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Introduction by the Organisers

Itô’s formula has been celebrated as a fundamental extension of the classical
Leibnitz-Newton formula and forms a cornerstone to what is known today as
stochastic calculus. In recent years, there have been further extensions of this
formula which essentially weaken further the smoothness of the function to which
the formula is applied at the cost of an additional term involving integration over
a two dimensional field which has been labeled local time-space. As of yet the full
potential of local time-space calculus and its applications has neither been real-
ized nor properly understood. The current proposal aimed at bringing together
researchers who in some way have touched on this currently unchartered territory
in order to examine its importance as both a pure and applied field of study as
well as to establish the state of the art in the current literature and identify new
road map of research.

The appearance of local time-space as a natural analytical development

The fundamental result of stochastic calculus is Itô’s formula firstly established
by Itô [11] for a standard Brownian motion and then later extended to continuous
semimartingales by Kunita and Watanabe [12]. The function F appearing in Itô’s
formula is C2 in the space variable, and the correction to the classic Leibnitz-
Newton formula is expressed by means of the quadratic variation.

Various extensions of the Itô formula have been established for functions F
which are not C2 in the space variable. The best know of these extensions is
the Itô-Tanaka formula firstly derived by Tanaka [20] for F (x) = |x| and then
extended to absolutely continuous F with F ′ of bounded variation by Meyer [17]
and Wang [21]. The correction term appearing in this formula is expressed by
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means of the local time which goes back to Lévy [14]. A different extension to
absolutely continuous F with locally bounded F ′ is due to Bouleau and Yor [4].
The correction term appearing in this formula is also expressed by means of the
local time, however, in a different manner which suggests a formal integration by
parts. Both formulas are derived only in dimension one.

In the attempts to understand a more general rule unifying the various correc-
tion terms reviewed above it was noticed that Eisenbaum [6] made an interesting
contribution in the case of standard Brownian motion by deriving an extension
of Itô’s formula where the correction term is expressed as an area integral with
respect to both the time variable t and the space variable x of the local time
`xt . The arguments of Eisenbaum rely on combining the Bouleau-Yor extension
with the Föllmer-Protter-Shiryaev extension [9] and thus strongly depend on the
time-reversal property of standard Brownian motion.

The main aim of the article [10] is to make use of the formula [18] and show
that the representation of the correction term in the Eisenbaum’s extension [6]
as an area integral with respect to the local time-space (as we call it in short) is
not only restricted to a time-invariant Brownian motion process but extends quite
generally to all continuous semimartingales. This is firstly done for C1 functions
F and then extended to absolutely continuous functions F with Ft and Fx of
bounded variation. The proposed extension is still incomplete in many ways.

The appearance of local time-space as an applied tool

Applications in free-boundary problems of optimal stopping related to pricing of
American-type options, where one needs to consider functions of time and space
that are not C2, have recently led to a new extension of Itô’s formula [18]. Already
the formula has found a home in other papers related to financial mathematics
such as [5] and [13]. The most interesting development in this formula, in com-
parison with the older extensions above, is its final term where the possible jump
of x 7→ Fx(t, x) along the curve t 7→ b(t) is integrated with respect to the time

variable t of the local time `bt . It is obvious that the appearance of this latter
local time term has an intimate relationship to the smooth fit principle in optimal
stopping. Studies such as [19] and [2], where optimal stopping problems involving
non-diffusive processes, have shown that the smooth fit principle can break down.
The relationship with local time-space is thus begging.

Most notably, the same formula (in a somewhat disguised form) appears inde-
pendently in [8] where it is used to study solutions of the heat equation in the
presence of caustics (i.e. when the corresponding Burgers equations have shock
waves). It is also clear that the formula with its ramifications is generally useful in
any two-phase problem such as the obstacle problems or the problems of melting
and solidification including e.g. models of tumor growth etc.
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Open questions and new directions

No attempt has been made to specify, for the case of continuous semimartingales,

the most general class of functions G for which the double integral
∫ t

0

∫

R
G(s, x) d`xs

makes sense. Instead it has been shown (cf. [10]) how a number of known exten-
sions of the Itô formula can be obtained by formal manipulations of the d`xt inte-
gral. This formalism (or formal d`xt calculus as we call it) appears to be useful for
at least two reasons. Firstly, it helps to develop intuition needed to understand and
compare known formulas. Secondly, if a new function F is given and one needs
to write down a change-of-variable formula for F (t,Xt), then such a formalism
can be helpful in guessing a candidate formula before a rigorous proof is known
or given. It remains a challenging task, however, to carry out this programme on
firm mathematical grounds to a more satisfactory completion.

As far as the new developments for continuous semimartingales and the natural
questions that follow thereof are concerned, when considering the case of general
semimartingales, nothing has as of yet been done. A particular case of interest
is that of Lévy processes being a class of semimartingales which has some degree
of tractability and spans processes of both bounded and unbounded variation.
When one takes account of the relevance of local time-space calculus in optimal
stopping problems that appear frequently in financial mathematics and further
that financial mathematics itself has turned more and more to models based on
Lévy processes in recent years, there is a clear case for developing the theory at
least in this direction.

Precise formalization of the integration of local time-space calculus and the
applied problems mentioned in the previous section is awaiting attention. Exactly
what can one achieve with current knowledge of local time-space calculus and what
kind of results would push the applications further? Specific points of interest are
elaborated on below in the goals of the workshop. For other related work with
references see [7], [16], [3], [1].

Goals

Some of the main goals of the workshop were:

• To summarize what is exactly the state of the art in current literature with
respect to the appearance and manipulation of local time-space in Itô-type
formulas.

• To identify concrete mathematical problems which will make the formal ma-
nipulation rules of the local-time space calculus rigorous.

• To identify concrete connections between local time-space and phenomena
appearing in related areas. In particular, this includes:

– the failure of the smooth-fit principle in optimal stopping problems with
underlying jump processes;
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– analysis and stochastic analysis of variational inequality problems related
to optimal stopping;

– applications of the previous two points to American-type option pricing
in mathematical finance;

– applications in partial differential equations of two-phase problems (such
as the heat equation in the presence of caustics and similar);

– applications in optimal stochastic control (the Hamilton-Jacobi-Bellman
equation);

– to identify further areas of research where the appearance of local time-
space calculus is of relevance and needs development.

Format of workshop

The workshop consisted of a number of invited speakers who highlighted their
recent work in the context of the above bullet point list. Speakers were asked to put
their perspective on new possible directions and any proposals or ideas for future
efforts. There has also been time set aside for discussion and formation of new
collaborations. Further, the workshop rounded off with a summary of the week’s
discussions and the formulation of some new directions. Finally, the organizers
are working on publishing proceedings from the workshop (in the Seminaire de

Probabilités by Springer-Verlag).

Organizers

• Nathalie Eisenbaum (Paris)
• Andreas Kyprianou (Utrecht)
• Ana-Maria Matache (Zürich)
• Goran Peskir (Aarhus)
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to optimal stopping. Preprint (University of Münster).

[2] Avram, F., Kyprianou, A.E. and Pistorius, M. (2004). Exit problems for spectrally negative
Levy processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14
(215–238).

[3] Bardina, X. and Jolis, M. (2002). Estimation of the density of hypoelliptic diffusion processes
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[17] Meyer, P. A. (1976). Un cours sur les intégrales stochastiques. Sém. Probab. 10, Lecture

Notes in Math. 511 (245-400).
[18] Peskir, G. (2002). A change-of-variable formula with local time on curves. Research Report

No. 428, Dept. Theoret. Statist. Aarhus (30 pp). To appear in J. Theoret. Probab.
[19] Peskir, G. and Shiryaev, A. N. (2000). Sequential testing problems for Poisson processes.

Ann. Statist. 28 (837-859).
[20] Tanaka, H. (1963). Note on continuous additive functionals of the 1-dimensional Brownian

path. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (251-257).
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Pricing American options under Lévy driven assets . . . . . . . . . . . . . . . . . . . . 1357

Carl Christian Kjelgaard Mikkelsen
The uniqueness question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359

Joseph Najnudel
Integration with respect to local time and self-intersection local time of a

one-dimensional Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360

Goran Peskir
On local time-space calculus and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 1361

Huyên Pham
A problem of sequential optimal stopping times . . . . . . . . . . . . . . . . . . . . . . . . 1362

Francesco Russo
Calculus via regularization, weak Dirichlet processes and

time-inhomogeneous stochastic differential equations . . . . . . . . . . . . . . . . . . . 1362

Albert N. Shiryaev (joint with A. A. Novikov)
On one effective case of solution of an optimal stopping problem for

random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363

Aubrey Truman
On stochastic heat and Burgers equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364



1350 Oberwolfach Report 26/2004

Pierre Vallois (joint with B. Roynette and M. Yor)
Limiting laws associated with Brownian motion perturbed by weights

involving the local time process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365

Marc Yor (joint with D. Madan)
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Generalized Itô formulae using local time and applications in analysing

asymptotics of heat equations in the presence of caustics . . . . . . . . . . . . . . . 1366



Local Time-Space Calculus with Applications 1351

Abstracts

Optimal stopping of linear diffusions

Savas Dayanik

(joint work with I. Karatzas)

It is well-known that excessive functions of one-dimensional Brownian motion co-
incide with the collection of concave functions on the real line. In this work, we
show that excessive functions for general one-dimensional regular diffusions admit
similarly an equivalent concave characterization in some generalized sense. This
observation leads us to a new methodology to calculate directly the value function
of optimal stopping problems for aforementioned processes: the new approach does
not require an a-priori decomposition of the state-space into stopping and continu-
ation regions. The intrinsic properties of concave functions also let us draw deeper
conclusions about the regularity of the value function and the smooth-fit principle
in general.

We also mention an interesting connection of our results to Martin boundary

theory of Markov processes. We point out some possible generalizations of our
results to higher dimensional diffusions processes, and suggest some open problems.

Monetary utility functions and financial markets

Freddy Delbaen

We fix a probability space (Ω,F ,P). We will denote by L∞ the set of bounded
random variables. The predual is denoted by L1(Ω,F ,P) . The dual space of
L∞ is ba(Ω,F ,P). It is the space of bounded finitely additive measures µ such
that P[A] = 0 implies µ(A) = 0. The utility function u : L∞ → R is called
coherent if it satisfies the following properties (1) u(X) ≥ 0 if X ≥ 0, (2)
u(X + Y ) ≥ u(X) + u(Y ), (3) for λ ∈ R, λ ≥ 0 we have u(λX) = λu(X), and
(4) for α ∈ R we have u(X + α) = u(X) + α, this means that u is monetary. If
u : L∞ → R is a coherent utility function, then the set, called the acceptance cone,
A = {X | X ∈ L∞, u(X) ≥ 0} is a convex norm-closed cone that contains L∞

+ .
The utility function satisfies u(X) = max{α ∈ R | X − α ∈ A}. Conversely if A
is a convex norm-closed cone containing the set of nonnegative bounded random
variables, then u(X) = max{α | X − α ∈ A} defines a coherent utility function.
With each coherent utility function u we can associate a convex σ(ba, L∞) closed
convex set, Pba of normalised finitely additive, nonnegative measures (also called
finitely additive probability measures), such that u(X) = inf{µ(X) | µ ∈ Pba}.
Conversely a set of finitely additive probability measures Pba defines via the re-
lation u(X) = inf{µ(X) | µ ∈ Pba} a coherent utility function. To make things
more constructive, we add a continuity axiom. We say that the coherent utility
function u : L∞ → R satisfies the Fatou property if, given a sequence (Xn)n≥1,
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such that ‖Xn‖∞ ≤ 1, then Xn
P
→ X implies u(X) ≥ lim supu(Xn) If u sat-

isfies the Fatou property, then A is closed for the weak* topology σ(L∞, L1) and
conversely. Of course we must have that P = Pba∩L1 is σ(ba, L∞) dense in Pba.

With the obvious notation, if u1 and u2 are given coherent utility functions, both
having the Fatou property and with their corresponding sets: A1, P1, P

ba
1 , P1 =

Pba
1 ∩L1 and A2, P2, P

ba
1 , P2 = Pba

2 ∩L2, we can construct other utility functions

by taking P = P1∩P2, P
ba
0 = Pba

1 ∩Pba
2 or by taking A = conv (A1,A2)

σ(L∞,L1)
=

A1 + A2
σ(L∞,L1)

or even A0 = conv (A1,A2)
‖ ‖∞

= A1 + A2
‖ ‖∞

. The closure is
either taken in the norm topology or in the weak∗ topology σ(L∞, L1). If we take
the closure in the norm topology we only get a coherent utility function. If we take
the closure in the weak∗ topology we get a utility function with the Fatou property.
Obviously A and P correspond. Its coherent utility function is denoted by u and
it satisfies the Fatou property. In the same way we state: A0 and Pba

0 correspond.
Its coherent utility function is denoted by u0. It is the smallest coherent utility
function greater than u1 and u2. It is usually denoted as u1�u2 and it is called
the convex convolution of u1 and u2. u1�u2 has the Fatou property if and only

if (the bar indicates σ(ba, L∞) closure): Pba
1 ∩ Pba

2 ∩ L1 = Pba
1 ∩ Pba

2 . This is

equivalent to: P1 ∩ P2 = Pba
1 ∩ Pba

2 , where again, the bar indicates σ(ba, L∞)
closure.

We now give the relation with arbitrage theory. We follow the notation of
Delbaen and Schachermayer [3]. So let (Ω, (Ft)0≤t,P) be a filtered probability
space, satisfying the usual assumptions, and let S : R+×Ω → Rd be a càdlàg locally
bounded, adapted process. We suppose that the set Me = {Q | Q probability Q ∼
P , S is a Q local-martingale} is non-empty. This is equivalent to the condition
“NFLVR”. Since S is locally bounded, the closure of the set Me is the closed
convex set of absolutely continuous local martingale measures for S. The space
W = {(H ·S)∞ | H ·S bounded}. is a weak* closed subspace of L∞. The analysis
in [3] also shows that the set A = {f + h | f ∈W,h ≥ 0} is a weak∗ closed convex
cone and that f ∈ A if and only if for all Q ∈ Ma we have EQ[f ] ≥ 0. In other
words m(X) = inf{EQ[X ] | Q ∈ Ma}.

Now we will use two coherent utility functions. One is defined through a convex
closed set of probability measures P and is denoted by u. The other one is defined
by the set Ma of absolutely continuous risk neutral measures of a locally bounded
d-dimensional price process S. The economic agent is interested in the quantity
ũ(X) = sup{u(X + Y ) | Y ∈ W} = u0(X) = u�m(X). It has the Fatou property
as soon as P is weakly compact. In general this is not true as we now describe.
There are two independent Brownian motions describing the source of uncertainty.
The filtration is the natural filtration coming from B = (B1, B2), where B is a
standard 2-dimensional Brownian motion. The time interval is restricted to [0, 1]
and the measure P is risk neutral (this to simplify notation). The movement
of S = (S1, S2) is given by dS1

t = dB1
t and dS2

t = dB1
t + εt dB

2
t , where ε is a

deterministic function, rapidly decreasing to zero as t → 1, e.g. εt = exp(− 1
1−t

).
We denote by Ma

1 and Ma
2 the absolutely continuous probability measures that
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turn resp. S1 and S2 into a local martingale. The utility functions are denoted by
resp. m1 and m2. Both have the Fatou property. The closures of the sets Ma

1 and
Ma

2 in ba are denoted by resp. Pba
1 and Pba

2 . We can show that Ma
1 ∩ Ma

2 = {P}
but that Pba

1 ∩ Pba
2 6= {P}. This means that m1�m2 does not have the Fatou

property.
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Local time-space stochastic calculus for reversible semi-martingales

Nathalie Eisenbaum

Consider a semimartingale (Xt, t ≥ 0) and a deterministic function F (x, t) from
R× [0,∞) to R. To develop F (Xt, t) according the classical Itô formula, we would
need to assume that F is in C2. Here we are looking for minimum assumptions
on F to develop F (Xt, t).

We start by assuming that F admits Radon-Nicodym derivatives with respect
to x and t. Under the required integrability conditions on ∂F

∂x
and ∂F

∂t
, we know

the existence of the expression

F (Xt, t) − F (X0, 0) −

∫ t

0

∂F

∂t
(Xs, s)ds−

∫ t

0

∂F

∂x
(Xs, s)dXs.

Now assume that the semi-martingale X satisfies the two following conditions:

(1) the process (X(1−t)−, 0 ≤ t < 1) is a semi-martingale too

(2)
∑

0≤t≤1 |∆Xt| <∞

we can then construct a stochastic integration of deterministic functions with
respect to (Lx

t , x ∈ R, 0 ≤ t ≤ 1) the local time process of X and show that for
t ≤ 1 the above expression actually coincides with

−
1

2

∫ t

0

∫

R

∂F

∂x
(x, s)dLx

s .

That way we obtain an Itô formula from which many known Itô formulas (such
as Bouleau and Yor’s formula, Föllmer Protter and Shiryaev’s formula, Peskir’s
formula, Russo and Valois formula, ... ) can be derived at least in the case of a
Lévy process satisfying condition (2).

In view of the recent works of Elworthy, Truman and Zhao, and Ghomrasni and
Peskir, it seems natural to conjecture that this generalized Itô formula involving
local time-space stochastic integrals should remain true without the two conditions
(1) and (2).
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A useful extension to Itô’s formula with applications to optimal

stopping

Markus Jaeger

Given a continuous semimartingale M = (Mt)t≥0 and a continuous process of
locally bounded variation V = (Vt)t≥0, the Itô formula states that

f(Mt, Vt) − f(M0, V0) =

∫ t

0

∂

∂x
f(Ms, Vs) dMs +

∫ t

0

∂

∂y
f(Ms, Vs) dVs

+
1

2

∫ t

0

∂2

∂x2
f(Ms, Vs) d〈M〉s

for any function f ∈ C2,1(R2). This formula is very useful when solving various
optimal stopping problems arising, for instance, from Mathematical Finance, but
typically with a function f whose first partial derivative is only absolutely con-
tinuous with respect to the first component. We prove that this formula remains
true for such functions and give an application by the following example.

Let S = (St)t≥0 be a price process of an asset given by St = eXt , t ≥ 0, where
X = (Xt)t≥0 is a spectrally negative Lévy process. Consider the stopping problem

v∗(x) = sup
τ
Exe

−rτ max{K,Sτ},

r > 0, K > 0. The supremum is taken over all a.s. finite stopping times τ . This
problem was considered in [3] where (St)t≥0 is a geometric Brownian motion. We
obtain the optimal stopping strategy and determine an explicit formula for v∗ by
combining the extended Itô formula with some properties of spectrally negative
Lévy processes which can be found in [2].
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Optimal Stopping. Preprint

[2] Avram, F., Kyprianou, A.E. and Pistorius, M.R.: Exit Problems for Spectrally Negative
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Some remarks on first passage of Lévy processes, the American put

and pasting principles

A. E. Kyprianou

(joint work with L. Alili)

Let X = {Xt : t ≥ 0} be a Lévy process defined on filtered probability space
(Ω,F , {Ft},P) satisfying the usual conditions. For x ∈ R denote by Px (·) the
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law of X when it is started at x and write simply P0 = P. We denote its Lévy-
Khintchine exponent by ψ i.e. E[eiθX1 ] = exp{−Ψ(θ)}, θ ∈ R. Now, consider the
following optimal stopping problem

(1) v (x) = sup
τ∈T0,∞

Ex

[

e−rτ (K − eXτ )+
]

where K > 0, r ≥ 0 and T0,∞ is the family of stopping times with respect to
{Ft : t ≥ 0}. Establishing the optimal value and strategy in (1) is closely related
to the pricing and exercise strategy of an American put option in an incomplete
Black-Scholes type markets driven by Lévy processes (see Schoutens (2003) or
Cont and Tankov (2004)). For this reason we refer to (1) as the American put

optimal stopping problem.
In a number of numerical simulations and theoretical calculations for specific

choices of Lévy processes, various authors have found that the American put opti-
mal stopping problem is solved in the same way as for the case that X is a scaled
Brownian motion with drift (the Black-Scholes market). Namely by a strategy of
the form

τ∗ = inf{t ≥ 0 : Xt < x∗}

for a specific value x∗ < logK so that

v (x) = KEx

[

e−rτ∗

]

− Ex

[

e−rτ∗+Xτ∗

]

thus linking the American perpetual put optimal stopping problem to the first pas-
sage problem of a Lévy process. See Gerber and Shiu (1994), Chan (1999, 2003),
Mordecki (1999, 2002), Avram et al. (2002), Asmussen et al. (2003), Boyarchenko
and Levendorskii (2002), Hirsa and Madan (2002), Matache et al. (2003) and Al-
mendral and Oosterlee (2003). Notably Mordecki (2002) handles the case when X
is a general Lévy process.

A simple identity concerning a general first passage time of the form

τ−y = inf{t ≥ 0 : Xt < y}

where y ∈ R is as follows. For all α, β ≥ 0 and x ≥ 0 we have

E

[

e
−ατ−

−x
+βX

τ
−

−x 1(τ−

−x
<∞)

]

=
E

[

eβX
eα 1(−X

eα
>x)

]

E
[

eβX
eα

] .

We show how this identity can be used to show using a principle of variation that
the optimal stopping problem (1) is solved in such a way that there is smooth
pasting at the optimal threshold x∗ if and only if the point 0 is regular for (−∞, 0)
for X .
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Integro–partial differential equations in a market driven by geometric

Lévy processes: theoretical aspects and numerical approximation

Claudia La Chioma

The aim of this lecture is to present some analytical and numerical results, recently
obtained in the framework of my Ph.D.thesis [9] which concerns viscosity solutions
to integro-differential problems arising in Mathematical Finance when derivatives
are valuated in a market driven by general jump-diffusion processes.

When analyzing financial data it comes out that the prices process are not
continuous, as it is commonly assumed, see [6], but they can jump: in particular
jumps become more visible as one samples the path more frequently, making the
assumption of high or infinite jump frequencies plausible. This approach is based
upon a Lévy modeling of the prices of the asset [11, 12] and gives a better fit to
real-life data, see [10]. In view of these considerations, the prices of the stocks
are modeled in terms of exponential Lévy models, the choice of a particular Lévy
process standing in the choice of its distribution. The discontinuous feature of Lévy
processes has important consequences on the description of financial markets for
what concerns the assumption of completeness of the market itself, see [5]. Using
Ito’s calculus [8, 13] we can derive a nonlinear integro–partial differential problem
to get the price of a prescribed financial product.

In this lecture we shall discuss a new comparison principle for unbounded semi-
continuous viscosity sub- and supersolutions for this kind of equations, in the case
of geometric Lévy process, see [1, 2, 4]. As a consequence of the “geometric form”
of the underlying processes, the comparison principle holds without assigning spa-
tial boundary data. Applications of this result will be presented for: (i) backward
stochastic differential equations, (ii) Merton problem, (iii) pricing of European and
American derivatives via backward stochastic differential equations.
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Despite presenting a great resemblance to real markets, which is appealing for
practitioners, this problem is nonlinear and does not have a closed form solution.
To overcome this difficulty a useful tool is given by numerical approximations,
which makes possible to deal with more complicated nonlinear problems.

Starting from the fundamental result by Barles and Souganidis [3] we shall
show convergence for monotone, stable, consistent schemes approximating integro-
differential parabolic problems with bounded and unbounded Lévy measures, see
[7].
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Pricing American options under Lévy driven assets

A.-M. Matache

In asset pricing, models beyond the classical Black-Scholes (B-S) have been pro-
posed for the stochastic dynamics of the risky asset: we mention only stochastic
volatility models and ‘stochastic clocks’. The former lead to multivariate gener-
alizations of the B-S equation with stochastic volatility, whereas the latter lead
to so-called jump-diffusion price processes: the Wiener process in the B-S model
is replaced by a Lévy process (see e.g. [2, 1]). Originally, jumps in risky assets’
log-returns have been modeled as finite intensity processes, i.e in any finite time
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interval only a finite number of large jumps occur. In the early 90ies, however, pro-
cesses with infinite jump intensity and no diffusion component have been proposed
as models for the log-returns. We mention here the Variance Gamma (VG) and the
extended Koponen family (also referred to as KoBoL [1], temperated or truncated
tempered stable processes and later used in [2] under the name of CGMY-model).
All these processes, together with the B-S model, are Markov processes of Lévy
type, or Lévy processes for short. Since their introduction, empirical evidence for
their superiority over B-S in modelling observed returns has been gathered (e.g.
[2]).

For pricing European Vanilla contracts on assets with Lévy price processes, the
translation invariance of the process’ infinitesimal generator implied by stationar-
ity and explicitly available characteristic functions allow to apply Fourier-Laplace
transformations for the numerical pricing. For American style contracts on assets
with Lévy price processes, the analytical tool of Wiener-Hopf factorization allows,
at least for infinite horizon problems, to derive semi-analytical solutions. These
approximate, analytical methods, however, are not directly applicable to time-
dependent or local volatility models where stationarity and, hence, translation
invariance are absent.

Here we discuss the analysis and implementation of fast, convergent determin-
istic pricing schemes for American style contracts on assets driven by a class of
Markov processes which contains, in particular, Lévy processes. Our approach
presented in [3] is based on a multilevel finite element solution of the parabolic
variational inequality formally associated with the optimal stopping problem for
these processes. This inequality involves the Dynkin operator of the semigroup
generated by the price process which, for the processes under consideration, is an
integro-differential operator with possibly nonintegrable kernel stemming from the
process’ jump measure.

We discretize the variational integro-differential inequality by ‘Canadization’,
or backward Euler, in time and by a piecewise linear, continuous wavelet Finite
Element basis in the (logarithmic) price variable. This basis has two advantages:
i) it allows to ‘compress’ the dense and ill-conditioned moment matrices due to
the nonlocal infinitesimal generator of the process to sparse, well-conditioned ones
while not affecting the accuracy of the computed prices and ii) the wavelet basis
allows to precondition the iterative solver for the associated Linear Complemen-
tarity Problems (LCPs) in each time step.

The resulting algorithm allows the deterministic pricing of American style con-
tracts on assets for which the log price process is a general Markovian jump-
diffusion price process that may exhibit infinite jump activity and has possibly
nonstationary increments. It moreover allows for general, non-monotonic and
non-smooth pay-off functions, in particular for ‘butterfly’ and compound options
with an American style early exercise feature.

Our approach does not impose any pasting condition a-priori and, indeed, our
numerical experiments demonstrate failure of the smooth pasting condition for
certain pure jump processes of bounded variation.



Local Time-Space Calculus with Applications 1359

References

[1] S. Boyarchenko, S. Levendorski, Non-Gaussian Merton-Black-Scholes theory, World Scien-
tific, New Jersey, London, Singapore, Hong Kong 2002.

[2] P. Carr, H. Geman, D.B. Madan, The Fine Structure of Asset Returns: An Empirical

Investigation, Journal of Business 2002.
[3] A.-M. Matache, P.A. Nitsche, C. Schwab, Wavelet Galerkin pricing of American options
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The uniqueness question

Carl Christian Kjelgaard Mikkelsen

Settling the uniqueness question for a particular non-linear equation can be as
troublesome as proving the existence of a solution. The aim of this note is demon-
strate that the uniqueness question can occasionally be settled by studying a linear

equation which can be derived from the original one.
We give three examples. Consider first the ordinary differential equation

(1) x′(t) = f(x(t)),

where f ∈ C1(I,R). Suppose that x, y : J → I are solutions to this equation with
the same initial condition: x(t0) = y(t0), t0 ∈ J . Then z = x− y satisfies

(2) z′(t) = g(t)z(t)

where

g(t) =

{

f(x(t))−f(y(t))
x(t)−y(t) for t ∈ J : x(t) 6= y(t)

f ′(x(t)) for t ∈ J : x(t) = y(t)

Since f is continuous differentiable and x, y are continuous, g is continuous and

z(t) = exp

(
∫ t

t0

g(s)ds

)

z(t0)

But z(t0) = 0 so x(t) = y(t) for all t ∈ J .
Next consider the non-linear heat equation

(3) ut = (a(u)ux)x = a(u)uxx + a′(u)u2
x

where a ∈ C2(I,R),. Assume that u, v : Ω → [α, β] ⊂ I are two solutions then it
can be shown that w = u− v satisfies the equation

(4) wt = a(u)wxx + a′(u)(ux + vx)wx +
(

P (x, t)vxx +Q(x, t)v2
x

)

w

where the key functions P,Q : Ω → R are defined as

P (x, t) =

{

a(u)−a(v)
u−v

∀(x, t) : u(x, t) 6= v(x, t)

a′(u) ∀(x, t) : u(x, t) = v(x, t)

and

Q(x, t) =

{

a′(u)−a′(v)
u−v

∀(x, t) : u(x, t) 6= v(x, t)

a′′(u) ∀(x, t) : u(x, t) = v(x, t)
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Now it possible to derive an uniqueness theorem for the non-linear heat equation.
It is a matter of finding a space of functions V that is so small that the linear
equation (4) has at most one solution w for all pairs u, v ∈ V .

Finally consider the optimal stopping boundary b : [0, T ] → R for the American
Put Option. It has been shown by various authors that γ(t) = K − b(t) satisfies
an integral equation of the form

(5) γ(t) =

∫ K

0

F (γ(t), t, z)dz +

∫ T−t

0

G(γ(t), γ(t+ u), u)du

for a specific pair functions F and G. If F,G did not have singularities, but were
smooth and bounded with bounded derivatives we could proceed as before, letting
u, v be two solutions and defining w = u− v. Then w would satisfy the equation

(6)

(

∫ K

0

f(t, z)dz −

∫ T−t

0

g1(t, u)du

)

w(t) =

∫ T−t

0

g2(t, u)w(t + u)du

for appropriately chosen f, g1, g2. It is now possible to place conditions on f, g1,

and g2 that will guarantee that w ≡ 0, at least in some small interval [T − δ, T ].
My efforts to extend this procedure to the full problem have not been successful.

Integration with respect to local time and self-intersection local time

of a one-dimensional Brownian motion

Joseph Najnudel

If we denote by La
t the local time at a of B, a one-dimensional Brownian motion on

[0, t], it is possible to give a meaning to
∫

f(a)daL
a
t for any locally square-integrable

function f .
During the workshop, we proved that it is possible to do approximatively the

same thing with the self-intersection local time. For any continuous function h,
the following equality holds:

∫ t

0

∫ u

0

h(Bs −Bu)dsdu =

∫

h(a)αa
t da

which defines the self-intersection local time of B. We can prove that a→ αa
t +2ta−

is derivable, with derivative denoted by βa
t . Moreover, we have, for any step

function f (with the natural definition of integration with respect to daβ
a
t ) :

∫

f(a)daβ
a
t = 2

∫ t

0

f(Bs −Bt)ds+ 4

∫ t

0

[

∫ −X(u)
u

0

f +

∫ u

0

f(−X(u)
s )dX(u)

s

]

dBu

where X
(u)
s = Bu −Bu−s (X(u) is a Brownian motion).

This formula can be used to define
∫

f(a)daβ
a
t for any locally square-integrable

function f . If f(0) is well-defined, it is also possible to give some meaning to the

expression
∫ t

0
du
∫ u

0
dsg(Bs−Bu), where g is the second derivative of f in the sense

of the distributions.
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On local time-space calculus and applications

Goran Peskir

Recent progress in free-boundary problems of optimal stopping (cf. [4] and [5]) has
been based on the following extension of Itô’s formula (cf. [3]):

F (t,Xt) = F (0, X0) +

∫ t

0

Ft(s,Xs±) ds+

∫ t

0

Fx(s,Xs±) dXs(1)

+
1

2

∫ t

0

Fxx(s,Xs±) d〈X,X〉s

+
1

2

∫ t

0

(

Fx(s, b(s)+) − Fx(s, b(s)−)
)

d`b∓s (X)

whereX = (Xt)t≥0 is a continuous semimartingale and F = F (t, x) is a continuous
function that is smooth off the given curve b = b(t). (The extension to general
semimartingales X and continuous functions F that are smooth off the given
surface b is given in [6].)

The formula (1) can be obtained by formal manipulations of the d`xt integral in
the general formula:

F (t,Xt) = F (0, X0) +

∫ t

0

DtF (s,Xs) ds+

∫ t

0

DxF (s,Xs) dXs(2)

−
1

2

∫ t

0

∫

R

Dx(s, x) d`xs

which is established by Eisenbaum [1] in the case when X is a standard Brownian
motion. Similar formulae are derived independently by Elworthy, Truman and
Zhao in [2].

The talk reviews the relevant history and explains the need for further devel-
opment of the ’local time-space calculus’.
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A problem of sequential optimal stopping times

Huyên Pham

We consider a stochastic system that may operate in different modes or regimes. In
a given mode, it yields a stream of profit depending on the state of the system. The
regimes can be switched at a sequence of stopping times decided by the operator
(individual, firm, ...). The problem is to find the optimal switching strategies that
maximize the expected net profit over time. This is formulated as a sequential op-
timal stopping times problem and studied by dynamic programming principle and
viscosity solutions theory. The resulting dynamic programming equations involve
embedded variational inequalities on the value functions. We prove smooth-fit
pasting conditions on the value functions and analyse carefully the regime switch-
ing regions. Some explicit solutions are provided.
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Calculus via regularization, weak Dirichlet processes and

time-inhomogeneous stochastic differential equations

Francesco Russo

The first part of the talk consisted in the introduction of the ‘so called stochastic

calculus via regularization started by F. Russo and P. Vallois in 1993, see [6]. Given

two processes X and Y , there was defined a forward stochastic integral
∫ t

0
Y d−X

and a covariation [X,Y ] by means of regularization procedures. This notion of
integral extends the notion of Itô integral in the non-causal classical case and
when the processes are semimartingales, [X,Y ] is the classical bracket.

Later, further developments concerning different types of Itô formula for C1-
functions f of a semimartingale S have been stated, see [7] for the continuous case
and [2] for the jump case. Clearly f(S) is not generally a semimartingale but only
a Dirichlet process, meant as the sum of a local martingaleM plus a zero quadratic
variation process A, i.e. [A,A] = 0.
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A useful generalization of Dirichlet processes was defined in [1]. A process
X is called weak Dirichlet process if it is the sum of a local martingale plus a
process A such that [A,N ] = 0 for any local martingale related to the underlying
filtration. Of course a Dirichlet process is also a weak Dirichlet process. However,
the converse is not true: typical examples for this are the following.

• A Volterra type process given by Xt =
∫ t

0
G(t, s)dMs, where M is a local

martingale and G is a continuous kernel, is a weak Dirichlet process.

• Given a continuous function u : IR+ × IR → IR, and semimartingale S,
then Xt = u(t, St) defines a weak Dirichlet process.

The third part of the talk is devoted to present a suitable framework for study-
ing time-inhomogeneous stochastic differential equations where a distributional
drift in space appears. In some cases, the drift is even allowed to be a Radon
measure in time. Examples arise from irregular medium equations and Bessel pro-
cesses. Solutions are neither semimartingales nor Dirichlet processes but only weak
Dirichlet processes. When the coefficients are time-homogeneous, the solutions are
true Dirichlet processes and the complete study was done in [3, 4].

This presentation concerns a joint work with G. Trutnau, [8]. Recent papers
can be dowloaded from http://zeus.math.univ-paris13.fr/∼russo/
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On one effective case of solution of an optimal stopping problem for

random walk

Albert N. Shiryaev

(joint work with A. A. Novikov)

We consider a class of the following optimal stopping problems:
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To find the value functions

V ∗(x) = sup
τ

E [g(Xτ )I(τ <∞)]

and optimal stopping times for functions g(x) = (x+)n, n ≥ 1, where Xk =
x+ ξ1 + · · · + ξk and (ξ1, ξ2, . . .) are i.i.d. random variables with Eξ1 < 0.

The main result: if E(ξ+)n+1 <∞, then the stopping time

τ∗n = inf{k ≥ 0 : Xk ≥ a∗n}

is optimal, a∗n is the maximal root of the equation Qn(y) = 0, where Qn(y) is

Appell’s polynomial defined from decomposition

euy

E euµ
=

∞
∑

k=0

uk

k!
Qk(y)

with µ = maxk≥0 Sk, S0 = 0, Sk = ξ1 + · · · + ξk.

For case n = 1 the corresponding result with a∗1 = Eµ was obtained by Darling,
Liggett and Taylor in [1]. We give a new proof which works for any n ≥ 1, also for

gain functions g(x) of type 1− e−x+

, (ex − 1)+. For case n = 1 Q1(y) = y−Eµ

what explains the answer a∗1 = Eµ for this case. For n = 2, 3, . . .

Q2(y) = (y − x1)
2 − κ2,

Q3(y) = (y − x1)
3 − 3κ2(y − κ1) − κ3, . . .

where κ1, κ2, . . . are semiinvariants of the random variable µ. Generally,

d

dy
Qk(y) = kQk−1(y), k ≤ n,

if E|µ|n <∞ and Q0(y) = 1.
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On stochastic heat and Burgers equations

Aubrey Truman

The inviscid limit of Burgers equation, with body forces white noise in time, is
discusses in terms of the level surfaces of the minimising Hamilton-Jacobi func-
tion and the classical mechanical caustic. Prelevel surfaces and precaustics are
introduced by using the classical mechanical flow map. When the prelevel sur-
face touches the precaustic, the geometry (number of cusps) on the level surface
changes infinitely rapidly causing what we call ’real turbulence’ (Davies, Truman,
Zhao). Using an idea of Felix Klein, it is shown that the geometry (number of
swallow tails) on the caustic allow changes infinitely rapidly when the real part
of the precaustic touches its complex counterpart at a limit point of a complex
sequence mapped into the real configuration space by classical flow map. This we
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refer to as ’complex turbulence’. These two new kinds of turbulence are inher-
ently stochastic in nature. A complex analysis of this problem is given in terms
of a reduced (one dimensional) action function. This characterizes which parts of
the original caustic are singular (cool) – an old problem in applied mathematics
relevant for our ’elementary formula’ with Elworthy and Zhao. It also determines
when this turbulence is intermittent in terms of recurrence or transience of two
stochastic processes. Infinitely many examples are given where recurrence and
intermittence follow from Strassen’s law.

Limiting laws associated with Brownian motion perturbed by weights

involving the local time process

Pierre Vallois

(joint work with B. Roynette and M. Yor)

Let (Ω, (Ft), (Xt)) be the canonical probability space equipped with the Wiener
measure P0. Let (L0

t ; t ≥ 0) be the local time process at 0, ϕ : [0,∞[7→]0,∞[ such
that

∫∞

0
ϕ(x)dx = 1.

We prove that the family of p.m. Qϕ
0,t on Ω, weakly converges as t → ∞ to QM

0 ,
where:

Q
ϕ
0,t(A) =

E0[1Aϕ(L0
t )]

E0[ϕ(L0
t )]

, QM
0 (A) = E0[1A(|Xt|ϕ(L0

t ) + 1 − Φ(L0
t ))], ∀A ∈ Ft,

and Φ(l) =
∫ l

0 ϕ(x)dx.

We are able to describe the law of (Xt) under QM
0 . More precisely, QM

0 (L0
∞ <

∞) = 1, QM
0 (0 < g <∞) = 1, with g := sup{t ≥ 0;Xt = 0}. Moreover:

• the processes (Xt; t ≤ g) and (Xt+g; t ≥ 0) are independent,

• (|Xt+g|; t ≥ 0) is distributed as a three dimensional Bessel process, started
at 0,

• conditionally to L0
∞ = l, (Xt; t ≤ g) is distributed as a Brownian motion

started at 0, and stopped when its local time at 0 equals l.

On the Itô-Tanaka formula for strictly local martingales: does it need

a correction term?

Marc Yor

(joint work with D. Madan)

D. Madan suggested recently that the price of an European option, for (St , t ≥ 0)
the price process which is only assumed to be a strictly local martingale (i.e. a
local martingale which is not a martingale) should be modified as follows: instead
of the customary C(T ;K) = E[(ST −K)+] take

(1) C∗(T ;K)
def
= lim

n→∞
E[(ST∧Tn

−K)+]
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where (Tn , n→ ∞) is a reducing sequence of the local martingale.
In my lecture, I showed that: (a) (1) is well defined; (b) there is in general a

correction term cS(σ) = E[S0 − Sσ] (σ is any stopping time) such that E[(Sσ −
K)+] = (S0 −K)+ + 1

2E[LK
σ ] − cS(σ). Integrating with respect to K, one gets a

”corrected” integrated Itô-Tanaka formula.

Generalized Itô formulae using local time and applications in

analysing asymptotics of heat equations in the presence of caustics

Huaizhong Zhao

Local time is a very useful tool in analysing partial differential equations, especially
when some singularities appear. I first presented the following generalized Itô’s
formula

f(t,X(t)) = f(0, z) +

∫ t

0

∂−

∂s
f(s,X(s))ds+

∫ t

0

∇−f(s,X(s))dXs

+

∫ ∞

−∞

∧t(x)dx∇
−f(t, x) −

∫ +∞

−∞

∫ t

0

∧s(x)ds,x∇
−f(s, x) a.s.

Here f(t, x) is a continuous function such that its left derivatives ∂−

∂t
f(t, x) and

∇−f(t, x) exist for all (t, x) and ∇−f(t, x) is of locally bounded variation in (t, x),
X(t) is a continuous semimartingale with X(0) = z, ∧t(x) is its local time and
ds,x∇

−f(s, x) is the two-dimensional Lebesgue-Stieltjes measure. When there
exists a continuous curve x = l(t) of locally bounded variation such that for each
t ≥ 0, f(t, x) is C1 in t and C2 in x for x ∈ (−∞, l(t)) and x ∈ (l(t),∞),and and
∆−f is well defined, then

f(t,X(t)) = f(0, z) +

∫ t

0

∂−

∂s
f(s,X(s))ds+

∫ t

0

∇−f(s,X(s))dXs

+
1

2

∫ t

0

∆−f(s,X(s))d < X,X >s

+

∫ t

0

(∇+f(s, l(s)) −∇−f(s, l(s)−))ds ∧
∗
s (0) a.s.

The latter formula was also observed by Peskir (2003) independently in studying
the smooth fitting problem in American put option. We then established the
stochastic elementary formula and asymptotics of heat equation in the presence of

caustic. The asymptotics was obtained by estimating Ee
1

ε2

R

t

0

R

∞

−∞
∧ε

s(a)ds,a∇S(t−s,a)

when ε→ 0 using the law of local times, where ∧ε
s(a) is the local time of diffusion

dXs = εdBs − ∇S(t − s,Xs)ds. Here S(t, x) is the Hamilton Jacobi function
which has a jump gradient due to appearance of caustics. This problem had
remained open since the work of Elworthy and Truman (1982) under a no-caustics
assumption. This formula and asymptotics has now gone beyond large deviation
theory which gives first term in the asymptotics.
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The generalized Itô formulae have now been extended to two-dimensions. This
is not a trivial extension and the stochastic Lebesgue-Stieltjes integral

∫ ∞

−∞

∫ t

0

f(s, a)ds,ah(s, a)

has been defined. Here s 7→ h(s, a) is a continuous martingale and < h(a), h(b) >s

is of locally bounded variation in (a, b).
This talk is based on the articles [1] and [2] below.
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