with E = Int Γ.

The purpose of this work is to develop a Menke-type discretization for the
measure of minimal Green energy on Γ with respect to Ω and to prove that this
discretization provides a geometrically fast converging approximation to minimal
Green energy.

Particularly for the hyperbolic situation, F = Ĉ \ D, Ω = D, we prove that
Menke-points approximate the images of rotated roots of unity under the confor-
mal mapping Φ from {1 < |z| < e1/C(E,F )} onto R = D \E with Φ(e1/C(E,F )) = 1
geometrically fast. Here, C(E, F ) denotes the capacity of the condenser (E, F ).
Thus, hyperbolic Menke points possess a better distribution on analytic Jordan
curves than points of Fekete-type, which are called Tsuji-points in the hyperbolic
situation [7, 8]. The latter has only been shown under additional assumptions so
far.

The key to the presented proof is to utilize the connection between Green en-
ergy and the coefficients of the logarithmic development of functions univalent in
an annulus. In particular, an extension of the Grunsky inequaltities to functions
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univalent in an annulus due to R. Kühnau is applied [1].

Finally, a pointwise geometrically fast approximation to the Green potential in
R = D \ E is derived and several numerical examples are presented.
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Boundary Interpolation in the Theory of Nonlinear Riemann-Hilbert
Problems

Gunther Semmler

We study Riemann-Hilbert problems for a holomorphic function w in the unit disc
D with the boundary condition

(1) w(t) ∈ Mt

for all t ∈ T. The restriction manifold

M :=
⋃
t∈T

{t} × Mt

is supposed to be smooth so that the existence of solutions that are continuous on
the closed unit disc is secured by well-known theorems. Given k points z1, . . . , zk

in the unit disc, there is exactly one solution of the boundary value problem (1)
satisfying the side conditions

w(zj) = wj , j = 1, . . . , k w(t0) = w0 ∈ Mt0

The ambition of our research is to replace these conditions solely by interpolation
points on M, i.e. we require

(2) w(tj) = wj , j = 0, . . . , k
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where tj ∈ T and wj ∈ Mtj are given. As a generalization of a result by
Ruscheweyh and Jones for Blaschke products, we show that the interpolation
problem (2) has a solution with winding number at most k about M . This raises
the question to determine a solution of (2) with minimal winding number about
M . For three interpolation points we define the notion of counterclockwise turning
around M with respect to the holomorphic parametrization, which allows to finally
solve this problem. For more than three interpolation points, the situation is more
involved. It turns out that we can distinguish three classes of problems which
will be called rigid, fragil, and flexible. Problems in these classes have different
properties concerning uniqueness and stability of solutions.

It is remarkable that also for finite Blaschke products (which solve the most
simple Riemann-Hilbert problem where Mt = T), no solvability criterium for (2)
is known. In order to find at least an algorithmic approach we transformed this
problem to an interpolation problem for a rational funtion on the real line, the
numerator and denumerator polynomial of which have the interlacing property.
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Restriction operators on Bergman space
Mihai Putinar

(joint work with B. Gustafsson and H.S. Shapiro)

Let Ω be a bounded planar domain and let A2(Ω) be the associated Bergman space
(of analytic square integrable functions). For a positive measure µ, compactly
supported by Ω we consider the restriction operator:

R : A2(Ω) −→ L2(µ), Rf = f | suppµ.

It is a trace class operator, whose modulus square R∗R has a complete system of
eigenvectors fk ∈ A2(Ω), corresponding to a descending sequence of eigenvalues
λk (after putting aside the null vectors). The typical eigenvalue problem for fk

can be written as an integral equation:

λkfk(z) =
∫

K(z, w)fk(w)dµ(w).

This shows that each function fk analytically extends across the boundary of Ω.
The system of functions fk is doubly orthogonal with respect to the two inner

products:
λk〈fk, fm〉2,Ω = δkm〈fk, fm〉µ.

Such doubly orthogonal systems have appeared a long time ago in function theory
and approximation theory. Most of the references below illustrate such instances.
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We are interested in qualitative properties of the eigenfunctions fk. A central
result in this direction is the following.

Theorem. Let Ω be a bounded domain with smooth boundary, such that its
Green function of the bi-Laplacian(associated to an arbitrary point of the bound-
ary) is non-negative. Let H(z, w) denote the reproducing kernel for all harmonic,
square integrable functions in Ω, and assume that the positivity set: P = {z ∈
Ω; H(z, w) > 0, w ∈ ∂Ω} is non-empty.

Suppose that the positive measure µ is supported by a compact subset of P .
Then each eigenfunction fk does not vanish on the boundary of Ω and it possesses
exactly k zeros in Ω.

For instance, if Ω = D is the unit disk, then the conditions of the theorem are
met for the set P = {z; |z| <

√
2 − 1}. The analogous theorem for restrictions

from the Hardy space was discovered by Fisher and Micchelli [7] and it played an
important role in best approximation results and estimates on n-widths.

The proof of the theorem is based on potential theoretic techniques, starting
from the observation that each eigenfunction fk satisfies the balayage identity:

λk

∫
Ω

|fk(z)|2u(z)dArea(z) =
∫

|fk(z)|2u(z)dµ(z),

valid for an arbitrary harmonic function u, defined on a neighborhood of the closure
of Ω.

This particular framework of doubly orthogonal systems can be used to estimate
the growth of the contractive divisors in the Bergman space, best approximation
in the L2(µ) norm with control of the L2(Ω, dArea) norm or exact identification
of the inner measure µ from the matricial elements of the restriction operator.

This is a report on results published in:

B. Gustafsson, M. Putinar and H.S.Shapiro Restriction operators, balayage and
doubly orthogonal systems of analytic functions, J. Funct. Analysis 199(2003),
332-378.
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Measurable dynamics of transcendental entire functions on their Julia
sets

Jan-Martin Hemke

One of the main ideas in complex dynamics is to divide the plane into the Fatou
set of points, where the iterates behave stable, i.e. where they form a normal
family, and its complement, the Julia set. By definition the dynamics in the Fatou
set is easier and understood very well. We are interested in the dynamics of
meromorphic functions on their Julia set and study it in terms of the Lebesgue
measure. In [1] H. Bock proved, that for any non-constant meromorphic function,
which is defined on the whole complex plane, one of the two following cases holds:

(1) The Julia set is the entire plane and almost every orbit is dense in the
sphere Ĉ;
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(2) almost every forward-orbit in the Julia set accumulates only in the post-
singular set.

Here the post-singular set denotes the closure of the union of the forward-orbits
of all singularities of the inverse function, which are the critical and asymptotic
values. This result is a generalization of similar results for rational functions ob-
tained by M. Lyubich [8] and C. McMullen [10].
It is natural to ask for a given function, which case holds. Since a non-empty
Fatou set always implies (ii), one can restrict to the cases, in which the Julia set
consists of the whole complex plane. If the Julia set is not the entire plane, and
thus (ii) holds, it would still be interesting to know if the Julia set has positive
measure, since otherwise the statement (ii) would be trivial.
In the paper mentioned H. Bock gives sufficient conditions for (i): If f is entire and
the set of singularities of the inverse function is finite, all of these are pre-periodic
but not periodic, then (i) is satisfied. Thus the function f(z) = 2πi exp(z) is
an example for this first case, in which the post-singular set consists of the only
asymptotic value zero and its image 2πi. Other conditions concerning this case
are given by L. Keen and J. Kotus [4]. Conversely it was already shown in 1984
independently by M. Rees [6] and M. Lyubich [7] that the function f(z) = exp(z)
is an example for (ii). Here the post-singular set consists of the the closure of the
forward-orbit of the only asymptotic value zero, which tends to infinity on the real
axis. This result was generalized in [11] to functions fλ(z) = λ exp(z), if fn

λ (0)
tends to infinity sufficiently fast. M. Urbanski and A. Zdunik [3] even showed,
that the Hausdorff-dimension of the remaining set is smaller than 2.
The difference between the dynamics of exp(z) and 2πi exp(z) is caused by the dif-
ferent behavior of the asymptotic value zero under iteration. We consider functions
of the type f(z) =

∫ z

0 P (t) exp(Q(t))dt + c, with polynomials P and Q and c ∈ C,
such that Q is not constant and P not zero. Counting multiplicity these functions
have exacty deg(Q) asymptotic values and deg(P ) critical points and may even
be characterized as those entire functions with this property. In the extremal case
that all singularities of the inverse are pre-periodic but not periodic, the theorem
of H. Bock implies (i). We consider the other extreme and may neglect the critical
values but have to specify the speed of escape. We assume that every asymptotic
values s escapes exponentially fast, i.e. that |fn(s)| ≥ exp(|fn−1(s)|δ) for some
δ > 0 and almost all n ∈ N. Then we can prove that the Julia set has positive
measure and that (ii) is satisfied. If the degree of Q is at least three, using an
argument introduced by H. Schubert in [13], we obtain that the measure of the
Fatou set is even finite.

References

[1] Bock, H., Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge, Dis-
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On Periodic Rays of Certain Entire Functions
Lasse Rempe

A well-known theorem of Douady and Hubbard [M, Theorem 18.10] states that
periodic dynamic rays of polynomials always have a periodic landing point. This
result forms the basis of the combinatorial methods which have been an essential
ingredient in the success story of polynomial dynamics since the early studies of
the Mandelbrot set [DH].

In this talk, we will consider the analogous question for periodic rays of tran-
scendental entire functions. For our purposes, a periodic dynamic ray of an entire
function f : C → C is a maximal curve

γ : (t0,∞) → I(f) := {z ∈ C : |fn(z)| → ∞}
which satisfies fn(γ(t)) = γ(t + 1) for some n ≥ 1 and all t > t0. (Here t0 ∈
[−∞,∞).) As usual, we say that γ lands at a point z0 ∈ Ch if limt→t0 γ(t) = z0.

For the family of exponential maps1

Eκk : z �→ exp(z) + κ,

landing behavior of periodic rays has recently been used to great advantage by
Schleicher (see e.g. [S2, RS]). However, it was previously not known whether
periodic rays of exponential maps always land. We can now answer this question.

Theorem 1 (Periodic rays land [R1]) Every periodic ray of every exponential
map lands.

1This family forms the simplest parameter space of transcendental entire functions, as ex-
ponential maps are the only such functions with only one singular value. Also, the exponential
family can be considered to be the limit of the families of unicritical polynomials, z �→ zd + c
[BDG], which are by far the best-understood polynomial families.
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(a) (b)

Figure 3. Periodic rays for z �→ exp(z) + 1.0038 + 2.8999i. (a)
shows two rays forming a period 2-cycle; (b) shows a cycle of 25
rays landing at a common fixed point.

The proof of Douady and Hubbard’s landing theorem for polynomials uses a
hyperbolic contraction principle, and this argument can be carried over to several
situations in which there is some form of expansion along the ray. However, it is
conceivable that a periodic ray γ might accumulate on a singular value, whose orbit
again accumulates everywhere on γ. In such a situation, a proof by hyperbolic
contraction would be impossible. Thus, in order to apply this method to maps
with large postsingular sets, it seems that one must a priori show that the given
ray does not accumulate on singular values. The problem is that it can be very
difficult to control the accumulation behavior of these rays; even for many tame
exponential maps, there are many (nonperiodic) dynamic rays with complicated
accumulation behavior [DJ, R2].

Our proof of Theorem 1 circumvents these difficulties by using a theorem of
Schleicher [S1] on landing properties of parameter rays.2 However, there is little
hope for this method to generalise to higher-dimensional parameter spaces. For
example, we currently know of no argument which would prove the analogue of
Theorem for cosine maps,

z �→ a exp(z) + b exp(−z),

2Thus, we are reversing Douady’s famous principle: we plough in the parameter plane to
harvest in the dynamical plane.
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where a, b ∈ C. (Many results for the exponential family are known to generalise
to this two-dimensional family; in particular, there is a complete classification of
escaping points in terms of dynamic rays [Ro].)

On the other hand, we were able to show that the above problem is indeed the
only obstruction for a large set of functions in the class

B := {f : C → C entire; sing(f−1) is bounded}.

Theorem 2 (Periodic rays with nonsingular accumulation sets [R3])
Let f be either

• a cosine map z �→ a exp(z) + b exp(−z) or
• a function f ∈ B all of whose singular values lie in the Julia set.

If γ is a fixed dynamic ray of f which has no accumulation points in sing(f−1)),
then γ lands.
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On the zeros of the solutions of a functional equation
Walter Hayman

We consider an entire function

f(z) =
∞∑
0

anzn

satisfying the equation

(a − qz)f(q2z) − (1 + a)f(qz) + f(z) = 0 , 0 < |q| < 1.

Let zn be the nth zero of f(z) in order of nondecreasing moduli. Then

zn = −q(1−2n)

{
1 +

k∑
ν=1

bνqnν + O(|q|(k+1)n)

}
,

where the bν are constants depending on a and q. This verifies a conjecture of
Mourad Ismail [1], concerning the zeros of q–Bessel functions. The above result
also contains as a special case an identity of Ramanujan [4].

The method builds on an earlier paper by Walter Bergweiler and the author [3]
which applies to a wider class of functional equations but gives only the first term
in the asymptotic series. In this case the zeros may approach a finite number of
distinct geometric progressions. We compare the coefficients of f(z) and so f(z)
itself with certain theta–functions.

References

[1] Letter to the author
[2] Ismail, Mourad E.H., The zeros of basic Bessel functions, the functions J(nu+ax)(x), and

associated orthogonal polynomials, J. Math. Anal. Appl. 86, 1-19 (1982).
[3] Walter Bergweiler and Walter K. Hayman CMFT 3 (2003), 55–78.
[4] Third identity on p. 57 of Ramanujan’s last notebook, see Bruce C. Berndt, Ramanujan’s

notebooks. Part I, Springer-Verlag, New York, 1985.

On the number of zeros of certain rational harmonic functions
Dmitry Khavinson

(joint work with Genevra Neumann)

A. Wilmshurst [Wil 98] showed that there is an upper bound on the number of
zeros of a harmonic polynomial f(z) = p(z) − q(z), where p and q are analytic
polynomials of different degree, answering the question of T. Sheil-Small [SS 92].
Let n = deg p > deg q = m. Wilmshurst showed that n2 is a sharp upper bound
when m = n−1 and conjectured that the upper bound is actually m(m−1)+3n−2.
D. Khavinson and G. Świa̧tek [KS 03] showed that Wilmshurst’s conjecture holds
for the case n > 1, m = 1 using methods from complex dynamics. When hearing
of this result, P. Poggi-Corradini asked whether this approach can be extended to
the case f(z) = p(z)/q(z)− z, where p and q are analytic polynomials.

In this note, we apply the approach from [KS 03] to prove
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Theorem Let r(z) = p(z)/q(z) be a rational function where p and q are relatively
prime, analytic polynomials and such that n = deg r = max(deg p, deg q) > 1.
Then

#{z ∈ C : r(z) = z} ≤ 5n − 5

We note that the zeros of r(z) − z are isolated, because each zero is also a
fixed point of Q(z) = r(r(z)), an analytic rational function of degree n2. This
also follows from a result of P. Davis [Da 74] (Chapter 14) concerning the Schwarz
functions of analytic curves. (The Schwarz function is an analytic function S(z)
that gives the equation of a curve in the form z = S(z), cf. [Da 74].) A rational
Schwarz function implies that the curve is a line or a circle, so the degree must be
one.

We also note that r(z) − z will not have a zero at ∞.

L. Geyer [Ge 03] has recently shown that the 3n − 2 bound on the number of
zeros of f(z) = p(z)−z where deg p = n is sharp for all n > 1. D. Bshouty and A.
Lyzzaik [BL 03] have recently given an elementary proof for n = 4, 5, 6, 8. Hence,
a sharp bound on the number of zeros of f(z) = r(z) − z must be at least 3n− 2.

Let us discuss applications of the result to gravitational microlensing. An n-
point gravitational lens can be modeled as follows: Suppose that we have n point
masses (such as stars). Construct a plane through the center of mass of these
point masses, such that the line of sight from the observer to the center of mass is
orthogonal to this plane. This plane is called the lens plane (or deflector plane).
Suppose that the lens plane is between the observer and the light source. (We
are assuming that the distance between the point masses is small compared to the
distance between the observer and the lens plane, as well as the distance between
the lens plane and the light source.) The plane containing our light source which
is parallel to the lens plane is called the source plane. Due to deflection of light
by masses multiple images of the light source are formed. This phenomenon is
known as gravitational microlensing and is modeled by a lens equation. The lens
equation defines a mapping from the lens plane to the source plane. Suppose that
our light source is located at postion w in the source plane. In this model, if z
satisfies the lens equation, then our gravitational lens will map z to w; hence z
corresponds to the position of a lensed image. The number of lensed images is
the number of solutions of the lens equation. See [Wa 98] for an introduction to
gravitational lensing and [St 97] for an introduction to a complex formulation of
lensing theory.

To set up a lens equation for our n-point gravitational lens, the point masses
are projected onto positions in the lens plane. The projection of the j-th point
mass has a scaled mass of mj and is located at a scaled coordinate of zj in the
lens plane, where mj is a positive constant and zj is a complex constant. Suppose
that we have a light source located at a scaled coordinate of w in the source plane.
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Following [Wit 90], this lens equation will be given by

w = z + γz − sign(σ)Σn
j=1 mj/(z − zj),

where the normalized shear γ and the optical depth (or normalized surface density)
σ �= 0 are real constants. See [Wit 90] and [Pa 86] for a derivation of the normalized
lens equation for microlensing.

We can rewrite this lens equation in terms of the rational harmonic function
f(z) = r(z) − z by letting r(z) = w − γz + sign(σ)Σn

j=1 mj/(z − zj). We thus
see that the zeros of f(z) are solutions of the lens equation for a light source at
position w. H. Witt [Wit 90] showed for n > 1 that the maximum number of
observed images is at most n2 + 1 when γ = 0 and (n + 1)2 when γ �= 0. S. H.
Rhie [Rh 01] conjectured that for n > 1 such a gravitational lens gives at most
5n − 5 images for the case γ = 0 and σ > 0. In the γ = 0 case, deg r = n;
hence, our theorem settles this conjecture. Further, for the case γ �= 0, we see that
deg r = n + 1, so our theorem gives an upper bound of 5(n + 1) − 5 = 5n lensed
images.
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An extension of the Schwarz–Carathéodory reflection principle
Oliver Roth

1. A reflection principle for conformal metrics

Let D := {z ∈ C : |z| < 1} denote the open unit disk in the complex plane C.
An open subarc of the unit circle ∂D := {z ∈ C : |z| = 1} is an open connected
proper subset of ∂D.

Theorem 1 Let I be an open subarc of ∂D and let R be a Riemann surface, which
carries a complete real analytic conformal Riemannian metric λ(w) |dw|. Then a
non–constant analytic map f : D → R can be continued analytically across I with
f(I) ⊂ R if and only if there exists a holomorphic function h : I → C such that

(1) lim
z→ξ

λ(f(z)) |f ′(z)|
|h′(z)| = 1, ξ ∈ I.

Remarks.

(a) Note that λ(f(z)) |f ′(z)| in (1) is the pullback of the metric λ(w) |dw|
under the map f . Hence λ(f(z)) |f ′(z)| is a well-defined function on D.

(b) The phrase “f : D → R can be continued analytically across I with f(I) ⊂
R” means there exists a domain Ω ⊃ D with I ⊂ Ω and an analytic map
F : Ω → R such that F = f in D. This map F is the unique analytic
continuation of f to Ω.

(c) A function h : M → C is said to be holomorphic on a set M ⊆ C, if it is
defined and holomorphic in an open set V ⊆ C containing M .

(d) The special case R = C and λ(w) = 1 of Theorem 1 may be regarded as a
version of the classical Schwarz–Carathéodory reflection principle [3, 7] for
holomorphic functions f : D → C. Just as with the Schwarz–Carathéodory
reflection principle, Theorem 1 readily generalizes to non–constant analytic
maps f : D → R, where (i) D is a domain in C with an open free analytic
boundary arc I or (ii) D is a bordered Riemann surface with border Γ and
I ⊂ Γ.

(e) For the special case R = D and λ(w) = 1/(1− |w|2) Theorem 1 reduces to
the Fournier–Ruscheweyh reflection principle [4, 5].
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(f) The restraint in Theorem 1 that λ(w) |dw| is a complete and real analytic
conformal Riemannian metric can slightly be relaxed. For the ’if’ part it
suffices to assume λ(w) |dw| is a complete conformal Riemannian metric,
which is real analytic in a neighborhood U ⊂ R of f(I). For the ’only
if’ part we need only λ(w) |dw| is real analytic in a neighborhood of f(I).
These assumptions cannot further be weakened.

2. Analytic continuation of Beurling–Riemann maps

In 1953 Arne Beurling [2] proved the following extension of the Riemann map-
ping theorem3.

Theorem A Let Φ(w) be a positive, continuous and bounded function defined for
|w| < ∞ and let w0 be a given point in the w-plane. Then there exists an analytic
and univalent function f : D → C normalized by

(2) f(0) = w0, f ′(0) > 0,

and satisfying the non–linear boundary condition

(3) lim
|z|→1

(|f ′(z)| − Φ(f(z))) = 0.

Moreover, if log Φ(w) is superharmonic, then there is exactly one such function.

We call any normalized, analytic and univalent function f : D → C satisfying
(3) a Beurling–Riemann mapping function (for Φ(w)). Note that every Beurling–
Riemann mapping function f(z) is a Lipschitz map from (D, | · |) to (C, | · |),

|f(z1) − f(z2)| ≤ M · |z1 − z2|, z1, z2 ∈ D,

with M := supw∈C Φ(w) < ∞. Hence f(z) has a continuous extension to D, and
∂f(D) is a closed curve, which admits the conformal parametrization

∂f(D) : f(eit), 0 ≤ t ≤ 2π.

Moreover, |f ′(z)| has a continuous extension to D with |f ′(z)| �= 0.

If a Beurling–Riemann mapping function can be continued analytically across
an open subarc I of the unit circle, then the corresponding function Φ(f(z)) will
be real analytic on I since Φ(f(z)) = |f ′(z)| > 0 there. A partial converse is given
by the following theorem, which is essentially another special case of Theorem 1.

Theorem 2 Let Φ(w) be a positive, continuous and bounded function defined for
|w| < ∞, let w0 be a given point in the w-plane, and let f(z) be a Beurling–
Riemann mapping function for Φ(w) normalized by (2). If Φ(w) is real analytic
in a neighborhood of f(I) for some open subarc I of the unit circle, then f(z) has
an analytic continuation across I.

In particular, if Φ(w) is real analytic in a neighborhood of ∂f(D), then every
Beurling–Riemann mapping function for Φ(w) has an analytic extension to some

3See [1, 4, 6] for recent generalizations of and variations on Beurling’s theorem.
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disk |z| < ρ, ρ > 1. Hence, at least in this special case, the analytic properties
of the function Φ(w) are reflected by the analytic properties of the corresponding
mapping functions.
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[3] Constantin Carathéodory, Zum Schwarzschen Spiegelungsprinzip (Die Randwerte von mero-
morphen Funktionen), Comment. Math. Helv. (1946), 46, 263–278.

[4] Richard Fournier and Stephan Ruscheweyh, Free boundary value problems for analytic
functions in the closed unit disk, Proc. Amer. Math. Soc. (1999), 127 no. 11, 3287–3294.

[5] Richard Fournier and Stephan Ruscheweyh, A generalization of the Schwarz–Carathéodory
reflection principle and spaces of pseudo–metrics, Math. Proc. Cambridge Phil. Soc. (2001),
130, 353–364.
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Schwarzians of Hyperbolically Convex Functions
G. Brock Williams

(joint work with Roger W. Barnard, Leah Cole, and Kent Pearce)

The Schwarzian derivative Sf of an analytic function f : Ω → C is given by

Sf =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarzian itself contains a great deal of geometric information about the
function f , but much more is encoded in the Schwarz norm

||Sf ||Ω = sup
z∈Ω

{η−2
Ω (z) |Sf (z)|},

where ηΩ is the hyperbolic density of Ω.
The Schwarz norm of f is completely Möbius invariant and is 0 if and only if f

is a Möbius transformation. Thus the Schwarzian derivative provides an effective
means of describing how much an analytic map differs from a Möbius transforma-
tion. For functions f defined on the unit disc D, this also serves to describe how
the range of f differs from a disc. Olli Lehto has made this notion precise, defining
a pseudo-metric on the space of all simply connected proper subsets of C modulo
Möbius transformations [1].

As a general principle, regions which are close to discs in Lehto’s pseudo-metric
share some of the properties of discs. Thus it is natural to ask “how far from a
disc can a convex set be?” [6] For convex sets in euclidean geometry, this question
was answered by Zeev Nehari who showed that if f is convex, then ||Sf ||D ≤ 2,
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with equality if and only if f(D) is a euclidean strip [7]. Similarly, Diego Mej́ıa
and Christian Pommerenke proved that the extremal spherically convex domains
are also strips [3].

In this talk, we complete the classification in all three classical geometries of
the convex domains which are furthest from being a disc, by establishing the sharp
upper bound on the Schwarz norm of functions from the disc onto hyperbolically
convex regions. In particular, we show that the bound is attained by a map onto
a domain bounded by two hyperbolic geodesics, a sort of “hyperbolic strip.” This
result had earlier been conjectured in several papers of Diego Mej́ıa and Christian
Pommerenke [2, 4, 5].

Our major tools are the Julia variation as extended by Roger Barnard and
John Lewis, estimates on elliptic integrals, and a critical new Step Down Lemma.
We formulate two new variations which preserve hyperbolic convexity. The first
variation allows us to show there is an extremal domain with at most four sides.
Our Step Down Lemma and the second variation then reduces the number of sides
to at most two. We then directly compute the Schwarz norm for the remaining
possibilities using special functions techniques.

This talk represents joint work with Roger W. Barnard, Leah Cole, and Kent
Pearce.
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Metric properties of Green’s functions
Vilmos Totik

Extensions of the classical Markov inequality

‖P ′
n‖[−1,1] ≤ n2‖Pn‖[−1,1]

(where Pn is a polynomial of degree at most n) to more general sets are closely
related to smoothness of Green’s functions. If E is a compact set on the plane,
then the n-th Markoff constant Mn for E is defined as the smallest Mn for which

‖P ′
n‖E ≤ Mn‖Pn‖E .
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Let gC\E be the Green’s function of the unbounded component of C \E with pole
at infinity (we assume that E is of positive logarithmic capacity). A standard way
of estimating Mn is to use the Bernstein-Walsh lemma

|Pn(z)| ≤ engC\E(z)‖Pn‖E, z ∈ C

and then to use the Cauchy integral formula for the derivative of Pn. This approach
gives e.g. that if gC\E is Hölder continuous: gC\E(z) ≤ C dist(z, E)α, then Mn ≤
C′n1/α. Thus, smoothness of Green’s function implies a growth restriction on the
Markov factors Mn. The converse is not clear, and in the talk first a situation
is mentioned when the connection is completely known, and this is the case of
Cantor type sets.

Let ε1, ε2, . . . be a sequence from the interval (0, 1), and starting from C0 = [0, 1]
do the Cantor construction with the modification that at level n we remove the
middle εn part of all remaining intervals. If Cn denotes the set after making n such
steps, then Cn consists of 2n intervals of total length (1− ε1) · · · (1− εn). Consider
the Cantor set C = ∩nCn. It is of measure zero if and only if

∑
n εn = ∞, and it

is of positive capacity if and only if
∑

k | log(1 − εk)|/2k < ∞ (see e.g. [5, Section
V.6]). Now for Cantor sets we have (see [6], [7], [8])

(a): Mn = eo(n) ⇐⇒ gC\E continuous ⇐⇒∑
j 2−j log(1 − εj) > −∞,

(b): Mn = O(nk) for some k ⇐⇒ gC\E ∈ Lip α for some α > 0
⇐⇒∑n

j=1 log(1 − εj) ≥ −cn,
(c): Mn = O(n2) ⇐⇒ gC\E ∈ Lip1/2 ⇐⇒∑

j ε2
j < ∞.

Note that Mn ≥ cn2 and gC\E(−r) ≥ cr1/2 for all E ⊆ [0, 1], i.e. the growth rates
in (c) are optimal.

In the special case εj = 1/(j + 1) we get a compact set E ⊂ [0, 1] of linear
measure 0 such that gC\E ∈ Lip1/2 and Mn = O(n2).

As we can see, there is a big difference between the conditions on εj in (b) and
(c). An explanation was given by V. Andrievskii [1] who proved that for E ⊂ [0, 1]
the condition gC\E(z) ≤ C|z|1/2 implies that the set E is locally of full capacity
at 0, i.e.

lim
t→0

cap([0, t] ∩ E)
cap([0, t])

= 1.

Recently a characterization of optimal Hölder smoothness of Green’s function was
given by L. Carleson ([3]): for E ⊂ [0, 1] we have gC\E(z) ≤ C|z|1/2 if and only if∑

k θk < ∞, where with some 0 < ε < 1/3

θk = 2k
(

cap([0, 2−k]) − cap
(
(E ∩ [0, 2−k]) ∪ [0, ε2−k] ∪ [(1 − ε)2−k, 2−k]

))
.

Returning to measuring density of sets with linear Lebesgue measure, T. Erdélyi,
A. Kroó and J. Szabados [4] used for E ⊂ [0, 1] the function ΘE(t) = |[0, t] \E| to
measure density, and they proved some local Markov inequalities in terms of this
ΘE . In [7] we used the same measure ΘE (if E is not on [0, 1] then take its circular
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projection onto R+ and use the Θ function for the projected set), and proved that

gC\E(z) ≤ C
√
|z| exp

(
C

∫ 1

|z|

Θ2
E(u)
u3

du

)
log

2
cap(E)

,

and this is sharp, for if Θ ↗, Θ(t) ≤ t, then there is an E ⊂ [0, 1] such that
ΘE(t) ≤ Θ(t) and

gC\E(−r) ≥ c
√

r exp
(

c

∫
r

Θ2(u)
u3

du

)
.

This result was extended in [2] by V. Andrievskii.
Finally, we talk about characterization of Hölder continuity with some positive

exponent in the spirit of Wiener’s regularity test. Let E be a compact subset on
the plane such that 0 is on the boundary of the unbounded component of C \ E.
With

En =
{
z ∈ E 2−n ≤ |z| ≤ 2−n+1

}
the continuity of gC\E at 0 was characterized by Wiener (see e.g. [9, Theorem
III.62]): gC\E is continuous at 0 if and only if

∞∑
n=1

n

log(1/ cap(En))
= ∞.

For ε > 0 set
NE(ε) = {n ∈ N cap(En) ≥ ε2−n},

and we say that a subsequence N = {n1 < n2 < . . .} of the natural numbers is of
positive lower density if

lim inf
N→∞

|N ∩ {0, 1, . . . , N}|
N + 1

> 0,

which is clearly the same condition as nk = O(k). Now (see [3]) under the cone
condition (i.e. there is a cone with vertex at 0 not intersecting E) Green’s function
g

C\E is Hölder continuous at 0 (i.e. gC\E(z) ≤ C|z|α for some α > 0) if and only if
NE(ε) is of positive lower density for some ε > 0. Here the cone condition cannot
be omitted, but the rings {2−n ≤ |z| ≤ 2−n+1} in the definition of En can be
replace by the disks {|z| ≤ 2−n}.
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Random matrices in an external source and multiple orthogonal
polynomials

Arno B.J. Kuijlaars
(joint work with Pavel Bleher)

We consider the random matrix ensemble

(1)
1

Zn
e−nTr(V (M)−AM)dM

defined on n × n Hermitian matrices M , where A is a given Hermitian matrix,
called the external source. The ensemble is unitary invariant if A = 0, and then
the eigenvalue correlations can be described with orthogonal polynomials. The
universal behavior of local eigenvalue statistics in the large n limit can then be
obtained from precise asymptotic formulae for the orthogonal polynomials. This
was done in [2, 8] with the steepest descent method for Riemann-Hilbert (RH)
problems.

For a general external source A the ensemble (1) is not unitary invariant. Sup-
pose A has p distinct eigenvalues a1, . . . , ap of multiplicity n1, . . . , np, respectively.
Then the average characteristic polynomial Pn(z) = E det[zI − M ] satisfies∫

Pn(x)xke−n(V (x)−ajx)dx = 0, k = 0, . . . , nj − 1, j = 1, . . . , p,

and these relations characterize the polynomial Pn, see [3]. The polynomials are
known as multiple orthogonal polynomials of type II and they are characterized
by a (p + 1) × (p + 1)-matrix RH problem [10]. For p = 2, the RH problem is to
find an analytic Y : C \ R → C3×3 such that

• for x ∈ R, we have

(2) Y+(x) = Y−(x)

1 e−n(V (x)−a1x) e−n(V (x)−a2x)

0 1 0
0 0 1

 ,

• as z → ∞, we have

(3) Y (z) =
(

I + O

(
1
z

))zn 0 0
0 z−n1 0
0 0 z−n2

 .

This RH problem has a unique solution and Y11(z) = Pn(z).
The m-point correlation function for the eigenvalues of (1) has determinantal

form [11]
Rm(λ1, . . . , λm) = det (Kn(λi, λj))1≤i,j≤n
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with a kernel Kn built out of multiple orthogonal polynomials of type I and II,
see [3]. For the case p = 2 the kernel can be expressed in terms of the solution of
the Riemann-Hilbert problem as follows

(4) Kn(x, y) =
e−

1
2 n(V (x)+V (y))

2πi(x − y)
(
0 ena1y ena2y

)
Y −1(y)Y (x)

1
0
0

 .

The expression (4) is based on a Christoffel-Darboux formula for multiple orthog-
onal polynomials [3, 7].

The large n limit of the Gaussian case (V (M) = 1
2M2) with 2 eigenvalues a1 =

a, a2 = −a of equal multiplicity exhibits a phase transition for the value a = 1.
For a > 1 the eigenvalues are asymptotically distributed on two disjoint intervals
[−z1,−z2]∪ [z2, z1], while for a ≤ 1 the eigenvalues accumulate on a single interval
[−z1, z1]. The limiting mean eigenvalue density is given by ρ(x) = 1

π�|ξ(x)|, where
ξ(x) satisfies the third order equation (Pastur’s equation [9])

(5) ξ3 − xξ2 − (a2 − 1)ξ + xa2 = 0.

For a = 1, the density has a |x|1/3 behavior near x = 0.
We establish universality of local eigenvalue correlations in the large n limit.

In [4] we apply the steepest descent method to the RH problem (2), (3) with
V (x) = 1

2x2, a1 = a, a2 = −a, n1 = n2, and we assume a > 1. A main tool is the
Riemann surface for the equation (5) and the functions defined on it. The results
are that for x0 in the bulk,

(6) lim
n→∞

1
nρ(x0)

K̂n

(
x0 +

x

nρ(x0)
, x0 +

y

nρ(x0)

)
=

sinπ(x − y)
π(x − y)

.

At the edge point z1, we have for a certain c > 0,

(7) lim
n→∞

1
(cn)2/3

K̂n

(
z1 +

x

(cn)2/3
, z1 +

y

(cn)2/3

)
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

where Ai is the Airy function. Similar expressions are valid at −z1 and at ±z2.
The kernel K̂n in (6) and (7) is a modification of Kn

K̂n(x, y) = en(h(x)−h(y))Kn(x, y)

for a certain function h, which does not affect the eigenvalue correlation functions.
For 0 < a < 1, the steepest descent analysis of the RH problem proceeds in a

different way [1], but we again find the sine kernel in the bulk and the Airy kernel
at the edges. For a = 1, the local eigenvalue correlations near x = 0 are given in
terms of Pearcey integrals [5, 6].
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Behaviour of kernel functions under homotopies of planar domains
Eric Schippers

The main results are 1) a variational formula for Green’s function of finitely con-
nected planar domains, and 2) the demonstration of the monotonicity of various
domain functions under set inclusion. The variational formula shows that up to
first order, a general homotopy behaves like the normal variation of Hadamard
[5]. The consideration of general homotopies is necessary in order to obtain mono-
tonicity of the domain functions.

The variational formula is obtained by isolating the normal part of the variation.
Let Γt0 and Γt be parametrize one of the boundary components of domains Dt

and Dt0 (here t is the homotopy variable). For t is close to t0, let nt0(t, τ) be the
distance from Γt0(τ) to the curve Γt along the normal to Γt0 . Let

νt0(τ) =
d

dt

∣∣∣∣
t0

nt0(t, τ);

we then have that

gt(z, ζ) − gt0(z, ζ) =
t − t0
2π

∫
∂Dt0

∂gt0

∂nu
(u, z)

∂gt0

∂nu
(u, ζ)νt0(u)dsu + O(|t − t0|2)

where ds is arc length and n is the outward unit normal. The remainder term is
harmonic and bounded on compact sets. This idea was applied in special cases by
Barnard and Lewis [1].

With the use of this formula, it is quite easy to prove the monotonicity of
various expressions in the derivatives of Green’s function simply by differentiating
the expression in the homotopy variable. More precisely, one desires theorems of
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the form D1 ⊂ D2 =⇒ Φ(D1) ≥ Φ(D2), where Φ is some functional depending
on the domain. If one can construct a homotopy Dt between D1 and D2, one
can apply the variational formula above to show that Φ(Dt) is monotonic. For
example, for Green’s function g let

K(ζ, η) = − 2
π

∂2g

∂ζ∂η̄
and L(ζ, η) = − 2

π

∂2g

∂ζ∂η
.

These are the familiar Bergman kernel and an analogue of the Garabedian kernel
for the Bergman space. The following expression decreases as the domain increases:

�∆

(∑
µ,ν

αµαν
∂2mL

∂ζm∂ηn
(ζµ, ζν)

)
− ∆

(∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)
≤ 0,

where ζµ are points in the domain and αµ ∈ C for µ = 1, . . . n. For simply
connected domains this result was obtained by the author in [4]. The case m = 0
is due to Nehari [3]. The theorem was obtained by Bergman and Schiffer [2] in
the case that m = 0 and the outer domain is the plane.

The original motivation of the author for constructing monotonic quantities
was in order to obtain distortion theorems for bounded univalent functions. In the
simply connected case Green’s function can be written in terms of the mapping
function and vice versa. The monotonicity theorems for domain functions in some
sense are intrinsic versions of inequalities for mapping functions; by choosing D2

to be the unit disc, and D1 to be the image of the unit disc under a mapping
function, one recovers estimates for the mapping function.

Considering expressions in higher derivatives of Green’s function is a natural
way to generate inequalities for higher derivatives of the mapping function. In-
deed the above inequality easily leads to sharp inequalities for odd derivatives
of bounded univalent functions. Inequalities for even derivatives of the mapping
function seem to be more difficult. The following quantity is monotonic for all λ,
points ζµ and parameters αµ, βµ, and generates inequalities for even derivatives:

∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν) + 2λ�

(∑
µ,ν

βµαν
∂2m+1L

∂ζm+1∂ηm
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν

∂2m+2K

∂ζm+1∂η̄m+1
(ζµ, ζν).

Although this expression appears complicated, it is the simplest monotonic quan-
tity in which an odd derivative of L appears. Many more such monotonic quantities
can be constructed.

Some questions arise naturally. 1) For this method, it is crucial that the bound-
aries of the domains must be homotopic, and hence two domains must be of the
same topological type in order to compare them. For which expressions is this
condition necessary for monotonicity to hold? 2) Can one detect the connectivity
from these domain functions?
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Zero distribution and asymptotics of Bergman orthogonal polynomials
Nikos Stylianopoulos

(joint work with Erwin Mina Diaz, Eli Levin and Ed Saff)

Let G be a bounded simply-connected domain in the complex plane C, whose
boundary L := ∂G is a Jordan curve and let {Pn}∞n=0 denote the sequence of
Bergman polynomials of G. This is defined as the sequence

Pn(z) = γnzn + · · · , γn > 0, n = 0, 1, 2, . . . ,

of polynomials that are orthonormal with respect to the inner product

(f, g) :=
∫

G

f(z)g(z)dm(z),

where dm stands for the 2-dimensional Lebesgue measure.
One purpose of the talk is to report on results, obtained jointly with Eli Levin

and Ed Saff in [2], concerning the asymptotic behaviour of the zeros of the Bergman
polynomials {Pn}. In order to state these results we need to consider the two
conformal maps associated with L. That is, with D := {w : |w| < 1}, let Ω := C\G
and ∆ := C \ D denote, respectively, the exterior (in C) of G and D. Then, the
exterior conformal map Φ associated with G is the conformal map Φ : Ω → ∆,
normalised so that

Φ(z) = cz + O(1), z → ∞, c > 0.

The constant
capL = 1/c,

is called the (logarithmic) capacity of L. With ζ ∈ G, let ϕζ be an interior
conformal mapping of G onto the unit disk D, such that ϕζ(ζ) = 0. Our first
result characterises the asymptotic behaviour of the zeros of Pn’s in terms of the
analytic properties of ϕζ , by means of two measures. Namely, the normalised
counting measure of the zeros of Pn, denoted by νPn , and the equilibrium measure
for L, denoted by µL. With the above notations, our result can be stated as follows
(see [2, Thm 2.1]):

The following two statements are equivalent:
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(i) ϕζ has a singularity on L.
(ii) There is a subsequence N ⊂ N such that

νPn

∗−→ µL, as n → ∞, n ∈ N .

Note that the fact ϕζ has a singularity on L is independent of the choice of ϕζ , since
any two conformal mappings of G onto D are related by a Möbius transformation.
The complimentary case where ϕζ has no singularities on L is more complicated,
and different situations may arise. Here, we consider the special case where the
boundary L of G consists of two circular arcs, Lα and Lβ, that meet each other
at right angles at the points i and − i. In this case we have the following result
(see [2, Thm 3.3]):

There exists a Jordan arc Γ joining the two vertices of G, and a
certain measure µ supported on Γ, such that

νPn

∗−→ µ, n → ∞.

This “critical arc” Γ is characterised by the property that

Γ = {z ∈ G : |Φ(zα)| = |Φ(zβ)|},
where for any point z on G, zα and zβ denote, respectively, the reflections of z
with respect to Lα and Lβ.

Another purpose of the talk is to report on, as yet unpublished, results obtained
jointly with Erwin Mina Diaz and Ed Saff. These results concern the asymptotic
behaviour of the zeros of the weighted Bergman polynomials {Pn,w}∞n=0, of lens
shaped-domains G of the type studied above. These are the polynomials orthonor-
mal with respect to the weighted inner product

(f, g)w :=
∫

G

f(z)g(z)|w(z)|2dm(z),

where w is an entire function with finitely many zeros in C.
Finally, we present a conjecture concerning the asymptotic behaviour of the

Bergman polynomials {Pn}. More precisely, consider the following two formulas:

γn =

√
n + 1

π

1
capLn+1

{1 + αn},

Pn(z) =

√
n + 1

π
Φ′(z)Φn(z) {1 + βn}, z ∈ Ω.

If the boundary L of G is an analytic Jordan curve, then a result due to T.
Carleman gives,

αn = O(ρ2n) and β = O(ρn), n → ∞,

for some ρ < 1; see e.g. [1, pp. 12–13]. In the case where L is smooth, typically
L ∈ C(p + 1, s), where p + 1 ∈ N and p + s > 1

2 , then a result of P.K. Suetin ([3,
Thms 1.1 and 1.2]) gives,

αn = O
(

1
n2(p+s)

)
and βn = O

(
log n

np+s

)
, n → ∞.
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Our conjecture, which is based on certain theoretical results and strong numerical
evidence, is concerned with boundary curves that encountered very frequently in
the applications and can be stated as follows:

If L is a piecewise analytic Jordan curve without cusps, then

γn =

√
n + 1

π

1
capLn+1

{1 + O
(

1
n2

)
}, n → ∞,

Pn(z) =

√
n + 1

π
Φ′(z)Φn(z) {1 + O

(
1
n

)
}, z ∈ Ω, n → ∞.
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Asymptotics of Hermite-Padé Polynomials to the Exponential
Function

Herbert Stahl

1. Abstract of the Talk

Hermite-Padé polynomials and their associated approximants are in a very
natural way generalizations of Taylor polynomials, Padé approximants, and con-
tinued fractions (cf. [2], [1]). Historically, they are, perhaps, most famous for their
role in Hermite’s proof of the transcendency of the number e (cf. [8], [11], [12]).

Within the last 15 years a considerable up-swing of interest and research in this
topic could be observed in complex and constructive approximation theory, where
the field is typically connected with questions like multiple orthogonality, higher
order recurrence relations, and/or the approximation of functions with branch
points (cf. surveys in [14], [3], [1], [7], [17]). Many of the basic questions about
the convergence of the approximants and the asymptotics of the polynomials are
still open.

The talk is based on recent research about quadratic Hermite-Padé polynomials
associated with the exponential function. After a somewhat broader introduction
to the subject, new results about the asymptotic behavior of the polynomials have
been presented. The central element of the asymptotic relations is a concrete,
compact Riemann surfaces with 3 sheets over C. Details of its definition can be
found in [18], Subsection 2.2. Specific results will be summarized further below in
the present abstract. First we repeat the definition of Hermite-Padé polynomials
and the associated approximants.
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2. Definition of Hermite-Padé Polynomials

Let f = (f0, . . . , fm), m ≥ 1, be a system of m + 1 functions; all functions
are assumed to be analytic in a neighborhood of the origin.

Definition 1 Hermite-Padé Polynomials of Type I (Latin polynomials in
K. Mahler’s terminology in [13]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1

there exists a vector of polynomials (p0, . . . , pm) ∈ P∗
n0−1 × Pn1−1 × . . . × Pnm−1

such that

(1)
m∑

j=0

pj(z)fj(z) = O(z|n|−1) as z → 0,

where |n| := n0 + . . . + nm and P∗
k := { p ∈ Pk | p monic, p �≡ 0}. The vector

(p0, . . . , pm) is called Hermite-Padé form of type I, and its elements are the
Hermite-Padé polynomials of type I.

Definition 2 Hermite-Padé Polynomials of Type II (German polynomials
in K. Mahler’s terminology in [13]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1

there exists a vector of polynomials (p0, . . . , pm) ∈ P∗
N0

× PN1 × . . . × PNm with
Nj := |n| − nj , j = 0, . . . , m, such that

(2) pi(z)fj(z) − pj(z)fi(z) = O(z|n|+1) as z → 0,

for i, j = 0, . . . , m, i �= j. The vector (p0, . . . , pm) is called Hermite-Padé form of
type II, and its elements are the Hermite-Padé polynomials of type II.

The assumption p0 ∈ P∗
n0−1 and p0 ∈ P∗

N0
implies a normalization of the whole

form (p0, . . . , pm) and (p0, . . . , pm), respectively. There may exist situations in
which a normalization by the first component is not possible, however, one of the
m + 1 components always is appropriate for normalization.

3. Definition of Hermite-Padé Approximants

With each of the two types of Hermite-Padé polynomials a specific type of
Hermite-Padé approximants is associated; these are the algebraic approximants in
case of type I polynomials and the simultaneous rational approximants in case of
type II polynomials. We start with the simultaneous rational approximants.

If f0(0) �= 0, then one can assume without loss of generality in Definition 2 that
f0 ≡ 1, and under this assumption the relations (2) reduce to

(3) p0(z)fj(z) − pj(z) = O(z|n|+1) as z → 0 for j = 1, . . . , m.

Defintion 3 Hermite-Padé Simultaneous Rational Approximants: For a
given multi-index n ∈ N

m+1 let p0, . . . , pm be the Hermite-Padé polynomials of
type II defined by (2) respectively (3). Then the vector of rational functions

(4)
(

p1

p0
(z), . . . ,

pm

p0
(z)
)
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with common denominator polynomial p0 is called (Hermite-Padé) simultaneous
rational approximant to the (reduced) system of functions fred = (f1, . . . , fm).

One immediately sees that for m = 1 in Definition 3 we have the Padé approx-
imant to f1 with numerator and denominator degrees (n1, n0).

As counterpart to the simultaneous rational approximants we have the algebraic
Hermite-Padé approximants, which are defined with the help of polynomials of
type I, but in their case the system of functions has to be an algebraic one.

Let f be a function analytic at the origin. We define the algebraic system of
functions f as

(5) f = (f0, . . . , fm) := (1, f, . . . , fm).

Defintion 4 Algebraic Hermite-Padé Approximants: For a given multi-
index n ∈ Nm+1 let p0, . . . , pm ∈ P∗

n0−1 × . . . × Pnm−1 be the Hermite-Padé
polynomials of type I defined by (1) with the special choice of (5). Let the algebraic
function y = y(z) be defined by the relation

(6)
m∑

j=0

pj(z)y(z)j ≡ 0.

From the m branches of y we select the branch y = yn that has the highest contact
to f at the origin; this branch yn is the algebraic Hermite-Padé approximant to f
associated with the multi-index n.

Again, it is immediate that for m = 1 Definition 4 leads to an Padé approximant,
but this time with numerator and denominator degrees (n0 − 1, n1 − 1).

4. The Special Case of the Exponential Function

In the talk we have reported about new research on asymptotics of Hermite-
Padé polynomials of both types associated with systems of exponential functions.
The order of the system is m = 2 and the multi-indices are all of the form
(n, . . . , n) ∈ N

m+1 with n ∈ N and n → ∞. Thus, we are dealing with qua-
dratic diagonal Hermite-Padé polynomials to the system f = (1, exp, exp2).

After the investigations in the classical period, from where we here only mention
[8], [11], [12], our specific line of research in Hermite-Padé approximants had been
taken up P. B. Borwein in [4], and more or less the same problem has been studied
from a point of view of special functions in [6] and [5]. In these later investigations
several questions about the asymptotic distribution of the zeros of the polynomials,
and especially about the asymptotic behavior of the larger zeros remained open,
and these open questions have triggered our new research.

The leading idea in this new research is a rescaling of the independent variable
in such a way that the zeros of the polynomials, which almost all normally diverge
to infinity, now have finite asymptotic distributions.

The rescaling method was introduced by G. Szegö in [20] for the investigation
of Taylor polynomials to the exponential function, and has later been taken up
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very successfully for the investigation of poles and zeros of Padé approximants by
E.B. Saff and R.S. Varga; the results interesting here can be found in [15]

With the rescaling method it has become possible to prove asymptotic relations
for quadratic Hermite-Padé polynomials. In these relations an algebraic function
of third degree and the associated Riemann surface play a central role.

The new results for polynomials of type I have just been appeared in [18], very
precise results about the asymptotic distributions of zeros will appear soon in
[19], and results about the asymptotic behavior of polynomials of type II are in
preparation.

An alternative approach to the asymptotic analysis based on a matrix Riemann-
Hilbert problem has been developed by A.B.J. Kuijlaars, W. Van Assche, and F.
Wielonsky in [9]. A survey of these results is contained in [10].

A generalisation of P. B. Borwein’s investigations in [4] to general m > 2 has
been done by F. Wielonsky in [21] and [22], and it has led to best results for the
measure of irrationality of the number e. Investigations of quadratic Hermite-Padé
approximants from a numerical point of view can be found in [16].
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mants de Hermite-Padé quadratiques de la function exponentielle et problèmes de Riemann-
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Entire functions with no unbounded Fatou components
Aimo Hinkkanen

Let f be a transcendental entire function of order less than 1/2. We introduce
a condition on the regularity of growth of f and show that it implies that every
component of the Fatou set of f is bounded.

The Fatou set F(f) of f is defined to be the set of those points z in the complex
plane C| that have a neighbourhood U such that the family {fn|U : n ≥ 1} of the
restrictions of the iterates fn of f to U is a normal family. The Julia set J (f) of
f is J (f) = C| \F(f).

I.N. Baker asked in 1981 whether every component of F(f) is bounded if the
growth of f is sufficiently small. This would then imply, in particular, that F(f)
has no Baker domains and no completely invariant components. The best possible
growth condition in terms of order would be of order 1/2, minimal type at most,
as shown by the functions f(z) = cos

√
εz + (3π/2)2, for 0 < ε < 3π, for which

F(f) has unbounded components. Baker proved that under this growth condition,
a component D of F(f) is bounded except possibly if it is a wandering domain
(that is, all fn(D) are contained in distinct components of F(f)) or if D or one
of its forward images is in a Baker domain cycle of length at least 2. Stallard
extended Baker’s result to cover Baker domain cycles of any length.

The problem remains if D is a wandering domain; one may then assume that
D is simply connected for otherwise all components of F(f) are bounded for other
reasons as shown by Baker.

A number of authors have shown that if f is a transcendental entire function of
order less than 1/2 satisfying an extra condition on the regularity of growth of the
maximum modulus M(r, f) then all wandering domains and hence all components
of F(f) are bounded. We prove that this conclusion holds if f has the following
additional property where m(r, f) denotes the minimum modulus of f : suppose
that there exist positive numbers R0, L, δ, and C with R0 > e, M(R0, f) > e,
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L > 1, and 0 < δ ≤ 1 such that for every r > R0 there exists t ∈ (r, rL] with

(1)
log m(t, f)
log M(r, f)

≥ L

(
1 − C

(log r)δ

)
.

One can ask whether every transcendental entire function of order less than
1/2 satisfies (1). This is still an open question. If we are not close to or inside an
annulus containing very few zeros of f , it would seem plausible that the condition
(1) should be easy to satisfy, with a wide margin, by taking t to be a value arising
from the cosπρ−theorem. This is because then log m(t, f)/ logM(t, f) is greater
than a fixed constant while log M(t, f)/ logM(r, f) should be quite large. So there
should be a potential problem at most if we are in an annulus where f behaves like
a polynomial. But in that case we should be able to take t close to rL, and then the
three numbers log m(t, f), log M(t, f), and L logM(r, f), should be close together.
There may be some error term required to estimate log m(t, f)/(L log M(r, f))
from below, but (1) allows for such a term.
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Parameter Space of the Exponential Family and Infinite-Dimensional
Thurston Theory
Markus Förster

(joint work with Lasse Rempe and Dierk Schleicher)

The talk deals with the investigation of the parameter space of the exponential
family

{Eκ : z �→ ez + κ; κ ∈ C/2πiZ } .

For each parameter κ we consider the dynamical system generated by iteration of
the function Eκ. The exponential family can be considered as a model family for
transcendental dynamics in the spirit of quadratic polynomials, for every Eκ has
only one singular value, the asymptotic value κ. We are interested in the set I of
parameters for which the singular value is escaping, i.e. for which κ is contained
in the set

I(Eκ) := {z ∈ C : |E◦n
κ (z)| → ∞ as n → ∞}
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of escaping points. We call such parameters escaping parameters. For the qua-
dratic family {pc : z �→ z2 + c}, the set of escaping parameters can be viewed
as a collection of external rays (parameter rays) which do or do not land on the
bifurcation locus, the boundary of the Mandelbrot set. The parameter rays are
the main tool of understanding the topological and bifurcation structure of the
Mandelbrot set. In the case of the exponential family the bifurcation locus

B := {κ : � ∃ neighborhood U � κ s.t. ∀κ′ ∈ U Eκ and Eκ′ are conjugated}
also turns out to be the boundary of I, and I is still a disjoint union of parameter
rays, see the theorem below.

The main idea to construct these parameter rays is to carry over structure
from the dynamic plane into the parameter plane. Dierk Schleicher and Johannes
Zimmer [SZ] have precisely described for any κ the set I(Eκ) of escaping points,
which consists of uncountably many dynamic rays gκ

s (t) going off to +∞ together
with some (but not all) end points of them. This gives rise to a combinatorial
description of I(Eκ): each escaping point can be assigned a unique pair (s, t) of
an integer sequence s ∈ ZN (which codes the ray gκ

s the point belongs to) and
a real number t ≥ ts (which determines the position on the ray), where ts ≥ 0
is independent of κ. The sequence s = (s1, s2, . . . ) is derived from itineraries,
i.e. symbolic dynamics, and the potential t indicates the speed of escape. Most
importantly, the combinatorial data (s, t) gives a precise prediction of the orbit of
z = gκ

s (t): for large n we have

(1) E◦n
κ (z) = F ◦n(t) + 2πisn+1 + O

(
(F ◦(n+1)(t))−1

)
,

where F (t) := et − 1. Moreover, the set X ⊂ ZN × R
+
0 of possible combinatorial

pairs, endowed with the discrete topology in the first coordinate and the usual
one in the second coordinate, is mapped for all κ bijectively onto I(Eκ) by the
continuous map

φκ(s, t) : X → I(Eκ) ; (s, t) �→ gκ
s (t)

except if κ is an escaping parameter. We extended this result to the parameter
space in the following sense.

Theorem (M. F., L. Rempe, D. Schleicher ’03) Let I be the set of escaping
parameters:

I := {κ : κ ∈ I(Eκ)} ,

the parameters for which the singular orbit escapes under Eκ. There is a contin-
uous bijection φ : X → I satisfying

φ(s, t) = κ ⇐⇒ gκ
s (t) = κ .

The maps Gs(t) := φ(s, t) are differentiable rays, which precisely form the path-
connected components of I.
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This result has been obtained by carefully estimating derivatives and winding
numbers of dynamic rays ([FS1], [FRS]). Since the proof is technical and impos-
sible to modify for any other setting, we reprove the existence and uniqueness of
every combinatorial pair (s, t) ∈ X using spider theory [FS2]. The spider algo-
rithm provides a constructive method of realizing given combinatorics and can be
implemented as a computer program. It provides a much more conceptual proof
which unlike the previous proof uses nothing but the asymptotics (1) of the escap-
ing singular orbits in the dynamic plane. Spider theory is inspired by Thurston’s
topological characterization of rational maps [DH]. It establishes a correspondence
between parameters assuming (s, t) ∈ X and fixed points of a certain self-mapping
on Teichmüller space, which is easily described in terms of pull-backs of spiders.
Spiders are a substantially simplified model of Teichmüller space. They have been
invented by John H. Hubbard and have been used by several people in several con-
texts. However, this is the first time that spiders are applied to a case of infinite
degree and an infinite-dimensional Teichmüller space.

The spiders constructed for this purpose are objects consisting of infinitely
many feet, which model the escaping singular orbit and represent the projection
into moduli space, as well as a leg attached to each foot modulo homotopy, which
models the dynamic ray associated to the respective orbit point. By the asymptotic
behavior (1) we have very good control of how the actual singular orbit and the
dynamic rays eventually have to behave if κ assumes the prescribed combinatorics.
This allows us to only consider legs and feet with rather special properties. The
iterated map on the space of spiders (spider map) is defined by pulling back the
spider along the inverse branches of Eκ as given by the entries of s, where κ is the
first foot.

Showing that the spider map possesses exactly one fixed point for a given pair
(s, t) ∈ X consists of finding an invariant compact subset of spiders in order to
apply the Banach fixed point theorem for the existence and a contraction argu-
ment for the uniqueness. The definition of the infinitesimal Teichmüller metric on
the spider space involves the discussion of L1-integrable meromorphic quadratic
differentials, which describe the cotangent space and give rise to the dual norm
on the tangent space. The push-forward of quadratic differentials turns out to be
adjoint to the spider map acting on the tangent space, so that the contraction of
the spider map can be understood in terms of mass loss of quadratic differentials.
In order to find a compact invariant subset we carefully construct a configuration
ofszi feet with definite estimates on absolute values and mutual distances as well
as estimates on winding numbers of the feet.
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Growth of harmonic functions in the unit disc and an application
Igor Chyzhykov

1. Analytic and harmonic functions in the unit disc. Let D = {z ∈ C :
|z| < 1}. We denote by A(D) the class of analytic function in D. For f ∈ A(D)
let M(r, f) = max{|f(z)| : |z| = r}, 0 < r < 1, T (r, f) = 1

2π

∫ 2π

0
log+ |f(reiθ)| dθ.

Usually, the orders of the growth of analytic functions in D are defined as

ρM [f ] = lim sup
r↑1

log+ log+ M(r, f)
− log(1 − r)

, ρT [f ] = lim sup
r↑1

log+ T (r, f)
− log(1 − r)

.

It is well known that ρT [f ] ≤ ρM [f ] ≤ ρT [f ] + 1, and all cases are possible.
In 1960th M. M. Djrbashian using the Riemann-Liouville fractional integral ob-

tained a parametric representation of the class of analytic (meromorphic) functions
f in D of finite order of the growth [Chap. IX, Dj].

Here we confine by the case when f(z) has no zeros and of finite order of the
growth, hence log |f(z)| is harmonic.

For ψ : [0, 2π] → R we define the modulus of continuity ω(δ; ψ) = sup{|ψ(x) −
ψ(y)| : |x − y| ≤ δ, x, y ∈ [0, 2π]}, δ > 0.

Following [HL, Z] we say that ψ ∈ Λγ if ω(δ; f) = O(δγ) (δ ↓ 0).
The fractional integral of order α > 0 for h : (0, 1) → R is defined by the

formulas [Dj, HL]

D−αh(r) =
1

Γ(α)

∫ r

0

(r − x)α−1h(x) dx, D0h(r) ≡ h(r).

Let H(D) be the class of harmonic functions in D.
We put uα(reiϕ) = r−αD−αu(reiϕ), where the fractional integral is taken on the
variable r. Let B(r, u) = max{u(z) : |z| ≤ r}.

Our starting point is the following theorem

Theorem B (M. Djrbashian). Let u ∈ H(D), α > −1. Then

(2) u(reiϕ) =
1
2π

∫ 2π

0

Pα(r, ϕ − θ) dψ(θ),

where ψ ∈ BV [0, 2π],

Pα(r, t) = Γ(1 + α)
(
� 2

(1 − reit)α+1
− 1

)
,
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if and only if

sup
0<r<1

∫ 2π

0

|uα(reiϕ)| dϕ < Mα.

Remark 1. Actually, for α = 0 it is the classical result of Nevanlinna on repre-
sentation of log |F (z)| when F ∈ N .

Remark 2. Note that P0(r, t) is the Poisson kernel; Pα(r, t) = Dα(rαP0(r, t)).

Applying methods from [Dj] and [HL] (see also [Chap.7, Z]), we prove the
following theorem (cf. Theorem 40 [HL]).

Theorem 1. Let u(z) ∈ H(D), α ≥ 0, 0 < γ < 1. Then u(z) has form (2) where
ψ is of bounded variation on [0, 2π], and ψ ∈ Λγ, if and only if

B(r, u) = O((1 − r)γ−α−1), r ↑ 1

and

sup
0<r<1

∫ 2π

0

|uα(reiϕ)| dϕ < +∞.

2. An application to growth of analytic functions. For ψ ∈ BV [0, 2π] we
denote

τ [ψ] = lim inf
δ↓0

log+ 1
ω(δ;ψ)

− log δ
≥ 0.

The quantity τ [ψ] compares ω(δ; ψ) with δγ as δ → 0.

Theorem 2. Let F ∈ A(D), and

log |F (reiϕ)| =
1
2π

∫ 2π

0

Pα(r, ϕ − t) dψ(t),

where ψ ∈ BV [0, 2π], τ [ψ] = τ ∈ [0, 1). Then ρM [F ] = α + 1 − τ , ρT [F ] ≤ α.
If, in addition, ψ is not absolutely continuous, then ρT [F ] = α.

Corollary. Suppose that the conditions of Theorem 2 hold, and τ = 0. Then
ρM [F ] = ρT [F ] + 1 = α + 1.
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On conformal invariants in problems of constructive function theory
V. V. Andrievskii

This is a survey of some recent results by the author and his collaborators in the
constructive theory of functions of a real variable. The results are achieved by the
application of methods and techniques of modern geometric function theory and
potential theory in the complex plane.

Let E ⊂ C be a compact set of positive logarithmic capacity cap(E) with
connected complement Ω := C\E with respect to C = C∪{∞}, gΩ(z) = gΩ(z,∞)
be the Green function of Ω with pole at infinity, and µE be the equilibrium measure
for the set E. The properties of gΩ and µE play an important role in many
problems concerning polynomial approximation of continuous functions on E and
the behavior of polynomials with a known uniform norm along E.

We discuss some of these problems for the case when E is a subset of the real
line R. The main idea of our approach is to use conformal invariants such as the
extremal length and module of a family of curves. The basic conformal mapping
can be described as follows.

Let E ⊂ [0, 1] be a regular set such that 0 ∈ E, 1 ∈ E. Then [0, 1] \ E =∑N
j=1(aj , bj), where N is finite or infinite.
Denote by H := {z : �(z) > 0} the upper half-plane and consider the function

F (z) = FE(z) := exp
(∫

E

log(z − ζ) dµE(ζ) − log cap(E)
)

, z ∈ H.

Using the reflection principle we can extend F to a function analytic in C\ [0, 1]
by the formula

F (z) := F (z), z ∈ C \ H.

F is univalent and maps C \ [0, 1] onto a (with respect to ∞) starlike domain
C \ KE with the following properties: C \ KE is symmetric with respect to the
real line R and coincides with the exterior of the unit disk with 2N slits.

Note that
gΩ(z) = log |F (z)|, z ∈ C \ E.

There is a close connection between the capacities of the compact sets KE and E,
namely

4cap(E)cap(KE) = 1.

The main idea of our results is the investigation of the local properties of the
Green function gΩ, i.e., local properties of conformal mapping F .

The lecture is organized as follows. In part 1 we describe the connection between
uniformly perfect subsets in R and John domains. It allows us to extend well-
known theorem about constructive description of functions with a given majorant
of their best uniform polynomial approximations to the case of C-dense compact
subset of R.

In part 2 we give sharp uniform bounds for exponentials of logarithmic po-
tentials if the logarithmic capacity of the subset, where they are at most 1, is
known.
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In part 3 we give a new interpretation (and a generalization) of recent remark-
able result by Totik [7] concerning the smoothness properties of gΩ and µE . We
also demonstrate that if for E ⊂ [0, 1] the Green function satisfies the 1/2-Hölder
condition locally at the origin, then the density of E at 0, in terms of logarithmic
capacity, is the same as that of the whole interval [0, 1].

In part 4 the Nikol’skii-Timan-Dzjadyk theorem concerning polynomial approx-
imation of functions on the interval [−1, 1] is generalized to the case of approxi-
mation of functions given on a compact set on the real line.

A new necessary condition and a new sufficient condition for the approximation
of the reciprocal of an entire function by reciprocals of polynomials on [0,∞) with
geometric speed of convergence are provided in part 5.
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Dynamics on fractal spheres
Mario Bonk

The point of this talk was to argue the dynamics of Kleinian groups on the 2-
sphere and the dynamics of a rational function under iteration lead to closely
related problems in the theory of analysis on metric spaces.

We first introduce a setting for Kleinian groups that can be considered as the
“standard picture” in this respect. Let M be a closed hyperbolic 3-orbifold, and
Γ = π1(M) the fundamental group of M . The universal covering space of M is
hyperbolic 3-space H3, the group Γ acts on H3 by deck transformations, and the
orbifold is given by the quotient M = H3/Γ.

The action Γ � H3 is isometric, discrete, and cocompact. Let us call a group
standard if it admits an action on H3 with these properties. The basic problem is
to characterize this standard situation from the point of view of geometric group
theory.

There is a well-developed theory due to Gromov of groups that resemble fun-
damental groups of negatively curved manifolds [Gr]. These groups are called
hyperbolic (in the sense of Gromov) [GhHa]. If Γ is a group as above, then Γ
is hyperbolic and its boundary at infinity ∂∞Γ is homeomorphic to the standard
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2-sphere S
2 (abbreviated ∂∞Γ ≈ S

2). According to a conjecture by Cannon [Ca]
this should characterize standard groups.

Cannon’s conjecture. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S2.
Then G is standard.

In this situation it is enough to show that ∂∞G is homeomorphic to S2 by a
quasisymmetric homeomorphism (abbreviated ∂∞G

qs≈ S2). Indeed, G acts in a
natural way on ∂∞G by uniformly quasi-Möbius homeomorphisms. If ∂∞G

qs≈ S2,
then this action G � ∂∞G conjugates to an action G � S2 of G on the standard
2-sphere by uniformly quasiconformal homeomorphisms. A well-known theorem
due to Sullivan [Su] and to Tukia [Tu] then implies that this action is conjugate to
an action of G on S2 by Möbius transformations. From this it easily follows that
G is standard.

We are lead to the general problem when a fractal 2-sphere such as ∂∞G in the
above situation is quasisymmetrically equivalent to the standard 2-sphere. This
question was studied by B. Kleiner and myself [BK1]. As an application of our
results we obtained the following partial result for Cannon’s conjecture.

Theorem 1. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S2. If there
exists an Ahlfors 2-regular 2-sphere Z such that ∂∞G

qs≈ Z, then G is standard.

Recall that a (compact) metric space Z is called Ahlfors Q-regular for Q > 0
if the Hausdorff Q-measure of small balls B(a, R) in Z behaves like RQ up to
multiplicative constants independent of the balls.

A stronger result can be obtained by using the concept of the Ahlfors regular
conformal dimension dimAR X of a metric space X . By definition this is the
infimum of all numbers Q > 0 for which there exists an Ahlfors Q-regular space Y

with X
qs≈ Y . Whenever X is the boundary of a Gromov hyperbolic group G, the

set of these numbers Q is nonempty. In particular, dimAR ∂∞G is well defined,
and it is not hard to show that dimAR ∂∞G is at least as large as the topolgical
dimension of ∂∞G.

Theorem 2 [BK2]. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S
2.

If there exists an Ahlfors Q-regular 2-sphere Z such that ∂∞G
qs≈ Z and Q =

dimAR ∂∞G, then G is standard.

In other words, if the infimum by which dimAR ∂∞G is defined is attained as a
minimum, then G is standard. Note that Theorem 2 contains Theorem 1, because
we have dimAR ∂∞G ≥ 2.

In view of these results it seems worthwhile to study the general question when
the Ahlfors regular conformal dimension of a fractal 2-sphere is attained as a
minimum. Interesting examples are provided by post-critically finite rational maps
R on the Riemann sphere C. The analog of the standard picture in the Kleinian
group case is given by the following setting.

Let R C → C a holomorphic map of C into itself, i.e., a rational function. Let
ΩR denote the set of critical points of R, and PR =

⋃
n∈N

Rn(ΩR) be the set of
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post-critical points of R (here Rn denotes the nth iterate of R). We make the
following assumptions on R:

(i) R is post-critically finite, i.e., PR is a finite set,
(ii) R has no periodic critical point; this implies that JR = C for the Julia set

of R,
(iii) the orbifold OR associated with R is hyperbolic (see [DoHu] for the defini-

tion of OR); this implies that the dynamics of R on JR = C is expanding.

A characterization of post-critically finite rational maps is due to Thurston. The
right framework is the theory of topologically holomorphic self-maps f S2 → S2

of the sphere. By definition these maps have the local form z �→ zn with n ∈ N

in appropriate local coordinates, and one defines the critical set, the post-critical
set, and the associated orbifold similarly as for rational maps. In our context,
Thurston’s theorem can be stated as follows [DoHu]:

Theorem (Thurston). Let f S2 → S2 be a post-critically finite topologically holo-
morphic map with hyperbolic orbifold. Then f is equivalent to a rational map R
if and only if f has no “Thurston obstructions”.

Equivalence has to be understood in an appropriate sense. If f and R are both
expanding, this just means conjugacy of the maps.

The definition of a Thurston obstruction is as follows. A multicurve Γ =
{γ1, . . . , γn} is a system of Jordan curves in S2 \ Pf with the following proper-
ties: the curves have pairwise empty intersection, are pairwise non-homotopic in
S2 \ Pf , and non-peripheral (this means that each of the complementary compo-
nents of a curve contains at least two points in Pf ). A multicurve Γ is called
f -stable if for all j every component of f−1(γj) is either peripheral or homotopic
in S2 \ Pf to one of the curves γi.

If Γ is an f -stable multicurve, fix i and j and label by α the components γi,j,α

of f−1(γj) homotopic to γi in S2 \ Pf . Then f restricted to γi,j,α has a mapping

degree di,j,α ∈ N. Let mi,j =
∑
α

1
di,j,α

and define the Thurston matrix A(Γ) of

the f -stable multicurve Γ by A(Γ) = (mij). This is a matrix with nonnegative
coefficients; therefore, it has a largest eigenvalue λ(f, Γ) ≥ 0. Then Γ is a Thurston
obstruction if λ(f, Γ) ≥ 1.

Post-critically finite rational maps are related to subdivision rules [CFP]. For
example, if R is a real rational map (i.e, R(R) ⊆ R) satisfying the above conditions
(i)–(iii), then R−1(R) is a graph providing a subdivision of the upper and lower
half-planes whose combinatorics determines R (up to conjugacy by a real Möbius
transformation). The combinatorics of the graphs R−n(R) is determined by iter-
ating the subdivisions of the upper and lower half-planes by the complementary
components of R−1(R) n-times. One can ask whether every rational map satisfy-
ing (i)–(iii) (or at least a sufficiently high iterate) is associated with a (two-tile)
subdivision rule. This reduces to the following problem.

Problem. Let R be a rational function satisfying (i)–(iii). Does there exist a
quasicircle C ⊆ C such that PR ⊆ C and C ⊆ R−1(C)?
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Conversely, one can start with a (two-tile) subdivision rule of the sphere S
2. One

can associate a natural (class of) metric(s) on S2 associated with a subdivision rule
(of appropriate type). If we denote by X the sphere S2 equipped with this metric,
then the subdivision rule produces a topologically holomorphic expanding map
fX → X which is post-critically finite. It turns out that f is conjugate to a rational
function R if and only if X

qs≈ S2. So we have a situation that is very similar to the
Kleinian group setting. In view of this it would be very interesting to find dimAR X
for these fractal spheres. In discussions with L. Geyer and K. Pilgrim we were
lead to a conjecture on the Ahlfors regular conformal dimension of these spaces
X . To state this conjecture let Q ≥ 2 and Γ be an f -stable multicurve, define the

modified Thurston matrix A(Γ, Q) as A(Γ, Q) = (mQ
i,j), where mQ

ij =
∑

α

1

dQ−1
i,j,α

,

and let λ(f, Γ, Q) be the largest nonnegative eigenvalue of A(Γ, Q).
Conjecture. If X comes from a subdivision rule with associated expanding map
f , then dimAR X is the infimum of all Q ≥ 2 such that λ(f, Γ, Q) < 1 for all
f -stable multicurves Γ. Moreover, dimAR X is never attained unless X

qs≈ S2.
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Inverse Source Problem in a 3-D Ball from Meromorphic
approximation on 2-D Slices

L. Baratchart
(joint work with J. Leblond and E.B. Saff)

1. Notations and Preliminaries

Let T be the unit circle, D the unit disk, PK the set of probability measures on
a compact set K, Pn the space of algebraic polynomials of degree ≤ n, H∞ the
Hardy space of the disk, H∞

n = {h/qn; h ∈ H∞, qn ∈ Pn} the set of meromorphic
functions with n poles in D that are bounded near the boundary, Ω the unit ball
of R3 and S2 the unit sphere.

The Green capacity of K is the nonnegative number CT,K given by

1
CT,K

= inf
µ∈PK

∫ ∫
log

∣∣∣∣1 − t̄z

z − t

∣∣∣∣ dµ(t)dµ(x).

If CT,K > 0, there is a unique measure ωK ∈ PK to meet the infimum, called
the Green equilibrium measure on K. The measure ωK is difficult to compute in
general, but charges the endpoints if K is a system of arcs. We need the notion
of extremal domain, which is specialized below to the case of a disk

Theorem [8] Let f be holomorphic in Cε = {z; 1 − ε < |z| < 1} and continuous
in Cε. Set

Vf = {V ; V connected open in D with Cε ⊂ V, f extends holomorphically to V }.
There is a unique Vm ∈ Vf such that CT,D\Vm

= infV ∈Vf
CT,D\V which contains

every other member of Vf with this property.

We shall be concerned here with the class :

BLP
∆= {f continuous in Cε, holomorphic in

◦
Cε,can be continued analytically in

D except for finitely many poles,branchpoints, and log singularities}
For such functions, more is known on the structure of extremal domains.

Theorem [9] If f ∈ BLP, then D \ Vf consists of its poles, its branchpoints,
its log singularities, and finitely many analytic cuts. A cut ends up either at a
branchpoint, a log singularity, or at an end of another cut. The diagram thus
formed has no loop.

For more than two points, D\Vf is a trajectory of a rational quadratic differen-
tial, but there is no easy computation. The situation is similar to that in problems
of Tchebotarev-Lavrentiev type, where one must find the continuum of minimal
capacity that connects prescribed groups of points [6, 7]. The difference is that,
here, the connectivity is not known a priori.
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2. Meromorphic Approximation

By a best meromorphic approximant with at most n poles of f , we mean some
gn ∈ H∞

n such that :

‖f − gn‖L∞(T) = inf
g∈H∞

n

‖f − g‖L∞(T).

Clearly this notion is conformally invariant.
By the Adamjan-Arov-Krein theory [1], a best meromorphic approximant with

at most n poles uniquely exists provided that f ∈ C(T). Moreover, it can be com-
puted from the singular value decomposition of the Hankel operator with symbol
f .

If gn is the sequence of best meromorphic approximants to f , whose poles are
numbered as ξj , n for 1 ≤ j ≤ dn ≤ n, we form the sequence of counting probability
measures µn =

∑
j δξj,n/dn.

Theorem [2] If f ∈ BLP is not single-valued, the counting measure µn of the poles
of its best meromorphic approximants converges weak* to the Green equilibrium
distribution of D\Vf . Moreover, each neighborhood of a pole of f contains at least
one pole of the approximant as n → ∞, and only finitely many poles can remain
in a compact subset of Vf .

3. An Inverse Source Problem in 3-D.

If we are given m1 monopolar sources S1, . . . , Sm1 and m2 dipolar sources
C1, . . . , Cm2 in Ω, the potential u satisfies :

−∆u = F in Ω

∂u

∂ν |S2

= φ current flux

u|S2
= g electric potential

F =
m1∑
j=1

λj δSj +
m2∑
k=1

pk .∇ δCk

The inverse problem is to locate the monopolar sources Sj with their intensities
λj and the dipolar sources Ck with their momentums pk from the knowledge of
Φ and u on S2. Such problems arise in Electro-Encephalography, see for instance
[3, 5].

The fundamental solution is (4π‖X‖)−1 so the potential assumes the form :

u(X) = h(X) −
m1∑
j=1

λj

4π ‖X − Sj‖+3
m2∑
k=1

< pk , X − Ck >

4π ‖X − Ck‖3

where h is harmonic. Using the Green formula and the expansion into spherical
harmonics, one can then recover h|S2

, although we do not explain this in details
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here. This is just to say we can assume h = 0 by subtraction. We shall assume
that all sources lie in general position, in the sense that none of them lies on the
vertical axis {x = y = 0}.

Put : ξj = xSj + iySj where Sj = (xSj , ySj , zSj)T , ξk = xCk
+ iyCk

where
Ck = (xCk

, yCk
, zCk

)T , and let the dipolar moments be expressed in coordinates
as : pk = (pk,x, pk,y, pk,z).

When we slice the ball Ω along the horizontal plane {z = zp}, the intersection
with Ss is a circle Cp of radius rp with r2

p = 1 − z2
p. If we let ξ = x + iy be the

complex variable in the plane {z = zp}, the restriction g|Cp
is the trace on Cp of

the function f(ξ) given by

i

4 π
×
− m1∑

j=1

Λj,p

(ξ − ξ−j,p)1/2
+ 3

m2∑
k=1

Rk,p(ξ)
(ξ − ξ−k,p)3/2


where

Ql,p(ξ) = |ξ − ξl|2 + (zp − zl)2 = −1
ξ

ξl (ξ − ξ−l,p) (ξ − ξ+
l,p), l = {j, k},

with
|ξ−l,p| < rp, |ξ+

l,p| > rp, ξ−l,p/ξl ∈ R, ξ+
l,p/ξl ∈ R

and where

Λj,p =
λj

√
ξ√

ξj(ξ − ξ+
j,p)

,

Rk,p(ξ) =

√
ξ
[
p̃kξ2 + 2(pk,zhp,k − Re {p̃kξk})ξ + p̃k r2

p

]
2
√

ξk(ξ − ξ+
j,p)3/2

with
p̃k = pk,x − ipk,y and hp,k = zp − zk.

Although f(ξ) may not lie in BLP, its square does. We can in principle locate the
branchpoints using the convergence of poles in meromorphic approximation from
the previous section. To solve the inverse problem, it remains to connect ξ−l,p with
the original sources :

Proposition For f as above, each branchpoint ξ−j,p or ξ−k,p has maximum modulus
when zp = zSj in which case they coincide with the corresponding source.
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