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Introduction by the Organisers

The field of computational electromagnetism is dedicated to the design and
analysis of numerical methods for the approximate solution of electromagnetic
field problems. Since the exploitation of electromagnetic phenomena is one of the
foundations of modern technology, computational electromagnetics is of tremen-
dous industrial relevance: in a sense, it is peer to computational solid and fluid
mechanics and huge research efforts are spent on developing and enhancing simu-
lation methods and software for electromagnetic field computations.

For a long time, computational electromagnetism remained a realm of engi-
neering research with applied mathematics shunning the area. This was in stark
contrast to elasticity and fluid mechanics, where mathematicians have been in-
volved in the development of numerical methods from the very beginning. Maybe,
the blame has to be laid on the incorrect belief of mathematicians who thought
that the laws governing the behavior of electromagnetic fields basically boil down
to well understood second-order elliptic problems.

Fortunately, the past fifteen years have seen a real surge of mathematical re-
search activities in the area of computational electromagnetism. This resulted in
insights that have begun to have a big impact on the numerical methods used in
engineering and industrial environments. A prominent example is the explana-
tion of so-called spurious solutions that can arise when using continuous “nodal”
finite elements for the discretization of certain electromagnetic boundary value
or eigenvalue problems, respectively. Another example is the appreciation of so-
called edge finite elements and the construction of multilevel iterative solvers for
the low-frequency setting.
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Meanwhile, computational electromagnetism can claim to be a major area of
numerical mathematics and scientific computing in its own right. This prompted
us to ask the Mathematisches Forschungsinstitut Oberwolfach to host a one week
workshop on computational electromagnetism, the first of its kind. Reflecting the
growing importance of the subject, this workshop has been one of a series of events
dedicated to mathematical issues in the computation of electromagnetic fields. We
would like to mention, the NSF-CBMS Regional Conference in the Mathematical
Sciences about “Numerical Methods in Forward and Inverse Electromagnetic Scat-
tering”, held in Golden, CO, June 3-7, 2002 (from which the book [2] arose), and
the “LMS Durham Symposium on Computational methods for Wave Propagation
in Direct Scattering”, Durham, England, July 15-25, 2002 (see [1]).

This Oberwolfach workshop brought together some 50 experts in computational
electromagnetism. The majority of the participants were applied mathematicians,
but a sizable number of people with a background in engineering also attended,
as appropriate for a field with close ties to engineering and the applied sciences.
Nevertheless, the workshop had a clear mathematical focus, emphasizing rigorous
theory, principles and ideas. Throughout, the presentations matched these expec-
tations. A total of 29 presentations were given, of which ten were survey lectures
offering broader treatment of a particular subject.

As is typical of an event that targets a specific area of application, it arose that
a broad range of mathematical issues and techniques was addressed. Although it
will certainly not do justice to many presentations, we will try categorize the talks
as follows:

• Mathematical modelling. This subject did not play a central role, be-
cause most presentations took the model equations for granted. Modelling
for practical engineering calculations was described by O. Bı́ró in his survey
talk about Practical Aspects of FEM in Electromagnetics, p. 559, and by
M. Clemens when speaking on Formulations and Efficient Numerical So-
lution Techniques for Transient 3D Magneto-and Electro-Quasistatic Field
Problems, p. 572. Homogenization was addressed in the presentation by
A. Bendali about Two Scale Asymptotic Expansion for the Scattering of a
TM-Electromagnetic Wave by a Rough Surface and Applications, p. 556.

• Spatial discretizations. This turned out to be one of the core subjects
of the workshop. The survey lectures of D. Boffi about Theoretical Aspects
of Edge Finite Elements, p. 564 and I. Perugia on Discontinuous Galerkin
Methods for Maxwell’s Equations, p. 608, addressed the topic. Particular
issues were discussed by S. Christiansen in his talk about the Div-Curl
Lemma for Edge Elements, p. 571, and by J. Pasciak about The Approxi-
mation of the Maxwell Eigenvalue Problem using a Least-Squares Method,
p. 606. M. Kaltenbacher gave an account of observations concerning finite
element schemes in his presentation on Nodal and Edge Finite Element
Discretization of Maxwell’s Equations, p. 590.
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Several presentations were devoted to higher order spatial discretiza-
tion: the survey lecture of M. Ainsworth gave an account of the Dis-
persive Properties of High Order Nédélec/Edge Elements for Maxwell’s
Equations, p. 553, L. Demkowicz spoke about H1, H(curl) and H(div)-
Conforming Projection-Based Interpolation in Three Dimensions, p. 582,
and P. Ledger about Computation of Maxwell Eigenvalues with Exponen-
tial Rates of Convergence.

• Timestepping. There was only one contribution dealing with temporal
discretization, namely the talk by T. Driscoll on High-Order Time Stepping
Methods for Electromagnetics, p. 585.

• Regularity of solutions. Here one of the pioneers in the field, M. Dauge,
gave a survey talk about Singularities of Electromagnetic Fields in the
Eddy Current Limit, p. 574.

• Integral equation methods. Boundary element methods in the fre-
quency domain were treated by S. Kurz in his talk on A New View on
Collocation, p. 599. Conversely, time-domain integral equation methods
were examined in the survey lecture by E. Michielssen on Fast Time Do-
main Integral Equation Solvers, p. 603, and P. Davies in her contribution
on Convergence of Collocation Methods for Time Domain Boundary Inte-
gral Equations, p. 579. S. Börm talked about H2-Matrices with Adaptive
Cluster Bases Applied to an Eddy Current Problem, p. 562, and presented
a fast summation method for discrete frequency-domain integral equations.

• Electromagnetic Scattering. This topic was treated by R. Kress in his
survey lecture on Inverse Obstacle Scattering for Time-Harmonic Elec-
tromagnetic Waves, p. 596. Also the talk by A. Bendali on Two Scale
Asymptotic Expansion for the Scattering of a TM-Electromagnetic Wave
by a Rough Surface and Applications, p. 556, addressed a particular scat-
tering problem.

• Absorbing boundary conditions. A special incarnation of these was
examined in the survey talk by F. Teixeira on Perfectly Matched Layers,
p. 621. Details of a PML approach were studied by Z. Chen in his talk
about An Adaptive Perfectly Matched Layer Technique for Time-harmonic
Scattering Problems, p. 568. Other techniques were outlined by M. Grote
(Nonreflecting Boundary Conditions for Computational Electromagnetics,
p. 588) and F. Schmidt (Pole Condition: A New Approach to Solve Scat-
tering Problems, p. 615).

• Topological issues. These were discussed in the talks of R. Kotiuga (The
Hurewicz Map Distinguishes Intuitive vs. Computable Topological Aspects
of Computational Electromagnetics, p. 593) and F. Rapetti (Smith Normal
Form as an Adequate Tool to Detect Mesh Defects as well as to Build Basis
Fields for Domains with Loops and Holes, p. 612).

• Fast solvers. Several speakers discussed fast algorithms for the solution of
linear systems of equations arising from discretized field equations: it was
the subject of J. Schöberl’s survey lecture on Preconditioning for Maxwell
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Equations, p. 617, and O. Sterz’ talk on Adaptive Multigrid-Methods for
the Solution of Time-Harmonic Eddy-Current Problems, p. 618. The use
of multigrid methods was discussed in the contributions by M. Clemens
on Formulations and Efficient Numerical Solution Techniques for Tran-
sient 3D Magneto-and Electro-Quasistatic Field Problems, p.‘572, and by
M. Kaltenbacher on Nodal and Edge Finite Element Discretization of
Maxwell’s Equations, p. 590. An enhancement for algebraic multigrid
was proposed by P. Arbenz (Treatment of Nullspace in Maxwell Prob-
lem, p. 553). J. Zou dealt with domain decomposition methods in his
contribution on Some New Inexact Uzawa Methods and Non-overlapping
DD Preconditioners for Solving Maxwell’s Equations in Non-homogeneous
Media, p. 624.

• Adaptive techniques. Only one presentation, that of Z. Chen on An
Adaptive Perfectly Matched Layer Technique for Time-harmonic Scatter-
ing Problems, p. 568, dealt with a special adaptive scheme.

• Optimization. This important subject reaches beyond the core of com-
putational electromagnetism. An aspect was discussed in the talk by D.
Lukáš on Computational Shape and Topology Optimization with Applica-
tions to 3–Dimensional Magnetostatics p. 601.

We would like to add our personal impression that two families of methods have
been received with particular interest during the workshop:

• Time-domain integral equation methods,
• High-order spatial discretization schemes.

We are sure that the workshop will have made a substantial contribution to the
progress of research in these and all other areas of computational electromag-
netism.

R. Hiptmair
R.H.W. Hoppe
U. Langer
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D. Lukáš (joint with U. Langer, E. Lindner, R. Stainko, J. Pǐstora)
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Abstracts

Dispersive Properties of High Order Nédélec/Edge Elements for
Maxwell’s Equations.

Mark Ainsworth

The dispersive behaviour of high order Nédélec element approximation of the
time harmonic Maxwell equations at a prescribed temporal frequency ω on tensor
product meshes of size h is analysed. A simple argument is presented showing
that the discrete dispersion relation may be expressed in terms of the discrete
dispersion relation for the approximation of the scalar Helmholtz equation in one
dimension. An explicit form for the one dimensional dispersion relation is given,
valid for arbitrary order of approximation. Explicit expressions for the leading
term in the error in the regimes where (a) ωh is small, showing that the dispersion
relation is accurate to order 2p for a p-th order method; and (b) in the high wave
number limit where 1 � ωh, showing that in this case the error reduces at a super-
exponential rate once the order of approximation exceeds a certain threshold which
is given explicitly. Details have been published in the following work [1–3]
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Treatment of Nullspace in Maxwell Problems
Peter Arbenz

1. Introduction

The weak form of the magnetostatic equation reads: Find u ∈ H0(curl , Ω)
such that

(1)
(a) (curl u, curl Ψ) = (r,Ψ), ∀Ψ ∈ H0(curl , Ω),
(b) (u,grad q) = 0, ∀q ∈ H1

0 (Ω),

where Ω ∈ IR3 is a bounded domain with connected boundary ∂Ω. We require
that (r,grad q) = 0 for all q ∈ H1

0 (Ω) such that equation (1) is consistent.
The straightforward discretization of (1) by the finite element method yields

the matrix equation

(2)
(a) Ax = Mr, CT r = 0
(b) CT x = 0
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where aij = (curl Ψi, curl Ψj), mij = (Ψi,Ψj), ci� = (Ψi,grad ϕ�). Here, the
Ψi, i = 1, . . . , n, form a basis of the space Nh of lowest order Nédélec edge elements
and the ϕ�, � = 1, . . . , m, form a basis of the lowest order Lagrange elements Lh,
see [4].

A has a m-dimensional nullspace N (A) that satisfies [4, §III.5.3]

(3) N (A) = {vh ∈ Nh | curl vh = 0} = grad Lh.

Thus, the gradient of each ϕ� can be written as a linear combination of the edge
basis functions Ψj ,

grad ϕ� =
n∑

j=1

yj�Ψj .

Let Y ∈ IRn×m be the matrix with elements yj�. Then, AY = 0 and C = MY .
The columns of Y form a sparse null space basis of A, see e.g. [2]. Notice that Y
can be constructed from geometric properties of the finite element mesh.

In [1] we have investigated the numerical solutions of consistent semi-definite
equations of the form (2). The key idea is to employ the sparse null space basis
to extract a positive definite submatrix of A of order n−m, the rank of A.

Reitzinger and Schöberl [5] introduced an algebraic multigrid method to solve (2)
regularized by a term that is positive on N (A). Here we present a way how to
extend the ideas of [1] to all levels of the Reitzinger-Schöberl AMG algorithm. In
this way we get an AMG algorithm that works entirely on the largest subspace
of Nh on which ‖curl (·)‖ is a norm. Its dimension n−m is considerably smaller
than n.

2. Elimination of the nullspace

Let’s assume that the last m rows of Y are linearly independent. Then [1]

(4) W :=
[
In−m Y1

O Y2

]
, Y =

[
Y1

Y2

]
, Y2 ∈ IRm×m,

is nonsingular. We split A, C, x, and r according to Y . Then (2) becomes
(5)

WT

[
A11 A12

A21 A22

]
WW−1x =

[
A11 O
O O

]
W−1x = WT Mr ⇐⇒

{
A11x1 = r1,

x2 = 0.

A11 is symmetric positive definite. The general solution of (2) has the form

x =
[
x1

0

]
+ Y a.

To satisfy the constraint CTx = 0 we determine a by solving

(6) Ha = −CT
1 x1.

Here, H is the symmetric positive definite matrix with elements
hij = (grad ϕi,grad ϕj).
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3. Application to the Reitzinger-Schöberl AMG algorithm

Reitzinger and Schöberl [5] introduced an Algebraic Multigrid (AMG) method
for solving (1)-(2) that properly treats the solenoidal and curl-free portions of
the vector fields. The authors start from an AMG method for solving the Pois-
son (or a similar elliptic) problem in Lh. Coarse grids are constructed from fine
grids by aggregating nodes into ’virtual nodes’. Two aggregates are defined con-
nected (through ’virtual edges’) if they contain nodes that are connected in the
fine grid [6]. The system matrices on the various levels are denoted by Hk, where
H0 = H corresponds to the finest level. Because of the Galerkin principle, among
two consecutive levels the relation

Hk+1 = QT
k HkQk

holds. Qk prolongates (interpolates) from level k+1 to the finer level k. Reitzinger
and Schöberl then construct a sequence of levels for the curl-curl matrix. The
matrices on the various levels are denoted by Ak with A0 = A and

Ak+1 = PT
k AkPk

where the Pk now prolongates from coarse to fine edge space. Qk and Pk are
related via the compatibility condition

(7) PkYk+1 = YkQk

such that coarse grid gradients are prolongated to fine grid gradients. Here, Yk is
a sparse nullspace basis of Ak.

To eliminate the nullspace on all levels of the Reitzinger-Schöberl AMG we
arrange the matrices Ak such that the nullspace bases can be written in the form

Yk =
[
Yk,1

Yk,2

]
,

where Yk,2 is a nonsingular submatrices of Yk, cf. (4). With (5), we then get[
Ak+1,11 O

O O

]
= WT

k+1

[
Ak+1,11 Ak+1,12

Ak+1,21 Ak+1,22

]
Wk+1

= WT
k+1Ak+1Wk+1 = WT

k+1P
T
k AkPkWk+1

= WT
k+1P

T
k

[
Ak,11 Ak,12

Ak,21 Ak,22

]
PkWk+1

= WT
k+1P

T
k W−T

k

[
Ak,11 O

O O

]
W−1

k PkWk+1

and thus

W−1
k PkWk+1 =

[
Pk,11 − Yk,1Y

−1
k,2 Pk,21 O

Y −1
k,2 Pk,21 Qk

]
.

So, the prolongator for the positive-definite portions of the systems is

P̄k := Pk,11 − Yk,1Y
−1
k,2 Pk,21, Ak+1,11 = P̄T

k Ak,11P̄k
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These ideas can be incorporated in the Reitzinger-Schöberl AMG algorithm (or
in a smoothed aggregation AMG algorithm like in [3]) as follows

(1) Build matrices the Ak and Hk. This implies that all the prolongators Pk

and Qk are available.
(2) Construct the nullspace bases Yk on all levels.
(3) Reduce Ak to Ak,11

(4) Adapt the prolongators and smoothers.
A more memory-aware procedure works level by level starting with the finest.
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Two Scale Asymptotic Expansion for the Scattering of a
TM-Electromagnetic Wave by a Rough Surface and Applications

A. Bendali
(joint work with P. Borderies, J.-R. Poirier)

In this study, mainly of methodological interest, we show how the two-scale
asymptotic expansion method [7] can be used as a powerful tool in the study of the
scattering of an electromagnetic wave by a highly oscillating perfectly conducting
surface both from the theoretical and the practical standpoint. More specifically,
we consider the following simple 2D model related to the scattering of an E-
polarized incident time-harmonic electromagnetic wave uinc

(1)




∆uδ + k2uδ = 0 in Ωδ,
uδ = 0 on Γδ, x → e−iβxuδ(x, y) is periodic of period L,
Radiation Condition (RC) on uδ − uinc .

The surface is considered as a periodic grating whose elementary cell is

Ωδ :=
{
(x, y) ∈ R

2 : 0 < x < L, y > γδ(x)
}

in which Γδ :=
{
(x, y) ∈ R2 : 0 < x < L �→ y = γδ(x)

}
represents a sampling of

the surface which is reproduced by periodicity. Data k and β > 0 are the wave
number and the period respectively. The small parameter δ > 0 characterizes
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the rapid oscillations of the surface and their small amplitude in the following
way γδ(x) = s(x, x/δ) where (x, σ) �→ s(x, σ) is a given function, assumed to be
smooth for simplicity, doubly periodic of period L in x and d in σ. The radiation
condition is expressed by means of the Floquet expansion of uδ (e.g., [5]). The
existence and uniqueness of a solution to (1) are ensured by the stability estimates
needed also to establish error bounds on the asymptotic expansion. Even much
more involved, the general case can be treated along the same lines [4].

We briefly describe how to obtain a two-scale asymptotic expansion for uδ, to
derive an homogenized boundary condition on a flat surface from this expansion
and finally to establish bounds on the error resulting from replacing the rough
boundary condition by the homogenized one. The full details can be found in [3].
Actually, the results are known and can be obtained by the method of correc-
tors [1, 2] or by the matching asymptotic expansions [6]. However, the correctors
technique, a step by step process, does not give a clear overall idea of the full
asymptotic expansion. In the matching asymptotic expansions method, slow and
rapid variables are mixed in the boundary layer resulting in intricate analytical
calculations to separate them.

For the two-scale asymptotic expansion that is considered here, its determina-
tion is first done by means of a formal process. Proven error bounds give it a
complete justification a posteriori.

The unknown uδ is decomposed in the following form

uδ(x, y) = U δ(x, y) + Πδ(x, σ, τ)|σ=x/δ,τ=y/δ.

The variable x will play the role of a parameter in the part Πδ(x, σ, τ) containing
the fast variables. It is assumed next that both U δ and Πδ have the following
asymptotic expansions

U δ(x, y) = u0(x, y) + δu1(x, y) + · · · + δnun(x, y) + · · · ,

Πδ(x, σ, τ) = Π0(x, σ, τ) + δΠ1(x, σ, τ) + · · · + δnΠn(x, σ, τ) + · · · .

Inserting this expansion in the Helmholtz equation and equating to zero the coef-
ficients of powers of δ gives the following system(

∆σ,τΠn + 2∂x∂σΠn−1 +
(
∂2

x + k2
)
Πn−2

)
(x, σ, τ) +

(
∆un + k2un

)
(x, y) = 0,

n = 0, 1, . . .

with 0 for any term involving a negative index. Now, assuming that every deriva-
tive of Πn satisfies

lim
τ→+∞

∂α
x,σ,τΠn(x, σ, τ) = 0

makes possible a separation of the functions depending on the slow and the rapid
variables(
∆σ,τΠn + 2∂x∂σΠn−1 +

(
∂2

x + k2
)
Πn−2

)
(x, σ, τ) = 0,

(
∆un + k2un

)
(x, y) = 0.

Since Πδ is living in a boundary layer of the surface, the radiation condition is
on the slow variables functions only

RC on u0 − uinc, RC on un for n ≥ 1.
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However, the decisive advantage of the two scale asymptotic expansion is its
suitability to deal with the boundary condition∑

n≥0

δn (un(x, δs(x, σ)) + Πn(x, σ, s(x, σ))) = 0.

A simple Taylor expansion for un(x, δs(x, σ)) yields

Πn(x, σ, s(x, σ)) + un(x, 0) +
n∑

k=1

s(x, σ)k

k!
∂k

yun−k(x, 0) = 0.

In this way, all the equations needed to determine the asymptotic expansion
have been obtained at once. The following theorem is the main tool to do this
determination.

Theorem 1. Let F be a given periodic function of period d in σ in C∞(D) veri-
fying

∆σ,τ
m−1F = 0 in D and |F (σ, τ)| ≤ ce−γτ ,

and G ∈ C∞(R), periodic of period d. Then, the boundary-value problem

∆Π = F in D, Π(σ, s(σ)) = G(σ), 0 < σ < d.

admits one and only one solution satisfying |Π(σ, τ) − Π∞| ≤ ce−γτ .

Proof. The proof is based on a variational formulation in a weighted Sobolev space
and elliptic interior estimates and Fourier series expansion. �

The different terms of the asymptotic expansion are then determined recursively
by solving boundary-value problems in the slow and the rapid variables. For the
zero order terms, we have Π0 = 0 and u0 is the solution to the problem with a flat
boundary


∆u0 + k2u0 = 0 for y > 0
u0 = 0 for y = 0, x → e−iβxu0(x, y) is periodic of period L,
Radiation Condition (RC) on u0 − uinc .

Note that, contrary to the corrector method, the flat plane problem has been
obtained only by calculations without passing to any limit. Solving the auxiliary
problem

∆σ,τH = 0, H(x, σ, s(x, σ)) = s(x, σ).

yields h(x) = limτ→∞ H(x, σ, τ). The term u1 is then the solution of the following
boundary-value problem{

∆u1 + k2u1 = 0 for y > 0,
u1(x, 0) + h(x)∂yu0(x, 0) = 0, RC on u1.

Proceeding in the same way, one can determine the asymptotic expansion at any
order. The rigorous justification of the method is then obtained through the error
bound given in the following theorem
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Theorem 2. For any given y0 > 0, there exists a constant independent of δ such
that ∥∥(uδ − (u0 + δu1)|y0<y

∥∥ ≤ cδ3/2.

Proof. Let be given a cut-off function χ ∈ D(R) such that χ ≡ 1 near 0 and
0 ≤ χ ≤ 1. The proof is obtained by means of an evaluation of the residuals of
uδ − (u0 + δ(u1 + χ(y)Π1) + δ2χ(y)Π2) relatively to the equations of problem (1)
and a suitable stability estimate for its solutions. �

The effective boundary condition at order 1 can then be written in terms of
h(x)

(2) u1,δ(x, 0) + δh(x)∂yu1,δ(x, 0) = 0.

and is used in place of the Dirichlet boundary condition in problem (1). The main
result concerning the approximation by an effective boundary condition is stated
in the following theorem.

Theorem 3. As in the above theorem, the following bound holds∥∥(uδ − u1,δ)|y0<y

∥∥ ≤ cδ3/2.

Proof. The main step is to obtain an asymptotic expansion for the problem related
to the effective boundary condition. One can readily verify that the first two terms
of the expansion are exactly u0 and u1. The bound is then obtained through a
stability estimate for the approximate problem. �
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Practical Aspects of FEM in Electromagnetics

Oszkár B́ıró

The aim of this talk is to highlight two aspects of computational electromag-
netism which concern practical low frequency applications. One of them is the
question of taking account of the excitation through coils and the other is mod-
elling magnetic nonlinearity.
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In low frequency problems, the displacement current density can be neglected
resulting in the so-called quasi-static approximation. If the electromagnetic field
is generated by coils with known current density distribution, an eddy current
problem is obtained. If, on the other hand, the current density of the coils is
unknown, a skin effect problem is spoken of.

The boundary value problems are invariably formulated in terms of potentials.
Scalar potentials are approximated on nodal elements and vector potentials on
edge elements [6].

Magnetostatic problems in terms of a scalar potential. Magnetostatic fields are
generated in nonconducting domains by coils with known current density. The
magnetic field intensity can be described as the sum of the gradient of a scalar
potential and of a vector function whose curl is the given current density (impressed
vector potential). The scalar potential satisfies a Poisson equation with Dirichlet
and Neumann boundary conditions. A great advantage of this approach is that
the coils need not be modelled by the finite element mesh. It is shown, however,
that if the smooth function representing the impressed vector potential is inserted
into the finite element equations, wrong results are obtained. This is due to the
fact that the impressed vector potential and the gradient of the scalar potential
are in different function spaces. The remedy is representing the impressed vector
potential in terms edge basis functions [2].

Magnetostatic problems in terms of a vector potential. An alternative to using the
scalar potential is to describe the magnetic flux density as the curl of a magnetic
vector potential. The current density of the coils appears then directly on the
right hand side of the edge element equation system which is singular. Due to
numerical integration errors the right hand side is not consistent and hence the
equations cannot be solved by Krylov type iterative methods. Again, the remedy is
to represent the current density by means of an impressed current vector potential
and thus making the right hand side consistent. [4]

Using a reduced vector potential. A disadvantage of the vector potential approach
is that the geometry of the coils has to be modelled by the finite element mesh.
This can be avoided by writing the flux density as the sum of the curl of a known
vector potential due to the coils in free space and of a reduced vector potential.
[5].

Eddy current problems in terms of a current vector and a magnetic scalar potential
or of a magnetic vector and an electric scalar potential. In case of eddy current
problems, the excitation is represented by coils with given current density. Con-
sequently, if their current is known, their treatment is similar to the approach
followed in magnetostatic problems. In particular, if the eddy current field is rep-
resented by a current vector and a magnetic scalar potential, the coils are taken
into account by means of an impressed current vector potential described by edge
elements [6]. Similarly, if a magnetic vector and an electric scalar potential are
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used, the alternatives to represent the excitation are by means of an impressed cur-
rent vector potential or a reduced vector potential [6]. If, on the other hand, the
voltage of the coils is given, the current can be treated as an additional unknown
and a circuit equation added to the system [8, 11].

Skin effect problems in terms of a current vector and a magnetic scalar potential.
In case of skin effect problems, the excitation is either the current or the voltage
of conductors acting as coils with their current density distribution unknown.
Current excitation can be incorporated into the finite element formulation by
means of prescribing appropriate boundary conditions if a current vector potential
and a magnetic scalar potential act as system variables. Conversely, it is the
voltage driven case that can be treated through boundary conditions within the
frame of the formulation using a magnetic vector and an electric scalar potential
[7]. The voltage excitation can be taken into account in the formulation in terms of
the current vector potential and the magnetic scalar potential by means of treating
the current as unknown and writing circuit equations [8–10].

Treatment of nonlinearity. Due to the nonlinear relationship between the mag-
netic flux density and field intensity, the finite element method leads to nonlinear
algebraic equations in case of magnetostatic problems and to nonlinear ordinary
differential equations for time dependent problems. Their solution can be carried
out by means of standard techniques [3]. Frequently, it is more advantageous
to write the eddy current equations in the frequency domain instead of the time
domain. This leads to the harmonic balance method, see e.g. [1].
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[3] O. B́ıró and K. Preis, Finite element calculation of time-periodic 3d eddy currents in
nonlinear media, in vol. 9 of Studies in Applied Electromagnetics and Mechanics, Advanced
Computational Electromagnetics, ed: T. Honma, Elsevier, IOS Press, 1995, pp. 62–74
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[6] O. B́ıró, Edge element formulations of eddy current problems, Comput. Methods Appl.

Mech. Engrg., 169 (1999), pp. 391–405.
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H2-Matrices with Adaptive Cluster Bases Applied to an Eddy Current
Problem

Steffen Börm

H2-matrices [1, 5, 6, 16] can be used to find data-sparse representations of the
densely populated matrices occurring, e.g., in boundary element methods.

The basic idea of hierarchical matrix techniques [3, 4, 10, 13–15] is to split the
index set I into a hierarchy of subsets, the cluster tree TI , and to split the matrix
into a hierarchy TI×I of subblocks τ × σ corresponding to τ, σ ∈ TI that contains
only small blocks and blocks that admit a separable approximation. The latter
blocks are called admissible.

In a hierarchical matrix, an admissible block τ × σ is approximated by a fac-
torized rank-k-matrix AB� (A ∈ Rτ×k, B ∈ Rσ×k). The factorized form can
be constructed by standard panel-clustering techniques [17], multipole expansion
[11, 19] or interpolation [2].

In an H2-matrix, an admissible block τ × σ is approximated by a special low-
rank matrix of the form V τSτ,σW σ� (V τ ∈ Rτ×k, W σ ∈ Rσ×k, Sτ,σ ∈ Rk×k). By
requiring the row cluster bases V τ and the column cluster bases W σ to be orga-
nized in a nested hierarchy (this is straightforward for polynomial approximation
schemes [6, 9] and can also be achieved for multipole expansions [12]), we can reach
algorithms with linear complexity in the number of degrees of freedom n.

While constructing an H2-matrix approximation of an integral operator by La-
grangian interpolation leads to a relatively general, simple and fast method, this
approach also requires a large amount of storage, since polynomial bases are not
adapted to the special characteristics of a given operator or a given geometry.
This problem can be solved by combining the separable approximation scheme
with an algebraic recompression algorithm that detects and eliminates redundant
expansion functions by solving local symmetric eigenvalue problems [5, 7], which
reduces the storage requirements significantly at the price of a moderate increase
in computing time.

Since the recompression algorithm can be used without keeping the entire orig-
inal H2-matrix approximation in memory, it is possible to treat boundary element
problems with more than 100.000 degrees of freedom on standard PCs in less than
ten minutes.

The combination of polynomial interpolation and algebraic recompression can
not only be applied to standard Laplace problems, but also to more complicated
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vector-valued eddy-current models for Maxwell’s equation [8, 18]. An example is
the vector-valued double layer potential

b(E, φ) =
∫

Γ

∫
Γ

〈curlΓ φ(y),E(x)〉〈gradx Φ(x, y),n(x)〉 dy dx

−
∫

Γ

∫
Γ

〈curlΓ φ(y),n(x)〉〈gradx Φ(x, y),E(x)〉 dy dx

for the fundamental solution Φ(x, y) := 1/(4π‖x−y‖). Even if Φ could be approx-
imated by a single tensor product, the resulting matrix approximation would still
have rank 3, since the variables x and y are coupled by a three-dimensional inner
product. In practical approximation schemes, this implies that the rank required
for the approximation of the vector-valued operator will be at least three times as
high as in the case of scalar-valued operators.

Still, numerical experiments performed by applying the recompression algo-
rithm to the vector-valued operator leads to storage requirements that are close
to those of the scalar-valued operator. This result suggests that recompression is
crucial for the efficient treatment of vector-valued problems, since the conventional
fast approximation schemes like polynomial and multipole expansions seem to be
incapable of taking advantage of their special structure.
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Theoretical Aspects of Edge Finite Elements
Daniele Boffi

Let us consider the time harmonic Maxwell system

(TH)




curl(µ−1 curlu) − ω2εu = f in Ω

div(εu) = 0 in Ω
u× n = 0 on Ω

where ω is the fixed frequency, div f = 0, and Ω is a polyhedral (or polygonal)
domain with outward normal n.

It is well known that problem (TH) is well posed if and only if ω2 is not an
interior Maxwell eigenvalue. A variational formulation of the problem under con-
sideration is obtained, for instance, by imposing the divergence free condition in
a weak sense in the spirit of Kikuchi [21] as follows.

(TH-V)

Find (u, p) ∈ H0(curl; Ω) × H1
0 (Ω) = V × Q such that{

(µ−1 curlu, curlv) − ω2(εu,v) + (εv, grad p) = (f ,v) ∀v ∈ V

(εu, grad q) = 0 ∀q ∈ Q

A stability estimate of the solution of (TH-V) can be found, for instance, in [17].
(
‖u‖2

curl + ‖p‖2
1

)1/2 ≤ sup
i=1,2,...

(
1 + ω2,

1 + λi

|λi − ω2|

)
‖f‖0

where λi (i = 1, 2, . . . ) are the interior Maxwell eigenvalues. Given Vh ⊂ V and
Qh ⊂ Q we consider the discretization of problem (TH-V).
(TH-Vh)

Find (uh, ph) ∈ Vh × Qh such that{
(µ−1 curluh, curlv) − ω2(εuh,v) + (εv, grad ph) = (f ,v) ∀v ∈ Vh

(εuh, grad q) = 0 ∀q ∈ Qh
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Assuming the compatibility condition

(COMP) gradQh ⊂ Vh

which guarantees a discrete inf-sup condition for problem (TH-Vh), we have the
error estimate

‖u− uh‖2
curl + ‖p − ph‖2

1 ≤ γ2 inf
(vh,qh)∈Vh×Qh

(
‖u− vh‖2

curl + ‖p − qh‖2
1

)
with

γ ≤ 1 + max
i=1,2,...

(
1 + ω2,

1 + λi,h

|λi,h − ω2|

)

where λi,h are the discrete Maxwell eigenvalues. We explicitly notice that div f = 0
implies p = ph = 0.

Several numerical experiments and theoretical results (see [8, 10], for instance)
show that standard nodal elements do not approximate Maxwell eigenvalues in
a correct way, even on special two dimensional meshes where the compatibility
condition (COMP) is satisfied [8, 28]. On the other hand, edge finite elements
have been proven to satisfy the discrete compactness property which guarantees
the good approximation of the eigensolutions [6, 7, 14, 22–24] (see [20, 26] for a
review on this topic).

In this talk we review some of the most important theoretical properties of edge
finite elements, including discrete compactness, commuting diagram (de Rham
complex), interpolation estimates. The commuting diagram property (see, for
instance, [7, 12, 13, 18, 19], [16, 29] for possible extensions and [3] for a review) on
a simply connected domain reads

0 → Q
grad−−−→ V

curl−−→ U
div−−→ S/R → 0

↓ ΠQ
h ↓ ΠV

h ↓ ΠU
h ↓ ΠS

h

0 → Qh
grad−−−→ Vh

curl−−→ Uh
div−−→ Sh/R → 0,

where Q ⊂ H1
0 (Ω), V ⊂ H0(curl), U ⊂ H0(div), and S ⊂ L2(Ω) are suitable

smooth function spaces, so that the corresponding interpolation operators can be
defined and Qh, Vh, Uh, and Sh are their discrete counterparts.

Standard interpolation estimates are (see, for instance, [1, 2, 15, 20, 25, 27])

inf
vh∈Vh

‖u− vh‖0 ≤ Chs(|u|s + ‖ curlu‖s) 1/2 < s ≤ k + 1

inf
vh∈Vh

‖ curlu − curlvh‖0 ≤ Chs| curlu|s 0 < s ≤ k + 1

When curlu is discrete, the improved estimate

inf
vh∈Vh

‖u− vh‖0 ≤ Chs|u|s 1/2 < s ≤ k + 1
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has been used in [6], see also [20]. Recent results [9] show the improved estimate

‖u− ΠV
h u‖L2 ≤ Chs (|u|Hs + ‖ curlu‖Lp) 1/2 < s ≤ 1, p > 2

‖u− ΠV
h u‖L2 ≤ Chs|u|Hs 1 < s ≤ k + 1

‖ curlu − curlΠV
h u‖L2 ≤ Chs| curlu|Hs 0 < s ≤ k + 1

These estimates, which do not require on curlu more regularity than the one
needed for the definition of the interpolant itself (see [2]), have been used in [9]
for the analysis of the approximation of photonic crystals.

The last remark concerns the approximation properties achieved by edge finite
elements on quadrilateral meshes. Recent results show that particular care has to
be taken into account when dealing with general regular quadrilateral finite ele-
ments [4]. This issue is particularly significant for quadrilateral edge elements; the
lowest order element does not achieve the convergence at all in the H(curl) norm,
the higher order elements are substantially suboptimal [5]. Some modifications of
standard edge element, which provide a solution to this phenomenon, have been
recently proposed [5, 11].
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[27] J.C. Nédélec, Mixed finite elements in R

3, Numer. Math., 35 (1980), no. 3, pp. 315–341.
[28] M.J.D. Powell, Piecewise quadratic surface fitting for contour plotting, in Software for

numerical mathematics (Proc. Conf., Inst. Math. Appl., Loughborough Univ. Tech., Lough-
borough, 1973), Academic Press, London (1974), pp. 253–271.
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An Adaptive Perfectly Matched Layer Technique
for Time-harmonic Scattering Problems

Zhiming Chen
(joint work with Xueze Liu)

We propose and study an adaptive perfectly matched layer (PML) technique for
solving the Helmholtz-type scattering problems with perfectly conducting bound-
ary:

∆u + k2u = 0 in R2\D̄,(1a)
∂u

∂n
= −g on ΓD,(1b)

√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞.(1c)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD)
is determined by the incoming wave, and n is the unit outer normal to ΓD. We
assume the wave number k ∈ R is a constant. We remark that the results in
this paper can be easily extended to solve the scattering problems with other
boundary conditions such as Dirichlet or the impedance condition on ΓD, or the
acoustic wave propagation problems in inhomogeneous media which correspond to
a variable wave number k2(x).

Since the work of Berenger [3] which proposed a PML layer for use with the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. Turkel and Yefet [17]
for a review). Under the assumption that the exterior solution is composed of
outgoing waves only, the basic idea of the PML technique is to surround the
computational domain by a finite thickness layer of the specially designed model
medium that would either slow down or attenuate all the waves that propagate
from inside the computational domain. The PML equation for the time-harmonic
scattering problem (1a) is derived in Collino and Monk [8] by a complex extension
of the solution u in the exterior domain. It is proved in Lassas and Somersalo [11],
Hohage, Schmidt and Zschiedrich [10] that the resultant PML solution converges
exponentially to the solution of the original scattering problem as the PML layer
thickness tends to infinite. We remark that in practical applications involving
PML method, one cannot afford to use a very thick PML layer because it requires
excessive grid points and hence more computer time and more storage. On the
other hand, a thin PML layer requires a rapid variation of the artificial material
property which deteriorates the accuracy if two corse mesh is used in the PML
layer.

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge



Computational Electromagnetism 569

of exact solutions. They are essential in designing algorithms for mesh modifica-
tion which equi-distribute the computational effort and optimize the computation.
Ever since the pioneering work of Babuška and Rheinboldt [2], the adaptive finite
element methods based on a posteriori error estimates have become a central theme
in scientific and engineering computations. The ability of error control and the
asymptotically optimal approximation property (see e.g. Morin, Nochetto and
Siebert [14], Chen and Dai [5]) make the adaptive finite element method attrac-
tive for complicated physical and industrial processes (cf. e.g. Chen and Dai [4],
Chen, Nochetto and Schmidt [6]). For the efforts to solve scattering problems
using adaptive methods based on a posterior error estimate, we refer to the recent
work Monk [12], Monk and Süli [13].

It is proposed in Chen and Wu [7] for scattering problems by periodic structures,
the grating problem, that one can use the a posteriori error estimate to determine
the PML parameters. Moreover, the derived a posteriori error estimate in [7] has
the nice feature of exponential decay in terms of the distance to the distance to
the boundary of the fixed domain where the PML layer is placed. This property
leads to coarse mesh size away from the fixed domain and thus makes the total
computational cost insensitive to the thickness of the PML absorbing layer.

In this paper we extend the idea of using a posteriori error estimates to deter-
mine the PML parameters and propose an adaptive PML technique for solving the
scattering problem (1a)-(1c). The first difficulty of the analysis is that in contrast
to the grating problems in which there are only finite number of outgoing modes
[7], now there are infinite number of outgoing modes expressed in terms of Hankel
functions. We overcome this difficulty by using following uniform estimate for the
Hankel functions H1

ν , ν ∈ C,:

|H (1)
ν (z)| ≤ e

−Im (z)
“
1− Θ2

|z|2
”1/2

|H (1)
ν (Θ)|,(2)

for any z ∈ C++, Θ ∈ R such that 0 < Θ ≤ |z|, where C++ = {z ∈ C : Im (z) ≥
0, Re (z) ≥ 0}. This sharp estimate, which seems first appeared in this paper,
allows us to prove the exponentially decaying property of the PML solution without
resorting to the integral equation technique in [11] or the representation formula in
[10]. We remark that in [11], [10], it is required the fictitious absorbing coefficient
must be linear after certain distance away from the bounary where the PML layer
is placed.

The second difficulty is that the PML equation in the PML layer is not nec-
essarily uniquely solvable for any wave number k2. Let ΩPML = Bρ\B̄R, where
0 < R < ρ and Ba denotes the circle of radius a for any a > 0. Let α = 1 + iσ
be the fictitious medium property. In practical applications, σ is usually taken as
power functions:

σ = σ(r) = σ0

(
r − R

ρ − R

)m

for some integer m ≥ 1,(3)

where σ0 > 0 is some constant. We prove that for any given R and ρ, the PML
equation in the PML layer is uniquely solvable and its solution satisfies sharp
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stability estimates if σ0 is chosen sufficiently large. This allows us to complete the
proof of the following key estimate between the Dirichlet-to-Neumann mapping for
the original scattering problem T : H1/2(ΓR) → H−1/2(ΓR) and the PML problem
T̂ , where ΓR = ∂BR,

‖T − T̂ ‖L(H1/2(ΓR),H−1/2(ΓR)) ≤ C(1 + k2R2)|α0|2e
−kIm (ρ̃)

“
1− R2

|ρ̃|2
”1/2

,

where α0 = 1 + iσ0, and ρ̃ =
∫ ρ

0
α(t)dt is the complex radius corresponding to ρ.
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[2] I. Babuška and C. Rheinboldt. Error estimates for adaptive finite element computations.
SIAM J. Numer. Anal. 15 (1978), pp736-754.

[3] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J.
Comput. Physics 114 (1994), pp185-200.

[4] Z. Chen and S. Dai. Adaptive Galerkin methods with error control for a dynamical Ginzburg-
Landau model in superconductivity. SIAM J. Numer. Anal. 38 (2001), pp1961-1985.

[5] Z. Chen and S. Dai. On the efficiency of adaptive finite element methods for elliptic problems
with discontinuous coefficients. SIAM J. Sci. Comput. 24 (2002), pp443-462.

[6] Z. Chen, R.H. Nochetto and A. Schmidt. A characteristic Galerkin method with adap-
tive error control for continuous casting problem. Comput. Methods Appl. Mech. Engrg. 189
(2000), pp249-276.

[7] Z. Chen and H. Wu. An adaptive finite element method with perfectly matched absorbing
layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, (2003),
pp799-826.

[8] F. Collino and P.B. Monk. The perfectly matched layer in curvilinear coordinates. SIAM
J. SCi. Comput. 19 (1998), pp2061-2090.

[9] D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. John Wiley &
Sons, New York, 1983.

[10] T. Hohage, F. Schmidt and L. Zschiedrich. Solving time-harmonic scattering problems
based on the pole condition. II: Convergence of the PML method. SIAM J. Math. Anal., to
appear.

[11] M. Lassas and E. Somersalo. On the existence and convergence of the solution of PML
equations. Computing 60 (1998), pp229-241.

[12] P. Monk. A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math.
100 (1998), 173-190.
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Div-Curl Lemma for Edge Elements
Snorre H. Christiansen

Given two sequences (uh) and (u′
h) of vector fields converging weakly in L2 on

some open domain in R
3 the div-curl lemma of Murat [5] and Tartar [7] gives

sufficient conditions under which their scalar product converges in the weak-star
sense of distributions to the right scalar field. Namely if the sequences (div uh)
and (curl u′

h) are relatively compact in H−1 then this convergence property holds.
This lemma is useful in questions arizing in homogenization and certain non-linear
PDEs and is an ingredient in the method of compensated compactness.

For the variational formulation of problems in electromagnetics on Nédélec’s [6]
edge element spaces Xh one can naturally obtain control over the L2 norm of the
involved fields. One can also expect to have sufficient control of the curl in H−1

(e.g. in the form of boundedness in L2), due to energy considerations. However
control of the divergence of a field uh ∈ Xh is obtained in the form of estimates on∫

uh · gradph when ph runs trough the maximal space Yh of continuous piecewise
polynomials which vanish on the boundary and such that the gradient operator
maps Yh into Xh. Since the space Yh is smaller than H1

0, the question arizes
whether an L2 bounded sequence of so-called discrete divergence free vector fields
uh ∈ Xh has compact divergence in H−1. This property is stronger than the
discrete compactness property of Kikuchi which has come to play a central role in
the numerical analysis of edge elements.

While we leave this question unanswered we prove in this talk the following
div-curl lemma for edge elements on quasi-uniform meshes on bounded domains
with smooth boundary1:

Lemma 1. Suppose (uh) and (u′
h) are sequences of vector fields uh, u′

h ∈ Xh con-
verging weakly in L2 to u and u′. Suppose furthermore that with the decomposition
uh = vh + grad ph with vh in the L2 orthogonal of gradYh in Xh, and ph ∈ Yh,
(ph) is relatively compact in H1

0, and that (curl u′
h) is relatively compact in H−1.

Then (uh · u′
h) converges to u · u′ in the weak-star sense of distributions.

One of the main ingredients of the proof is a norm equivalence on a subspace
of Xh which is uniform with respect to h and which strengthens the standard
discrete compactness property (using a technique appearing in Lemma 4.1 in [4]).
Another ingredient is a super-approximation property of the spaces Yh. For the
details of the proof I refer to the revised version of the preprint [2], which also
contains bibliographical references in particular to the work by Boffi and Hiptmair
on discrete compactness.

This work is related to a joint effort [3] to understand the variational formulation
of constraints in the discretization of some non-linear PDEs, parts of which were
presented in [1].

1The possibility of weaking these hypothesis was briefly discussed and is the object of current
efforts.
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[6] J.-C. Nédélec, Mixed finite elements in R

3; Numer. Math., Vol. 35, p. 315-341, 1980.
[7] L. Tartar, Compensated compactness and applications to partial differential equations; in

“Nonlinear analysis and mechanics: Heriot-Watt Symposium”, Vol. IV, p. 136-212, Res. Notes
in Math., Vol. 39, Pitman, Boston, Mass.-London, 1979.

Formulations and Efficient Numerical Solution Techniques for
Transient 3D Magneto-and Electro-Quasistatic Field Problems

Markus Clemens
(joint work with Galina Benderskaya, Herbert De Gersem, Stefan

Feigh, Markus Wilke, Jing Yuan and Thomas Weiland)

The simulation of 3D quasistatic electric high-voltage fields and magnetic eddy
currents field problems typically involves nonlinear material properties such as
field dependent electric conductivities of insulator materials or saturation effects
within ferromagnetic materials which may be even of hysteretic nature. In these
cases and, more generally, for any non-periodical field excitation, time domain
formulations of these problems are preferred. Using spatial discretization schemes
such as the Whitney Finite Element method [3], the Cell Method [18]or the Finite
Integration Technique [9, 19], for electro-quasistatic problems this will result in
large systems of stiff ordinary differential equations of the form

(1) GTMεG
d

dt
Φ(t) + GT Mκ

(
Φ(t)

)
GΦ(t) = 0.

where GT and G are the discrete divergence and gradient matrices with the vector
of electric grid voltages as �e = −GΦ and Mε and Mκ = Mκ(Φ) are material
matrices combining the permittivities and field dependent electrical conductivities
with the metric information of the grid [7]. Magneto-quasistatic fields can be
described with systems of differential-algebraic equations of index 1

(2) Mκ
d

dt
�a(t) + CTMν

(
�a(t)

)
C�a(t) =

��

j s(t),

where �a is the vector of path integrated magnetic vector potentials, C is the inci-
dence matrix discretizing the curl operator to yield the vector of magnetic fluxes
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��

b = C�a , Mν = Mν(�a) is the matrix of flux dependent reluctivities and the
��

j s

is the vector of current excitations [8, 12]. Today, efficient numerical techniques
for the solution of the large systems of equations (1) and (2) involve time step
adaptive higher order embedded time integration schemes such as singly diago-
nal implicit Runge-Kutta methods (SDIRK) or linear-implicit Rosenbrock-Wanner
(ROW) methods [13, 15]. In these schemes the repeated solution of the algebraic
systems of equations involves a combination of advanced numerical methods. Such
methods are geometric or algebraic multigrid preconditioners specifically designed
to interact with the above mentioned geometric discretization methods [4–6, 17],
multiple-righthand side Lanczos-projection techniques and a subspace projection
extrapolation scheme for the generation of optimal start vectors of the iterative so-
lution methods [11, 14]. Specialized projection methods are used for the inclusion
of floating potential areas and other complicated boundary conditions [16] and non-
standard time step-prediction schemes are developed for magnetodynamic field-
circuit coupled formulations involving switching circuit elements [2]. Extensions
of the magneto-quasistatic formulations also include models for motion-induced
eddy currents as they occur e.g. in eddy current brakes using either Lagrangian or
Eulerian coordinate descriptions [1, 10] and nonlinear iteration schemes adapted to
hysteretic ferromagnetic material behavior described by Preisach or Jiles-Atherton
hysteresis models [20–22].
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[20] J. Yuan, M. Clemens, and T. Weiland, Simulation of hysteresis effects with the classical

Preisach model in FI2TD methods. Proc. ISEM 2003, Versailles, France. Full paper to appear
in special issue of the Int. J. Appl. Electromagn. Mech., IOS Press., 2004.

[21] , The Jiles-Atherton model combined with the Newton-Raphson method for the simu-
lation of transient hysteretic magnetic field problems. To appear in Proc. XVIII Symposium
on Electromagnetic Phenomena in Nonlinear Circuits (EPNC 2004), Poznan, Poland, June
2004.

[22] , Solution of transient hysteretic magnetic field problems with hybrid Newton-
Polarization methods. To appear in Proc. 11th Biennial IEEE Conference on Electromag-

netic Field Computation (CEFC 2004), Seoul, Korea, June 2004.

Singularities of Electromagnetic Fields in the Eddy Current Limit
Monique Dauge

(joint work with Martin Costabel and Serge Nicaise)

This talk discusses the notion of eddy current limit for a conductor surrounded
by an exterior dielectric medium and presents results from [15–17] about the sin-
gularities of solutions when the conductor has corners and edges.

1. The eddy current limit

Let ΩC be the conductor body. We assume that ΩC is a three-dimensional
polyhedron. To simplify the exposition we also assume that the boundary B of
ΩC has a single connected component. Let Ω be a ball, large enough to surround
ΩC . We consider the exterior domain ΩE = Ω \ ΩC . We denote by εC , µC and
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σC the electric permittivity, the magnetic permeability and the conductivity of
ΩC , respectively, and by εE , µE and σE their values inside ΩE . We assume that
σE = 0. We consider the harmonic Maxwell equation at the given frequency ω:

(1)




(i) curl E = −iω µH in Ω,
(ii) curl H = (σ + iω ε)E + j0 in Ω,
(iii) E × n = 0 and H · n = 0 on ∂Ω.

Here j0 is a divergence free field (the source current density) with support inside
ΩC and σ denotes the piecewise constant equal to σC inside ΩC and 0 inside ΩE .
Similar conventions hold for ε and µ. Taking the divergence of equation (1) (ii),
we obtain:

(2) div(iωε + σ)E = 0 in Ω.

The time-harmonic eddy current problem [2, 8, 11, 20] consists in neglecting ωε in
(1) in the case when σ >> ωε and reads:

(3)




(i) curl E = −iωµH in Ω,
(ii) curl H = σE + j0 in Ω,
(iii) E × n = 0 and H · n = 0 on ∂Ω.

Let us write EC = E|ΩC and EE = E|ΩE . Taking the divergence of (3) (ii), we
only obtain div EC = 0 in ΩC and EC · n = 0 on B, which has to be completed by
the gauge conditions:

(4) div EE = 0 in ΩE and
∫

B

EE · n dS = 0.

Let us assume for simplicity that εC � εE and let us introduce our small parameter
δ as

δ =
εC

σC
.

Let us consider σ, µ and ω > 0 as fixed and denote by (Eδ,Hδ) the solution of (1)
and by (E0,H0) the solution of (3). We have proved in [16]

(5)
∥∥Eδ − E0

∥∥
L2(Ω)

+
∥∥Hδ − H0

∥∥
L2(Ω)

≤ Cδ.

This notion of limit corresponds to that presented in [11, Ch.4], whereas it some-
what differs from the point of view adopted in [2] where a zero frequency limit is
considered for both problems (1) and (3). However (5) does not answer completely
the question of knowing whether the eddy current approximation is valid when we
are given a set of parameters σ, µ, ε and ω. Let us set ε̂ = ε/δ. The interior
equations for the electric field Eδ take the form:

(6)

{
(i) curl µ−1 curl Eδ + iωσEδ − δω2ε̂Eδ = −iωj0 in ΩC ,

(ii) curl µ−1 curl Eδ − δω2ε̂Eδ = 0 in ΩE .

We can see that (i) tends to its eddy current counterpart as soon as δω is small,
whereas for equation (ii) approaching the eddy current limit requires that ω2εµ
also is small at the scale of ΩE . Another asymptotic effect may occur when
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ωµσ >> 1: The skin effect produces a strong concentration of the electromagnetic
field inside the conductor in a very narrow layer around its surface [9].

2. Singularities

The equations (6) combined with the zero divergence constraint inside ΩC ∪ΩE

and transmission conditions on B, produce an elliptic boundary value problem on
Ω. Like any elliptic boundary value problem in a domain with corners and edges
[18, 19, 22, 24], the electric or magnetic Maxwell problems have singular solutions
(the “singularities”) [13, 15]. In the present situation of a polyhedral conductor
surrounded by a dielectric medium, the issue is the investigation [16, 17] of the
singularities of the eddy current problem (3) together with the way in which the
singularities of the transmission problem (1) transform as δ → 0 in the eddy
current limit. Let us define α = (αC , αE) by

iωα = iωδε̂ + σ.

The “electric” singularities of problems (1) and (3) are those of the operator

(7)

{
(i) curl µ−1

C curl E −∇div E in ΩC ,

(ii) curl µ−1
E curl E −∇div E in ΩE ,

with the essential transmission conditions:

(8) [E × n] = 0 and [αE · n] = 0 on B,

which we complement by the Neumann type transmission conditions

(9) [µ−1 curl E × n] = 0 and [div αE] = 0 on B.

Problem (7)-(9) is the principal part of one of the regularized operators associated
with problem (1).

According to the classification of [13, 15], problem (7)-(9) has mainly two types
of singularities, Type 1 and Type 2, at each corner and each edge of ΩC . To each
corner or edge we associate two cones ΓC and ΓE together with their interface
I. For a corner point c, ΓC and ΓE coincide with ΩC and ΩE , respectively, in a
neighborhood of c. For an edge we have similar definitions where ΓC and ΓE are
plane sectors such that the diehedra ΓC × R and ΓE × R coincide with ΩC and
ΩE in a neighborhood of the edge. The singularities are homogeneous functions
on ΓC ∪ ΓE .

The singularities of Type 1 are the gradients ∇Φ in ΓC ∪ ΓE of a potential
function Φ = (ΦC , ΦE) which is itself a singularity of the scalar transmission
problem, cf [25, 26]:

(10) ∆ΦC = 0 in ΓC , ∆ΦE = 0 in ΓE , [Φ] = 0 and [α∂nΦ] = 0 on I,

the last transmission condition becoming ∂nΦC = 0 on I in the eddy current
limit δ = 0: In the latter case, either ΦC = 0 and ΦE is a Dirichlet singularity
of the Laplace problem on ΓE , or ΦC is a Neumann singularity of the Laplace
problem on ΓC and ΦE has the same Dirichlet traces as ΦC (and the same degree
of homogeneity).
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The singularities of Type 2 are electric fields associated with magnetic fields
of the form ∇Ψ where the scalar potential Ψ = (ΨC , ΨE) is a singularity of the
transmission problem

(11) ∆ΨC = 0 in ΓC , ∆ΨE = 0 in ΓE , [Ψ] = 0 and [µ∂nΨ] = 0 on I.

If the permeability µ has no jump, solutions of (11) still exist, but they are poly-
nomials and do not decrease the regularity of Maxwell solutions.

3. Regularity

Let βα and βµ be the limiting regularity Sobolev exponents for the transmis-
sion Laplace operators div α∇, cf singularities (10), and div µ∇ respectively, cf
singularities (11). Then if the data j0 is regular enough, the solution E of (1)
satisfies

EC ∈ Hs(ΩC) and EE ∈ Hs(ΩE), ∀s < min{βα − 1, βµ}.
Moreover we have a decomposition of [4, 5]’s type: E can be split into ∇Φ + Ereg

with
Ereg

C ∈ Hs(ΩC) and Ereg
E ∈ Hs(ΩE), ∀s < min{βα , βµ}.

Concerning the eddy current problem (3), we introduce the limiting regularity
Sobolev exponents βDir

E and βNeu
C for the Dirichlet problem on ΩE and the Neumann

problem on ΩC , respectively. Let us assume for simplicity that µ has no jump
(which amounts to setting βµ = ∞). Then the solution E of (3) satisfies

EC ∈ Hs(ΩC), ∀s < βNeu
C − 1, and EE ∈ Hs(ΩE), ∀s < min{βNeu

C , βDir
E } − 1.

Moreover, we may split E into ∇Φ + Ereg with

Ereg
C ∈ Hs(ΩC), ∀s < βNeu

C and Ereg
E ∈ Hs(ΩE), ∀s < min{βNeu

C , βDir
E }.

Thus, if the conductor ΩC is convex, it may happen that, in the eddy current
limit, the solution inside the conductor is more regular than outside. This effect
does not occur for δ �= 0. In fact, the conductor part ΦC of certain singularities
of (1) is vanishing as δ → 0.

4. Short conclusion about the numerical approximation

The resolution of the eddy current problem is made by eliminating either the
electric field (H-formulation or magnetic approach [1, 8, 11]) or the magnetic field
(E-formulation or electric approach [2, 3, 8, 11, 20]) or combining both [12]. The
magnetic approach can be preferred because the magnetic field in ΩE is irrota-
tional. Thus a coupled FEM-BEM method can be used to compute H [10, 23].
Concerning the use of edge elements, see [6, 7].

We would like to end by the “usual” warning: In the presence of reentrant
corners (i.e. any situation where ΩC is a polyhedron in E-formulation, and the
case when ΩC is a non-convex polyhedron in H-formulation) certain methods lead
to wrong results. This is the case for the plain regularization by a divergence term,
used with nodal elements, or, even, certain edge elements which do not satisfy the
discrete compactness property, see the review papers [14, 21].
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[6] O. B́ıró, Edge element formulations of eddy current problems, Comput. Methods Appl.
Mech. Engrg., 169 (1999), pp. 391–405.
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Convergence of Collocation Methods for Time Domain Boundary
Integral Equations
Penny J Davies

(joint work with Dugald B Duncan)

The problem of interest is to calculate the current induced on a perfectly con-
ducting surface Γ when it is subjected to a transient electromagnetic field. Time–
stepping solution schemes for this problem are often numerically unstable (see e.g.
[2, 7, 9]), and our aim is to develop stable collocation approximations. Here we
concentrate on the more straightforward case of acoustic scattering, where the
same stability issues arise. This problem is to find the solution u of

(1)
∫

Γ

u(x′, t−|x′−x|)
|x′−x| dΓ = a(x, t)

given a(x, t) on Γ×(0, T ), and assuming causality, namely that u ≡ 0 and a ≡ 0 for
all t ≤ 0. Equation (1) is the single layer potential equation for acoustic scattering
from the surface Γ, and we shall concentrate on the case in which Γ is a flat plate.
Note that a can be calculated anywhere in space from (1) once u|Γ is known.

It follows from results of Ha-Duong [6, Thm. 3] and Lubich [8, §2.3] that for
temporally smooth data a(·, t) ∈ H1/2(Γ) which vanish near t = 0, equation (1)
has a unique smooth solution u(·, t) ∈ H−1/2(Γ).

Many authors have considered full Galerkin approximations (in time and space)
for (1) and related boundary integral equations (see [7] for a description of the
relevant theory and a survey of the literature). This approach is based on a sound
theoretical framework, and stability is proved via an energy identity. However,
the method is hard to implement (it involves evaluating integrals over complicated
subregions of Γ × Γ × (0, T )), and collocation schemes are more frequently used
in practice (the article [1] contains an overview of different solution methods for
problems such as (1)).
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In a collocation approximation we suppose that (1) holds at NS points xβ ∈ Γ
and at time tn = n∆t for n = 1, 2, . . .

(2) a(xβ , tn) =
∫

Γ

u(x′, tn−|x′−xβ |)
|x′−xβ|

dΓ .

The unknown u is then approximated (in time and space), and the integral is
approximated or evaluated to give

(3) an =
n−1∑
m=0

Qm Un−m

in terms of (very sparse) matrices Qm ∈ RNS×NS , where Um =
{
Um

β

}
β

and

Um
β ≈ u(xβ , tm). Rearranging gives the time–stepping algorithm

Q0 Un = an −
n−1∑
m=1

Qm Un−m .

The sparsity of Q0 means that solving this equation for the unknown Un is straight-
forward. However, numerical instability is often a problem for schemes of this type,
with the computed solution typically exhibiting oscillating instabilities that grow
exponentially in the time–step [2, 3, 9]. Insight can be obtained by comparing the
continuous Fourier transform of (1) at spatial frequency ω with the discrete Fourier
transform of (3) at the same frequency, when Γ is assumed to be a flat infinite
surface (i.e. Γ = R2), and the points xβ form a uniform square mesh. It can be
shown [2, 3] that numerical stability in this case can be characterised by Fourier co-
efficients pn(ω): if |pn(ω)| remains bounded with n for all ω ∈ Sh ≡ [−π/h, π/h]2,
where h is the (spatial) grid size, then the scheme is stable. Unfortunately there
appears to be no obvious way to verify this condition analytically, and we resort
to testing it numerically for many individual frequencies ω ∈ Sh to determine the
stability of a collocation scheme for (1).

We have derived three new collocation schemes for (1), based on a piecewise
linear approximation for u in space, and a piecewise linear or piecewise constant
approximation for u in time. The resulting integrals are either evaluated exactly
[5], or transformed to polar coordinates (R, θ) via the local change of variables
R = |x′−xβ | in (2), and then approximated using the trapezoidal rule in R and
(nearly) exact integration in θ [4]. Numerical evaluation of the Fourier coefficients
pn(ω) for these three schemes indicate that they are all stable for any value of the
mesh ratio ∆t/h [4, 5].

If a is assumed to be sufficiently smooth, then it can be shown that such stable
schemes for (1) are second order convergent when Γ is an infinite flat plate. That
is, there exists a constant C such that ‖un − Un‖h ≤ C h2 as h → 0 for tn ≤ T ,
where ‖ · ‖h denotes the discrete L2−norm. The proof involves using estimates on
(spatial) Fourier transforms [10], and (temporal) Z−transform techniques due to
Lubich [8].
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H1, H(curl) and H(div)-Conforming
Projection-Based Interpolation in Three Dimensions

L. Demkowicz
(joint work with A. Buffa)

The talk is concerned with optimal p- and hp-estimates for the Projection Based
Interpolation operators [2, 3, 5].

Given a master tetrahedral element T , and a sequence of polynomial spaces re-
producing the standard grad-curl-div exact sequence at the discrete level, we con-
sider a family of projection-based interpolation operators [2, 3, 5], Π, Πcurl, Πdiv, P
that make the de Rham diagram commute. The projection-based interpolation
operators are defined through a sequence of projections done on edge, face, and
element levels. A compact definition of the interpolation operators follows.

H1-conforming::


u1(a) = u(a)

‖u − Πu‖ε,e → min

‖∇f (u − Πu)‖− 1
2+ε,f → min

‖∇(u − Πu)‖0,K → min

H(curl)-conforming::


∫
e

Et − ΠcurlEt = 0

‖
∫

(Et − ΠcurlEt)‖0,ε → min


‖curlf (Et − ΠcurlEt)‖− 1
2+ε,f → min

(Et − ΠcurlEt, ∇fφ)− 1
2 +ε,f = 0, ∀φ ∈ P

pf +1
−1{

‖∇ × (E − ΠcurlE)‖0,T → min

(E − ΠcurlE, ∇φ)0,T = 0, ∀φ ∈ P p+1
pf+1,pe+1

H(div)-conforming::


‖F n − ΠdivF n‖− 1
2+ε,f → min


‖∇ ◦ (F − ΠdivF )‖0,T → min

(F − ΠdivF , ∇ × φ)0,T = 0, ∀φ ∈ P p+1
pf +1

The task is to develop optimal error estimates with respect to polynomial degree
p. As the operators are polynomial preserving, this in turn, leads to optimal hp-
estimates as well. A major difficulty in deriving such estimates in 3D is the “loss
of traces” at vertices. The trace space of H1+ε(T) for a face f is H

1
2+ε(f), and

Hε(e) for an edge e, but we have no trace at a vertex v. In other words, H1+ε(T )
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is not continously embedded in the space of continuous functions. This lack of
regularity prevents the use of the reasoning used in 2D [3].

The key idea in deriving the estimates, is to compare the interpolation errors
with two families of commuting projections, defined on element T and face f levels,
see the commuting diagrams below.

IR→ H
3
2+ε(T ) ∇−→ Hε(curl, T ) ∩ H

1
2+ε(T ) ∇×−→ Hε(div, T ) ∇◦−→ L2

�id P 1

�Π P curl

�Πcurl P div

�Πdiv

�P

IR→P p+1
pe+1,pf +1

∇−→ Pp
pe,pf

∇×−→ Pp−1
pf−1,pe

∇◦−→ P p−2

IR −→ H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f) ∇×−→ H− 1
2+ε(f) −→ 0�id P

1
2+ε

�Π
�Πcurl

�P

IR −→ P
pf+1
pe+1

∇−→ Ppf
pe

∇×−→ P pf−2 −→ 0

Besides the commuting projection operators, instrumental in deriving the esti-
mates are

• the existence of polynomial preserving, extension operators defined for a
tetrahedral face [1],

H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f)

Egrad

��Trgrad Ecurl

��Trcurl

Hε(∂f)
∂
∂s−→ H−1+ε(∂f)

P p
pe

(f) ∇−→ P p−1
pe−1(f)

Egrad

��Trgrad Ecurl

��Trcurl

P pe(∂f)
∂
∂s−→ P pe−1(∂f)

and on the element lecel (conjectured),
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H1(T ) ∇−→ H(curl, T ) ∇×−→ H(div, T )

Egrad

��Trgrad Ecurl

��Trcurl Ediv

��Trdiv

H
1
2 (∂T )

∇∂T−→ H− 1
2 (curl, ∂T )

∇∂T×−→ H− 1
2 (∂T )

P p
pf ,pe

(T ) ∇−→ P p−1
pf−1,pe−1(T ) ∇×−→ P p−2

pf−2(T )

Egrad

��Trgrad Ecurl

��Trcurl Ediv

��Trdiv

P
pf
pe (∂T )

∇∂T−→ P
pf−1
pe−1(∂T )

∇∂T×−→ P pf−2(∂T )

and,
• the existence of polynomial preserving, right inverses G, K, D of grad, curl,

and div operators,

H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f) ∇×−→ H− 1
2+ε(f)

P
pf+1
pe+1

G←− Ppf
pe

K←− P pf−1

that are instrumental in proving discrete versions of Friedrichs inequalities.
Under the conjecture on the existence of polynomial preserving, extension op-

erators, we can prove the following interpolation error estimates.

‖u − Πu‖1,T ≤ Cp−(r−ε)‖u‖1+r,T

‖E − ΠcurlE‖0,curl,T ≤ Cp−(r−ε)‖E‖r,curl,T

‖F − ΠdivF ‖0,div,T ≤ Cp−(r−ε)‖F‖r,div,T

The interpolation theory is not crucial for the convergence analysis but it forms
the backbone on fully automatic hp-adaptive startegies that deliver exponential
convergence for both elliptic and Maxwell problems [4].
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High-Order Time Stepping Methods for Electromagnetics
Tobin A. Driscoll

High-order and spectral methods for spatial discretization have significant ad-
vantages in accuracy and efficiency over first- and second-order schemes [6, 9]. Such
discretizations are most naturally paired with high-order methods in time, which
yield similar benefits.

There are two aspects of discretizing Maxwell’s equations in particular that
lead to consideration of special time-stepping methods: staggering and linear stiff-
ness. Staggering in spacetime was suggested by Yee for his famous second-order
scheme [12]; it improves equal-cost accuracy by a factor of four and stable time step
size by a factor of two over the related collocated method. The benefits of stagger-
ing are significantly increased at higher orders of accuracy [5, 8]. Linear stiffness
arises from perfectly matched absorbing layers [1] that decay signals rapidly. Such
decay can severely constrain the allowable time step size of a standard method.
However, since the stiff aspect of the problem is linear, there are several strategies
for restoring large time step sizes in high-order methods.

1. Staggering

The nature of Maxwell’s equations allows E and H field components to be in-
terlaced in time, as Yee showed in [12]. (The staggering can be done in space as
well; the choices of whether to stagger in space and time may be made indepen-
dently.) Other pure propagation problems, such as elastic waves, follow the same
pattern [8].

We represent the semidiscrete evolution of a system eligible for time staggering
as

(1) ut = f(t, v), vt = g(t, u).

For instance, the second-order leapfrog in time used by Yee can be expressed as

vn+1/2
− vn−1/2

= ∆t g(tn, un), un+1 − un = ∆t f(tn+1/2
, vn+1/2

).

This method has an error constant that is 1/4 of that for the same method on an
integer-level-only grid, and a stability ordinate (extent of the stability region along
the imaginary axis that represents propagation) twice as large. We can increase
the order of accuracy of leapfrog by using either more past steps or more interior
stages, as was shown in [8].

Multistep methods are created in two variants, corresponding to whether one
uses past values of the solution or of its derivative. (As with nonstaggered classi-
cal methods, trying to use both simultaneously leads to unstable methods.) We



586 Oberwolfach Report 11/2004

Table 1. Comparison of staggered to classical nonstaggered methods.

Error constants

order AB RK ABS BDS RKS

2 0.417 0.667 0.042 0.042 0.042
3 0.375 1.125 0.042 0.042 0.646
4 0.349 2.133 0.039 0.037 0.133
7 0.304 – 0.031 unstable ?
8 0.295 – 0.029 unstable ?

Stability ordinates

order AB RK ABS BDS RKS

2 0 0 2.00 2.00 2.00
3 0.72 0.58 1.71 1.67 1.04
4 0.43 0.71 1.33 1.00 1.43
7 0.06 – 0.37 unstable ?
8 0.03 – 0.21 unstable ?

call these variants staggered backward differentiation (BDS) and staggered Adams–
Bashforth (ABS), respectively, by analogy with the classical methods.2 For exam-
ple, the fourth-order ABS formula is

vn+1/2
− vn−1/2

=
∆t

24
(
26un − 5un−1 + 4un−2 − un−3

)
The coefficients and stability regions of ABS and BDS methods are cataloged
in [8]. Only BDS methods of orders 2–4 and ABS methods of orders 2 and
3,4,7,8,11,12,. . . , have nontrivial stability ordinates. Past second order, all these
methods are dissipative.

Staggered multistage methods are constructed on a more ad-hoc basis. The
best fourth-order method known is [8]

d1 = ∆t f(tn+1/2
, vn+1/2

)

d2 = ∆t g(tn, un)

d3 = ∆t f(tn+1/2
− ∆t, vn+1/2

− d2)

d4 = ∆t g(tn + ∆t, un + d1)

d5 = ∆t f(tn+1/2
+ ∆t, vn+1/2

+ d4)

un+1 = un + 11
12d1 + 1

24d3 + 1
24d5,

with a symmetric formula for advancing v. This method requires four full function
evaluations per full step, and it has a stability ordinate (normalized by the number
of stages) of 1.43, compared to 1/

√
2 for classical fourth-order Runge–Kutta.

Staggered methods are compared to their classical counterparts in Table 1. The
table clearly demonstrates that the accuracy benefits of staggering increase with

2Note, however, that they are all explicit, unlike classical BD formulas.
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the order of accuracy, and the stability ordinates controlling stable time step sizes
are better by a factor of two or more.

2. Linear stiffness

Suppose a state u(t) evolves according to

(2) ut = f(u) − Su,

where S is a linear operator and ρ(S) � ρ(f ′), where ρ is spectral radius. Such
systems arise quite frequently: the nonlinear Schrödinger, Korteweg–de Vries,
Kuramoto–Sivashinsky, Gray–Scott, and Navier–Stokes equations are a few ex-
amples. In these cases the large spectrum of S is due to the presence of high-order
spatial derivatives. In the Maxwellian case S represents the (perhaps nonphysical)
conductive losses due to a perfectly matched layer [1].

The large spectrum of S creates an unacceptably strict stability condition on
the time step size of explicit methods, but in most cases fully implicit methods are
infeasible. A number of strategies have been devised to circumvent this difficulty
at high orders of accuracy. They all work best when S is diagonal, as is the case
in Maxwell’s equations and in nonlinear PDEs under Fourier discretization.

One of the simplest ideas is the integrating factor, which transforms (2) to

(3) d
dt(e

Stu) = eStf(u).

The evolution of eStu encounters no stiffness. However, the presence of the rapidly-
varying exponential creates an accuracy penalty for a classical method. A better
approach is to discretize (3) using a specialized method that explicitly incorporates
the exponential. Such methods go by the name of exact linear part or exponen-
tial time differencing, are available in both multistep and multistage forms, and
perform well in practice [2, 3, 10].

Another approach is to generalize the well known second-order Strang splitting,
in which (2) over [0, ∆t] is replaced by

ut = 2f(u) on [0, 1
4∆t]; ut = 2Su on [14∆t, 3

4∆t];
ut = 2f(u) on [34∆t, ∆t].

Fractional time step sequences can be found to give split-step methods of any even
order [11, 13]. For fourth and sixth order, 7 and 15 substeps per step are needed,
respectively, and in each case some steps must be negative, which makes these
methods problematic for diffusion. However, they can be designed to conserve
energy and symplecticness.

A third approach is to use linearly implicit methods, which marry explicit meth-
ods for the nonlinear term f and an implicit method for the stiff, linear—and
hopefully diagonal—S. These have been shown to be quite effective when used in
a heterogeneous discretization [4, 7], in which nonstiff components (e.g., free space
propagation in Maxwell) are propagated by classical methods.

The best methods in each approach have mild or no stability restrictions and
are orders of magnitude more efficient than their second-order counterparts. The
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composite method of [4], in particular, is easy to implement and appears to be at
least as effective as any other of this type for a variety of test problems.
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Nonreflecting Boundary Conditions for Computational
Electromagnetics
Marcus J. Grote

(joint work with Wolfgang Bangerth, Joseph B. Keller and Christoph
Kirsch)

For the numerical solution of wave scattering problems in unbounded media, a
well-known approach is to enclose all obstacles, inhomogeneities and nonlinearities
with an artificial boundary B. A boundary condition is then imposed on B, which
leads to a numerically solvable boundary-value problem in a finite computational
domain Ω. The boundary condition should be chosen such that the solution of
the problem in Ω coincides with the restriction to Ω of the solution in the original
unbounded region. Otherwise spurious reflections will appear at B, which will
travel back into the interior computational region and spoil the numerical solution
throughout Ω.

If the scatterer consists of several obstacles, which are well separated from each
other, the use of a single artificial boundary to enclose the entire scattering region,
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becomes too expensive. Instead it is preferable to enclose every sub-scatterer by
a separate artificial boundary Bj . Then we seek an exact boundary condition
on B =

⋃
Bj , where each Bj surrounds a single computational sub-domain Ωj .

This boundary condition must not only let outgoing waves leave Ωj without spu-
rious reflection from Bj , but also propagate the outgoing wave from Ωj to all
other sub-domains Ω�, which it may reenter subsequently. To derive such an ex-
act boundary condition, an analytic expression for the solution everywhere in the
exterior region is needed. Neither absorbing boundary conditions [1, 2], nor per-
fectly matched layers [3] provide us with such a representation. Instead, we shall
use exact Dirichlet-to-Neumann (DtN) conditions in the time-harmonic case, or
nonreflecting boundary conditions (NBC) in the time dependent case, which are
both based on a Fourier series representation of the solution in the exterior region.

In the time-harmonic case, Dirichlet-to-Neumann (DtN) maps yield exact non-
reflecting conditions and thus avoid spurious reflections from B. They are explic-
itly known for various equations or geometries [4–8]. Once combined with a finite
difference or finite element discretization inside Ω, they lead to a highly accurate
and efficient numerical scheme. Here we extend the DtN approach to multiple scat-
tering problems, where every scatterer is enclosed by a separate artificial boundary
Bj [9]. Thus Ω consists of multiple disjoint components, Ωj . We derive an exact
DtN boundary condition on B, the disjoint union of all Bj , by combining multiple
contributions from purely outgoing wave fields. We present theoretical results that
show existence and uniqueness of the solution to the boundary value problem in
Ω, as well as numerical results that demonstrate the accuracy and efficiency of our
method.

In the time-dependent case, exact nonreflecting boundary conditions have been
derived for the wave equation [10, 11] and Maxwell’s equations [12]. These bound-
ary conditions are local in time and involve only first derivatives of the solution.
Therefore, they are easy to use with standard finite difference or finite element
methods. As the accurate simulation of waves at high frequencies or the detailed
representation of small scale geometric features requires the use of adaptive mesh
strategies, explicit time integrators become prohibitively expensive because of the
stringent CFL condition. Instead, implicit methods, such as Crank-Nicolson, are
typically used, yet they require the solution of a large linear system of equations
at every time step. Due to the nonreflecting boundary condition, this linear sys-
tem is no longer symmetric, unlike the situation in bounded domains. However,
it is possible to reformulate the discretized equations by decoupling the additional
unknowns needed on the artificial boundary from the interior unknowns [13]. As
a consequence the symmetry and positive definiteness of the linear system are re-
stored, while the additional computational effort due to the nonreflecting boundary
condition becomes negligible.

For time-dependent multiple scattering problems the use of a single artificial
boundary surrounding all scatterers involved also becomes prohibitively expensive
in memory requirement. Instead, it is judicious to enclose each scatterer within a
single separate computational domain. Clearly waves that leave a certain domain,
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Ω1, will impinge upon a different domain, Ω2, at later times; hence they are no
longer purely outgoing waves. To transfer the time-retarded information from
Ω1 to Ω2 an analytical representation of the solution in the unbounded medium
becomes necessary. Again, such an analytical representation [14] is inherent to the
exact nonreflecting boundary conditions described above.
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Nodal and Edge Finite Element Discretization of Maxwell’s Equations
Manfred Kaltenbacher, University of Erlangen, Germany

manfred@lse.eei.uni-erlangen.de
(joint work with Barbara Kaltenbacher and Stefan Reitzinger)

The numerical computation of electromagnetic fields is performed for more then
20 years. For the domain discretization nodal as well as edge finite elements have
been used successfully. Nevertheless, in the last years inaccurate results at mate-
rial parameter interfaces in the magnetostatic as well as in the eddy current case,
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and, spurious modes in Maxwell’s eigenvalue problems have been reported. In this
paper we will concentrate on the problems related with material parameter inter-
faces, where the magnetic reluctivity changes its value abruptly. We will describe
a simple to implement method following the ideas reported in [3], which produces
correct results. For the high frequency case we refer to [3].

The electromagnetic field is fully described by Maxwell’s equations [9]. Re-
stricting the problem class to the quasi-static (eddy current) case, we arrive at the
following partial differential equation for the magnetic vector potential A

(1) γ
∂A
∂t

+ ∇× ν∇× A = Ji

with boundary condition n × A = 0 and n the unit outward normal vector. In
(1) Ji denotes the impressed current density, ν the magnetic reluctivity and γ
the electric conductivity. Furtheron, the following interface conditions have to be
fulfilled

[A × n] = 0 ; [ν n×∇× A] = 0 ;
[
γ

∂A
∂t

]
= 0(2)

with [Z] = Zright − Zleft. For further discussions let Ω be a bounded single con-
nected convex domain with boundary ∂Ω = Γ. Therewith, the variational formu-
lation for (1) in the function space

HΣ
0 (curl) = {u ∈ (L2(Ω))3 |∇ × u ∈ (L2(Ω))3, u× n|Γ = 0, [n× u]|Σ = 0}(3)

reads as follows: Find A ∈ HΣ
0 (curl) such that∫

Ω

γA′ · ∂A
∂t

dΩ +
∫
Ω

∇× A′ · ν ∇× A dΩ

=
∫
Ω

A′ · Ji dΩ(4)

for any A′ ∈ HΣ
0 (curl) is fulfilled.

It is well known, that an edge FE-discretization of (4) is H0(curl)-conform [6].
Nevertheless, the solution of the algebraic system requires special care in order
to obtain an optimal multigrid solver (see e.g. [2], [5]). We suggest to add a
fictive electric conductivity γ′ to regions with zero electric conductivity to obtain
a variational form, which is elliptic [8]. Of course, this fictive conductivity γ′ has
to be chosen small as compared to the reluctivity of the material. The proof of
convergence even in the case of γ′ → 0 is given in [7].

For the application of nodal finite elements, we have to perform additional steps.
According to [4] as well as [1] we decompose the magnetic vector potential A by

(5) A = w + ∇φ , ∇ · w = 0 ,

with (w, φ) ∈
(
(H1

T(Ω))3, H1
0 (Ω)

)
and Ω being a convex domain. The same decom-

position is done for the test function A′ = v + ∇ψ. Since we have to guarantee
∇ · w = 0, we do so by adding the penalty term

∫
Ω ν (∇ · v∇ ·w) dΩ to the
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variational formulation. Therewith, the variational formulation can be stated as
follows: Find (w, φ) ∈ ((H1

T(Ω))3, H1
0 (Ω)) such that∫

Ω

ν∇× v · ∇ × w dΩ +
∫
Ω

ν ∇ · v∇ ·w dΩ

+
∫
Ω

γ(v + ∇ψ) · ∂

∂t
(w + ∇φ) dΩ =

∫
Ω

Ji · v dΩ .(6)

for any (v, ψ) ∈ ((H1
T(Ω)3, H1

0 (Ω)). Now, since for most practical eddy current
problems the domain Ω is convex, the discretization of the above variational for-
mulation with nodal finite elements will result in correct results. However, the
question arises, if a domain Ω including subdomains of different material param-
eters (magnetic reluctivity or/and electric conductivity), is really convex? Let us
consider the case of a ferromagnetic cube embedded in air (see Fig. 1). Assuming

Figure 1. Ferromagnetic cube in air

the case ν1 → ∞ (of course the limit of ν1 is equal to 1/µ0 with µ0 being the
permeability in vacuum), we arrive at a non-convex domain. Now according to
[3], it is known, that for non-convex domains the discretization with nodal finite
elements produces wrong solutions due to the non-density of smooth fields. In [3]
the authors could proof, that by introducing a special weighting function inside the
divergence integral, nodal finite elements can yet be used for the approximation.
Therewith, the second term in the variational formulation (6) has to be changed
to ∫

Ω

ν ∇ · v∇ ·w dΩ →
∫
Ω

ν s ∇ · v∇ · w dΩ(7)

with

(8) s =
∏
a∈Q

rα
a .

In (8) Q denotes the set of all reentrant corners, ra the distance to each reentrant
corner, and α an exponent. We have implemented this idea in a simple way by
setting the weighting function s to zero for finite elements near each interface of
two subdomains with different material parameters.



Computational Electromagnetism 593

The correctness of the weighted variational formulation have been demonstrated
by numerical test cases (iron cube, thin iron plate) as well as industrial applications
(electric power transformer, electromagnetic motor, magnetic resonance imaging
scanner).
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The Hurewicz Map Distinguishes Intuitive vs. Computable
Topological Aspects of Computational Electromagnetics

Robert Kotiuga

1. Abstract of talk

Answers to intuitive topological problems, such as checking if a space is con-
tractible, are easily characterized in terms of homotopy groups. However, in four or
more dimensions, such a characterization is provably computationally intractable.
On the other hand, cohomology theory may not be intuitive, but it does provide a
formal connection between Maxwell’s equations and the lumped parameters occur-
ring in Kirchhoff’s laws. Furthermore, by exploiting sparse matrix algorithms and
the Smith normal form, cohomological information is efficiently extracted from the
data structures used in finite element analysis. A natural question then arises: Do
engineers need to go beyond the linear algebra and sparse matrix techniques as-
sociated with homology calculations? It turns out that there are inverse problems
involving near force-free magnetic fields where the conjectured characterization of
the space of solutions, involves computationally intractable topological invariants
such as the Thurston norm [4]. For this reason, it is imperative to investigate
algebraic structures found in the data structures of finite element analysis, and
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which yield topological insights not deducible from cohomological considerations
alone.

The Hurewicz map takes representatives of generators of homotopy groups to
their homology classes and is a well-defined map from homotopy groups to ho-
mology groups. In this sense, it provides a natural framework for comparing the
intuitive but intractable aspects of homotopy theory with the computable but
less intuitive aspects of homology theory. In particular, thorugh the use of the
Hurewicz map, several important identifications can be made:

(1) The lower central series of the fundamental group is related to certain
Massey products in the cohomology ring.

(2) The differential graded Lie algebras of rational homotopy theory are re-
lated to the minimal models of the cohomology ring.

(3) By Hopf’s theorem, the cokernel of the second homology group under the
Hurewicz map is characterized in terms of a presentation of the fundamen-
tal group.

The workshop talk concretely developed the relevance of these aspects of the
Hurewicz map in the context of computational electromagnetics.

2. Putting my talk in the context of my previous work

Though originally developed as a natural outgrowth of multivariable calculus,
algebraic topology and differential forms have become an essential tool used to
formulate many basic laws of physics. Through my research this area of math-
ematics has found a natural application to many areas of electrical engineering
and computational electromagnetics. A strong theme in my research is the iden-
tification of geometric and topological aspects, which shed light on dimensional
dependence in the complexity of engineering problems and their algorithmic so-
lution. This should be evident from the other publications I have selected to list
below [7]-[15]. Much of my earlier work dealing with finite element analysis of
electromagnetic fields and magnetic scalar potentials is summarized in the MSRI
monograph coauthored with my Ph. D. student, Paul Gross [2].

If one were to seek a more mainstream characterization of my research interests,
I could probably describe them in terms of the research interests listed on my
resume:

• Electromagnetics;
• Numerical methods for 3-d vector fields;
• Whitney forms, the finite element method and the analysis of algorithms,
• Cuts for magnetic scalar potentials, formulation of eddy-current problems,
• Variational and symplectic techniques,
• Micromagnetics; nanoscale magnetics,
• Geometric inverse problems,
• Helicity functionals and near force-free magnetic fields; contact geometry,

My most recent research deals with how electromagnetic force constraints give
rise to topological structures necessarily characterized by nonabelian algebraic
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structures [1], [4]. This reseach is interesting both in terms of applications, and
in defining the data structures which are useful for the finite element analysis of
electromagnetic fields. The abstract of my workshop presentation above, is an
attempt to get a handle on the latter aspects.
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Inverse Obstacle Scattering for Time-Harmonic Electromagnetic
Waves

Rainer Kress

This presentation provides a survey on some recent developments in the theory
and numerical solution of time-harmonic inverse scattering problems. Roughly
speaking, one can distinguish two groups of inverse problems in this field, namely
the inverse medium problem and the inverse obstacle problem. For time reasons,
only inverse obstacle scattering will be covered. However, most of the ideas that
are presented for inverse obstacle scattering have counter parts in inverse medium
scattering. After formulating the inverse problem, the issue of uniqueness, that
is, identifyability will be addressed. The uniqueness question is of its own math-
ematical interest and also interrelates with some of the more recently developed
reconstruction algorithms. By considering one or two of its representatives the
basic ideas of three groups of methods will be outlined, namely decomposition
methods, iterative methods and sampling and probe methods. For illustration a
couple of numerical examples will be included.

Consider the scattering of a time-harmonic electromagnetic plane wave Ei, Hi

from an impenetrable scatterer described by a bounded domain D in �3 either
with a perfect conductor or an impedance boundary condition. The inverse ob-
stacle scattering problem consists of finding the shape and location of D from the
knowledge of the electric far field pattern E∞ of the scattered wave Es, Hs for one
or several incident plane waves. The corresponding uniqueness result due to Kirsch
and Kress [17] (see also [6]) confirms that the domain D and the boundary condi-
tion are uniquely determined by the far field pattern for infinitely many incident
plane waves. The main idea of the proof is to exploit the fact that for scattering
of electric dipole fields the scattered wave develops singularities when the source
and observation points approach the boundary. Uniqueness for one incident plane
wave remains a challenging open problem. Partial results were recently obtained
for scattering from balls [20] and polyhedral scatterers [1].

Decomposition methods, in principle, separate the inverse problem into an ill-
posed linear problem to reconstruct the scattered wave Es, Hs from its far field
pattern E∞ and a nonlinear problem for the subsequent determination of the
boundary ∂D of the scatterer from the boundary condition. These methods do not
require the solution of the forward problem and some of them perform well without
a priori information on the geometry of the obstacle. A typical representative of
this approach is the potential method of Kirsch and Kress (see [9, 16]).

Iteration methods interpret the inverse obstacle scattering problem as a non-
linear ill-posed operator equation A(∂D) = E∞ and apply iterative schemes such
as regularized Newton type, Landweber or conjugate gradient methods for its so-
lution. Here, A denotes the operator that, for a fixed incident field, maps the
boundary ∂D of the scatterer onto the far field pattern of the scattered wave. The
theoretical foundation for this approach requires to establish the differentiabil-
ity of the operator A with respect to the boundary and to explicitly characterize
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the derivative. For the perfect conductor boundary condition this was done by
Potthast [22] via integral equation methods and by Kress [19] via a factorization
formula. The latter method was recently extended to the impedance boundary
condition by Haddar and Kress [10].

For details on the numerical implementation, among others, see [6, 8, 11, 14, 18].
The numerical examples provide amble evidence that iterative methods, in par-
ticular Newton iterations, yield very good reconstructions. However, they require
the solution of the corresponding forward problem in each iteration step and a pri-
ori information on the geometry of the obstacle. Furthermore, although progress
has been made through the work of Hohage [12] and Potthast [24], the conver-
gence issue is not yet satisfactorily settled. A hybrid of Newton type iterations
and decomposition methods was suggested in [21] and successfully tested for two-
dimensional examples.

The main idea of the more recently developed so-called sampling and probe
methods is to develop a criterium in terms of the behaviour of some ill-posed lin-
ear integral equation that decides on whether a point z lies inside or outside the
scatterer D. Then the criterium is evaluated numerically for a grid of points to
visualize the unknown scatterer. As opposed to the two previous types of methods
that, in principle, only need the far field pattern for one incident direction, the
sampling and probe methods need the far field pattern for all incident and observa-
tion directions and polarizations. However, as their main advantage they perform
extremely well without any a priori information on the geometry. The linear sam-
pling method as developed in acoustic scattering by Colton and Kirsch [5] has as
its central piece the far field operator F : L2

t (Ω) → L2
t (Ω) on the space of tangen-

tial L2 fields on the unit sphere Ω. This operator is defined as an integral operator
with the kernel given by the far field pattern E∞(x̂, d) for all observation directions
x̂ ∈ Ω and all incident directions d. With the explicitly available far field pattern
Ei

∞,dip(· , z)p of the field of an electric dipole with polarization p located at the
point z the linear sampling method is based on the ill-posed linear integral equation
Fg(· , z) = Ei

∞,dip(· , z)p. Although, this integral equation, in general, is not solv-
able, it can be approximately solved in the sense that for every p ∈ �3, ε > 0, and
z ∈ D there exists g(· , z) ∈ L2

t (Ω) such that ‖Fg(· , z) − Ei
∞,dip(· , z)p‖L2(Ω) ≤ ε

and ‖g(· , z)‖L2(Ω) → ∞ as z → ∂D. In the numerical implementation the far field
integral equation is solved by Tikhonov regularization via Morozov’s discrepancy
principle and then ∂D is visualized through the points z where ‖g(· , z)‖L2(Ω) be-
comes large. For details on the theoretical foundation and numerical examples
see [3, 4, 19].

A remaining gap in the theoretical foundation of the linear sampling method,
namely, the question why the implementation via Tikhonov and Morozov actually
picks the approximation g that is predicted by the above theoretical result was
closed in acoustics through a recent contribution by Arens [2]. However, the gap
remains open in electromagnetics, since Aren’s analysis does not yet cover this
case.
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The factorization method may be considered as a variation of the linear sam-
pling method in the sense that it replaces F in the far field equation by (F ∗F )1/4,
that is, it is based on the equation (F ∗F )1/4g(· , z) = Ei

∞,dip(· , z)p. This equation
is more satisfying since it is to be expected that it is solvable if and only if z ∈ D.
The corresponding result in acoustics is valid as shown in a pioneering paper by
Kirsch [15]. However it is open for electromagnetics. The numerical implemen-
tation of the factorization is similar to that of the linear sampling method. The
procedure is known as factorization method, since it relies on a factorization of
the far field operator.

The linear sampling method and the factorization method may be viewed as
dual to the uniqueness proof of Kirsch and Kress, since, in principle, their founda-
tion is based on letting source points of electric dipole fields approach the boundary
from inside of D whereas in the uniqueness proof the sourec points approch the
boundary from outside of D. The latter idea is mimiced in the point source and
singular source methods of Potthast [7, 23] and the probe method of Ikehata [13].
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A New View on Collocation
S. Kurz

(joint work with O. Rain, V. Rischmüller, S. Rjasanow)

In recent years, a remarkable amount of papers has been published that treat
continuous and discrete electromagnetics in terms of differential forms (DFs). For
a good account on this topic, see, e.g., [2] and [7]. However, most of these papers
focus on (generalised) finite difference and finite element methods. There are only
rare papers that deal with the boundary element method [1, 3, 6, 11].

The aim of this talk is to show how the integral equations of electromagnetics
can be expressed in the language of DFs. The integral kernels become double forms
[5]. These are DFs in one space with coefficients that are DFs in another space,
or DF-valued DFs [12]. We restrict ourselves to the static case. Similar schemes
can be derived for time dependent problems. The formulation in terms of DFs
enables a uniform treatment of electrostatics (Kirchhoff representation formula)
and magnetostatics (Stratton-Chu representation formula).

Since DFs possess discrete counterparts, known as Whitney forms, such schemes
lend themselves naturally to discretisation. As an example, a boundary integral
equation for the double curl operator is considered. This equation has been inves-
tigated in a variational setting in [8]. A detailed discussion of the Sobolev spaces
being involved can be found in

[4, 10].
In the present contribution we wish to highlight an alternative approach. The

proposed discretisation scheme generalises the well-known collocation technique
by using de Rham maps on dual grid systems [6, 11]. Depending on the integral
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operator to be discretised, the 1-form valued residual is forced to be zero either
over the 1-chains of the primal or the dual grid. The viability of the method will
be demonstrated by means of a numerical example, where a sphere is immersed in
the field of a circular current loop.

For an extended version of this contribution see [9].
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Computation of Maxwell Eigenvalues with Exponential Rates of
Convergence
Paul Ledger

Our interest in this work lies in the accurate calculation of Maxwell eigenvalues
for closed cavities. The results are important for many applications such as the
design of microwave devices and charged particle accelerators. The solution of
such problems remains far from trivial due to the fact that realistic cavities often
contain multi–materials, have small scale feature and contain many sharp corners,
which all give rise to highly singular eigenfunctions.
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Using a nodal finite element basis for each component of the electric field is
known to be inappropriate, as the resulting solution is polluted by spurious modes.
Instead, we choose to solve these problems using the �H(curl) conforming finite
elements that were first introduced by Nédélec [1]. Using such elements is known
to overcome the problems of spurious modes and allow the easy incorporation of
material interfaces and boundary conditions.

We follow a finite element approach which allows for arbitrary increases in poly-
nomial order p. In particular we use the recent hierarchic basis of Ainsworth and
Coyle [2, 3] with both p and h (mesh) refinements. Indeed, when the h and p
refinements are correctly combined, we are able to observe the theoretically pre-
dicted exponential rates of convergence for the Maxwell eigenvalues. Numerical
examples show that the exponential rates of convergence can be obtained in prac-
tice for a series of benchmark problems discretised with tetrahedral meshes in
three–dimensions [4, 5].

Recent extensions include the application of hp finite elements to axisymmetric
problems with rotational symmetry [6]. For such cases it is possible to reduce
a three-dimensional problem to a sequence of two–dimensional problems. Again,
exponential rates of convergence have been observed for the computed eigenvalues
of closed cavities.
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Computational Shape and Topology Optimization with Applications
to 3–Dimensional Magnetostatics

D. Lukáš
(joint work with U. Langer, E. Lindner, R. Stainko, J. Pǐstora)

In the talk we mainly discussed computational aspects of shape and topology
optimization governed with 3–dimensional linear and nonlinear magnetostatics,
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respectively. This is covered in the speaker’s thesis [2] and in [3]. The acknowledg-
ment is due to the Special Research Initiative SFB F013 “Numerical and symbolic
scientific computing”, subproject “Multilevel solvers for large scale discretized op-
timization problems” at the University of Linz, Austria. The speaker especially
thanks to Dr. Joachim Schöberl for his kind software support during the week in
Oberwolfach.

The presentation started with a motivation from physics. We described elec-
tromagnets that are used for measurements of magnetooptic effects on thin layers.
We aim at designing their optimal topology and shape so that in the area where
the measurements take place the magnetic field is as constant as possible and
above a prescribed magnitude. Throughout the presentation we instantiate the
ideas for this application.

Next, we recalled an abstract optimal shape design problem, its finite element
approximation and we discussed the existence and convergence issues following
the theory in [1], which is based on the compactness and continuity arguments.
We optimize the interface between the air and ferromagnetics, rather than the
boundary of the computational domain as usual in mechanics. We pointed out a
drawback that on fine discretizations the non–design grid nodes cannot follow large
perturbations of the design shape. The mapping from the shape to the grid nodes is
carried over an artificial linear elasticity problem with the prescribed displacements
along the design shape interface. Then, we presented the algebraic approach to the
shape sensitivity analysis and its efficient software implementation, see [5]. The
user is only supposed to dessignate the shape and to code the objective in terms of
the state solution. The underlying finite element code provides the sensitivity of
element contributions to the bilinear form with respect to the grid displacements.
The optimization package is now to be included into the NgSolve, see [7].

Further, we presented numerical results for both 2– and 3–dimensional shape
optimization problems. After the 2d optimized design the electromagnets were
manufactured and the measurements of the magnetic field showed the 4.5–times
improvements in terms of the objective functional, compared to the initial design.

We presented a multilevel optimization approach. Here, hierarchies of dis-
cretizations of both the state and design space are considered. We begin with
the optimization on a coarse discretization for only two design parameters. The
multilevel algorithm then proceeds such that the optimized shape is used on a finer
level as the initial guess. Moreover, we prolonged the 2d coarse optimized shape
to the third dimension and used that as the initial guess in the multilevel 3d opti-
mization. In the 2d case for 7 design and 12.000 state unknowns we achieved the
speedup 4.5. In the 3d case for 12 design and 30.000 state unknowns the speedup
was more than 10–times.

Finally, we formulated a corresponding topology optimization problem governed
by nonlinear magnetostatics. In the 2d case we solved for 3.920 design variables
with 4.832 state ones and the computation typically proceeded within 8 steepest
descent iterations and 8 nested nonlinear state Newton iterations. Just during the
week in Oberwolfach we managed to run 3d topology optimization governed by
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linear magnetostatics and we were able to solve problems of up to 1 million design
unknowns in hours. The optimal design is close to a sphere around the area where
the constant magnetic field is required. The talk was ended with the outlook con-
cerned on using nonlinear multigrid techniques, all–at–once optimization approach
and preconditioning techniques for the arising KKT–systems and adaptivity with
respect to the cost functional.
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Fast Time Domain Integral Equation Solvers
Eric Michielssen

(joint work with Mingyu Lu and Balasubramaniam Shanke)

Efficient schemes for analyzing transient electromagnetic wave scattering and
short-pulse radiation phenomena are important in disciplines ranging from electro-
magnetics to acoustics, geophysics, and elastodynamics. The analysis of transient
scattering from perfectly conducting as well as potentially inhomogeneous penetra-
ble bodies often is effected using marching on in time (MOT) based time domain
integral equation (TDIE) methods.

A typical TDIE solver for analyzing transient electromagnetic scattering from
perfect electrically conducting (PEC) surfaces residing in unbounded 3D lossless
environments operates as follows. The extinction theorem states that the elec-
tromagnetic field anywhere in space can be evaluated upon specification of the
incident field and the total magnetic field, or, equivalently, the current, on the
scatterer’s surface. By enforcing the tangential component of the total electric
field along the surface to vanish, the surface current can be related to the incident
field through an electric field TDIE. To solve this TDIE by MOT methods, the
surface current is represented in terms of Ns spatial basis functions with unknown
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amplitudes at Nt time steps. Then, the instantaneous total electric field is ex-
pressed as a superposition of the incident and scattered fields. The evaluation
of the latter requires the computation of a retarded time boundary integral over
the basis functions representing the field. This procedure leads to a system of
equations that can be solved for the coefficients of the basis functions representing
the surface field at a given time step. Depending on the choice of the time step
size, the basis functions, and the testing procedure, the matrix to be inverted may
be diagonal or sparse, yielding explicit or implicit time stepping schemes, respec-
tively. It has been empirically shown that implicitness and accurate evaluation
of retarded time boundary integrals contribute to the stability of a MOT scheme.
Unfortunately, the overall computational cost of this procedure scales as O(NtN

2
s ),

which prevents the application of classical MOT-based TDIE solvers to the study
of practical, real-world problems. It is noted that the above cost estimate is linear
in only because the 3D lossless medium Green propagator is local in time. When
the above procedure is applied to the study of scattering from 2D objects, or sur-
faces embedded in dissipative or structured (e.g., layered) environments, then the
computational complexity would scale as O(N2

t N2
s ), as Green propagators in such

media all have a wake.
The recently introduced plane wave time-domain (PWTD) algorithm permits

the efficient evaluation of transient wave fields generated by temporally bandlim-
ited sources. The original PWTD scheme targeted sources residing in 3D homoge-
neous and lossless backgrounds [1]. This PWTD scheme constitutes the extension
of the frequency domain (Helmholtz equation) fast multipole method [2, 3] to the
time domain (wave equation) and, when coupled to the above described MOT-
based TDIE solvers, reduces their computational complexity to O(NtNs log2 Ns).
To date, this PWTD scheme has been successfully used to construct (i) fast march-
ing schemes for solving time domain integral equations [4] and (ii) fast boundary
kernels for augmenting finite difference time domain simulators [5]. It even has
been extended to 2D [6], layered [7], and dissipative environments [8] with only
minor changes in the resulting computational complexity estimates. All PWTD
schemes express wave fields as a superposition of plane waves. The evolution of
these plane waves is either known analytically, or governed by one-dimensional
wave equations. In 2D and in layered environments, a Hilbert transform acts on
the plane wave superposition for it to yield the correct transient field. At present,
spectral schemes have been developed that control the accuracy of each and ev-
ery step in these various PWTD schemes; as a result, they can be hybridized
with classical MOT-based TDIE solvers, thereby greatly improving their compu-
tational complexity and memory requirements, without affecting their accuracy.
At present, PWTD-accelerated MOT-based TDIE solvers have been applied to the
analysis of scattering and radiation from conducting [4, 9], resistive and impedance
boundary condition surfaces [10], penetrable lossless [11], lossy [12], and disper-
sive volumes [13], and the analysis of hybrid lumped-distributed circuits [14, 15]
involving up to hundreds of thousands of spatial unknowns, all this for thousands
of time steps.
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The Approximation of the Maxwell Eigenvalue Problem using a
Least-Squares Method

Joseph E. Pasciak
(joint work with James H. Bramble and Tsanio V. Kolev)

In this talk, I consider the eigenvalue problem problem associated with Maxwell’s
equations. These equations can, for example, be used to determine the frequencies
which will propagate through a medium such as a waveguide or photonic crystal
[6, 11, 16].

Although two dimensional versions of Maxwell’s eigenvalue problem often result
in eigenvalue problems involving the Laplacian, three dimensional problems are
significantly more complicated as they result in an eigenvalue problem involving
curl-curl, an operator which is not elliptic. Accordingly, the inverse is no longer
compact leading to a much more complicated analysis. However, as we shall
see, a compact “pseudo” inverse can be constructed which has the same nonzero
eigenvectors.

One of the more popular approaches for approximating Maxwell’s eigenvalue
is based on using curl-conforming spaces such as those developed by Nedelec (cf.
[18, 19]). In such a method one looks for solutions to the problem in H(curl),
the space of vector function which, along with their curls, are in L2(Ω). Analysis
of the eigenvalue problem using these spaces either involves proving collective
compactness [14, 17] or proving convergence in norm [1, 2].

Early engineering approximations to these equations were often attempted using
conforming finite element spaces [3]. These were known to have problems due to
low regularity solutions and multiple valued potentials [10, 12, 15]. Recently, new
methods for dealing with these problems have been proposed [7, 8, 20]. The meth-
ods of [8] depend on weighted functional with weights depending on the strength
of the singularities at corners and edges. In [20], discontinuous Galerkin methods
are proposed.

The approach which we take in this talk is to first relate the problem to a block
system involving the solution of div-curl systems. These div-curl systems are for-
mulated as variational problems following [5] where the solution is posed in L2(Ω)
and the (components of the) test functions are in various subspaces of the Sobolev
space H1(Ω). This results in a very weak formulation of the div-curl problem
where the data can reside in a negative norm space, e.g., in the dual of the test
spaces. That the test functions are in H1(Ω) is a critical attribute of the method
which we take advantage of in our subsequent analysis of the Maxwell eigenvalue
problem. Indeed, this leads to solution operators for the div-curl problem which
are bounded from H−1(Ω) into L2(Ω) in the continuous as well as the discrete
case. Since the approximation is based in L2(Ω), our approximation subspaces
can be very simple, for example, we can use discontinuous functions at the ma-
terial interfaces where the solutions jump while using C0 elements in the interior
where the solution is smooth.
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In this talk, I show how this variational form of the div-curl system can be
used to develop a stable approximation to the Maxwell’s eigenvalue problem. The
eigenfunctions with non-zero eigenvalues are also eigenfunctions of a block compact
skew-Hermitian problem where the blocks correspond to div-curl problems. We
use the div-curl approximation to derive a sequence of approximation operators
which converge in norm to the above mentioned compact operator.

Actual three dimensional applications necessarily contain large numbers of un-
knowns (on the order of millions). Such a large number of unknowns result from
complicated device geometry and the mesh refinement necessary for resolving sin-
gular behavior in the solutions. Since the systems are too large for conventional
direct eigensolvers, the eigenvalues must be computed iteratively. To obtain a sys-
tem which is more amenable to iterative computation, we show that the original
eigenpairs can be computed from those of a compact symmetric real operator.
This system can be approximated in norm by the discrete operator for one div-
curl system and its adjoint and results in a symmetric discrete eigenvalue problem.
The development of effective iterative techniques for computing the eigenvalues of
large symmetric problems has been the subject of intensive research in the past two
decades, e.g., [4, 9, 13]. These methods are more efficient and robust than those
developed for non-symmetric and/or indefinite systems. Thus, the reformulation
of the problem as a symmetric real system represents a significant computational
advantage.

Theorems on the rate of convergence of the discrete eigenvalues are given and
supported by computational experiments.
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Discontinuous Galerkin Methods for Maxwell’s Equations
Ilaria Perugia

In recent years, there has been considerable interest in nonconforming finite
element methods that are based on discontinuous piecewise polynomial approxi-
mation spaces and on local (element-by-element) variational formulations. Such
approaches are referred to as discontinuous Galerkin (DG) methods. The main
advantages of these methods lie in their ability to treat a wide range of problems
within the same unified framework, and their great flexibility in the mesh-design.
Indeed, DG methods can naturally handle non-matching grids and non-uniform,
even anisotropic, polynomial approximation degrees; for this reason, DG meth-
ods are particularly suited within hp-adaptive procedures and for dealing with
multi-material problems. In the following, a short survey on DG methods for the
approximation of Maxwell’s equation is presented.

The original DG method was introduced in [15] for the neutron transport equa-
tion. It is constructed by multiplying the equation by smooth test functions,
integrating by parts element-by-element on a given mesh, replacing trial and test
functions by discontinuous piecewise polynomial functions, and replacing interele-
ment traces by numerical fluxes. Development of DG techniques in the context of
conservation laws lead to the introduction of the Runge-Kutta (RK) DG method
in [3], a high-order method based on a spatial approximation by means of dis-
continuous polynomials of order k with upwind numerical fluxes, and a special
(k + 1)-stage RK method for time-stepping, in combination with slope limiters in
the case of nonlinear problems (see [4] for a review).
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In the context of Maxwell’s equations, RKDG-type methods have been applied
to the problem in time-domain

εr
∂E
∂t

= ∇× H− J, µr
∂H
∂t

= −∇× E,

written in conservation form:

Q(x)
∂q
∂t

+ ∇ ·F(q) = S

with q = [E,H]T , Fi(q) = [−ei ×H, ei ×E]T , and Q = diag(εr, εr, εr, µr, µr, µr).
The use of DG methods in this context is motivated by the possibility of using
unstructured, even non-matching, meshes for dealing with complex geometries, by
the simplicity of incorporating spatially varying coefficients, and by the possibility
of constructing high order methods by simply choosing basis functions; moreover,
the mass matrices are diagonal (or block diagonal), which is advantageous for
time-stepping.

Schemes based on a DG discretization in space with upwind numerical fluxes
and RK time-stepping have been presented several papers: in [14], in combina-
tion with a mortar method for treating nonmatching grids; in [6], together with
stability analysis and hp-error bounds of the proposed scheme (a divergence-free
variant of which can be found in [7]); and in [16], where a unified DG method is
constructed within the computational and the PML regions. A method using cen-
tered numerical fluxes and leap-frog time-stepping in order to reduce dissipation
has been introduced in [20].

Finally, a DG space-time approach has been adopted in [5] and in [17], in order
to obtain schemes with only local CFL control of the time-step for stability, allow-
ing for larger time-steps in larger space elements. These methods use space-time
DG methods on meshes generated by advancing front techniques. In particular,
in [5], for the case of smooth coefficients, an explicit mesh is constructed, allow-
ing for an ordering of the elements with respect to domain of dependence, and
therefore, for an explicit element-by-element advancing front solution. In [17], in
order to deal with inhomogeneous media, the constraints on the meshes are weak-
ened, allowing for meshes aligned with the discontinuities of the coefficients, and
a semi-implicit method, based on an ordering of the mesh by macroelements, is
constructed.

For the Maxwell’s equations in frequency-domain, consider, to fix the ideas, the
following electric field-based formulation:

∇× (µ−1∇× E) − ω2εE + iωσE = −iωJs in Ω
n× E = 0 on ∂Ω.

The term ω2εE is neglected in the low-frequency case. The solutions of this prob-
lem are typically highly oscillatory or strongly singular. DG methods are particu-
larly suited for capturing such solutions, since they allow for an easy implementa-
tion of high-order elements and hp-adaptive procedures. The main ingredient for
the construction of DG schemes, in this context, is the DG approximation of the
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second order curl-curl operator. For a unified presentation of various DG methods
for elliptic problems and their theoretical analysis, see [2].

For the low-frequency case, in the simple case of conductivity σ �= 0, the problem
is elliptic and optimal error estimates can be easily obtained (the case of irregular
meshes and only piecewise smooth material coefficients is studied in [18], where
hp-error bounds are derived). For the high-frequency case, optimal error estimated
have been obtained in [9] in the case of smooth coefficients. Mixed methods for
imposing the divergence-free constraint on the electric field in the regions where
σ = 0, in the low-frequency case, and for providing control on the divergence of
the electric field, in the high-frequency case, have been presented and analyzed
in [11] and [19], respectively. An energy-norm a posteriori estimator for the mixed
method in the low-frequency case has been studied in [10].

Finally, the Maxwell eigenvalue problem has been addressed in [8], where a
nonstabilized local discontinuous Galerkin method is used. Numerical results have
shown that, in the two-dimensional case, the method correctly captures the eigen-
modes, and no spurious mode pollutes the spectrum. In the three-dimensional
case, small spurious modes appear, which can be eliminated by adding a suitable
stabilization to the scheme.

We conclude with some remarks. For the Maxwell equations in frequency-
domain, the eddy-current and the stationary problems, extensive and comparative
studies still need to be performed. The same for coupled field-based and potential-
based formulations. Up to now, a rigorous analysis of the Maxwell eigenvalue prob-
lem has not been performed, as well as a theoretical analysis of the high-frequency
problem in a framework which allows for treating discontinuous material coeffi-
cients. We finally mention that, in addition to some numerical studies (see [13],
[21], [12]), a complete theoretical analysis of dispersion and dissipation errors for
DG methods has been carried out in [1].
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Smith Normal Form as an Adequate Tool to Detect Mesh Defects as
well as to Build Basis Fields for Domains with Loops and Holes

Francesca Rapetti
(joint work with Alain Bossavit (L.G.E.P.) and François Dubois

(C.N.A.M.))

A precise description of industrial geometries relies on the use of computer
assisted design (C.A.D.) tools. Submeshes are generally created when complex
domains with millions of element volumes are concerned. Accidental errors (due
to human mistakes, to roundings, to bugs, ...) when gluing together separately
created parts will result in spurious holes and/or loops. How can we perform an
automatic mesh defect detection ?

The Hodge decomposition for a vector u ∈ L2(Ω)3 consists in its representation
as the sum of three orthogonal components u = gradφ + curlw + θ, the third
component θ depending on the domain topology. How can we build a basis for θ ?

Algebraic topology and linear algebra help giving an answer to these or other
questions.

Let A : X → Y be a linear operator between vector spaces of dimension m
and n respectively. If bases are selected in both spaces, A is represented by a
(n × m)-matrix A. One can choose bases in such a way that

A =
[

0k,m−k Idk,k

0n−k,m−k 0n−k,k

]
.

This is the Smith normal form of A [6]. The normal form clearly exhibits the rank
k, the null space (spanned by the first m − k basis vectors in X ) and the range
(spanned by the last n − k basis vectors in Y) of A (see Figure 1).

Figure 1. Smith normal form for the matrix A.

Suppose now that one has a complex of linear maps ∂p : Xp → Xp−1, such that
∂p∂p+1 = 0. By a suitable choice of bases, one can put them all in Smith form,
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Figure 2. Computational configuration and analytical solution
on the interface.

thus obtaining a complex of matrices on which one can spot the successive ranges
and kernels, and most importantly the quotients Hp = ker(∂p)/ran(∂p+1).

A case in which this is valuable is when the ∂ps are the boundary operators
acting on chains based on p-cells of some discretization mesh (see Figure 2 (left)
where the boundary operators are denoted by black dots carrying the dimension
of the cells they act on). The original ∂p are then the incidence matrices of this
mesh, and take the above form when suitable bases are chosen in the chain spaces
Xp. One can then easily identify the cycles (chains with empty boundary), the
boundaries (p-chains which bound a (p + 1)-one), the homology spaces Hp and
their dimensions bp, the so-called Betti numbers, which are topological invariants
(characteristics of the computational domain, not of the particular mesh), telling
about the numbers of “holes” and “loops” in the meshed region (see Figure 2
(right)).

Such information is useful as a way to check whether the mesh has been con-
sistently built. For istance, the mesh defects occurring when merging submeshes
will result in spurious holes and/or loops, and thus can be detected this way [4].
Hence the interest for algorithms to reduce incidence matrices to normal form,
with a competitive computational cost. They fall in two classes, depending on
whether one works on the primal or the dual mesh.

In [4], we have proposed an algorithm working in O(s2) where s = max(n, m)
for the considered (n×m)-matrices. The results of the proposed algorithm applied
to the incidence matrices of a simplicial discretization of a torus surface are shown
in Figure 3. In this case, we are not looking for mesh defects but to an automatic
way to compute the generators of Hp, p = 1, 2. We work with (incidence) matrices
whose entries are integers, in particular 0, -1, +1. The Smith normal form of
a (n, m)-matrix A is computed with unimodular transformations, represented by
integer matrices with integer matrix inverses and determinants are ±1. Elementary
row operations

• exchange row i with row j
• multiply row i by -1
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Figure 3. Wireframe representation of two loops, generators of
the first homology group H1 of the torus surface, see [5].

• replace row i by (row i) + α (row j), where α is an integer and k �= j

Each of these operations corresponds to a change of basis in Y and similar column
operations correspond to a change of basis in X .

These successive changes are stocked in two unimodular matrices, a (n, n)-
matrix Q and a (m, m)-matrix P . So, we look for Q and P such that QAP is in
Smith form. Then, ker (A) is spanned by the first m− k column vectors of P and
imag (A) is spanned by the last n − k row vectors of Q multiplied by the leading
elements.

Figure 4. The dual side: cohomology.

There is more: by duality, a change of basis for chains induces one on cochains,
which are the discrete representation of electromagnetic fields (see Figure 4). In
particular, when loops or holes are present, there is a need [1] to construct “non-
local” basis fields associated with them, which complete the basis of cell-related
Whitney forms, as considered in [5]. Such fields can be read off from the Smith
normal form, thanks to the geometric interpretation of the coefficients of the pas-
sage matrices. A classification of all possible ways to build representatives of the
cohomology classes (“collars”, “thick cuts”, “tunnels”, etc., as found in the work
of Kotiuga [3], Kettunen [2], etc.) is thus obtained.
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Pole Condition: A new Approach to Solve Scattering Problems
F. Schmidt

(joint work with T. Hohage and L. Zschiedrich)

The pole condition concept is an approach to investigate certain classes of
wave propagation problems on unbounded domains, including the time-dependent
Schrödinger equation, the Helmholtz equation and time-harmonic Maxwell equa-
tions. The basic idea has been developed originally to solve the 1D time-dependent
Schrödinger equation with non-constant exterior potentials [8, 9]. The convenient
handling of heterogeneous exterior domains in 1D situations obtained there was
the motivation to extend this concept to higher space dimensions as well as to
time-harmonic problems. It turned out that the desired generalization can be
done a very natural way.

We discuss the pole condition concept for solving time-harmonic scattering
problems modeled by Helmholtz and Maxwell’s equations on unbounded domains.
The essential aspects are the following. First, the entire space is decomposed into
an interior domain containing the scatterer and an exterior domain. The exterior
domain may have a heterogeneous structure. Among the admissible types of in-
homogeneous exterior domains are waveguide-like inhomogeneities which play an
important role in applications. For the special case of 1D problems it was shown
[7] that even exterior domains with periodic permittivities can be treated.

The basic idea of the pole condition approach is to consider the Laplace trans-
form of the field in the exterior domain in radial direction. Here, radial direction
denotes the distance-like direction in the exterior when covered by a prismatoidal
coordinate system [11]. If we fix the angular-like coordinate of the exterior system
and let the distance-like coordinate tend to infinity, we move on a ray from the
boundary of the interior domain towards infinity. We characterize the exterior
fields by the poles of their Laplace transforms along all possible rays and say that
a field satisfies the pole condition if its Laplace transform has no pole in the lower
half of the complex plane. Fields which satisfy the pole condition are outgoing
fields.
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A formulation of a scattering problem based on the pole condition consists
of three parts: the interior problem, the coupling to the exterior problem, and
the exterior problem in its Laplace transformed version. Additionally we have to
ensure that the solution of the Laplace part contains only functions that satisfy
the pole condition. The latter can be achieved in a number of different ways.
One way is to use an extra condition in form of an integral condition [7], another
to restrict the possible space of Laplace transformed functions by construction.
For the continuous form of the pole condition based formulation of the Helmholtz
scattering problem we obtained a number of results. First, the pole condition is
equivalent to Sommerfeld’s radiation condition in case of homogeneous exterior
domains [5], second, the pole condition yields a new representation formula for
for the exterior solution, third, parts of theorems concerning the series expansions
of exterior fields (theorems of Karp and Wilcox) could be extended. A further
surprising result states that the pole condition and the famous PML method are
very closely related to each other [6].

The different continuous formulations of the pole condition leads to different
numerical algorithms. Until now we investigated mainly two realizations: the
cut function approach [5, 7] which is also the basis if the theoretical analysis and
the real axis method [3, 7]. Whereas the first one allows directly to compute the
exterior fields from the obtained data, the second one yields only the interior
solution but has a simpler structure and can easily be extended to solve, e. g.,
eigenproblems on unbounded domains. A first numerical comparison between the
pole condition approach and the PML methods [3] shows that both cause roughly
the same numerical costs with a slight favour for PML. However, PML is not able
to reproduce the exterior solution.

There are a number of new theoretical results offering new application areas of
the pole condition. In [1] it has been shown by Arens and Hohage that the pole con-
dition and the upward propagating radiation condition are equivalent. This enables
a new approach in solving scattering problems involving unbounded obstacles. In
a recent paper [4] Hohage and Stratis proved the equivalence of the pole condition
and the Silver-Müller condition for electromagnetic scattering problems. The dis-
crete electromagnetic scattering problem in 2D has been considered in [2]. Another
application area of the pole condition concept is the computation of eigensolutions
and resonances of open systems. In [10] we develop a convergence theory for the
1D Schrödinger case which allows a safe determination of converged resonances.
The complete algorithm and main parts of the theory apply to higher dimensions
as well. In [11] Zschiedrich gives a review on the current state of results related to
the pole condition concept, a number of new results for time-dependent equations
and 2D and 3D applications of our code solving time-harmonic electromagnetic
scattering problems.
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Preconditioning for Maxwell Equations
Joachim Schöberl

In this talk, we discuss the construction and analysis of multigrid precondi-
tioners for H(curl) elliptic variational problems. We explain the smoothers of
Hiptmair, and Arnold-Falk-Winther. These smoothers take care of components
in the discrete kernel of the curl-operator, what is the gradient of the H1 finite
element space.

We sketch a new technique for the analysis of multi-level preconditioners in
H(curl). It is based on a multi-level decomposition by recently introduced com-
muting quasi-interpolation operators [1].

The second main topics in the talk is the discussion of algebraic multigrid
methods in H(curl). The idea is to define a coarsening algorithm for all finite
element spaces in H1, H(curl), H(div), and L2, which maintains the complete
sequence property on each multigrid level [2]. Thus, the the same smoothers work
as in the geometric multigrid.

The last topics are new high order finite elements for all the spaces H1, H(curl),
H(div), and L2. The high order H1 elements have lowest order vertex functions,
high order edge-, face-, and element-based shape functions. The H(curl) elements
have lowest order Nédélec (edge) shape functions, and high order edge-, face-, and
element-based shape functions. Next, the H(div) has lowest order Raviart-Thomas
(face) shape functions, and high order face- and element-based ones. Finally, the
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L2 element has the constants, and high-order element functions. We stress the
advantages of the new elements satisfying localized complete sequence properties
for the lowerst order, edge-based, face-base, and element-based shape functions:

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V E
pE

WF
pF +1

∇−→ V F
pF

curl−→ QF
pF −1

W I
pI+1

∇−→ V I
pI

curl−→ QI
pI−1

div−→ SI
pI−2

For the linear system of equations obtained by these basis function, simple
block-diagonal preconditioners (the blocks contain unknows associated with edges,
faces, and elements) in connection with an good coarse grid solver is efficient
for H(curl)-elliptic problems in the following sense: The condition number is
independent of the relative scaling of the L2-part and the curl-semi-norm in the
quadratic form, as well as independent of the mesh size. The dependency of p
depends on the choice of the basis functions, and is currently a major point in
research.

An other advantage of these basis function is that the order of the gradient
functions and rotational functions can be chosen independently. In the limit case
of a magnetostatic problem, the gradient functions can be totally skipped, which
improves computation time about by a factor of 4. These new high order basis
functions are explained in the upcoming paper [3].

All results are available from http://www.hpfem.jku.at
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[2] S. Reitzinger and J. Schöberl, Algebraic Multigrid for Edge Elements, Numerical Linear
Algebra with Applications, 9 (2002), pp. 223–238.
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Adaptive Multigrid-Methods for the Solution of Time-Harmonic
Eddy-Current Problems

O. Sterz

An important class of electromagnetic problems are low frequency applications
where the magnetic energy dominates the electric energy. Examples are devices
from power engineering like motors, generators, transformers and switch gears
as well as medical hyperthermia applications in cancer therapy. Here, the eddy-
current approximation of the full Maxwell equations can be employed to describe
the electromagnetic fields.
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An upper bound for the modeling error of the eddy-current approximation of
the full Maxwell-equations at a fixed angular frequency ω, as well as an asymp-
totic analysis for ω → 0, is given in [10], further details will be presented in [8].
Concerning the justification of the eddy current model by an asymptotic analysis,
we also want to mention the pioneering works [1] and [2].

Assuming perfect conductor conditions n × E = 0 at the boundary of the
domain Ω, a variational formulation based on the electric field reads: Find E ∈
H0(curl; Ω), such that ∀E′ ∈ H0(curl; Ω)

(µ−1 curlE, curlE′)L2(Ω) + iω(σE,E′)L2(ΩC) = −iω(JG,E′)L2(Ω) .

¿From this formulation we do not get a unique electric field E in the insulating
sub-domain, since we do not control the divergence of E and the total charges
of the conductors. However, the magnetic field H = −(iωµ)−1 curl E, which is
the interesting quantity in most cases of eddy current modeling, is unique. The
discretization is done by edge elements on simplex grids (Whitney-1-forms) as the
most natural choice.

To resolve local phenomena like singular behavior of the fields at edges and
corners as well as small penetration depths (skin effect), we rely on an adaptive
algorithm. With the help of an residual error estimator, see [5], the elements
with the largest estimated error contribution are marked (maximum strategy) and
refined (red/green-refinement). This results in a hierarchy of consistent grids.

The computation of real-world problems needs a large number of unknowns, up
to several millions on a single processor machine are possible. Thus, for the solution
of the linear systems of equations, as the most time consuming task, a fast method
is essential. Therefore, multigrid methods are applied since they offer optimal
complexity. For the smoothing in the multigrid cycles a standard algorithm like
Gauß-Seidel is used in the insulating part of the domain (σ = 0), whereas the
smoothing in the conductive part (σ > 0) needs a modification: Here, we may
apply the idea proposed in [6], which is based on a Helmholtz decomposition and
results in an additional smoothing step in the space of scalar potentials. Another
possibility is the application of an overlapping block smoother, see [3].

In case of locally adapted grids the overall complexity may not be optimal unless
the smoothing is restricted to the refined region. This leads to the implementation
of local multigrid methods, which can be realized by grids that do not cover the
whole computational domain at each level, see Fig. 5.

We finally mention, that the singularity of the arising linear system of equations
is not a problem, as long as we take care of two things:

(1) The right hand side is in the range space of the matrix to guarantee solv-
ability.

(2) During the iterative solution process the kernel components of the solution
will not grow (or will grow slowly enough) to prevent cancellation errors.

The first condition can be satisfied by an adequate computation of the discrete exci-
tation currents. To comply with the latter condition, we apply some approximate
projections onto the orthogonal complement of the kernel of the curl-operator.
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Figure 5. Example of a locally refined unit square: global grids
(left) and local grids (right) of the multigrid hierarchy.

This can be realized with low costs by additional multigrid-sweeps on a Poisson-
problem, see [10, 11].

All these concepts has been implemented in the adaptive finite element software
EMUG (electromagnetics on unstructured grids), which is based on the simulation
toolbox UG, see [4, 10]. EMUG has been successfully applied to benchmark prob-
lems as well as realistic problems. A parallel prototype of the electromagnetic
simulation tool is currently being developed.
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Tech. Rep. 2003-07, SAM, ETH Zürich, July 2003. (submitted).

[8] , The justification of the eddy current model, (in preparation), (2004).
[9] O. Sterz, Multigrid for time harmonic eddy currrents without gauge, in Scientific Comput-

ing in Electrical Engineering. Proceedings of the 4th International Workshop Scientific Com-
puting in Electrical Engineering, Eindhoven, The Netherlands, June 23–28, 2002, LNCSE,
Berlin, 2002, Springer. (in print).

[10] , Modellierung und Numerik zeitharmonischer Wirbelstromprobleme in 3D, PhD the-
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Perfectly Matched Layers
Fernando L. Teixeira

The simulation of electromagnetic problems in unbounded regions with partial
differential equation (PDE) based methods, such as finite element (FE) and finite
difference (FD) methods, necessitates the use of an absorbing boundary condition
(ABC) to emulate the radiation condition at infinity. Perfectly matched layers
(PML) are absorption layers used toward his purpose. The PML achieves a reflec-
tionless absorption of electromagnetic waves in the continuum limit as the mesh
discretization size goes to zero. The absorption inside the PML operates through
conductive losses, so that an exponential decay for the fields inside the PML is
obtained. Therefore, when the computational domain is surrounded by a PML
region, spurious reflections from the grid boundaries can be made exponentially
smaller. Being a local ABC, the PML retains the nearest-neighbor interaction
characteristic of PDE-based methods, and therefore it is particularly suited for
PDE-bases simulations on parallel computers. Also because of this property, the
PML retains the inherent sparsity and (low) computational complexity of PDE-
based methods.

When first introduced in the literature [1], the PML relied upon the use of
matched artificial electric and magnetic conductivities and the splitting of the
electromagnetic field components into two subcomponents each (split-field formu-
lation). Because of this, the resulting fields inside the PML layer were rendered
nonphysical (non-Maxwellian). The PML was later shown to be equivalent to a
complex coordinate stretching of the coordinate space [2] or a complex coordinate
transformation (analytic continuation of the coordinate space) [3],[4],[5]. Via such
transformation, the (real) spatial coordinates are mapped as

ζ → ζ̃ =
∫ ζ

0

sζ(ζ′)dζ′

where sζ , with ζ = x, y, z, are the so-called complex stretching variables, given by

sζ(ζ, ω) = aζ(ζ) + i
Ωζ(ζ)

ω

with aζ ≥ 1 and Ωζ ≥ 0 (profile functions). The first inequality ensures that
evanescent waves will have a faster exponential decay in the PML region, and the
second inequality ensures that propagating waves will also decay exponentially
along the respective coordinates in the PML. The ordinary Maxwell’s equations
are recovered from the above when sζ = 1. Therefore, the complex stretching
variables can be seen as added degrees of freedom to Maxwell’s equations.

The PML has also found an interesting dual formulation (Maxwellian PML)
with a more clear physical interpretation whereby the PML is represented by
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frequency dependent material (constitutive) tensors ε and µ [6],[7]. These tensors
also produce reflectionless absorption in the continuum limit. In addition to a more
direct physical interpretation, the Maxwellian PML yields an easier interfacing
with FE codes and a strongly well-posed formulation, as opposed to a weakly
well-posed formulation in the original split-field PML [8].

The PML was first developed for planar grid terminations (Cartesian coordi-
nates) [1],[2]. In order to be used with more general grid terminations, the PML
later extended to curvilinear coordinates [3],[4],[5]. Although the first of such ex-
tensions have dealt with non-Maxwellian formulations only, it was later shown that
Maxwellian PMLs could also be obtained in curvilinear geometries [9],[10]. In its
most general form (for doubly curved surfaces), the curvilinear PML correspond to
a conformal layer of anisotropic material tensors with inhomogeneous constitutive
properties that depend on the local geometry (principal curvatures) of the mesh
termination surface S [10],[11]. These PML constitutive parameters are given by
µ = µΛ and ε = εΛ, with [10]

Λ = t̂1t̂1

(
sh1h̃2

h̃1h2

)
+ t̂2t̂2

(
sh̃1h2

h1h̃2

)
+ n̂n̂

(
h̃1h̃2

sh1h2

)
.

Here s is the complex tretching coordinate along the normal coordinate ξ3 at
a point P in the mesh termination surface S, and hi and h̃i, i = 1, 2 are the
nonstretched and stretched, respectively, (local) metric coefficients [10]. The unit
vectors t̂i, i = 1, 2 are tangent to S at P along the principal lines of curvature
that define tangential orthogonal coordinates ξ1 and ξ2, and n̂ is the unit normal
vector at that point (outward). The metric coefficients are given by hi = ri/r0i,
where r0i are the principal radii of curvature at P and ri = r0i + ξ3, i = 1, 2.
The conformal PML is hence constructed over parallel surfaces to S. A basic
limitation that exist in this general case, however, is that both radii of curvature
should be non-negative (i.e., the PML can only be defined over planar or concave
termination surfaces as viewed from inside the computational domain). Otherwise,
dynamical instabilities ensue [11]. We note that the Cartesian, cylindrical, and
spherical PMLs are special cases of this general curvilinear case, followed (possibly)
by a successive application of the analytic continuation in orthogonal directions,
if needed to achieve absorption in corner regions.

It is also possible to generalize the PML to terminate problems in more complex
media, such as linear interior media exhibiting frequency dispersion and/or (bi)
anisotropy [12]. This is in contrast to other local ABC, where an exact extension
is often not possible in such cases. This extension is particularly important, for
example, in electromagnetic simulations involving subsurface problems or complex
materials [13]. For example, given an arbitrary dispersive and/or (bi)anisotropic
linear interior media in a Cartesian domain with constitutive tensors ε(ω), ξ(ω),
ζ(ω), µ(ω) , the corresponding Maxwellian PML bianisotropic constitutive param-
eters are given as [12]

λPML(ω) = (detS)−1
(
S · λ(ω) · S

)
,
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where the symbol λ stands for any of the above four constitutive tensors, and

S(ω) = diag{s−1
x , s−1

y , s−1
z }

Finally, we note that PML concept also admits a geometric interpretation as a
complexification of the metric of space in the Fourier domain [14]. By exploring
this interpretation, it can be shown that the differential forms language [15],[16]
provides an elegant framework to unify the various PML formulations and ob-
tain further generalizations. This is because the metric invariance of Maxwell’s
equations (in the sense of [17],[18]) is explicitely manifest in such language. A
modification in the metric (diffeomorphism) corresponds to a modification on the
Hodge operator, which fully incorporates the constitutive relations. The existence
of Maxwellian PMLs can be seen as a simple consequence of the metric invariance
of Maxwell’s equations. The various PML formulations in the vector calculus lan-
guage arise from the different choices on how to map differential forms to vector
fields. This map fixes an isomorphism between differential forms and vectors and
it depends on a metric. If the real metric is chosen to define such map, then the
Maxwellian PML is receovered. Alternatively, if the complex (stretched) metric is
chosen, then the non-Maxwellian PML is recovered. This also reveals that if other
consistent metrics are chosen to fix the form-vector isomorphism (e.g., hybridiza-
tions of the previous ones), other (indeed, infinitely many) PML formulations are
possible, albeit more cumbersome for practical implementation in numerical algo-
rithms [14]. In such context, the existing PML formulations are particular cases
of these choices.
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Some New Inexact Uzawa Methods and Non-overlapping DD
Preconditioners for Solving Maxwell’s Equations in Non-homogeneous

Media
Jun Zou

(joint work with Qiya Hu)

This talk will review some new preconditioned Uzawa iterative methods for
solving saddle-point systems, and a non-overlapping domain decomposition pre-
conditioner for solving three-dimensional Maxwell’s equations in non-homogeneous
media.

Iterative methods for saddle-point system. Consider the system

(1) Ax + By = f , Btx = g

where A is a symmetric and positive definite n × n matrix, and B is an n ×
m matrix with m ≤ n. The system (1) is assumed to be nonsingular, so the
Schur complement matrix C = BtA−1B is positive definite. Linear systems such
as (1) arise often from finite element discretizations of Maxwell equations and
Navier-Stokes equations. Solving the saddle-point system (1) is usually much
more difficult than solving the SPD system Ax = b. Recently the following inexact
preconditioned Uzawa-type algorithm:

xi+1 = xi + Â−1[f − (Axi + Byi)] , yi+1 = yi + Ĉ−1(Btxi+1 − g)(2)

has been widely used and studied (cf. [1] [2] [3] ) for solving (1). Here Â and Ĉ
are preconditioners for A and C. The existing convergence results indicate that
these algorithms converges assuming some good knowledge of the spectrum of the
preconditioned matrices Â−1A and Ĉ−1C or under some proper scalings of the
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preconditioners Â and Ĉ. This “preprocessing” may not be easy and convenient
to achieve in some applications.

Is it possible to introduce some relaxation parameters in (2) so that the resulting
algorithm always converges for any SPD preconditioners Â and Ĉ, and converges
with good rate when good preconditioners are available ? The following algorithm
was proposed for this purpose (cf.[4]):

xi+1 = xi + ωiÂ
−1[f − (Axi + Byi)] , yi+1 = yi + τiĈ

−1(Btxi+1 − g)(3)

where two parameters ωi and τi can be updated using only the actions of Â−1 and
Ĉ−1.

The detailed convergence and convergence rate of algorithm (3) were given in
terms of the condition numbers κ(Â−1A) and κ(Ĉ−1C), without any conditions on
preconditioner Ĉ, see [4]. Unfortunately our proofs hold only with the condition
that Â is properly scaled so that the eigenvalues of A−1Â are bounded by one, al-
though numerical experiments still demonstrated convergence when this condition
is violated.

When a good preconditioner Â is not available, one may replace the precondi-
tioning part of Â in (3) by some nonlinear iteration. This leads to the following
algorithm (cf. [5]):

xi+1 = xi + Ψ(f − (Axi + Byi)) , yi+1 = yi + τiĈ
−1(Btxi+1 − g)(4)

where Ψ is a nonlinear map in Rn such that for any φ ∈ Rn, Ψ(φ) approximates
the solution ξ of Aξ = φ. And the parameter τi can be updated using only the
actions of Ĉ−1 and Ψ.

The detailed convergence and convergence rate of the algorithm (4) can be given
in terms of the condition number κ(Ĉ−1C) and the tolerance parameter used for
Ψ, and no any conditions on the preconditioner Ĉ are needed.

The algorithm (4) may not work well when the conditioning of the precondi-
tioned Schur complement Ĉ−1C is much worse than the conditioning of system
Â−1A. In this case, we may use a few PCG iterations with preconditioner Ĉ to
improve the conditioning of Ĉ−1C, then apply the algorithm (4). This suggests
the following algorithm (cf. [7]):

xi+1 = xi + Ψ(f − (Axi + Byi)) , yi+1 = yi + τiΨH(Btxi+1 − g),(5)

where ΨH(gi) for any gi is the iterate generated by the PCG method with precon-
ditioner Ĉ for solving Hψ = gi with H = BT Â−1B such that for some δ ∈ (0, 1),

‖ΨH(gi) − H−1gi‖H ≤ δ ‖H−1gi‖H .

The actual effect of ΨH(gi) amounts to generating a new preconditioner Q̂i such
that the conditioning of Q̂−1

i C is much improved than the one of Ĉ−1C and
κ(Q̂−1

i C) is about the same as κ(Â−1A) (cf. [7]). The convergence and conver-
gence rate of this algorithm was given in [7] and also applied to solving nonlinear
saddle-point system like

F (x) + By = f, Btx = g .
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Non-overlapping domain decomposition methods. Consider the Maxwell
system:

(6)

 ∇× (α∇× u) + γ0βu = f in Ω
∇ · (βu) = g in Ω

where Ω is a Lipschitz polyhedral domain in R3, not necessarily convex. α(x) and β(x)
are positive but may be discontinuous in Ω. The perfect boundary condition u × n = 0
is assumed on ∂Ω. The constant γ0 is non-negative, and it is allowed to be identically
zero. It is this extreme case that causes the most troublesome technical difficulty in the
analysis.

The variational saddle-point problem associated with system (6) is formulated as
follows:

Find (u, p) ∈ H0(curl; Ω) × H1
0 (Ω) such that

(7)


(α∇× u,∇× v) + γ0(βu,v) + (∇p, βv) = (f , v), ∀v ∈ H0(curl; Ω)
(βu,∇q) = (g, q), ∀q ∈ H1

0 (Ω).

Domain decompositions and edge elements. Decompose Ω into N non-overlap-
ping tetrahedral subdomains {Ωi}N

i , with each Ωi of size d. The common face of sub-
domains Ωi and Ωj is denoted by Γij , and set Γ = ∪Γij , and Γi = Γ ∩ ∂Ωi. Then
we divide each Ωi into smaller tetrahedral elements of size h so that elements from two
neighboring subdomains match with each other on the interface Γ. Let Th be the result-
ing triangulation of the domain Ω. We shall approximate the field u and multiplier p by
the Nédélec edge element space of lowest order and the piecewise linear nodal element
space of H1

0 (Ω), denoted by Vh(Ω) and Zh(Ω). Then the edge element approximation of
system (7) is to find (uh, ph) ∈ Vh(Ω) × Zh(Ω) such that

(8)


(α∇× uh,∇× vh) + γ0(βuh,vh) + (∇ph, βvh) = (f ,vh), ∀vh ∈ Vh(Ω)
(βuh,∇qh) = (g, qh), ∀qh ∈ Zh(Ω).

For any face f of Ωi, fb denotes the union of all Th-induced (closed) triangles on f, which
have either one single vertex or one edge lying on ∂f, and f∂ denotes the open set f\fb.
For any subdomain Ωi, define ∆i = ∪f⊂Γi

fb. With each Ωi, we define a local operator
Ai on Vh(Ωi), a standard restriction space of Vh(Ω) on Ωi, by

(Aiu,v) = (α∇× u,∇× v)Ωi + (αu,v)Ωi , ∀u, v ∈ Vh(Ωi).

And Ã is defined similarly to Ai but on the global space Vh(Ω). For any Φ ∈ Vh(Γi), we
define its discrete Ai-extension Ri

hΦ in Vh(Γi): Ri
hΦ × n = Φ on Γi and solves

(AiR
i
hΦ, vh) = 0, ∀vh ∈ V 0

h (Ωi).

We can write system (8) as the operator form:

(9) (Ā + γ0 β I)uh + Bph = f̄h, Btuh = gh.

Noting that the operator Ā is singular in Vh(Ω), we can not apply the existing Uzawa-
type iterative solvers for solving the saddle-point system when γ0 = 0. To avoid the
difficulty, we rewrite (9) into the following equivalent system

(10) Auh + Bph = fh, Btuh = gh

where A = Ā + γ0 β I for γ0 �= 0 and A = Ā + r0BĈ−1Bt if γ0 = 0. Now one can

apply, for example, the inexact Uzawa algorithm (3) for (10). It is important to note

that the action of Ĉ−1 needs only once in each iteration, and the convergence rate of this

algorithm is determined by κ(Â−1A) and κ(Ĉ−1BtÂ−1B).
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Construction of preconditioners for A and BtA−1B.
One can show (cf. [6]) that if Ĉ is a preconditioner for BtA−1B such that

(β∇φ,∇φ) <∼ (Ĉφ, φ) <∼ G(d/h)(β∇φ,∇φ) for all φ ∈ Zh(Ω),

then we have G(d/h)−1(Ãvh,vh) <∼ (Avh,vh) <∼ (Ãvh,vh), for all vh ∈ Vh(Ω).

So it suffices to construct a preconditioner for Ã, instead of A.
Let λe(v) be the moment of v on any edge e, V H(Ω) ⊂ Vh(Ω), consisting of all

discrete Ai-extensions in each Ωi, and

V p(Ω) =
NY

k=1

V 0
h (Ωk) , V ij(Ω) =

n
v ∈ V H(Ω); supp(v) ⊂ Ωi ∪ Ωj ∪ Γij

o
,

V 0(Ω) =
n
v ∈ V H(Ω); λe(v) = 0 for each e ∈ f∂ with f ⊂ Γ

o

while Âp and Âij are operators on V p(Ω) and V ij(Ω), and Â0 the coarse solver
in V 0(Ω):

(Âpv,v) =∼
NX

k=1

(Akv,v)Ωk ∀v ∈ V p(Ω);

(Âijv,v) =∼ (Aivi,vi)Ωi + (Ajvj , vj)Ωj ∀v ∈ V ij(Ω)

(Â0v,w) = h[1 + log(d/h)]
NX

i=1

αi

n
〈divτ (v × n)|Γi , divτ (w × n)|Γi〉∆i

+〈v × n,w × n〉∆i

o

Then the additive preconditioner Â formed by Â0, Âp and Âij is nearly optimal,
i.e. κ(Â−1A) <∼ G(d/h)[1 + log(d/h)]2 , also independent of jumps of material
coefficients (cf.[6]).
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