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Introduction by the Organisers

The mini-workshop on ”Statistical methods for inverse problems” gathered sev-
enteen people from the area of statistics and numerical analysis. The goal of
the workshop was to stimulate discussions around results and methods that are
commonly used by different scientific communities. These methods mainly concern
regularization of linear and nonlinear inverse problems in presence of deterministic
or stochastic noise.

The week was articulated around three main lectures, divided into two talks
each. Yuri Golubev (Université of Marseille) started on Monday-Tuesday morn-
ings to give an extended lecture on inverse problems from a statistical perspective.
He was quickly followed by Thorsten Hohage (University of Göttingen) who gave
lectures on Monday-Tuesday afternoon on inverse problems from a numerical anal-
ysis perspective. A third lecture was given on Wednesday-Thursday morning by

Rama Cont (École Polytechnique) who addressed the issue of inverse problems in
finance, with both deterministic and probabilistic points of view. The main talks
were completed by informal contributed talks of approximately one hour each, at
the approximate rate of two talks per day except for the mandatory walk in the
Schwarzwald, which was unfortunately canceled due to bad weather conditions
that concentrated on the only day of rest!
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Round tables were planned to follow the lectures, but the friendly and informal
atmosphere soon raised constant questions and discussions among the participants
during the lectures so that the workshop progressively moved to informal, yet in-
tense scientific discussions: particular focus was given on optimal tuning parameter
choice, stochastic or deterministic error modeling and the complexity of numerical
schemes. These discussions took place during several extended talks that skipped
the initially planned schedule, fortunately tightened by the strict meal hours of
the Oberwolfach center.

The excellent atmosphere of the mini-workshop was made possible thanks to
the exceptional working conditions at the MFO to which we would like to express
our deep gratitude.

Marc Hoffmann and Markus Reiß
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Abstracts

Near optimal approximation of arbitrary signals from highly

uncomplete measurements

Albert Cohen

The typical paradigm for obtaining a compressed version of a discrete signal rep-
resented by a vector x ∈ IRN is to choose an appropriate basis, compute the
coefficients of x in this basis, and then retain only the k largest of these with
k < N . Assuming, without loss of generality, that x already represents the coeffi-
cients of the signal in the appropriate basis, and denoting by Sk ⊂ {1, · · · , N} the
set of indices corresponding to these coefficients, the performance that we achieve
by such an approximation process, is given in the ℓp norm by the best k-term

approximation error

(1) σk(x)ℓp
:= ‖x − xSk

‖ℓp
= ‖xSc

k
‖ℓp

,

where xS denotes the vector obtained from x by setting to 0 all its component with
indices not in S. This approximation process should be considered as adaptive since
the indices of those coefficients which are retained vary from one signal to another.

The viewed expressed by the theory of compressed sensing as developped by
Candes, Romberg and Tao [5, 6] and by Donoho [8] is that it is possible to actually
compute only a few non-adaptive linear measurements and still retain the neces-
sary information about x in order to build a compressed representation. These
measurements are represented by a vector

(2) y = Φx,

of dimension n < N where Φ is the n × N measurement matrix. The recovery of
an approximation x∗ of x from these measurements is performed by an operator
∆ which we refer to as the decoder. In contrast to Φ, this operator is allowed to
be non-linear.

In recent years, considerable progress has been made concerning the possible
choices for the measurement matrix Φ and the performances of various decoders
∆ for such choices. A natural issue is to compare the performances of compressed
sensing and best k-term approximation. In [2], we adressed this issue in the
following general terms:

For a given norm X = ℓp what is the minimal value of n, for which there exists

an encoding-decoding pair (Φ, ∆) such that

(3) ‖x − ∆(Φx)‖X ≤ C0σk(x)X ,

for all x ∈ IRN , with C0 a constant independent of k and N?

We say that a pair (Φ, ∆) which satisfies property (3) is instance optimal of
order k. It was shown that the answer to the above question heavily depends on
the ℓp norm under consideration. Let us illustrate this by two contrasting results
from [2]:
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(1) In the case p = 1, it is possible to build pairs which are instance-optimal
of order k with n ≥ ak log(N/k) measurements with a a fixed constant.
Moreover the decoder that ensures ∆ may be defined as the solution of
the minimization problem

(4) ∆(y) := ArgminΦz=y‖z‖ℓ1.

These facts can also be derived from the results of Candes, Romberg and
Tao in [6]. Therefore, in order to obtain the same accuracy, the amount n of
non-adaptive measurements should only exceed the amount k of adaptive
measurements by the small logarithmic factor a log(N/k).

(2) In the case p = 2, if (Φ, ∆) is an instance-optimal pair of order k = 1,
then the number of measurement n is always larger than aN where a
is related to C0 in (3). Therefore, the needed amount of non-adaptive
measurements has to be very large in order to compete with even one
single adaptive measurement.

Therefore, instance-optimality does not seem like a viable concept in ℓ2, which is
often the measure of interest in signal processing. A more optimistic result was nev-
ertheless established by Candes, Romberg and Tao in [6]: with n ≥ ak log(N/k),

it is possible to build pairs (Φ, ∆) such that for all x ∈ IRN ,

(5) ‖x − ∆(Φx)‖ℓ2 ≤ C0
σk(x)ℓ1√

k
,

with the decoder again defined by (4). This implies in particular that k-sparse
signals are exactly reconstructed and that signals x such that ‖x‖wℓp

≤ M for
some p < 1 are reconstructed with accuracy C0Mk−s with s = 1/p− 1/2 which is
of the same order as the best estimate available on σk(x)ℓ2 for such signals.

It is also known that instance-optimality in ℓ2 can be recovered if one accepts
a probabilistic statement in which Φ is a random matrix-valued variable. A first
result in this direction, obtained by Cormode and Mutukrishnan in [4], shows how
to construct a random matrix Φ with n ∼ k(log N)5/2 measurements and a decoder

∆ such that for any x ∈ IRN ,

(6) ‖x − ∆(Φx)‖ℓ2 ≤ C0σk(x)ℓ2

with overwhelming probability (larger than 1 − ε(n) where ε(n) tends fastly to 0
as n → +∞).

In [2], we introduced a probabilistic criterion on Φ which ensures instance op-
timality in the above sense. In addition to the result of [4], this approach allowed
us on the one hand to consider fairly general classes of random matrices (such as
Gaussian and Bernoulli) and on the other hand to reduce the number of needed
measurements down to n ∼ k log(N/k). However, the decoder which was proposed
in [2] was defined by minimizing ‖x−Φx‖ℓ2 over all k-sparse vectors, a task which
cannot be achieved in any reasonable computational time.

In [9], Gilbert and Tropp proposed to use a greedy procedure, known as Orthog-
onal Matching Pursuit (OMP) algorithm, in order to define ∆(y). The algorithm
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can be described as follows : denoting by (φi)i=1,··· ,N the columns of the matrix
Φ, we first define

(7) j1 := argmaxj=0,··· ,N〈y, φj〉,

and approximate y by its projection y1 := zj1φj1 with zj1 := 〈y, φj1〉/‖φj1‖2.
At the step i of the algorithm, we have defined a set of indices {j1, · · · , ji} and

yi =
∑i

l=1 zjl
φjl

denotes the orthogonal projection of y onto Span{φj1 , · · · , φjl
}.

The new index is defined by

(8) ji+1 := argmaxj=0,··· ,N 〈ri, φj〉,

where ri := y − yi is the residual. The components (zj1 , · · · , zji
) define a sparse

approximation to x that we denote by xi and which is supported by {j1, · · · , ji}:
(9) xi

j = zj, if j ∈ {j1, · · · , ji}, 0 otherwise.

The following striking result was proved in [9] for fairly general classes of random
matrices (such as Gaussian and Bernoulli): under the condition n ≥ ak log N , for
all k-sparse vector x, the OMP algorithm returns exactly xk = x after k iterations,
with probability greater than 1 − N−b where b can be made arbitrarily large by
taking a large enough.

Very recently [3], we have proved that the OMP is not only a valid strategy
for the recovery of k-sparse vectors, but also for arbitrary N -dimensional vectors,
in the sense that these can be recovered up to the accuracy of best k-term ap-
proximation. In other words, for such general vectors, the decoder defined by the
application of the OMP algorithm on the data y satisfies with high probability the
property (6) of instance-optimality in ℓ2.

It is interesting to remark that for general dictionaries, the OMP algorithm is
known to converge slowly: its approximation error ‖y−yk‖ can at best be bounded
by k−1/2 (see [7] and [1] for a general discussion on the rate of convergence). In
the present setting, its improved convergence properties are strongly tied to the
probabilistic properties of Φ.

More specifically, our main result, which we state below, relies on three prop-
erties of the matrix Φ
(P0) : the columns of Φ are statistically independent.

(P1) : for any x ∈ IRN , we have Prob{|‖Φx‖2
ℓ2

− ‖x‖2
ℓ2
| ≥ δ‖x‖2

ℓ2
} ≤ b1e

−c1nδ2

,
where b1 and c1 are absolute constants.
(P2) : for any z ∈ IRn, we have Prob{|〈z, φl〉| ≥ δ‖z‖ℓ2} ≤ b2e

−c2nδ2

, where b2

and c2 are absolute constants.
The validity of (P1) and (P2) can be proved for various classes of random matrices
such as Gaussian and Bernoulli.

Theorem 1. There exists a fixed constant C0 > 0 such that if the random matrix

satisfies (P0), (P1) and (P2), then the vector x∗ = x2k obtained after 2k iterations

of the OMP algorithm satisfies

(10) ‖x − x∗‖ℓ2 ≤ C0σk(x)ℓ2 ,
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with probability larger than 1 − ε where

ε = (3+4kN)b1e
−c1n+(4k2+2kN)b2e

−c2n/k+2kNb2e
−c2

n
288k +b1e

−n
c1
16

+3k[log( 4N
k

)].

As a consequence, for all b > 0, there exists a > 0 such that (10) holds with

probability larger than 1 − N−b provided that n ≥ ak log N .
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Inverse problems in Option pricing

Rama Cont

In these lectures we describe some nonlinear inverse problems which arise in the
context of option pricing models in finance and discuss various – deterministic
and stochastic – algorithms for solving them. The contents of these lectures are
summarized in [7].

Calibration of option pricing models: setting and examples. Option pric-

ing problems involve the computation of the expectations Ci = EQ[Hi] of various
functionals Hi = hi(Xt, t ∈ [0, T ]) of a given martingale (Xt)t∈[0,T∗], the risk-
neutral price process. This is a well-posed problem whose solution typically in-
volves numerical quadrature (Fourier/Laplace transforms), numerical solution of
PDEs/ integro-differential equations or Monte Carlo simulation methods. The as-
sociated inverse problem – called the model calibration problem in finance – is to re-
cover the unknown law (martingale measure) Q from observations C∗ = (C∗

i , i ∈ I)
of option prices observed with some noise δ: |C∗

i − Ci| ≤ δ. Typically, one ob-
serves call option prices, for which Hi = (XTi

−Ki)
+ and the unknown probability

measure Q is assumed to have some structure e.g. describe the law of a diffusion
process, a Lévy process or more generally, a Markov process solution of a stochas-
tic differential equation. The direct (pricing) problem then corresponds to the
solution F (θ) of a well-posed parabolic PDE, integro-differential equation, or free
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boundary problem where the operator involves an (unknown) coefficient θ which
belongs to a subset E of Rd, a functional space or a space of measures. The calibra-
tion problem F (θ) = C∗ involves the inversion of the nonlinear parameter-to-price
map F : E → RI and is typically ill-posed.

In some limiting cases where a continuum of data is assumed to be observed,
exact inversion formulas can be obtained: an example is the Dupire formula [16].
But, beyond such special cases, numerical methods are needed to solve the inverse
problem. The main issues are the precision of the calibration (output error) and
the stability of the solution with respect to the inputs.

Nonlinear least squares and regularization methods. Even in special cases
where exact inversion formulas are available, the inverse lacks continuity. Also,
due to observational noise, it is not a good idea to fine-tune the model parameters
to match the observations exactly. For these reasons one often reformulates the
problem in a least-squares sense: the minimization over θ ∈ E of the in-sample
calibration error G(θ) = ‖C∗−F (θ)‖2. In all models of interest, the resulting error
function(al) G(.) is nonconvex and may exhibit many global/local minima, which
renders the computation of such least-squares solution difficult and unstable.

Regularization schemes have been used to overcome this problem. In the case
of diffusion models, we have an inverse problem for a parabolc PDE, where the
parameter is an unknown functional diffusion coefficient belonging to a suitable
Sobolev/Hölder space and Tikhonov regularization methods have been succussfully
employed [13, 17]. A Tikhonov regularization method is used in [1] to solve an
inverse free-boundary problem related to the calibration of American options. In
the case of exponential Lévy models, the unknown parameter is a positive measure
–the Lévy measure– describing the jumps of the process: Tikhonov regularization
[10] and regularization methods based on relative entropy [12, 11] have been stud-
ied for these problems. Belomestny & Reiß [4] propose a spectral regularization
method based on a linear reparametrization of the problem. Different regulariza-
tion methods lead to different solutions: Tikhonov regularization approximates
the least-squares solution with smallest norm while entropy regularization selects
the minimum-entropy least squares solution.

The numerical solution of the resulting optimization problem is usually done by
using gradient-based optimization methods, which leads to two issues. One is the
efficient computation of the gradient / Fréchet derivative of the regularized func-
tional: this is usually done by solving, at each iteration step, an auxiliary PDE/
boundary value problem [13, 10]. Also, the regularized functional is still not con-
vex so uniqueness of the regularized solution and convergence of gradient-based
methods are not obvious. Finally, these methods yield a single set of model param-
eters calibrated to market data and ignore the non-uniqueness i.e. the uncertainty
in the solution, which is an important issue in option pricing [8].

Statistical approaches: exploring model uncertainty. Viewing the solution
of the inverse problem as an estimator i.e. a random variable, allows to design
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stochastic algorithms which can be used not only to construct solution(s) but also
to assess the uncertainty inherent to the solution of the inverse problem.

A first approach is to solve the nonlinear least-squares problem using a stochas-
tic particle algorithm [5] to minimize the in-sample pricing error. This algorithm
allows for multiple global minima and which generates a random sample from
the set of global minima. Starting from an IID population of candidate solutions
drawn from a prior distribution of the set of model parameters, the population of
parameters is updated through cycles of independent random moves followed by
“selection” according to pricing performance. Using techniques proposed by [15]
we exhibit conditions under which such an evolving population converges to a sam-
ple of solutions for the inverse problem. The heterogeneity of the obtained sample
can then be used to quantify the degree of ill–posedness of the inverse problem
and compute the impact of model uncertainty [8]. The algorithm is applied in [5]
to the case of a diffusion model, where one aims at retrieving a functional diffu-
sion coefficient from a finite set of option prices: we discuss some implementation
details and illustrate the performance on simulated and real data sets of index
options.

In the last part of the lecture, we propose a probabilistic construction of a solu-
tion to the inverse problem, based on a method studied by Dacunha-Castelle and
Gamboa [14]. Starting from a prior distribution on the parameters of a model and
a set of observed option prices, we construct the unknown probability measure Q

as a random mixture of (candidate) martingale measures generated from a prior
parametric model [9]. The resulting estimator of the unknown pricing measure is
a random martingale measure, whose expectation yields an arbitrage-free pricing
rule consistent with the observed option prices and whose dispersion properties
can be used to quantify model uncertainty. We describe a Monte Carlo algorithm
for computing prices under this rule and characterize the limit behavior of the al-
gorithm, which is shown to possess a dual interpretation in terms of minimization
of “model risk”. This construction only involves a well-posed unconstrained mini-
mization of a convex function, easily performed with gradient-based methods. The
resulting algorithm can be seen as a dynamic arbitrage-free version of Avellaneda
et al.’s Weighted Monte Carlo algorithm [3], applicable to a wide range of pricing
models and products. This approach yields a posterior distribution, instead of a
single price, for exotic options and allows to simulate a sample from this posterior
distribution. As an example, we compute the posterior distribution for a barrier
option given a set of European calls and puts, in a stochastic volatility model with
jumps.
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nance and Stochastics, Vol. 10 No. 4, 449-474.

[5] Ben Hamida, S. & Cont, R. (2004) Recovering volatility from option prices by evolutionary
optimization, Journal of Computational Finance, Vol. 8, No. 3, 43-76.

[6] Coleman T., Li & Verma, A. (1999): Reconstructing the unknown volatility function, Jour-
nal of Computational Finance, Vol. 2, Number 3, 1999, 77-102.

[7] Cont, R. (2007) Inverse problems in option pricing, forthcoming in Statistics and Decisions.
[8] Cont, R. (2006) Model uncertainty and its impact on the pricing of derivative instruments,

Mathematical Finance, Vol. 16, No. 3 (July 2006), 519–547.
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Error controlled regularization by spectral projection for a class of

severely ill-posed problems

Wolfgang Dahmen

(joint work with Markus Jürgens)

This lecture is concerned with numerical concepts for the regularized solution
of severly ill-posed problems represented by the following somewhat simplified
setting. Given a Hilbert space X and a linear operator A with domain D(A) ⊂ X ,
the solution to the initial value problem

u̇ + Au = 0, u(0) = u0,

is, under suitable assumptions on A, given by S(u0)(t) = e−tAu0. Although much
of what follows can be generalized we confine the discussion for simplicity here to
the case that A is a symmetric positive definite operator that is actually H-elliptic
for some Hilbert space H that is compactly embedded in X . A guiding example
is X = L2(Ω), Ω a (sufficiently well behaved) domain in Rd, H = H1

0 (Ω), the
Sobolev space of L2-functions with first order weak derivatives in L2 and vanish-
ing trace on the boundary ∂Ω of Ω, and Au = div(a∇u) where a is a unformly
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positive definite matrix on Ω. This corresponds to a heat diffusion process. In
order to infer from a current temperature distribution back to the initial value u0

one has to “invert” the compact operator S which is a severly ill-posed problem,
due to the typically exponentially decaying spectrum. The difficulties of contriv-
ing good regularization strategies are closely interrelated with the typically heavy
computational demands when solving such problems numerically. One of the ob-
structions to be confronted are the following. One typically discretizes first the
forward problem which means to replace the operator A by some finite dimen-
sional approximation Ah. A spectral cut-off regularization (essentially of e−tAh)
is typically prohibitively expensive when dealing with problems in several space
dimensions. Tikhonov regularization suffers from a low qualification and requires
the solution of increasingly ill-conditioned problems when the regularization pa-
rameter decreases. When resorting to iterative methods, which is unavoidable
for large scale problems, one has to carry out therefore an increasing number of
applications essentially of etAh which is not sparse in typical representations.

Therefore, we focus here on a different strategy that exploits the semigroup char-
acter of the solution operator S = e−tA, see [2, 3, 4]. It is based on regularizing
first the infinite dimensional problem by a spectral projection scheme. However,
in the present approach we avoid the explicit use of the corresponding eigenfunc-
tions which would be available only in very special cases and whose computation
would in general be far too expensive. Instead we employ certain Dunford integral
representations of these projections where the choice of curves requires only some
estimates for the gaps in the spectrum of A. The numerical scheme consists then
of applying such projections within a given accuracy tolerance depending on the
(deterministic) noise level. The ability to do so in an efficient way hinges on two
pillars. (i) For sufficiently regular curves the trapezoidal rule yields exponential
convergence rates for the approximate evaluation of the Dunford integral. (ii) At
each quadrature node the resolvent operator has to be applied within a suitable ac-
curacy tolerance which means that one has to solve a boundary value problem for
each node which can be done in parallel. Moreover, in contrast to S, these shifted
versions of A can be preconditioned efficiently independent of the regularization
level. For instance, one can use recent adaptive wavelet methods to solve these
problems within certain asymptotically optimal complexity bounds [1]. Thus, reg-
ularization and discretization is separated so as to minimize the computational
effort needed to realize an ideal regularization strategy on the infinite dimensional
level within a suitable tolerance. Using results about the complexity of the under-
lying wavelet schemes we conclude with a first assessment of the computational
cost expressed in terms of the (deterministic) noise level.

References

[1] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods II - Beyond the elliptic case,
Foundations of Computational Mathematics, 2 (2002), 203–245.

[2] W. Dahmen, M. Jürgens, Error controlled regularization by projection, ETNA, 26 (2006).
[3] M. Jürgens, A Semigroup Approach to the Numerical Solution of Parabolic Differential

Equations, PhD thesis, RWTH Aachen, 2005.



Mini-Workshop: Statistical Methods for Inverse Problems 3069

[4] M. Jürgens, Adaptive application of the operator exponential, J. Numer. Math., Special
Issue on Breaking Complexity: Multiscale Methods for Efficient PDE Solvers, (3)14 (2006),
217–246.

Spectral methods for estimating change–points in inverse problems

Alexander Goldenshluger

Change-point estimation and detection is one of most important tasks of statistics
and as such it retained much attention of statistical and signal processing com-
munity. This problem is also well represented in the literature on nonparametric
regression estimation. The literature mostly focuses on the models with direct
observations. In particular, [2] considered minimax estimation of the change-point
in function f observed in Gaussian white noise of level ǫ. A remarkable result
in [2] states that the minimax risk over the class of functions having a single
change-point and satisfying the Lipschitz condition away from the change-point is
ǫ2, while the minimax rate for the sequential (Markov) estimator is ǫ2 ln ǫ−1. In
the problems of sequential estimation of a change-point in the signal, or in its first
derivative, precise asymptotic expressions for the minimax risk have been obtained
in [1]. It has been proved there that minimax rate of sequential estimation of the
change-point in the first derivative is (ǫ2 ln ǫ−1)1/3. The problem of change–point
estimation from indirect observations is much less studied. We menition only [3]
who derived the minimax rates of convergence for change-point estimation in the
density convolution model.

In this paper we propose a unified framework to change–point estimation in
inverse problems. We show that estimation of the change–point and the jump
amplitude can be reduced to the problem of recovering the frequency and the
amplitude of a complex harmonic oscillation in the presence of random noise and
a deterministic nuisance. To be more precise, consider the following sequence space
model

yk = a exp(2πikθ) + gk + ǫσkξk, k ∈ N,

where g = (gk) ∈ CN is an unknown nuisance sequence, σ = (σk) ∈ CN is a given
sequence, and ξ = (ξk) ∈ CN is a sequence of independent standard complex-
valued normal random variables.We demonstrate that this model includes many
problems of change–point estimation in the periodic setups. Then we concentrate
on the study of theoretical accuracy limitations in estimating θ and a, and de-
velop corresponding rate-optimal procedures. Our frequency domain estimation
technique is closely related to spectral analysis of time series and frequency estima-
tion. We also develop adaptive procedures that do not require prior information
on the regularity deterministic nuisance component g.
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On inverse problems from a statistical perspective

Yuri Golubev

These lectures deal with a classical problem of recovering an unknown vector
θ = (θ(1), . . . , θ(n))⊤ ∈ Rn from the noisy data

(1) Y = Aθ + ǫ,

where A is a n × n-matrix, ǫ ∈ Rn is a white Gaussian noise with an unknown
variance σ =

√
Eǫ2(k). The size n is assumed to be large.

Spectral regularization. The main goal in spectral regularization methods is
to suppress high frequency components in the Moore-Penrose inversion

θ̂ = (A⊤A)−1A⊤Y.

A typical spectral regularization [5] has the form θ̂α = Hα((A⊤A)−1)θ̂, where
Hα(z) is an analytic function such that

lim
α→0

Hα(z) = 1, lim
z→∞

Hα(z) = 0.

As a rule, the choice of Hα(·) is a compromise between numerical complexity
and statistical performance of the method. Form a statistical viewpoint, the best
Hα is provided by the Pinsker theorem [7]. Popular practical methods include
the spectral cut-off, the Tikhonov regularization, the Landweber iterations, ν -
method (see [5]). The main advantage of spectral methods is that they represent
the operator in the sparsest form. On the other hand, there is no guarantee that
these methods provide a sparse representation of the underlying vector.

Regularization with the help of the DWT. This regularization can be viewed
as a compromise between sparse representation of the underlying vector and the
operator. The discrete wavelet transform (DWT) is a matrix W such that WW⊤ =
I. The principal property of this transform is that Wx and W⊤x may be computed
in Cn times. In order to motivate DWT regularization methods, it is assumed that
x = Wθ is a sparse vector. To provide a sparse representation of A, the DWT is
used twice, namely we make the following linear transformation of Y = Aθ + ǫ →
Z = WAW⊤x + ǫ′, where ǫ′ is a new white Gaussian noise. Thus the initial
problem is reduced to recovering x from Z. Since x is assumed to be sparse, to
estimate it, we may use the following soft thresholding estimator

x̂α = argmin
x∈Rn

{
‖Z − WAW⊤x‖2 + α

n∑

k=1

|x(k)|
}

.
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The difficulty of this method is related to its numerical complexity. In order to
improve this drawback Candès and Tao in [3] proposed to use the so-called Dantzig
selectors. This method is given by

x̂α = argmin
x:‖Z−WAW⊤x‖∞≤1/α

n∑

i=1

|x(i)|,

where ‖y‖∞ = maxk |y(k)|.
If the columns of WAW⊤ are nearly orthogonal, one may use a very fast opti-

mization method based on a confidence set for x. For given u ∈ R1 and integer k
denote

R(u, k) = {x ∈ Rn : x(k) = u}
Let

Ah(k) =
{

u ∈ R1 : inf
X∈Rn

‖Y − WAW⊤X‖2 − inf
X∈R(u,k)

‖Y − WAW⊤X‖2 ≥ log(h)
}

and

Ah =
{

x ∈ Rn : x(k) ∈ Ah(k), k = 1, . . . , n
}

Then the soft thresholding may be computed as a solution of the banal optimiza-
tion problem

x̂h = argmin
x∈Ah

n∑

i=1

|x(i)|.

Empirical risk minimization. When a regularization method is used, the prin-
cipal issue is related to the data-driven choice of a smoothing parameter. For
instance, for the spectral regularization

θ̂α = Hα[(A⊤A)−1](A⊤A)−1A⊤Y, with H0[(AA⊤)−1] = I

the issue is to find α̂(Y ) that minimizes E‖θ − θ̂α̂(Y )(Y )‖2 uniformly in θ ∈ Rn.
This problem goes back to [1], and nowadays it is cornerstone in statistics [2]. To
construct α̂(Y ), one usually relies on the following heuristic arguments. First of

all the distance ‖θ̂0 − θ̂α̂‖ should be small, since if there is no noise, we obviously

take θ̂0. On the other hand, ‖Y − Aθ̂α̂‖ should not be large, since we want that
the estimator fits good the statistical model. Therefore is seems natural to take

α̂ = argmin
α

{
ERPen(Y, α)

}
,

where

ERPen(Y, α) = ‖θ̂0 − θ̂α‖2 + Pen(α)‖Y − Aθ̂α‖2 − σ2
n∑

k=1

λk

is called empirical risk associated with the penalty function Pen(α). The choice
of this function is very important from a statistical viewpoint. Heuristically, we
are looking for a ’minimal’ function Pen(α) such that uniformly in θ

E‖θ − θ̂α̂‖2 ≤ EERPen(Y, α̂)(2)
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Once such a function has been found, the evaluation of the risk becomes immediate
since

EERPen(Y, α̂) ≤ inf
α

EERPen(Y, α).

Unfortunately, the computation of a good penalty is a very delicate problem (see,
for instance, [4]). Therefore we focus on the so-called lower penalty approach. Its
mitivation is based on the following remark: for any given α there exists θα such
that the probability distribution of α̂ is degenerate. If so, the condition 2 can be
rewritten as

E‖θ − θ̂α‖2 ≤ EERPen(Y, α) for any θ ∈ Rn.

It is not difficult to check with a simple algebra that the above equation results in

Pen(α) ≥ Pen(α) = 2

n∑

k=1

λkhα(λk)

/
n∑

k=1

[1 − hα(λk)
]2

.

In what follows it is assumed that smoothers Hα(λ) are ordered (see [6]) i.e.:
♦ for all α, λ, 0 ≤ Hα(λ) ≤ 1
♦ Hα1

(λ) ≥ Hα2
(λ), for all α1 ≤ α2 and all λ > 0.

Standard examples include the Tikhonov regularization, the spectral cut-off meth-
od, the Landweber iterations, the Pinker smoothers.

Theorem 2. Suppose that there is κ < 1 such that

max
k

λkH2
α(λk) ≤ 2λ1

[ 1

λ1

n∑

k=1

λkH2
α(λk)

]κ

,

Then for some Cκ > 0, uniformly in θ ∈ Rd

E‖θ − θ̂α̂‖2 ≤ R(θ) + Cκλ1σ
2

[
R(θ)

λ1σ2

](1+κ)/2

+ Cκλ1σ
2,

where R(θ) = infα EERPen(Y, α).
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On inverse problems from a numerical analysis perspective

Thorsten Hohage

(joint work with Axel Munk)

This lecture is concerned with the solution of ill-posed operator equations in the
presence of deterministic and stochastic noise. More precisely we aim to estimate
a vector a in a separable Hilbert space X given noisy measurements Y of the
image of a under a possibily nonlinear operator F : X → Y with values in another
Hilbert space Y:

(1) Y = F (a) + σξ + δζ

Here ξ is a Hilbert space process in Y with a covariance operator Covξ satisfying
‖Covξ‖ ≤ 1, σ ≥ 0 is the stochastic noise level, ζ ∈ Y is the normalized determistic
noise (‖ζ‖ = 1), and δ > 0 is the deterministic noise level. It is generally assumed
that F is one-to-one, but the inverse of F is not continuous.

In the first part of the lecture we consider the case that F = K is linear. We
study general spectral regularization methods of the form

âα = gα(K∗K)K∗Y,

see [4, 6]. Here gα is a family of piecewise continuous functions on the spectrum
σ(K∗K) parametrized by a regularization parameter α > 0 such that
limαց0 gα(t) = 1/t for all t ∈ σ(K∗K) \ {0} and supt∈σ(K∗K) |gα(t)| ≤ CV

α . We
further assume that there exists a number ν0 > 0 called qualification of the method
and constants γν such that

sup
t∈σ(K∗K)

|tνrα(t)| ≤ γναν for all α and 0 ≤ ν ≤ ν0.

As usual, smoothness of the solution is measured in terms of source-wise represen-
tations

a = Λ(K∗K)w

with a continuous, increasing function Λ satisfying Λ(0) = 0. For Λ(t) = tν , ν0

is the largest index for which the bias of the method converges of optimal order.
Examples include Tikhonov regularization gα(t) = (t+α)−1, Landweber iteration

g1/(n+1)(t) =
∑n−1

j=0 (1 − t)j , spectral cut-off gα(t) = χ[α,∞)(t)/t and ν-methods.
The main result states that under certain conditions on the operator the vari-

ances of all these estimators have the same asymptotic behavior. Therefore, the
performance of the methods is essentially determined by the bias term, which
is known to converge of the same order for all methods up to the qualification
of the method. We show that our assumptions on the operator are satisfied for
the backwards heat equation, satellite gradiometry, and L2-boosting in machine
learning.

The second part of the lecture is devoted to nonlinear statistical inverse prob-
lems. In particular, we study a class of regularized Newton method suggested by
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Bakushinskii [2, 1, 3, 5],

âk+1 := a0 + gαn
(T ∗

k Tk)T ∗
k

(
Y − F (âk) + Tk(âk − a0)

)
,

where a0 is an initial guess and Tk := F ′[âk] is the Fréchet derivative of F at âk.
We assume that a − a0 satisfies a source condition of the form

a − a0 = (F ′[a]∗F ′[a])νw for some ν ∈ [
1

2
, µ0] and w ∈ X .

We prove that if the smoothness coefficient ν is known, the expected squared
error E‖âK(σ,δ) −a‖2 with an a-priori stopping rule K(σ, δ) converges of the same
order as for linear problems. For unknown smoothness we can still obtain optimal
rates of convergence up to a logarithmic factor ln(σ−1) using Lepskii’s balancing
principle [7, 8, 9]. Applications to scattering problems and parallel NMR imaging
are discussed.
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Reconsidering the Random Coefficient Model

Enno Mammen

(joint work with Stefan Hoderlein, Jussi Klemelä)

In econometrics heterogeneity of individual agents, in particular consumers or
firms, is a typical situation. In addition, it is often the case that the individuals
are, at least approximately, characterized by a linear relationship between a K-
vector of explanatory variables, and a dependent variable. Combining these two
notions leads naturally to the random coefficient model (RCM),

Yi = βT
i Xi,
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where Yi is an observed continuously distributed random scalar, and Xi denotes an
observed random K- vector of individual specific regressors, possibly including an
intercept, i.e. Xi,1 ≡ 1. The K-vector of coefficients βi varies across individuals. It
is unobserved and it is modeled as a random variable that captures the unobserved
heterogeneity.

Traditionally, this model has been investigated under mean independence, i.e.
E [βi|Xi] = β, and homoscedasticity, i.e. V ar [βi|Xi] = σ2

β . While this allows
to identify the average marginal effect and the variance, important features of
the joint distribution of marginal effects are left unidentified. These includes the
quantiles of the marginals, as well as skewness, curtosis or symmetry of the distri-
bution. Moreover, the question of multimodality, or the related question whether
the population consist of a mixture of subpopulations are left unanswered.

It is the aim of this talk to establish that under stronger independence assump-
tions the joint density of β is identified and can be estimated nonparametricaly.

The structure of our estimator is simple, and very much resembles a standard
kernel density estimator. More precisely, the estimator for the joint density of
random coefficients at a fixed position, fβ(b) is given by

f̂β(b) =
1

n

n∑

i=1

Kh

(
ST

i b − Ui

) (
f̂S(Si)

)−1

, b ∈ RK ,

where Ui and Si denote suitable transformations of Yi and Xi, respectively, Kh is

an appropriate kernel, and f̂S denotes an estimator for the density of the trans-
formed regressors. The most prominent difference to standard kernel density esti-
mation are the nonstandard kernel, as well as the normalization by the density of
transformed regressors.

Our estimation problem is related to statitistical methods in computer to-
mography. In fact our estimator is a modification of an approach proposed in
Kostelev and Tsybakov (1993) who estimate a Radon transformed regression func-
tion. Another approach has been used in Beran, Feuerverger and Hall (1996) and
Feuerverger and Hall (2000), who estimate the characteristic function of the re-
sponse variable and then transform this estimator back. In contrast to this ap-
proach, our estimator has a simple direct structure and is obtained by a one-step
procedure.

Application of our estimator to consumer demand is discussed using British
household data. We analyze budget shares for food in dependence from income
and price. The density estimator of β describes the heterogeneity in individual
demand.
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Discretization of inverse problems

Peter Mathé

When solving (linear) inverse problems in Hilbert space, say

yδ = Ax + δξ,

where A : X → Y is a compact injective operator and ξ is “statistical” noise,
the issue of discretization is a serious subject. Often such discretization may be
understood as choosing two projections, say Q, describing the way how data are
retrieved, and P , describing the way the potential solution shall be represented.
In this case we end up with a discretized equation

yδ = QAPx.

Then one can proceed by either taking this equation as regularization (self-re-
gularization), see e.g. [6, 2], or to additionally perform some linear regularization,
see [7, 4].

In this talk we discuss the following problem: Which properties of the chosen
projections P and Q determine the performance of the regularization in either case.
This is to be understood in an asymptotical setup when the noise level δ → 0. We
exhibit how different kinds of s-numbers naturally occur and we indicate how to
obtain optimal reconstruction rates, if the discretization is chosen appropriately.
The analysis is carried out under the assumption that the observations are blurred
by white noise ξ. Smoothness of the underlying true solution x is measured in
terms of general source conditions, a framework which recently became attractive,
see [1, 5].

This work extends, summarizes and complements previous work in [1, 4, 3] to
statistical setup.

References

[1] Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,
volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dor-
drecht, 1996.

[2] Barbara Kaltenbacher. Regularization by projection with a posteriori discretization level
choice for linear and nonlinear ill-posed problems. Inverse Problems, 16 (2000), 1523–1539.
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Jump estimation in statistical inverse problems

Axel Munk

(joint work with Leif Boysen, Volkmar Liebscher, Olaf Wittich)

Initially, the use of piecewise constant functions for regression has been proposed
by [4], who called the corresponding reconstruction the regressogram. [4] proposed
it as a simple explanatory tool. For a given set of jump locations, the regressogram
simply averages the data between two successive jumps. A difficult issue, however,
is a proper selection of the location of jumps and its convergence analysis.

Nowadays, there are several statistical estimation procedures which use local
constant reconstructions. [6] studied the case where the signal is a step function
with one jump and showed that in this case the signal can be estimated at the
parametric n−1/2-rate and that the jump location can be estimated at a rate of
n−1. This was generalized by [7] to step functions with a given known upper bound
for the number of jumps.

In this work we investigate an l0 penalized least squares estimator which pe-
nalizes the complexity of the reconstruction by the number of intervals where the
reconstruction is locally constant, or equivalently by the number of jumps of the
reconstruction. The resulting estimator will be called the Jplse. Compared to
the total variation approach obviously, this method more easily captures extreme
plateaus, but is less robust to outliers. This might be of interest in applications
where extreme plateaus are informative, like for example in mass spectroscopy.

This talk summarizes the work of the authors on convergence rates of the Jplse.
In particular we highlight the connection to approximation by step functions as it
is well examined in approximation theory, e.g. [5]. In [2] it is shown that given a
proper choice of the smoothing parameter γ it is possible to obtain optimal rates for
certain classes of approximation spaces under the assumption of subgaussian tails
of the error distribution. As special cases the class of piecewise Hölder continuous
functions of order 0 < α ≤ 1 and the class of function with bounded total variation
are obtained.

Further in [1] consistency of regressograms for arbitrary L2 functions is shown
under more general assumptions on the error. If the true function is càdlàg, we
additionally show consistency in the Skorokhod topology. This a substantially
stronger statement than the L2 convergence and yields consistency of the whole
graph of the estimator.

Finally, we adress the problem of estimating a jump function in the context
of an inverse regression equation Yi = Kf(xi) + ǫi, i = 1, · · · , n, where K is a
known (linear) integral operator and f : [0, 1] −→ R is the unknown function to be
estimated. The xi are (regular, possibly random) design points. It turns out that
here a

√
n-rate of convergence is generic and minimax, provided the kernel of K is

bounded and continuous. In fact, the jump locations together with the jump sizes
are asymptotically multivariate normal. To this end we require an identifiabilty
condition on the kernel K, which turns out to be crucial for recovering jump
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functions in nosiy inverse problems. Let

∆(x, a, b) :=





(b − a)−1

∫ b

a

K(x, y)dy : b 6= a

K(x, a) : b = a
.

Assume, that the functions

∆(x, 0, κ1) , ∆(x, κ2, κ3) , . . . , ∆(x, κr , 1)

are linearly independent in L2([0, 1]) for every r ∈ N and every choice of 0 < κ1 ≤
κ2 < . . . ≤ κr < 1, where only two subsequent κi are allowed to be equal. Then
it is possible to show that K : f ∈ Sk([0, 1)) → L2([0, 1]) is one-to-one, where
Sk([0, 1)) denotes the linear space of jump functions with a finite but arbitrary
number of jumps k ∈ N. Using arguments from total positivity and the theory
of radial basis functions it can be shown that this assumption holds, either if K
is extended totally positive or, if K is a deconvolution kernel, positive definite,
K ∈ C(R) ∩ L1(R), and it holds that

sup
x∈R

|K̂(x)|−1

1 + |x|s < ∞, for some s ∈ N,

where K̂ denotes the Fourier transform of K. Losely speaking, the latter condition
rules out functions which are too smooth. Asymptotic normality can be used to
construct confidence bands for jump functions or for a piecewise linear regression
function in multiphase regression.

Motivated by a problem from material science, we extend this to estimation
problems with certain nonlinear operators. More specifically we show similar re-
sults for the class of generalized Hammerstein equations of the type

Kϕ(f)(·) =

∫
K(x, ·)ϕ ◦ f(x)dx,

for some ϕ injective, C1. It is an open and challenging problem how general
nonlinear problems can be treated.

Finally, we would like to stress that our analysis for jump spaces is completely
different to the situation where the underlying function space is of some smoothing
type, such as a Sobolev space, where the spectral behaviour of K determines the
asymptotics [3]. We show that for jump spaces the localisation behaviour of the
kernel determines the rate of convergence, rather than the spectral behaviour. In
this sense a bounded integral kernel is most difficult. We obtain, e.g. for singular
kernels with decay of the singularity of the order |x|−α, α ∈ [1/2, 1) the minimax
rate (which is attained by the Jplse) as n−1/ min(2,(3−2α)).
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Adaptive regularization algorithms in learning theory

Sergei V. Pereverzev

(joint work with Ernesto De Vito, Lorenzo Rosasco)

We investigate the problem of an adaptive parameter choice for regularization of
learning algorithms. In the theory of ill-posed problems there is a long history of
choosing regularization parameters in optimal way without a priori knowledge of
a smoothness of the element of interest (see, e.g., [1], [2]). But known parameter
choice rules cannot be applied directly in Learning Theory. The point is that
these rules are based on the estimation of the stability of regularization algorithms
measured in the norm of the space where unknown element of interest should be
recovered. But in the context of Learning Theory this norm is determined by an
unknown probability measure, and is not accessible (see, e.g., [3]).

In the talk we present a new parameter choice strategy consisting in adaptive
regularization performed simultaneously in a Hypothesis space and in a space
equipped with an empirical norm. Both these spaces are accessible and known
parameter choice rules such as a balancing principle (see, e.g., [4])can be used
there. Then a parameter for the regularization in the inaccessible space is chosen
as the minimal among the parameters selected for above mentioned accessible
spaces. We prove that under rather mild assumptions such strategy guarantees an
optimal order of the risk estimated in [5].
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Estimation in inverse problems and second-generation wavelets

Dominique Picard

(joint work with Gérard Kerkyacharian, Pencho Petrushev, Thomas Willer)

We consider the following linear inverse problem of recovering a function f , when
we receive a blurred and noisy version :

Yε = Af + εẆ .

Our purpose here is to emphasize the fact that in such a problem, there generally
exists a basis which is fully adapted to the problem, where for instance the inversion
remains very stable : this is the Singular Value Decomposition basis. On the other
hand, the SVD basis might not be appropriate for the accurate description of the
solution with a small number of parameters.

Also in many practical situations, the signal provides inhomogeneous regularity,
and its local features are especially interesting to recover. In such cases, other bases
(in particular localised bases such as wavelet bases) may be much more appropriate
to give a good representation of the object at hand. Our approach here will be
to produce estimation procedures trying to keep the advantages of localisation
without loosing the stability and computability of SVD decompositions. We will
detail two cases. In the first one (which is the case for instance of the deconvolution
example) we show that a fairly simple algorithm (WAVE-VD) using an appropriate
thresholding technique performed on a standard wavelet system, enables us to
estimate the object with rates which are almost optimal up to logarithm factors
for any Lp loss function, and on the whole range of Besov spaces.

In the second case (which is the case of the Wicksell example where the SVD
bases lies in the range of Jacobi polynomials), we prove that quite a similar al-
gorithm (NEED-VD) can be performed provided replacing the standard wavelet
system by a second generation wavelet-type basis : the Needlets.

We use here the construction (essentially following the work of Petrushev and
co-authors) of a localised frame linked with a prescribed basis (here Jacobi polyno-
mials) using a Littlewood Paley decomposition combined with a cubature formula.

This estimation methods yields minimax rates of convergence, also for Lp norms
and various Besov-type constraints. This minimax rates show the special role
played here by the indices (α, β) of the Jacobi polynomials :

E‖f̂ − f‖p
p ≤ C[log(1/ε)]δ[ε

√
log(1/ε)]µp,

µ = min{µ(s), µ(s, α), µ(s, β)} with

µ(s) =
s

s + ν + 1
2

, µ(s, α) =
s − 2(1 + α)( 1

π − 1
p )

s + ν + 2(1 + α)(1
2 − 1

π )
.
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Local model selection in inverse problem

Vladimir Spokoiny

(joint work with C. Vial)

This paper presents a new method for estimation in linear inverse problem. We
introduce a new procedure called local model selection (LMS) which aims to select
in an automatic way one estimate out of a class of the given estimates ordered by
their variability. We also propose a new approach towards selecting the parameters
of the procedure by providing the prescribed behavior of the resulting estimate in
the simple parametric situation. We establish a number of important theoretical
results concerning the optimality of the aggregated estimate. In particular, our
“oracle” results claims that its risk is up to some logarithmic multiplier equal
to the smallest risk for the given family of estimates. The performance of the
procedure is illustrated by application to the classification problem. A numerical
study demonstrates its nice performance in simulated and real life examples.
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Retrieving exponential Lévy models from option prices using relative

entropy

Peter Tankov

(joint work with Rama Cont)

We consider a problem of calibrating an exponential Lévy model to a set of market
option prices. In this model, stock price is represented as St = S0e

rt+Xt , where
r is the interest rate and (Xt) is a Lévy process on probability space (Ω,F , Q)
such that eXt is a Q-martingale. Call option prices can be evaluated as discounted
expectations of terminal payoffs:

CQ(T, K) = e−rT EQ[(S0e
rT+XT − K)+].

The probability measure Q is parametrized by the characteristic triplet (σ, ν, γ)
of (Xt), where σ is the volatility of the continuous Gaussian component, ν is the
Lévy measure and γ denotes the drift coefficient. The martingale condition allows
to compute γ from σ and ν.

The calibration problem consists in finding the law Q(σ, ν) such that the model
option prices CQ(σ,ν)(Ti, Ki) coincide with the market prices CM (Ti, Ki) for a set
of strikes and maturities (Ti, Ki)i∈I . The problem of reproducing the observed
option prices exactly is ill-posed: it does not always admit a solution and when
it does, the solution is not stable with respect to perturbations in the data. We
therefore formulate a regularized version of the calibration problem: find a risk-
neutral Lévy process Q(σ, ν), minimizing the following calibration functional :

J(Q) = E(Q) + αI(Q|P ),

over the set of all risk-neutral Lévy processes, where

E(Q) :=
∑

i∈I

wi(C
Q(Ti, Ki) − CM (Ti, Ki))

2

is the pricing error (wi are weights assigned to the observations) and

I(Q|P ) := EP

[
dQ

dP
log

dQ

dP

]

is the relative entropy (Kullback-Leibler distance — see [6]) of Q(σ, ν) with respect
to a reference Lévy process P (σP , νP , γP ). This reference process (prior) allows
to introduce additional information into the calibration problem, in order to gain
stability. It can be estimated from historical data or, more generally, chosen based
on our views about the model underlying the market option prices.
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For the relative entropy I(Q|P ) to be finite, necessarily σ = σP and ν ≪ νP .
Therefore, the calibration problem can be expressed as that of finding the Lévy
measure ν ≪ νP , minimizing

(1) J(ν) = E(ν) + αI(ν).

After deriving the explicit expression of the relative entropy in terms of ν, νP

and σP , we show that

• The regularized calibration problem always admits a solution (though the
solution need not be unique).

• The solutions are continuous with respect to input data and the prior Lévy
measure.

Moreover, when the noise level in the data tends to zero, we give the conditions
under which the solutions of the regularized problem converge to the solutions of
the initial calibration problem.

To solve the regularized calibration problem numerically, we discretize the prior

measure on a finite grid of points: νP =
∑N

i=1 aiδxi
. The set of measures ν such

that ν ≪ νP is then finite-dimensional, and the calibration functional (1) can be
minimized using a gradient descent method. Finally, the continuity of solutions of
the calibration problem with respect to the prior Lévy measure allows to conclude
that if {νP

n } is a sequence of discrete priors, converging weakly to a continuous
measure νP , the sequence of solutions will also converge weakly to the solution of
the calibration problem with prior measure νP .

Details of the above results can be found in [5] and the numerical solution of the
discretized problem is discussed in [4]. See [3] for background on Lévy processes
and exponential Lévy models and [1, 2] for other applications of relative entropy
in model calibration.
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