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Zusammenfassung. Many inelastic processes such as elastoplasticity, dama-
ge, crack propagation, and phase transformations in smart materials can be
modeled by rate-independent processes. Because of the inherent nonsmooth-
ness, standard PDE methods do not apply, and specific variational principles
must be exploited. During the meeting analytical and numerical approaches
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Introduction by the Organisers

This conference brought together the mathematicians and engineers concerned
with the study of rate-independent processes. The topics involved the physical
and mechanical modeling, the analytical treatment as well as the development of
numerical algorithms and the computational aspects.

Rate-independent processes occur when a system undergoes loadings varying
on a time scale much slower than the internal relaxation times of the system.
However, the system still stays in metastable states and does not find its ther-
modynamical equilibrium because of internal frictional processes. There are many
well-established macroscopic theories, which show good agreement with experi-
ments, for instance the classical theory of linearized elastoplasticity. This theory
has been established a century ago, but its mathematical foundations were only
understood 30 years ago using the theory of convex analysis and variational in-
equalities. Another classical driving theme in this area is the theory of Coulomb
friction between rigid or elastic bodies.
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Within the last decade similar models have been developed in several areas
of mechanics of solids, some of them on a phenomenological basis and others re-
lying on an improved understanding of the microstructures. Such areas include
multifunctional or active materials (e.g., shape-memory alloys, ferromagnetism,
magneto– and electro-strictivity) and inelastic processes in solids (e.g., elastopla-
sticity, damage, delamination, fatigue, brittle fracture, crack growth).

Although many of these models are used in engineering, their mathematical
understanding is insufficient and efficient numerical algorithms for the computation
of approximate solutions are few. The main problem is the inherent nonsmoothness
of the modeling because of rate independence.

We discussed a new approach based on an energetic formulation, which provides
a broad basis for treating quite general models using topological, geometrical and
measure theoretical methods that do not require a Banach space structure. It
was shown in various presentations that this approach allows one to go beyond
linearized elastoplasticity and to treat fully nonlinear mechanical problems, like
crack formation and growth, or elastoplasticity with softening.

Finally, the modeling of the formation and evolution of microstructures was
debated in several talks and gave rise to a better understanding of the physical
and mathematical underlying principles.

The specific methods discussed were:

◦ energetic formulation of rate-independent processes
◦ variational and quasi-variational inequalities
◦ geometric evolution on metric spaces and its connections to gradient flows

for non-convex energies
◦ techniques from functions of bounded variations and deformations
◦ regularizations techniques: viscous regularization in time and gradient re-

gularization in space
◦ justification of rate-independent models from viscous systems with wiggly

energies (stochastic potential)
◦ time-incremental discretizations, discontinuous Galerkin method in time
◦ space discretizations: conforming and nonconforming finite elements
◦ regularization of nonsmoothness: phase-field approximations for cracks
◦ Γ-convergence and relaxation of ill-posed problems
◦ deriving evolution equations for microstructures and in materials
◦ Young measure techniques for spatial and temporal oscillations

The specific applications discussed were:

◦ elastoplasticity with hardening or softening, dislocation plasticity
◦ damage evolution in solids and structures
◦ crack propagation in brittle materials
◦ hysteretic effects in shape-memory alloys (martensitic transformations)

The continuous downpour of Black Forest Rain created a cosy atmosphere that
fostered the interaction between the different mathematical and engineering com-
munities.
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On Configurational-Force-Driven Crack Propagation . . . . . . . . . . . . . . . . . 616

Blaise Bourdin
Numerical implementation of the variational brittle fracture formulation 619

Ulisse Stefanelli
A variational principle in non-smooth Mechanics . . . . . . . . . . . . . . . . . . . . 622

Jan Zeman (joint with Ron H.J. Peerlings, Marc G.D. Geers)
Global energetic approach to stochastic damage evolution in lattice
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Dorothee Knees (joint with Alexander Mielke)
Energy release rate for cracks in finite–strain elasticity . . . . . . . . . . . . . . . 627

Klaus Hackl
Evolution of microstructures in shape memory alloys . . . . . . . . . . . . . . . . . 630



594 Oberwolfach Report 11/2007

Pavel Krejč́ı
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Abstracts

Threshold-based Quasi-static Brittle Damage Evolution

Adriana Garroni

(joint work with C.J. Larsen)

Many interesting phenomena in mechanics, like fracture, plasticity, and damage,
have been studied through variational models. These models are often inspired by
a threshold criterion. The general idea is that fracture occurs where the strain has
a singularity, the plastic behaviour starts if the stress reaches the yield surface,
and the material is damaged where the strain exceeds a given threshold.

With this in mind, we attempt to formulate a model for damage evolution
based explicitly on a strain threshold, without any reference to an energetic cost
for damage. We then compare this with the variational model for damage proposed
by Francfort and Marigo, [4]. Here two states, undamaged and damaged, are given
by two elastic well-ordered tensors, As and Aw, and the energy is given by

∫

Ω

W (e(u)) dx−
∫

Ω

f u dx ,

where e(u) = ∇u+∇uT

2 is the symmetrized gradient and

W (ε) = min

{
1

2
Asε ε ,

1

2
Awε ε+K

}
.

This energy density is not quasi-convex; thus in the minimization procedure we
expect microstructure, in other words we expect a relaxation phenomenon. The
quasi-convex envelope of W can be represented as follows

QW (ε) = min
θ∈[0,1]

min
A∈Gθ(As,Aw)

{
1

2
Asε ε+Kθ

}
,

where Gθ(As, Aw) is the G-closure of As and Aw mixed with volume fractions 1−θ
and θ.

Given an external loading f(t) parametrized by time and starting from this
formula, a relaxed quasi-static evolution for this model (that also includes irrever-
sibility of damage) was constructed in [3]. There, it was proved that there exists a
time parametrized family of elastic tensors A(t, x) (mixture of As and Aw with pro-
portion Θ(t, x)) satisfying a monotonicity property (irreversibility of the damage),
a minimality condition and an energy balance.

In the case Θ(t, x) ∈ {0, 1}, i.e., Θ(t, ·) = χD(t)(·), we say that D(t) is a strong
solution of this energy bases formulation.

For the threshold problem we restrict our analysis to the scalar (anti-plane
deformations) isotropic case (As = αI and Aw = βI) and we have the following
definition for t 7→ D(t) to be a theshold-based quasi-static damage evolution with
threshold λ:

(1) Monotonicity: t 7→ D(t) is increasing



596 Oberwolfach Report 11/2007

(2) Threshold: Setting σD(t)I := αIχD(t) + βI(1 − χD(t)) and u(t) to be the
solution of

−div(σD(t)∇u(t)) = f(t),

we have |∇u(t)| ≤ λ a.e. in Ω \D(t)
(3) D(t) is necessary: ∀E ⊂ D(t) with |E| > 0, and all ∆t sufficiently small,

∃τ < t such that if for each ∆t < t− τ we consider the solution v of

−div(σD(τ+∆t)\(E\D(τ))∇v) = f(τ + ∆t),

we have |∇v(x)| > λ for some x ∈ [D(τ + ∆t) ∩ E] \D(τ).

In fact, we can show that there is a correspondence between the K in [3] and
the threshold λ such that if a set-valued function D is a strong solution to the
variational formulation in [3], then it is a solution to the above threshold problem.

We then formulate a corresponding “microstructure”-based threshold model,
and attempt to show that solutions in [3] are solutions to this threshold model.
This is in general false. There is an interesting issue about G-closures that prevents
us from concluding that variational solutions are threshold solutions, and so we
are led to reformulate and prove existence for a new variational formulation, which
we can show are also threshold solutions.

Literatur
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Well-posedness and approximation of problems in gradient plasticity
and related models

B. Daya Reddy

(joint work with Jules K. Djoko, Francois Ebobisse, Andrew McBride)

The well-established phenomenon of size-dependent behaviour, together with si-
gnificant developments in manufacture at the mesoscopic level, are two factors
that have influenced investigations into various extensions of classical theories of
plasticity. A further motivating factor is the absence of a length scale in the clas-
sical theories, with the result that computational solutions exhibit pathological
mesh-dependent behaviour. These extensions generally have lead to theories that
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incorporate non-locality, as opposed to classical flow theories which are of a local
nature (see, for example, [5]).

The purpose of this presentation is to focus on one such set of extensions, which
are referred to as gradient theories, and which are characterised by the inclusion of
terms involving the gradient of plastic strain and other variables associated with
plastic deformation. The problem is formulated with specific reference to a model
investigated in [7], in which non-locality takes the form of a term invloving the
laplacian of the scalar hardening parameter in the yield function.

It is shown that the problem may be formulated as a variational inequality of
the form

(1) a(w, z − ẇ) + j(z) − j(ẇ) ≥ ℓ(z − ẇ)

in which w = (u, p, γ), where u is displacement, p is plastic strain, and γ is the har-
dening parameter, all defined in approproate Hilbert spaces. Here z is an arbitrary
member of the same spaces.

The bilinear form a(·, ·) is continuous, symmetric and coercive, the functional
j(·) is convex, continuous and positively homogeneous, and ℓ(·) is a bounded linear
functional. The problem (1) is shown to be well-posed even for the case of softening,
provided that the coefficient associated with the gradient term is sufficiently large.

Fully discrete approximations of (1) are considered, in which spatial discretiza-
tion is achieved using a discontinuous Galerkin (dG) formulation and a backward
Euler approximation is used in time. The approximation is shown to be of order
O(κ+h1/2), where κ is the time step and h the mesh size. The dG formulation used
is a symmteric interior penalty approach, though the method is easily extended to
other dG formulations. For problems of classical plasticity it is known [2] that the
finite element error estimate can be improved to one of O(h), under assumptions
on the regularity of the solution and provided that the material coefficients are
piecewise constant. Whether such an extension can be made in the case of a dG
formulation for gradient plasticity requires further investigation.

We also investigate the properties of a predictor-corrector algorithm used to
solve the fully discrete problem. This algorithm is based on that introduced in
[8, 9], and in an equivalent form, better suited to the formulation here, in [1] (see
also [6] for extensions of the algorithm). It is shown that the algorithm converges for
various choices of predictor, specifically the elastic, secant and tangent predictor,
though the tangent predictor requires the introduction of a perturbation to ensure
convergence. Finally, some numerical examples serve to illustrate the properties of
solutions and of the algorithms introduced.

Further details of the results presented in this talk may be found in [3, 4].

Literatur
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Sharp upper bounds for a variational problem with singular
perturbation

Sergio Conti

(joint work with Camillo De Lellis)

In the theory of phase transitions one is often faced with singularly perturbed
nonconvex variational problems. A by-now classical example, which is appropriate
for fluid-fluid phase transitions, is

(1) Fε[u,Ω] =

∫

Ω

{
(1 − u2)2

ε
+ ε|∇u|2

}
dx ,

where u : Ω ⊂ Rn → R. In 1977, Modica and Mortola have shown [13] that as
ε→ 0 the family of functionals Fε converges, in the sense of Γ-convergence, to

(2) F0[u,Ω] =

{
8
3PerΩ({u = 1}) if u ∈ BV (Ω; {1,−1}) ,

∞ else.

Solid-solid phase transitions are instead described by functionals of the type

(3) Gε[u,Ω] =

∫

Ω

{
dist2(∇u,K)

ε
+ ε|∇2u|2

}
dx ,

where u : Ω ⊂ Rn → Rn, and K = SO(n){A,B} ⊂ Rn×n. For n = 2 a Γ
convergence result to a functional similar to (2) was obtained in [6]; the higher
dimensional case is open. The dependence on a gradient field makes (3) substan-
tially more rigid, and the limit functional turns out to be finite only on a special
class of piecewise affine functions.

We consider here the Eikonal functional, which arose in the last decades as mo-
del for different physical problems, ranging from liquid crystals [2] to blistering in
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thin films [14], convection patterns [11] and magnetism in thin films [9]. Precisely,

(4) Iε[u,Ω] =

∫

Ω

{
(1 − |∇u|2)2

ε
+ ε|∇2u|2

}
dx ,

with u : Ω ⊂ R2 → R. This depends, much as (3), on a gradient field; however, the
unknown u is a scalar and the null set of the nonconvex potential, namely, S1, is
connected. Both facts make (4) considerably softer than (3), and indeed the space
on which the limit is defined is much larger.

A straightforward computation shows that the optimal one-dimensional inter-
face approximating the limiting function t(x) = x1 cos θ + |x2| sin θ is

(5) uε(x) = x1 cos θ + ln

[
2 cosh

x2

ε/ sin θ

]
,

and that its energy is 8
3 sin3 θ per unit length of the interface. This motivates the

conjecture, first formulated in [2], that the limiting functional can be written as

(6) I0[v,Ω] =
1

3

∫

Ω∩J∇v

|[∇v]|3 dH1

on an appropriate space of functions v solving the eikonal equation |∇v| = 1. Here
J∇v is the set where “∇v jumps”, and [∇v] is the “jump”.

A technique to control the functional from below was devised by Jin and Kohn
[12], which introduced a class of “entropies” whose divergence is controlled, in an
appropriate sense, by Fε. Building upon this work, compactness with respect to
the strong W 1,3 topology was then proven independently in [1, 7] and [10]. A lower
bound was also obtained; which for the case that the limit is BV coincides with
the simple line integral (6), see [3]. Precisely:

Theorem 1. [From [1, 7]] Let Ω ⊂ R2 be a bounded Lipschitz domain, and
let εi → 0 and ui be such that Iεi

[ui,Ω] < C < ∞. Then there is a subsequence
converging strongly in W 1,3 to a function u0 with |∇u0| = 1. If additionally ∇u0 ∈
BV , then

lim inf
k→∞

Iεik
[uik ,Ω] ≥ 1

3

∫

J∇u0

|∇+u0 −∇−u0|3dH1 .

Notice that the compactness result does not give ∇u0 ∈ BV . Indeed, whereas the
functional (6) is lower semicontinuous on BV , it is not coercive in the same space,
see [1, 7].

An upper bound matching this lower bound had already been obtained in [3]
for the case that the limit is a single straight interface, and in [7] for the case that
finitely many straight interfaces are present. The presence of the gradient structure
made it however difficult to conclude by density. We present here the derivation
of an upper bound under the assumption that the limit is in BV , which was dis-
cussed in detail in [5]. An independent proof of the same result was obtained by
Poliakovsky [15, 16].
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Theorem 2. [From [5]] Let Ω ⊂ R2 be a bounded C2 set, let u0 ∈ W 1,∞(Ω,R)
obey ∇u0 ∈ BV (Ω, S1), and let εi → 0. Then there is a sequence ui ∈ C∞(Ω) such
that ui → u0 in W 1,p(Ω) for every p <∞ and

lim sup
i→∞

Iεi
[ui,Ω] ≤ 1

3

∫

J∇u0
∩Ω

|∇+u0 −∇−u0|3dH1 .

The full determination of the Γ-limit, i.e., removing the assumption ∇u0 ∈ BV
in both Theorem 1 and Theorem 2, is open. Notice that if ∇u0 is not in BV
but is the limit of a sequence bounded in energy, one can still give a meaning to
the expression on the right hand side (see [8]): a natural conjecture is that this
quantity coincides with the supremum among all lower bounds obtained with all
entropies and that the optimal sequence exists also in this case.

The proof of Theorem 2 is based on taking a mollification of u (after an appro-
priate continuation outside Ω) and improving it locally, a technique already used
in [4] to obtain Γ-convergence for a vectorial problem motivated by the theory of
elasticity. Precisely, we fix a family of mollifiers φε, and define

(7) ui = φεi
∗ u0 .

Since ∇u0 ∈ BV , the sequence ui is automatically bounded in energy, and only
the jump part of D2u0 contributes to the limit.

The function ui is then modified around points of J∇u0
where the convergence of

the blow-ups at scale kε is already “good enough”, by replacing ui by the optimal
single-interface profile of (5). The convergence of the blow-ups permits to show
that the energy of the boundary layer is a small fraction of the total energy, and
to conclude the proof.
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Modeling and numerical solutions for shape-memory materials

Ferdinando Auricchio

(joint work with A.Reali, U.Stefanelli)

The great and always increasing interest in SMA materials and their industrial
applications in many branches of engineering is deeply stimulating the research
on constitutive laws. As a consequence, many models able to reproduce SMA
macroscopic behaviours, i.e. pseudo-elasticity and shape-memory effect, have been
proposed in the literature in the last years.

In particular, the constitutive law proposed in Reference [6], improved in Re-
ferences [1, 2] and studied from a more mathematical perspective in Reference
[4], seems to be attractive. Developed within the theory of irreversible thermody-
namics, this model is in fact able to describe both pseudo-elasticity and shape-
memory effect and the corresponding solution algorithm is simple and robust being
based on a plasticity-like return map procedure.

In the talk I tried to present an extension of such a model, able to reproduce
also other experimentally observed SMA behaviours such as permanent inelasticity
and degradation effects [3].

In particular, the model assumes total strain ε and absolute temperature T as
control variables, transformation strain etr and permanent inelastic strain q as
internal ones. As in [1], the second-order tensor etr describes the strain associated
to the transformation between the two solid phases referred to as martensite and
austenite. Here, this quantity has no fully reversible evolution and the permanent
inelastic strain q gives a measure of the part of etr that cannot be recovered when
unloading to a zero stress state. Moreover, we require that

(1) ‖etr‖ ≤ εL,

where ‖ · ‖ is the usual Euclidean norm and εL is a material parameter correspon-
ding to the maximum transformation strain reached at the end of the transforma-
tion during an uniaxial test.

Assuming a small strain regime, we may also consider the standard additive
decomposition ε = 1θ/3+e, where θ = tr(ε) and e are respectively the volumetric
and the deviatoric part of the total strain ε, while 1 is the second-order identity
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tensor. The free energy density function Ψ for a polycrystalline SMA material is
then expressed as the convex potential

Ψ(θ, e, T, etr, q) =
1

2
Kθ2 +G‖e − etr‖2 + β〈T −Mf 〉‖etr − q‖+

+
1

2
h‖etr‖2 +

1

2
H‖q‖2 −Aetr : q + IεL

(etr),(2)

where K and G are respectively the bulk and the shear modulus, β is a material
parameter related to the dependence of the critical stress on the temperature,
Mf is the temperature below which only martensite phase is stable, h defines the
hardening of the phase transformation, H controls the saturation of the permanent
inelastic strain evolution, and A controls the degradation of the model. Moreover,
we make use of the indicator function

IεL
(etr) =

{
0 if ‖etr‖ < εL

+∞ otherwise,

in order to satisfy the transformation strain constraint (1); we also introduce the
positive part function 〈·〉.

We wish to note that, since we use only a single internal variable second-order
tensor to describe phase transformations, at most it is possible to distinguish
between a generic parent phase (not associated to any macroscopic strain) and a
generic product phase (associated to a macroscopic strain). Accordingly, the model
does not distinguish between the austenite and the twinned martensite, as both
these phases do not produce macroscopic strain. We furthermore highlight that,
for the sake of simplicity, the present model does not reflect the difference existing
between the austenite and the martensite elastic properties.

Starting from the free energy function Ψ and following standard arguments, we
can derive the constitutive equations





p =
∂Ψ

∂θ
= Kθ,

s =
∂Ψ

∂e
= 2G(e − etr),

η = −∂Ψ

∂T
= −β‖etr − q‖〈T −Mf〉

|T −Mf |
,

X = − ∂Ψ

∂etr
= s − β〈T −Mf 〉

etr − q

‖etr − q‖ − hetr +Aq − γ
etr

‖etr‖,

Q = −∂Ψ

∂q
= β〈T −Mf〉

etr − q

‖etr − q‖ −Hq +Aetr,

(3)

where p = tr(σ)/3 and s are respectively the volumetric and the deviatoric part
of the stress σ, X is a thermodynamic stress-like quantity associated to the trans-
formation strain etr, Q is a thermodynamic stress-like quantity associated to the
permanent inelastic strain q, and η is the entropy. The variable γ results from the
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indicator function subdifferential ∂IεL
(etr) and it is defined as

{
γ = 0 if ‖etr‖ < εL,
γ ≥ 0 if ‖etr‖ = εL,

so that ∂IεL
(etr) = γ

etr

‖etr‖.

To describe phase transformation and inelasticity evolution, we choose (followi-
ng a plasticity-like terminology) a limit function F defined as

(4) F (X,Q) = ‖X‖ + κ‖Q‖ −R,

where κ is a material parameter defining a scaling modulus between the inelastic
effect and the phase transformation, while R is the radius of the elastic domain.
To reproduce the asymmetric behaviour in tension and compression shown by
SMA in many experiments, different and more complicate choices for F could be
introduced in (4), [1].

Considering an associative framework, the flow rules for the internal variables
take the form





ėtr = ζ̇
∂F

∂X
= ζ̇

X

‖X‖,

q̇ = ζ̇
∂F

∂Q
= ζ̇κ

Q

‖Q‖.
(5)

The model is finally completed by the classical Kuhn-Tucker conditions

(6)





ζ̇ ≥ 0,
F ≤ 0,

ζ̇F = 0.

Observation 1. By exploiting basic Convex Analysis tools, we can rewrite our
constitutive model (3)-(6) in the equivalent form

(7)




−p
−s

η

∂D

(
ėtr

q̇

)




+ ∂Ψ




θ
e

T
etr

q




∋ 0.

Here ∂D stands for the subdifferential of the function D defined as

(8) D(etr, q) = sup
F (A,B)≤0

{
A : etr + B : q

}
,
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which is the dissipation function associated to the phase transformation mecha-
nism. It can be shown that

D(etr, q) =





max

{
R||q||
κ

, R||etr||
}

if κ 6= 0,

R||etr|| if κ = 0 and ||q|| = 0,
+∞ if κ = 0 and ||q|| 6= 0,

as well as that D is the Fenchel-Legendre conjugate of the indicator function of
the non-empty, convex, and closed domain

E = {(A,B) : F (A,B) ≤ 0}.
Hence, it is easy to check that D is positively 1-homogeneous, that is

D(λ(etr, q)) = λD(etr, q) ∀λ > 0.

Namely, the time-evolution of (etr, q) is of rate-independent type since we readily
have that

∂D(λ(etr, q)) = ∂D(etr, q) ∀λ > 0.

The formulation of rate-independent evolution problems in terms of a doubly-
nonlinear differential inclusion as in (7) has recently attracted a good deal of at-
tention. In particular, the mathematical treatment of relations as (7) is nowadays
fairly settled and existence, uniqueness, and time-discretization results are availa-
ble. The interested reader is referred to the recent survey by [5] where a compre-
hensive collection of mathematical results on doubly-nonlinear rate-independent
problems is provided.

Observation 2. The proposed model is thermodynamically consistent. In the
current temperature-parameterized situation, we are classically asked to check for
the mechanical dissipation inequality

ψ̇ − s : ė − pθ̇ ≤ 0,

at least for sufficiently smooth evolutions. Taking (7) into account and owing to
standard Convex Analysis results, we compute that

ψ̇ − s : ė − pθ̇ = −(X,Q) · (ėtr, q̇) ≥ D(ėtr, q̇) ≥ 0,

and the assertion follows.
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Thermally driven phase transformation in shape-memory alloys

Adrien Petrov

(joint work with Alexander Mielke)

1. Mathematical formulation

We consider a body with reference configuration Ω ⊂ Rd. This body may undergo
phase transformation and deformations u : Ω → Rd. The phase transformation will
be characterized by the internal variable z : Ω → Rd×ddev denoting the mesoscopic

transformation strain where Rd×ddev is the space of symmetric d × d tensors such
that the trace of z vanishes. The set of admissible deformations F is chosen as a
suitable subspace of W 1,2(Ω; Rd) by describing Dirichlet data at the part ΓDir of

∂Ω and the internal variable z lives in Z = L1(Ω; Rd×ddev ). We assume also that the
material behavior depends on the temperature θ, which will be considered as a time
dependent given parameter. Then we will not solve an associated heat equation
but we will treat θ as an applied load and we denote it by θappl : [0, T ] × Ω →
[θmin, θmax]. This approximation for the temperature is used in engineering models
and we may justify it in the case where the changes of the loading are slow and the
body is small in at least one direction such that excess of heat can be transported
very fast to the surface and then radiated into the environmenent. We denote by
e(u) := 1

2 (∇u + ∇uT ) and C(θ) respectively the linearized strain tensor and the
elasticity tensor that depends on the temperature θ. The potential energy takes
then the following form

(1) E(t, u, z) :=

∫

Ω

W (e(u), z, θ) +
σ

2
|∇z|2 dx− 〈l(t), u〉,

where W (e(u), z, θ) := 1
2 (e(u) − z) : C(θ) : (e(u) − z) + h(z, θ). Here σ is positi-

ve coefficient that is expected to measure some nonlocal interaction effect for the
internal variable z and l(t) denotes the applied mechanical loading. In this work,

we assume that h(z, θ) := c1(θ)|z|2 + c2(θ)
√
δ2 + |z|2 + 1

δ

(
|z|2 − c3(θ)

)3
+

, where

ci(θ) > 0, i = 1, 2, 3, are given and depending on the temperature θ. Observe that
c1(θ) measures the occurence of some hardening phenomenon with respect to the
internal variable z, c2(θ) is an activation threshold for initiation of martensitic
phase transformations and c3(θ) represents the maximum modulus of transforma-
tion strain that can be obtained by alignment of martensitic variants. We define
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the dissipation potential by

(2) R(ż) :=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0.

This model was initiated in [8] and further developed in [1, 2]. The original model
is obtained in the limit δ → 0 and σ → 0. For mathematical purposes we need to
keep δ, σ > 0 fixed. Finally our problem is assumed to be governed by the energetic
formulation of rate-independent problems, for the details the reader is referred to
[5, 6, 4, 3, 7]. A function (u, z) : [0, T ] → F × Z is called an energetic solution
of the rate-independent problem associated with E and R if for all t ∈ [0, T ], the
global stability condition (S) and the global energy conservation (E) are satisfied,
i.e.

(S) ∀(u, z) ∈ F × Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄ − z(t)),

(E) E(t, u(t), z(t)) +

∫ t

0

R(ż(s)) ds = E(0, u0, z0) +

∫ t

0

∂sE(s, u(s), z(s)) ds.

Here we assume to be given initial data (u(0), z(0)) = (u0, z0) ∈ F × Z.

2. Existence result

We clarify now the assumptions. The applied temperature θappl will extract or

insert energy thanks to ∂θW (e(u), z, θappl)θ̇appl. One can prove that the derivatives

∂jθW (e(u), z, θappl) exist for j = 1, 2 and using Young’s inequality that there exist
cW0 , cW1 > 0 such that

(3) |∂jθW (e(u), z, θ)| ≤ cW1 (W (e(u), z, θ) + cW0 ).

Then ∂jθW (e(u), z, θappl)θ̇appl is controled if we assume that θappl is smooth enough.
According to (3) with j = 1 and Gronwall’s lemma, we have the following lemma.

Lemma 2.1. If (3) holds, for all θ1 ∈ [θmin, θmax], we have

(4) W (e(u), z, θ1) + cW0 ≤ exp(cW1 |θ1 − θ|)(W (e(u), z, θ) + cW0 ).

For a given temperature profile θappl ∈ C1([0, T ];L∞(Ω; [θmin, θmax])) and a given
external loading l ∈ C1([0, T ];W 1,2(Ω; Rd)∗), we will study the potential energy E
as defined in (1).

Proposition 2.1. Under the above assumptions the following holds:app

(i) If for some (t∗, u, z) ∈ [0, T ] × F × Z we have E(t∗, u, z) < +∞, then

E(·, u, z) ∈ C1([0, T ]) and ∂tE(t, u, z) =
∫
Ω
∂θW (e(u), z, θappl(t))θ̇appl(t) dx−

〈l̇(t), u〉.
(ii) There exist cE0 , c

E
1 > 0 such that E(t, u, z) < +∞ implies |∂tE(t, u, z)| ≤

cE1 (E(t, u, z) + cE0 ).
(iii) For each ε > 0 and E ∈ R there exists δ > 0 such that E(t1, u, z) ≤ E and

|t1 − t2| < δ imply |∂tE(t1, u, z) − ∂tE(t2, u, z)| ≤ ε.
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We prove now that the energetic formulation (S) and (E) has at least one solution
(u, z) : [0, T ] → F×Z for a given stable initial datum (u0, z0) ∈ F×Z, i.e. (u0, z0)
satisfies the global stability condition (S) at t = 0. The existence theory for (S)
and (E) was developed [2, 1, 5] and it is based on the incremental minimization
problem. More precisely, for a given partition Π = {0 = t < t1 < . . . < tN = T },
we define the incremental problem as follows:

(IP )Π

{
for k = 1, . . . , d find

(uk, zk) ∈ Argmin{E(tk, ũ, z̃) + R(z̃ − zk) : (ũ, z̃) ∈ F × Z}.

One can observe that (IP )Π has always solutions. We define the piecewise constant
interpolant (uΠ, zΠ) : [0, T ] → F×Z with (uΠ(t), zΠ(t)) = (uj , zj) for t ∈ [tj−1, tj)
for j = 0, . . . , N . Then we show that the limit function satisfies the energetic
formulation (S) and (E) using Lemma 2.1, which gives the following Theorem:

Theorem 2.2. Assume that E, R and (u0, z0) satisfy the assumptions from above.
Then there exists an energetic solution (u, z) : [0, T ] → F×Z such that (u(0), z(0))
= (u0, z0) and

u ∈ L∞([0, T ];W 1,2(Ω; Rd)),

z ∈ L∞([0, T ];W 1,2(Ω; Rd×ddev )) ∩BV ([0, T ];L1(Ω; Rd×ddev )).

In futur work we will investigate the question of uniqueness by using the theory
developed in [5]. For this it is necessary to establish smoothness of E as a function

of (u, z) ∈ F ×H1(Ω; Rd×ddev ).
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Evolution of martensitic phase boundaries in heterogeneous media

Patrick W. Dondl

The motivation for this problem lies in the question of whether, and how, hy-
steresis can arise from a linear microscopic kinetic relation through the effect of
defects such as precipitates in the medium. Hysteresis in the physical problems
considered stems from a stick-slip behavior of phase boundaries with respect to
an applied force; this behavior is therefore often assumed in macroscopic models.
The goal of my research is to show how it arises through homogenization from the
interplay of a linear microscopic evolution law with the heterogeneities that are
always present in a physical material.

For the basic model we consider an elastic solid occupying a domain Ω with a
bulk energy of the form

(1) Felastic =

∫

Ω

W (∇u, x),

where u : Ω → Rn is the displacement of the body. The domain is split into a sub-
domain E and its complement, separated by a phase boundary Γ—this represents
the two phases the material can be in. There may also be inclusions A =

⋃
iAi pre-

sent in Ω. The elastic energy density W (∇u, x) depends explicitly on the position
x: its minimum, the transformation strain, is constant on the domains occupied
by each phase or the inclusions and jumps across their respective boundaries. A
surface energy of the form

(2) Fsurface = c

∫

Ω

|∇χE |

penalizing the length of the phase boundary can also be added.
Assuming smoothness of the involved quantities, one can calculate the rate of

change of the energy in the system, depending on the normal velocity vn of the
phase boundary, to be

(3)
d

dt
(Felastic + Fsurface) = −

∫

Γ

f vn,

where f is the thermodynamic driving force. The goal is to analyze the free boun-
dary problem arising from the kinetic assumption

(4) vn = f.

The main difficulty herein stems from the nonlocal coupling of the driving force
to the elliptic problem of calculating the displacement. My first approach to an
analysis uses an approximate elastic energy for a phase boundary with small slope;
the second treats the general problem by considering the evolution of sets of finite
perimeter.
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Small slope approximation. Assuming that the phase boundary can be descri-
bed by the graph of a shallow function g with periodic boundary conditions, one
can formally approximate the model. The resulting problem is given in Fourier
space by the equation

(5) ĝt(k) = − |k| ĝ(k) + ϕ̂(k) + F̂ (k).

Here, the effect of the precipitates and that of an applied stress on the driving
force are collected into the local forcing ϕ = ϕ(x, g(x)) and a constant external
load F .

We have proven existence of a solution to this problem, existence of a threshold
force F ∗ up to which there is a stationary solution to the problem and existence of
time-space periodic solutions for F > F ∗. The physical implication of this is that
the phase boundary is stuck up to a critical applied force and moves freely with a
macroscopic average velocity thereafter.

The general proof of existence of a solution to the equation uses semigroup me-
thods. In order to assert the existence of a threshold force and that of a time-space
periodic solution, we use the Schauder fixed point theorem together with compact
embeddings of fractional Sobolev spaces. The latter work follows [1], where the

reaction-diffusion equation is considered with |k| replaced by |k|2. However, in our
case, one cannot use elliptic or parabolic regularity.

In current work, we are examining the depinning transition of these interfaces
both numerically and analytically. A critical power law behavior for the average
velocity of the interface can be seen in simulations.
The general problem. For the full model, we have proven the existence of a
solution on a bounded domain Ω for non-zero surface energy. We rely on an im-
plicit time discretization for a set evolution model as employed in [2] for a purely
curvature driven interface. The main difficulty here lies in the nonlocality of the
problem due to the coupling with the elliptic equation, since it is necessary to
obtain uniform bounds on the L∞ norm of the forcing.

Given an initial condition, we build a piecewise constant approximation of the
evolving set E(t) (and thus of the evolving phase boundary) by minimizing the
set function

(6) Fh(E,E0) = Felastic(E) + c

∫

Ω

|∇χE | +
1

h

∫

E△E0

dist(x, ∂E0) dx

at each timestep of duration h. The first term in this energy is the already familiar
elastic energy. The second term is equal to the surface energy term introduced
before, written now as the variation of a characteristic function. The third term—
an integral over the symmetric set difference E △ E0—is chosen such that its
variation produces a discretized normal velocity of the interface.

For given h > 0 and E0 of finite perimeter, existence of a minimizer follows from
the boundedness of all involved energies and the SBV compactness and closedness
theorems. One must now establish convergence as h→ 0 of the piecewise constant
approximation χE(t) to a function

(7) X : Ω × [0, T ] −→ {0, 1},
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which requires strong convergence of the family of characteristic functions. To this
end, we introduce a further regularization of the elastic energy Fε

elastic through

mollification of the transformation strain. We then have Fε,h Γ→ Fh and the pie-
cewise constant approximation obtained from sequentially minimizing Fε,h, for
ε = h1/n, converges strongly as h → 0. For a uniformly smooth phase boundary,
the resulting normal velocity equals the one in (4).

Current work focuses on numerics and establishing an existence result for time-
space periodic solutions. The nature of pinned solutions under a finite applied
stress which comprise local energy minima is also being examined.
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Regularity in Prandtl-Reuss perfect plasticity

Alexey Demyanov

Statement of the problem. The strong formulation of the Prandt-Reuss model
of perfect plasticity is the following: given a domain Ω ⊂ Rn, a partition of its
boundary ∂Ω into two sets Γ0 and Γ1

a body force f(t, x) : [0, T ] × Ω → Rn,
a boundary displacement w(t, x) : [0, T ] × Γ0 → Rn,
and a surface force F (t, x) : [0, T ] × Γ1 → Rn,

the problem is to find functions

u(t, x), e(t, x), p(t, x) and σ(t, x)

such that for every t ∈ [0, T ], for every x ∈ Ω the following conditions hold:

(1) kinematic admissibility: ε(u(t, x)) = e(t, x) + p(t, x) in Ω, u(t, x) = w(t, x)
on Γ0

(2) constitutive equation: σ(t, x) = A−1 e(t, x),
(3) equilibrium: divxσ(t, x) = −f(t, x) in Ω, σ(t, x) ν(x) = g(t, x) on Γ1,
(4) stress constraint σD(t, x) ∈ K,
(5) associative flow rule: (ξ − σ(t, x)) : ṗ(t, x) ≤ 0 for every ξ ∈ K,

where ε(u) = 1
2 (∇u+ ∇uT ), σD denotes the deviatoric part of σ

K = {τ ∈ Mn×n
sym : |τD| ≤

√
2k∗}

and A is the elasticity tensor defined as

Aσ =
trσ

n2K0
1 +

1

2µ
σD.

The problem is supplemented by initial conditions at time t = 0.
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Because of the linear growth, with respect to ε(u), of the functional arising in
variational formulation of the problem one looks for displacements u in the space
BD(Ω) and for stresses σ in the space L2(Ω; Mn×n

sym ). However, one can expect
better regularity of the stress tensor σ. Namely, as it was shown in [3, 5, 6, 7], in

some stationary situations the stress belongs to the space W 1,2
loc (Ω; Mn×n

sym ).

Here we address the issue of W 1,2
loc regularity, with respect to spatial variables, of

the stress tensor σ(t) in the Prandtl-Reuss model. The main result (see Theorem
1 below) states, that one has

σ ∈ L∞([0, T ];W 1,2
loc (Ω; Mn×n

sym )).

A similar result was obtained in [1], where the authors have used Norton-Hoff
approximations. We remark, however, that our proof is based on a completely
different approach, developed by G. Seregin for proving regularity of stresses in
the case of Hencky perfect plasticity (see for example [3, 5, 6]). Observe, that due
to this fact, our assumptions on the data of the problem are different from those
of [1].

We believe, that the method proposed can be used for proving differentiability
of stresses for other models occurring in plasticity theory.

The main result. We impose the following assumptions on the data of the
problem

(1)
f ∈ AC([0, T ];Ln(Ω; Rn)) ∩ L∞([0, T ];C1

loc(Ω; Rn))
F ∈ AC([0, T ];L∞(Γ1))
w ∈ AC([0, T ];W 1,2(Ω; Rn)).

Assume also the so-called uniform safe-load condition:

(2)

there exists a function ̺ ∈ AC([0, T ];L2(Ω; Mn×n
sym )), such that

divx̺(t) = −f(t) in Ω and [̺ν] = F (t) on Γ1 for every t ∈ [0, T ],

|̺D(t, x)| ≤ λ
√

2k∗ a.e. x ∈ Ω,
for some 0 < λ < 1, for every t ∈ [0, T ],
and ̺D ∈ AC([0, T ];L∞(Ω; MD)).

Suppose, that ∂Ω ∈ C2 is partitioned into two disjoint open sets Γ0, Γ1 and
their common interface γ = ∂Γ0 = ∂Γ1:

∂Ω = Γ0 ∪ γ ∪ Γ1.

Further, we assume that

(3)
for each x ∈ I, there exists a C2 diffeomorphism defined in a
neighborhood of x which maps ∂Ω to an (n− 1)−dimensional
hyperplane, and γ to an (n− 2)-dimensional plane.

Theorem 1. Suppose that n = 2, 3 and the assumptions (1)- (3) are satisfied.
Then for a solution (u, e, p) of the quasistatic problem we have

σ ∈ L∞([0, T ];W 1,2
loc (Ω; Mn×n

sym )),

with σ(t, x) = A−1e(t, x).
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The idea of the proof. Shortly, the strategy of proving Theorem 1 consists in
refining the proof of the existence of solution to the quasistatic problem, carried
out in [2], by generalizing the estimates obtained in [3] and [5] for establishing the
regularity of stresses in the case of Hencky perfect plasticity.

More precisely, we follow the general scheme for proving the existence of weak
solutions of continuous-time energy formulation of rate-independent processes des-
cribed in [4] (see the references therein). We perform a standard time-discretization
procedure, and for chosen in a suitable way approximate solutions (uN (t), eN (t),
pN (t), σN (t)), that converge to a weak solution of the quasistatic problem, we
obtain the estimate

(4) sup
N∈N

sup
t∈[0,T ]

‖σN (t)‖W 1,2

loc
(Ω;Mn×n

loc
) ≤ C,

which yields Theorem 1. To get (4), we look for solutions (umN , e
m
N , p

m
N) of the

incremental problems (see [2] for the details and definitions)

(5) min
{
Q(e) + H(p− pm−1

N ) + LmN (u) : (u, e, p) admissible for wmN

}

as for saddle points of a Lagrangian (details can be found in [3, 5])

ℓ(v, τ) =

∫

Ω

(ε(v) + em−1
N ) : τ dx−

∫

Ω

g∗(τ) dx −
∫

Ω

fmN · τ dx−
∫

Γ1

FmN · v dx,

which is similar to the one considered in the static case of Hencky perfect plasti-
city, but takes into account the preceding history of plastic deformation through
the term em−1

N . Using the abstract relaxation scheme, see [3], one considers an
appropriate relaxation of this Lagrangian and shows that its saddle points (u, σ)
generate solutions of the incremental problem (5). Then we consider certain regu-
larized problems and show, that their solutions σδ are smooth enough and

σδ ⇀ σmN in L2(Ω; Mn×n
sym ) and ‖σδ‖W 1,2

loc
(Ω;Mn×n

sym ) ≤ C(m,N).

Thus one concludes that for the approximate solutions σN (t), obtained from σmN
by piecewise-constant interpolations, the following is valid

(6) sup
t∈[0,T ]

‖σN (t)‖W 1,2

loc
(Ω;Mn×n

sym ) = max
m=0,...,N

‖σmN ‖W 1,2

loc
(Ω;Mn×n

sym ) ≤ C(N),

however, without any uniformity with respect to N . Finally, by using the fact that
σmN is a Sobolev function, we manage to improve estimate (6), showing that (4)
holds.
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Discontinuous Hysteresis

Augusto Visintin

1. Hysteresis Operators

Hysteresis occurs in ferromagnetism, ferroelectricity, plasticity, pseudo-elasticity,
superconductivity, phase transitions, porous media filtration, and in several other
phenomena, cf. e.g. [2],[5],[6],[10]. A classical example is provided by the depen-

dence of the (uniform) magnetization ~M on a (uniform) magnetic field ~H in a uni-

variate experiment. This relation may be represented in the form ~M(t) = [F( ~H)](t)
for any t ∈ [0, T ], where F is a hysteresis operator, namely it has memory and is
rate-independent.

The functional analyical approach to hysteresis and its applications to differen-
tial equations were pioneered by Bouc in the 1960s [1]. The notion of hysteresis
operator was thoroughly investigated by Krasnosel’skĭı, Pokrovskĭı and co-workers
in the 1970s and 1980s [5]. Since the 1980s some west-European analysts also
began to study hysteresis models, especially in connection with P.D.E.s and app-
lications, see e.g. the monographs [2],[6],[10]. Since the late 1990s a new approach
to hysteresis was studied under the keywords of rate-independence and energetic
formulation, see e.g. [3],[4],[7],[8]. (The latter approach might be compared with
the system (7) and (8) below.)

The first formulation of the model that is outlined below dates back to [9];
more recently in [10],[11],[12] it was applied to first- and second-order quasilinear
hyperbolic equations with hysteresis, respectively of the form

(1) ut + F(u)t + ~v · ∇u = f, utt + F(u)tt +Au = f,

~v being a prescribed vector field and A a linear elliptic operator.

2. Discontinuous Hysteresis

Here we review a model of discontinuous hysteresis, that is the basic element for
the construction of the Preisach operator.

Relay. Let us fix any ρ := (ρ1, ρ2) ∈ R2 with ρ1 < ρ2. For any u ∈ C0([0, T ]) and
any ξ ∈ {−1, 1}, let us set Xu(t) := {τ ∈ ]0, t] : u(τ) = ρ1 or ρ2}, and after [9] and
[10] (Chap. VI) define the function w = hρ(u, ξ) : [0, T ] → {−1, 1} as follows:

(2) w(0) := −1 if u(0) ≤ ρ1, w(0) := ξ if ρ1<u(0)<ρ2, w(0) := 1 if u(0) ≥ ρ2,
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(3) w(0) :=





w(0) if Xu(t) = ∅
−1 if Xu(t) 6= ∅ and u(maxXu(t)) = ρ1

1 if Xu(t) 6= ∅ and u(maxXu(t)) = ρ2

cf. the first figure below. We call hρ a (delayed) relay operator.
Any function u ∈ C0([0, T ]) is uniformly continuous, hence it can only oscillate

at most a finite number of times between the thresholds ρ1 and ρ2. Therefore w can
jump just a finite number of times between −1 and 1, if at all; thus w ∈ BV (0, T ).

Closure. The relay operator hρ : C0([0, T ]) → L1(0, T ) is not closed. Following
[9] and [10] (Chap. VI), we then introduce the completed relay operator, kρ. For
any u ∈ C0([0, T ]) and any ξ ∈ [−1, 1], we set w ∈ kρ(u, ξ) if and only if w is
measurable in ]0, T [ and

(4) w(0) :=





−1 if u(0) < ρ1

ξ if ρ1 ≤ u(0) ≤ ρ2

1 if u(0) > ρ2

(5) w(0) :=





{−1} if u(0) < ρ1

[−1, 1] if ρ1 ≤ u(0) ≤ ρ2

{1} if u(0) > ρ2

∀t ∈ ]0, T ],

(6)





if u(t) 6= ρ1, ρ2, then w is constant in a neighbourhood of t

if u(t) = ρ1, then w is nonincreasing in a neighbourhood of t

if u(t) = ρ2, then w is nondecreasing in a neighbourhood of t

for any t ∈ ]0, T ]. Still w ∈ BV (0, T ) for any u ∈ C0([0, T ]). The graph of kρ in
the (u,w)-plane invades the whole rectangle [ρ1, ρ2]× [−1, 1], cf. the second figure
below. This operator is the closure of hρ w.r.t. the strong topology of C0([0, T ])
and the sequential weak star topology of BV (0, T ), cf. [10] (Chap. VI).

Reformulation of the Scalar Relay. (5) and (6) are respectively equivalent to

(7) |w| ≤ 1, (w − 1)(u− ρ2) ≥ 0, (w + 1)(u − ρ1) ≥ 0 a.e. in ]0, T [,
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(8)

∫ t

0

u dw =

∫ t

0

ρ2 (dw)+ −
∫ t

0

ρ1 (dw)− =: Ψρ(w; [0, t]) ∀t ∈]0, T ].

Vector Relay. For any ρ := (ρ1, ρ2) and any ~θ := (θ1, θ2, θ3) ∈ S2 := {~θ ∈ R3 :

|~θ| = 1} we introduce the vector-relay operator

(9) ~h(ρ,θ) : C0([0, T ])3 × {±1} → L∞(0, T ) : (~u, ξ) 7→ hρ(~u·~θ, ξ)~θ.
The component of the input ~u in the direction ~θ is thus assumed as input for the

scalar relay hρ; the output of the latter is then applied to the same direction ~θ.

The operator ~h(ρ,θ) inherits several properties from hρ. Its closure ~k(ρ,θ) is simply
obtained by replacing hρ by kρ in (9).

Reformulation of the Vector Relay. After [10] the characterization (7), (8) of
the scalar relay may be extended to the vector relay. For any (~u, ξ) ∈ C0([0, T ])3×
[−1, 1] and any (ρ, ~θ) ∈ P × S2, ~w ∈ ~k(ρ,θ)(~u, ξ) if and only if ~w(t) := w(t)~θ for
any t, and

(10) w(0) :=





−1 if ~u(0)·~θ < ρ1

ξ(ρ,θ) if ρ1 ≤ ~u(0)·~θ ≤ ρ2

1 if ~u(0)·~θ > ρ2

(11)





|w(t)| ≤ 1

(w(t) − 1)
(
~u(t)·~θ − ρ2

)
≥ 0

(w(t) + 1)
(
~u(t)·~θ − ρ1

)
≥ 0

∀t ∈ ]0, T ],

(12)

∫ t

0

~u·~θ dw ≥ Ψρ(w; [0, t]) ∀t ∈ ]0, T ].

This formulation of the vector-relay operator can also be extended to space-
distributed systems just by inserting the variable x as a parameter [11], [12].
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On Configurational-Force-Driven Crack Propagation

Christian Miehe

(joint work with E. Gürses, D. Zimmermann)

Keywords: Fracture, configurational forces, energy minimization, finite elements,
crack simulations

Abstract: The paper outlines a variational formulation of brittle fracture in
solids and considers its numerical implementation by a distinct finite element me-
thod. The starting point is a variational setting of fracture mechanics that recasts
a monotonic quasistatic fracture process into a sequence of incremental energy mi-
nimization problems. The proposed numerical implementation introduces discreti-
zed crack patterns with material-force-driven incremental crack-segment releases.
These releases of crack segments constitute a sequence of positive definite subpro-
blems with successively decreasing overall stiffness, providing an extremely robust
algorithmic setting in the postcritical range. The formulation is embedded into
accompanying r-adaptive crack-pattern reorientation procedures with material-
force-based indicators, providing reorientations of finite elements at the crack-tip.

1. Variational Formulation of Brittle Crack Propagation

The coordinates X ∈ BΓ of the solid in its reference configuration BΓ are referred
to as the material coordinates. In a deformed configuration at the time t ∈ R+,
these coordinates are mapped by the deformation map

(1) ϕt :

{
BΓ → SΓ

X 7→ x = ϕt(X)

onto the spatial coordinates x ∈ SΓ, where SΓ ⊂ R3 denotes the current confi-
guration of the solid. This deformation is assumed to be prescribed on the part
∂Bϕ ⊂ ∂B of the exterior surface by the Dirichlet condition in a monotonous
format with given velocity function v̄. In the interior domain BΓ, the deformation
map is constrained by the condition detF > 0 at X ∈ ∂BΓ with F = ∇ϕt(X), whe-
re F denotes the deformation gradient of the solid at X ∈ ∂BΓ and time t ∈ R+.

Consider a one-to-one piecewise differentiable transformation Ξt : ΩΓ → BΓ of
the reference configuration onto itself. This mapping is considered as the time-
dependent parameterization of the medium that accounts for material structural
changes in the form of a crack propagation. It reflects a time-dependent change of
the Lagrangian coordinates θ ∈ ΩΓ to X ∈ BΓ in a sense of a change of material
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Abbildung 1. Structural changes and deformation. Both, refe-
rence and spatial configurations are independently parameterized
by material and spatial maps Ξt and ξt. The change of Ξt in time
describes material structural changes.

structure. With this viewpoint at hand, we introduce the material and spatial
coordinate maps

(2) Ξt :

{
ΩΓ → BΓ

θ 7→ X = Ξt(θ)
and ξt :

{
ΩΓ → SΓ

θ 7→ x = ξt(θ)

at time t ∈ R+ and express the deformation map defined in (1) by the compo-
sition ϕt(X) = ξt(θ) ◦ Ξ−1

t (X) as visualized in Figure 1. As a consequence, the
deformation gradient F appears as the composition

(3) F = j · J−1 with j = ∇θξt and J = ∇θΞt

of the gradients of the material and spatial coordinate maps introduced in (2).
Furthermore, the volume element of the Lagrangian reference configuration is now
defined in terms of the material coordinate map, i.e. dV = detJdΩ. With these
definitions at hand, we obtain the total time derivative of the above kinematic
objects by

(4) ϕ̇ = v − F · V , Ḟ = ∇v − F · ∇V , ˙dV = (1 : ∇V)dV

in terms of the spatial and material velocity fields v := ∂
∂tξt and V := ∂

∂tΞt,
respectively. These fields govern possible variations of both the Lagrangian as well
as the Eulerian coordinates X ∈ BΓ and x ∈ SΓ.

We focus on an elastic response of the solid with evolving cracks. In order
to set up the global constitutive equations for the crack evolution in the elastic
solid, we consider a global dissipation analysis in the sense of Coleman’s method.
This includes a comparison of the global power P applied to the solid by external
tractions on its boundary with the global energy storage of the solid. We have the
global postulate

(5) D := P − d

dt
Ψ =

∫

∂BΓ

t · vdA − d

dt

∫

BΓ

ψ̂(F)dV ≥ 0 .

where ψ̂ denotes the free energy function and t is the traction vector on ∂BΓ.
This statement is the demand of the second axiom of thermodynamics in the
pure mechanical context. It is the global counterpart to the classical Clausius-
Duhem inequality of continuum thermodynamics. The insertion of the kinematic
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Abbildung 2. a.) - c.) The tensile stress during the crack evolu-
tion in a notched specimen under tension.

relationships (4) into (5) with the application of generalized Gauss theorem results
in

(6) DivP = 0 in BΓ , DivΣ = 0 in BΓ

along with additional traction conditions on the crack surfaces and outer boun-
daries, see also [3] for a similar discussion. These equations cover the equilibrium
condition and the local equation for the Eshelby stress field in the bulk BΓ of
the homogeneous elastic solid. Taking into account the conditions (6), we ob-
tain the reduced global dissipation inequality as an integral over the crack tips,
D =

∫
∂Γ g · ȧdS ≥ 0 . Here, g := lim

|C|→0

∫
C ϕ · ndS and ȧ are the crack driving

force and crack tip velocity, respectively. The crack propagation rate ȧ needs to be
specified by a constitutive assumption. To this end, consider the classical isotropic

Griffith-type crack criterion function φ̂(g) = |g| − gc ≤ 0 , where gc is a material
parameter specifying the critical energy release per unit length of the crack. With
this notion at hand, an associated evolution equation for the crack evolution may
be constructed by introducing an elastic domain for the material forces at the
crack tip and a local principle of maximum dissipation. The evolution equation for
the local crack propagation reads

(7) ȧ = γ̇∂gφ̂(g) = γ̇
g

|g|
along with the crack loading-unloading conditions. The algorithmic counterpart of
the formulation outlined above requires the spatial discretizations of the domain,
configurational maps Ξt, ξt and temporal discretization of the evolution equation
(7), respectively. In order to obtain a stable setting for this incremental scenario in
a typical time interval [tn, tn+1], we apply a staggered scheme of energy minimiza-
tion at frozen crack pattern and a successive crack release by single nodal doubling.
We refer to [2] for the computation of configurational forces in the finite element
context and to [1] for details of the algorithm. Here, as an example we consider
a specimen with two holes under tension where two symmetric cracks evolve. In
Fig. 2 the crack trajectories and the maximum tensile stresses at different level of
loads are presented.
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Numerical implementation of the variational brittle fracture
formulation

Blaise Bourdin

1. The variational formulation of brittle fracture

The variational formulation of brittle fracture mechanics proposed in [6] relies
in computing the time evolution of global minimizers of a total energy functional
under unilaterality constraints. For the sake of brevity, we quickly recall the for-
mulation without getting into the details. In particular, we do not state the proper
function spaces.

We consider an open bounded connected domain Ω ⊂ RN (N = 1, 2, 3) with
Lipschitz boundary ∂Ω representing the crack-free reference configuration of an
elastic body. We consider a discretization of the time interval [0, T ] into p+ 1 time
steps 0 = t0 < t1 < · · · < tp = T . At each time step, we apply a time-dependent
displacement boundary condition g(t;x) on a part ∂ΩD ⊂ ∂Ω with non-null mea-
sure, while the remaining part of ∂ΩN := ∂Ω \ ∂ΩD remains traction free. For

technical reasons better exposed in [2, 5], we consider an extended domain Ω̃ such

that Ω̄ ⊂ Ω̃, and an extension (still noted g) of the Dirichlet boundary condition to

Ω̃. By KA(ti) we denote the set of all kinematicaly admissible displacement fields
for time step ti, and define the total jump set

Γ(u(ti)) :=
⋃

0≤j≤i

Ju(tj),

where Jv is the jump set of a function v. Remark that Γ(u(t)) is monotonically
increasing. Roughly speaking, at any given time, it is the set of all points across
which u has been discontinuous in the past. It represents the crack set associated to
the time-dependent deformation, accounting for the irreversible nature of fracture.

Indeed, to any u be such that u(t) ∈ KA(t) for all 0 < t ≤ T and its associated
total jump set Γ(u(t)), Francfort and Marigo propose to associate the total energy

(1) E(u(t),Γ(u(t))) =

∫

Ω

W (e(u(t)) dx +GcHN−1(Γ(u(t)) \ ∂ΩN ),

where Gc is the fracture toughness of the material considered, e(u) is the sym-
metrized gradient of u, W (e) is the classical linear elastic potential, and HN−1

denotes the N−1–dimensional Haussdorf measure. Then, at each time step ti, the
displacement field u(ti) minimizes E under unilaterality condition, i.e.

(2) min
v∈KA(t)

∫

Ω

W (e(v)) dx +GcHN−1 (Jv \ [Γ(u(ti)) ∪ ∂ΩN ]) ,
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with the convention that Γ(u(t−1)) = ∅.
The actual implementation of (2) is a challenging problem. The kinematically

displacement fields are discontinuous, but the location of their discontinuities is of
course not known in advance, which is a requirement of most classical discretization
methods. Following an approach originally devised in [1] for an image segmentation
problem, we introduce a secondary variable v, representing in some sense the jumps
of u, and for any ε > 0, and ηε ≪ ε, the regularized functional

(3) Eε(u, v) :=

∫

Ω

(
v2 + ηε

)
W (e(u)) dx+Gc

∫

Ω̃\∂ΩN

(1 − v)2

4ε
+ ε|∇v|2 dx,

which approximates E in the sense of the Γ–convergence.

2. Numerical implementation

The regularized functional Eε is the basis of our the numerical implementation.
For the first time step, a classical result shows that the minimizers of Eε converge
to that of E when ε→ 0. Practically, we minimize Eε for a fixed but “small” ε.

In order to approximate of the solution of the next steps, we minimize Eε under
the constraint that viε = 0 whenever vi−1

ε ≤ αε, αε = O(ε) being a fixed parameter.
This approach derives slightly from the one studied in [7] (which relies on enforcing
the constraint viε ≤ vi−1

ε ), is practically more efficient to implement but can not be
justified. Numerical experiments indicates that the solution obtained using both
methods are similar.

Like E, Eε is non-convex, and computing its global minimizers is a challenge.
As an algorithm provably converging to the global minimizer of Eε is out of reach,
a classical strategy is to establish necessary conditions for optimality and to devise
an algorithm converging to a point satisfying these conditions.

At each time step, we alternate minimizations with respect to u and v. One can
prove that this algorithm always converges to a critical point for Eε, which can
be a local or global minimizer or even a critical point. It is proved in [4, Theorem
2] that the alternate minimization algorithm, initialized “close enough” from an
isolated local minimizer of Fε, will converge to the said local minimizer. As a
corollary, as long as the crack propagation is smooth and if the time discretization
is fine enough, the alternate minimization properly initialized converges towards
a global minimizer of Eε.

In order to detect potential local minimizers or saddle points, we study an
optimality condition for the whole evolution. We assume that W is homogeneous of
degree 2, and that the loads are monotonically increasing (i.e. that g(t;x) = tg(x)).
Let (uε(ti), vε(ti))i=0,...,p be a family of critical points for Fε. For any j ≤ i,(
tj
ti
uε(ti), vε(ti)

)
is admissible for the time step tj , and we have

Eε

(
tj
ti
uε(ti), vε(ti)

)
=
t2j
t2i
Ebε

(
tj
ti
uε(ti), vε(ti)

)
+ Esε

(
tj
ti
uε(ti), vε(ti)

)
,
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where Ebε and Ebε refer to the first and second terms in (3). From this, we deduce
that if (uε(ti), vε(ti)) is a global minimizer of Fε at time step ti:
(4)
t2j
t2i
Ebε

(
tj
ti
uε(ti), vε(ti)

)
+ Esε

(
tj
ti
uε(ti), vε(ti)

)
≥ Eε(uε(tj), vε(tj)) ∀0 ≤ j ≤ i.

This necessary condition for optimality is the foundation of the backtracking algo-
rithm: at each time step ti after computing a critical point using the alternate mini-
mization algorithm, we check if condition (4) is satisfied for each tj with 0 ≤ j < i.
If it is not, then (uε(ti), vε(ti)) cannot be a global minimizer for time step ti, and

we restart the minimization process from time step ti, using
(
tj
ti
uε(ti), vε(ti)

)
as

the initial point of the alternate minimization algorithm.
The following figure represents the evolution of the bulk, surface and total

energies for a traction experiment on a fiber–reinforced square matrix with (thick
lines) and without (thin lines) backtracking, adapted from [2, 3]. Indeed, the total
energy associated to the solution computed using the backtracking algorithm is
less than that of the evolution computed without it. Moreover, the total energy of
the backtracking solution is continuous with respect to time, which is known to
be true of the actual global minimizer (see [5]), while the other is not.
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A variational principle in non-smooth Mechanics

Ulisse Stefanelli

Let Y be a Banach space with dual Y ∗, ψ : Y → (−∞,∞] be convex, proper,
and lower semicontinuous dissipation potential, φ ∈ C1(Y ; R) be an energy, and
the load ℓ ∈ L∞(0, T ;Y ∗) and the initial state y0 ∈ Y be given. A variety of non-
smooth (thermo-)mechanical evolution models can be represented by the relation

(1) ∂ψ(ẏ) +Dφ(y) ∋ ℓ a.e. in (0, T ), y(0) = y0,

where ∂ stands for the subdifferential in the sense of Convex Analysis and t 7→ y(t)
is meant to be in W 1,1(0, T ;Y ). Here ∂ψ represents the system of dissipative forces
whereas Dφ − ℓ stands for the conservative forces instead. Relation (1) appears
in connection with many different applicative situations among which plasticity,
visco-elasticity, friction [6], heat conduction, and phase change.

Fenchel’s inequality ψ(u) +ψ∗(v) ≥ 〈v, u〉 holds for all u ∈ Y and v ∈ Y ∗ where
〈·, ·〉 stands for the duality pairing between Y ∗ and Y and ψ∗ is the conjugate of
ψ. Moreover, the latter inequality reduces to an equality iff v ∈ ∂ψ(u). Hence, by
defining the Lagrangian L : (0, T ) × Y × Y → R as

L(t, y, p) := ψ(p) + ψ∗(ℓ(t) −Dφ(y)) − 〈ℓ(t) −Dφ(y), p〉
for almost every t ∈ (0, T ), one readily checks that L(t, y, p) ≥ 0 and

L(t, y, p) = 0 iff ∂φ(p) ∋ ℓ(t) −Dφ(y).

Let now the functional F : W 1,1(0, T ;Y ) → [0,∞] be defined as

F (y) :=

∫ T

0

L(t, y(t), ẏ(t)) dt+ φ(y(0) − y0).

Then, minimizers of F and solutions to (1) coincide. Indeed, as y solves (1), we
have that L(t, y(t), ẏ(t)) = 0 for almost every t ∈ (0, T ) and y(0) = y0. That is
F (y) = 0. On the contrary, if F (y) = 0, then L(t, y(t), ẏ(t)) = 0 for almost every
t ∈ (0, T ) and φ(y(0) − y0) = 0 and (1) follows. Hence, we have the following.

Theorem 0.1. y solves (1) iff F (y) = 0 = minF .

The characterization of solutions of differential problems driven by convex po-
tentials as minimizers of functionals via the Fenchel approach is rather classical
and has to be traced back to Brezis & Ekeland [1, 2]. In the referred papers,
the Authors provide some similar variational characterization for gradient flows of
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convex functionals in Hilbert spaces. I have recently extended these ideas to the
case of doubly nonlinear equations [7].

In order to extract some information from the variational characterization of
Theorem 1, it is convenient to focus on some more specific situation. I shall in par-
ticular consider the case of linearized hardening elasto-plasticity [4] by additionally
requiring

ψ positively 1-homogeneous and φ quadratic and coercive on D(ψ),

namely the domain of ψ. In this specific situation Dφ is linear and Theorem 1
is providing a useful tool in order to deal with limiting procedures. Indeed, since
one reinterprets the equation as a minimum problem, it is clear that the natural
concept to be considered is that of Γ-convergence [3]. More precisely, as Theorem
1 directly quantifies the value of the minimum to be 0, what is actually needed
are so-called Γ-lim inf inequalities only.

The variational approach by Theorem 1 provides the possibility of recovering
convergence in a variety of approximated situations.

Space approximation. Conformal finite elements and data approximations
can be considered. In particular, one can easily handle by means of this variational
approach the case where Y is replaced by a nested sequence of finite dimensional
subspaces Yh such that ∪hYh is dense in Y , φh is the restriction of φ to Yh, and
ψh → ψ in the sense of Mosco in Y [3].

Time discretization. One can provide a discrete analogue to Theorem 1.
Namely, it is possible to variationally characterize solutions of the so-called θ-
scheme

y0 = y0, ψ(yi − yi−1) +A
(
θyi + (1 − θ)yi−1

)
∋ ℓiθ for i = 1, . . . , N,

where ℓiθ = ℓ(θti + (1 − θ)ti−1) for 0 = t0 < t1 < · · · < tN = T , as minimizers
of a suitable discrete functional tailored on F . This approach can be exploited in
order to prove the unconditional stability of the scheme in W 1,∞(0, T ;Y ) and its
convergence with respect to the corresponding weak-star topology as the diameter
of the partition goes to 0. Finally, the discrete functional itself can be used in order
to control the discretization error.

Fully discrete schemes. The above-mentioned techniques for space and time
discretization can be combined in order to provide the weak-star convergence in
W 1,∞(0, T ;Y ) of some fully discretized solutions as well. This result has to be
compared with the former analysis in [5], where a stronger convergence in proved
by means of a somehow more complicated argument.
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ques. Le cas dépandant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1197–A1198.

[2] H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboli-
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Global energetic approach to stochastic damage evolution in lattice
structures

Jan Zeman

(joint work with Ron H.J. Peerlings, Marc G.D. Geers)

Lattice models of fracture represent a heterogeneous material as discrete units in-
teracting via brittle elements. By randomizing the individual links’ properties and
repeated Monte-Carlo type analyses, the models are able to simulate very complex
phenomena using few parameters; e.g. [1]. Such numerical simulations, however,
do not provide any insight into the governing equations of the collective behavi-
or, in particular long-range interactions among fractured elements. Therefore, the
present contribution can be seen as the first step in the direction of a consistent
derivation of non-local damage theories from stochastic discrete models.

In the adopted “global energetic” philosophy [5, 6], the system is assumed to
be described by a globally stored elastic energy and a global energy dissipation.
Consider first a deterministic system consisting of N brittle units connecting M
nodes in a n-dimensional space. Similarly to [3], the state of the e-th element is
specified by a displacement vector de ∈ R2n storing the displacement of the nodes
associated with the element and an internal variable χe ∈ {0, 1} providing the
fracture state of the unit; χe = 0 describes an intact unit while χe = 1 corresponds
to a failed element. The energy stored in the e-th element Ee : R2n × {0, 1} → R

is then provided by

(1) Ee(de, χe) := 1
2 (1 − χe) dT

eB
T

eCeBede,

where Be ∈ M1×2n denotes the displacement-to-strain matrix and Ce stands for
the axial element stiffness; e.g. [2]. The irreversible processes are quantified by the
dissipation distance De : {0, 1} × {0, 1} → R

(2) De(χ
1
e, χ

2
e) :=

{
κe(χ

2
e − χ1

e) for χ1
e ≤ χ2

e,
+∞ otherwise,

where κe denotes an energy dissipated by the failure of the element.
Now consider behavior of the whole structure on a time interval [0;T ] when sub-

ject to a hard-device loading imposed by a prescribed displacement d(t) ∈ RM ,
applied to the nodes indexed by a set I ⊂ {1, 2, . . . ,M}. Introducing a partition
of the time domain 0 = t0 < t1 < . . . < tF = T and an initial datum (d(0),χ(0)),
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the time-discretized evolution of the system is provided by an incremental mini-
mization principle [5, 6]:

(3) (d(ti+1),χ(ti+1)) = arg min(d,χ)∈K(ti+1)×S
E(d,χ) +D(χ(ti),χ)

with the set of kinematically admissible displacements defined as

(4) K(t) :=
{
d ∈ RnM : dI = dI(t)

}

and the set of admissible internal variables S := {0, 1}N . The terms appearing
in (3) without the index e correspond to the global quantities, obtained by the
assembly of individual elements contributions [2]. In this setting, the incremental
evolution problem (3) coincides with the weakest link algorithm used as the basic
component of statistical simulations of fracture [1].

Uncertainty is incorporated into the model by treating the energy thresholds
κe as independent random variables Ke with a probability distribution FKe

(κe).
As the result of randomization, each internal variable appears only with a certain
probability. In particular, taking into account the discrete nature of the system,
all internal variables can be enumerated by an index ω = 1, 2, . . . , 2N = |S|. The
probability distribution of internal variables is fully specified by discrete values

µ(ω) ≥ 0,
∑|S|
ω=1 µ(ω) = 1. Hence, the full statistical description would require to

provide a time-dependent evolution of probabilities µ(t) as a result of prescribed
loading and a particular choice of randomization. Such characterization is, howe-
ver, rather difficult to obtain as the number of probabilities grows exponentially
with N and the influence of FKe

is very complex.
An alternative approach, inspired by the Young-measure relaxation of rate inde-

pendent problems [5], is to characterize the stochastic evolution using statistics of
internal variables. The simplest choice allowing to account for binary interactions
between units is provided by a two-unit probability matrix P:

(5) P(µ) :=

|S|∑

ω=1

χ(ω)χT(ω)µ(ω) ∈ S ⊂ MN×N ,

where the set of admissible two-unit probability matrices S coincides with the
Boolean quadratic polytope characterized in [7]. Moreover, we introduce a set

(6) Ω(P) := {µ(ω) ≥ 0,

|S|∑

ω=1

µ(ω) = 1 : P(µ) = P}

collecting the probability distributions compatible with a probability matrix P.
Such a re-definition of internal variables allows us to introduce a relaxed version

of the incremental minimization principle. In the first step, we rewrite (3) as

(7) χ(ti+1) ∈ arg minχ∈SH(ti+1,χ) +D(χ(ti),χ),

with the “condensed” energetic function H : [0;T ] × S → R defined by

(8) H(t,χ) := min
d∈K(t)

E(d,χ).
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The relaxed function H : [0;T ] × S → R is introduced via:

(9) H(t,P) := min
µ∈Ω(P)

|S|∑

ω=1

min
d(ω)∈K(t)

E(d,χ(ω))µ(ω).

Adapting the methods developed in [4] to the discrete setting, the energetic term
H can bounded from above by

(10) H(t,P) ≤ H0(t) + 1
2 (τ (P) • diag(P))T(Bd0(t))

where H0 denotes the minimum energy for an original (intact) structure when

subjecting the selected nodes to displacement d(t), d0 is the corresponding dis-
placement of all nodes in the structure, • denotes the Hadamard product and the
τ (t) is the optimal stress polarization defined by a system of linear equations

(11)
[
P •
(
C
−1 − Γ

0(t)
)]

τ (t) = diag(P) • (Bd0(t))

where the matrix Γ
0 ∈ MN×N is introduced in [4].

Derivation of the relaxed dissipation distance is currently under development
and only few preliminary results are available. In particular, it can be shown that
for N = 1

(12) D1(P 1
11, P

2
11) =

{ ∫ P 2
11

P 1
11

F−1
K1

(P ) dP for P 1
11 ≤ P 2

11,

+∞ otherwise,

which generalizes the local relations used in [3]. For a two-element structure and
deterministic values of thresholds, the Wasserstein distance approach introduced
in [5, Section 5.2], resulting in a linear programming problem, leads to an additive
expression

(13) D(P1,P2) = D1(P 1
11, P

2
11) + D2(P 1

22, P
2
22).

For a general distribution of thresholds, however, the additivity of dissipation
contributions is no longer valid as easily verified by the analysis of serial and
parallel system of two units.

Finally note that assuming D(P1,P2) is a function convex in P2, the relaxed
version of (7) assumes the form of a convex incremental problem

(14) P(ti+1) ∈ arg minP∈SH(ti+1,P) + D(P(ti),P)

efficiently solvable by modern tools of mathematical programming.

Acknowledgment: The author acknowledges a partial support for this research from
projects MEIF-CT-2005-024392 (EC) and MSM 6840770003 (MŠMT ČR).
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[2] Z. Bittnar and J. Šejnoha, Numerical methods in structural mechanics, ASCE Press and
Thomas Telford (1996).

[3] G.A. Francfort and J.J. Marigo, Stable damage evolution in a brittle continuous medium,
European Journal of Mechanics A-Solids 12 (1993), 149–189.



Analysis and Numerics for Rate-Independent Processes 627

[4] R. Luciano and J. R. Willis, FE analysis of stress and strain fields in finite random composite
bodies, Journal of the Mechanics and Physics of Solids 53 (2005), 1505–152.

[5] A. Mielke, Deriving new evolution equations for microstructures via relaxation of variatio-
nal incremental problems, Computer Methods in Applied Mechanics and Engineering, 193
(2004), 5095–5127.

[6] A. Mielke, Evolution of rate-independent systems, In C. Dafermos and E. Feireisl, editors,
Handbook of Differential Equations: Evolutionary Equations II, Elsevier (2005), 461–559.

[7] M. Padberg, Boolean quadric polytope: Some characteristics, facets and relatives, Mathe-
matical Programming, Series B 45 (1989), 139–172.

Energy release rate for cracks in finite–strain elasticity

Dorothee Knees

(joint work with Alexander Mielke)

Griffith’s fracture criterion describes in a quasistatic setting whether or not a
pre–existing crack in an elastic body is stationary for given external forces. In
the two dimensional case and assuming that the crack path is a smooth curve
which is known in advance, this fracture criterion can be reformulated in terms
of the energy release rate (ERR). The ERR is defined as the derivative of the
deformation energy of the body with respect to the crack length. In this note we
describe sufficient conditions on polyconvex energy densities which guarantee that
the ERR is well defined in the finite–strain case.

Let Ω∗ ⊂ R2 be a bounded Lipschitz domain with 0 ∈ Ω∗. For δ ∈ R we define
Sδ = {x ∈ R2; x1 ≤ δ, x2 = 0} and consider cracked domains Ωδ = Ω∗\Sδ with
cracks Cδ = Ω∗ ∩ Sδ. It is assumed that ∂Ωδ = ΓDir ∪ ΓN ∪ Cδ, where ΓDir and
ΓN are the Dirichlet and Neumann boundary, respectively, and that there exists
a δ0 > 0 such that Ωδ is a connected domain for every δ ≤ δ0.

The behavior of the body is described in the framework of finite–strain elasticity.
Let ϕ : Ωδ → R2 be a deformation field. Assuming vanishing volume forces, the
deformation energy is given by

I(Ωδ, ϕ) =

∫

Ωδ

W (∇ϕ)dx − 〈h, ϕ〉ΓN
,

where W : R2,2 → [0,∞] is the elastic energy density and h ∈
(
W 1− 1

p
,p(ΓN )

)′
is

a prescribed surface force density on ΓN . We have the following conditions on W

A1 Polyconvexity: W : R2,2 → [0,∞] is polyconvex with W (Fn) → ∞ as
detFn ց 0 and W (F ) = ∞ if detF ≤ 0. Here, F, Fn ∈ R2,2.

A2 Coercivity: For every F ∈ R2,2 we have W (F ) ≥ c1 |F |p−c2 with p > 2
and ci > 0.

Let g ∈ W 1− 1
p
,p(ΓDir). The set of admissible deformation fields is denoted by

Vad(Ωδ) = {ϕ ∈ W 1,p(Ωδ); ϕ
∣∣
ΓDir

= g}.
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For every δ ≤ δ0 Ball’s fundamental theorem guarantees that there exists a mini-
mizer ϕδ ∈ Vad(Ωδ) with

I(Ωδ) ≡ I(Ωδ, ϕδ) = min
ψ∈Vad(Ωδ)

I(Ωδ, ψ).

Definition. The energy release rate corresponding to the domain Ω0 with crack
C0 is defined as

ERR(Ω0) = lim
δց0

1
δ

(
I(Ω0) − I(Ωδ)

)
= −dI(Ωδ)

dδ

∣∣∣
δ=0+

.

With this definition the Griffith fracture criterion takes the form

If ERR(Ω0) < 2γ, then the crack is stationary.

The constant γ > 0 is the fracture toughness and depends on the material. For
linear elastic models, Destuynder/Djaoua [3] were the first who proved rigorous-
ly that the ERR is well defined and that it can be expressed through formulas
which are based on the Eshelby tensor. Similar formulas are stated as well for
the nonlinear case, but they are in general derived under the assumption that the
deformation gradients and the stress fields have a certain singular behavior near
the crack tip. However, in the finite–strain case such regularity results have not
been proved yet. We formulate now additional conditions on the energy density
W which allow us to show, without making any assumptions on the smoothness
of the minimizers, that the ERR is well defined in the finite–strain case.

A3: W is differentiable on R
2,2
+ and for every F ∈ R

2,2
+ we have

∣∣F⊤DW (F )
∣∣ ≤ κ1(1 +W (F )).

A4: W is twice differentiable on R
2,2
+ and for every F ∈ R

2,2
+ , B,C ∈ R2,2

we have
∣∣D2W (F )[FB,FC]

∣∣ ≤ κ2(1 +W (F )) |B| |C| .

Condition A3 was first introduced and discussed in [2, 1]. Note that conditions
A3 and A4 are compatible with the assumption that W (F ) = ∞ if detF ≤ 0. For
example let p > 1, ci > 0 and r > 0. The function W (F ) = c1 |F |p + c2(detF )−r

if detF > 0, W (F ) = ∞, otherwise, is polyconvex and satisfies A3 and A4.
Based on assumptions A3 and A4 we proved a weak convergence theorem for

Eshelby tensors, which is the key for our further analysis. Let

E(∇ϕ) = −∇ϕ⊤DW (∇ϕ) +W (∇ϕ)1

denote the Eshelby tensor corresponding to the deformation field ϕ.

Theorem 1. [5] Let Ω be a bounded, open subset of R2, p > 2 and assume
that W : R2,2 → [0,∞] satisfies assumptions A1, A3 and A4. For every sequence
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(ϕn)n∈N0
⊂W 1,p(Ω) with

ϕn ⇀ ϕ0 weakly in W 1,p(Ω),
∫

Ω

W (∇ϕn) →
∫

Ω

W (∇ϕ0)dx <∞ for n→ ∞

it follows that E(∇ϕn) ⇀ E(∇ϕ0) weakly in L1(Ω).

Remark on the proof. In order to show that ∇ϕ⊤
nDW (∇ϕn) ⇀ ∇ϕ⊤

0 DW (∇ϕ0)
weakly in L1(Ω), we consider a parameter dependent energy for B ∈ L∞(Ω):

JB(t, ϕ) =

∫

Ω

W (∇ϕ(x)(1 + tB(x))) dx.

The above assumptions guarantee that JB is differentiable with respect to t with
∂tJB(0, ϕ) =

∫
Ω

(
∇ϕ⊤DW (∇ϕ)

)
: B dx. An abstract convergence lemma by

Francfort/Mielke [4] on the convergence of derivatives of parameter dependent
energies implies that
∂tJB(0, ϕn) → ∂tJB(0, ϕ0). Since B ∈ L∞(Ω) was arbitrarily chosen, we obtain
the desired result.

We are now ready to formulate our main result on the energy release rate for a
two dimensional body with a straight crack.

Theorem 2. [Griffith formula] [5] Let A1–A4 be satisfied and assume that

inf
ϕ∈Vad(Ω0)

I(Ω0, ϕ) <∞.

Let furthermore θ ∈ C∞
0 (Ω∗) with θ = 1 near the crack tip (0, 0)⊤. The energy

release rate ERR(Ω0) is well defined and a generalized Griffith formula is valid:

ERR(Ω0) = max{G(ϕ, θ) ; ϕ minimizes I(Ω0, ·) over Vad(Ω0) },(1)

where

G(ϕ) := G(ϕ, θ) = −
∫

Ω0

E(∇ϕ) : ∇ ( θ0 ) dx.(2)

Formulas (1) and (2) are independent of the choice of θ. The energy release rate
can also be expressed through the J–integral. Let BR(x0) = { x ∈ Rd ; |x− x0| <
R }.

Theorem 3. [5] Let the assumptions from the previous theorem be satisfied and

let R0 > 0 such that BR0
(0) ⊂ Ω∗. For every minimizer ϕ0 of I(Ω0, ·) and almost

every R ∈ (0, R0) we have

G(ϕ0) = −
∫

∂BR(0)

(
E(∇ϕ0)~n

)
· ( 1

0 ) ds,(3)

where ~n is the interior unit normal vector on ∂BR(0). Formally, the J–integral
is derived from the Griffith formula by integration by parts. For minimizers ϕ0
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assumption A3 guarantees that E(∇ϕ0) ∈ L1(Ω0). Moreover, the considerations
in [2, 1] imply that divE(∇ϕ0) = 0. If we knew in addition that E(∇ϕ0) ∈ Lq(Ω0)
for some q > 1, then a suitable version of the Gauss theorem would allow us to
pass from the Griffith formula to the J–integral with respect to arbitrary paths
around the crack tip. In the case q = 1 a suitable Gauss theorem seems to be
unknown, and we applied Fubini’s theorem in order to obtain identity (3) at least
for almost every circular path.

Let us finally remark that in the case of unique minimizers we recover the
formulas proposed in the literature on fracture mechanics.
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(1991), 119–157.

[3] P. Destuynder, M. Djaoua, Sur une interpretation mathématique de l’intégrale de Rice en
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Evolution of microstructures in shape memory alloys

Klaus Hackl

1. General framework

Our modeling will be based on the general framework presented for example in
[4], [5] and [7]. For this purpose we need a relaxed free energy Ψrel(ε, λz) depen-
dent on the macroscopic strain ε and on the Young-measure λz, i.e. a probability
distribution of the internal variable z. Moreover we will assume a relaxed dissi-
pation potential of the form ∆∗(λ̇z). We state that the total power is minimized

by λ̇z, where we have to respect the facts that λz ≥ 0 and
∫
λz dz = 1. Intro-

ducing this constraints via Langrange- and Kuhn-Tucker-multipliers, respectively,
we formulate a Lagrange functional of the form

(1) L(ε, λz, λ̇z) =
d

dt
Ψrel(ε, λz) + ∆∗(λ̇z) + α

∫
λ̇z dz −

∫
βzλ̇z dz,

and we get the Kuhn-Tucker conditions

(2) λ̇z ≥ 0, βz ≥ 0, λ̇zβz = 0.

By minimization of L with respect to λ̇z we are now able to derive evolution
equations for λz . For details see the references above. We are going to specify Ψrel

and ∆∗ for two different models of shape memory alloys.
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2. Polycrystal model

An ideal polycrystalline shape memory alloy consists of an infinite number of
randomly oriented grains, which means we have z = R ∈ SO3. For modeling
purposes, however, the number of different crystal orientations is restricted to a
large, but finite number N . Starting from an arbitrary fixed coordinate system,
every crystal orientation j is described by a rotational tensor Rj . Together with
the linearized Bain strain εt describing the transformation from the undeformed
austenite reference configuration to the lower symmetry martensitic structure, the
transformation strain for the orientation j is

(3) ηj = RT
j εtRj .

The volume fraction corresponding to the jth martensite orientation is now de-
noted by λj , j = 1, . . . , N , whereas λ0 corresponds to the transformation strain
η0 = 0 of the austenite. We assume a simple linear elastic material law,

(4) Ψj

(
εj ,ηj

)
=

1

2

(
εj − ηj

)
: Cj :

(
εj − ηj

)
+ αj ,

where Cj is the elasticity tensor correponding to orientation Rj , “:” means con-
traction with respect to two indices, and αj denotes the chemical energy of the
jth variant, which only differs from austenite to martensite but is the same for all
martensite variants for reasons of symmetry.

In our energy formulation (4), we introduced the strain εj of the crystals of
orientation j. The global strain ε is then given as the volume average of the local
ones, which leads to the following formulation of the global energy for fixed volume
fractions:

(5) Ψrel (ε,λ) = inf





N∑

j=0

λjΨj

(
εj ,ηj

)
∣∣∣∣∣∣
εj , ε =

N∑

j=0

λjεj



 .

This way of calculating the free energy corresponds to a relaxation by convexifica-
tion, which is actually a very crude way of obtaining lower bounds as estimates to
the energy of a multivariant material. For a comparison of upper and lower bounds
to the free energy in order to estimate the quality of the convexification bound,
see [2], [3], and [6].

Minimizing (5) over the crystal strains εj yields the straightforward expression
for the relaxed energy

(6) Ψrel (ε,λ) =
1

2
(ε − ηeff) : Ceff : (ε − ηeff) + αeff ,

with the effective elasticity tensor, transformation strain and chemical energy

(7) Ceff =




N∑

j=0

λjC
−1




−1

, ηeff =
N∑

j=0

λjηj , αeff =
N∑

j=0

λjαj .

The crystal strains for which this minimal energy is achieved are εj = ε+ηj−ηeff .
Since changes in the orientation distribution correspond to a growth and shrinking
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of domains containing certain variants, an intuitional assumption is the dissipation
function

(8) ∆∗
(
λ̇
)

= r
∣∣∣λ̇
∣∣∣

which connects the Euclidian norm of the rate of change of the orientation distri-
butions linearly to the dissipated energy. The orientation distributions obtained
by solving the evolution equations corresponding to this model compare well with
γ-ray diffraction experiments, see [8].

3. Single-crystal model

For the single-crystal model we can approximate the relaxed energy in a mo-
re accurate way by a so-called lamination, where the local displacement–field is
perturbed subjected to a prescribed microstructure on a representative volume
element. For more details on this approach, see [1]. Precisely, the strains are de-
termined as

εA = ε +
1

λA
nA ⊗S uA,(9)

εI = ε − 1∑
λI

nA ⊗S uA +
1

λI
nM ⊗S (uI − uI−1)(10)

with a ⊗S b := 1
2 (a ⊗ b + b⊗ a) , where uA, uI are referred to as amplitudes of

perturbation and nA,nM symbolize the laminate–directions. The relaxed energy
is now given as

(11) Ψrel(ε,λ,nA,nM ) = inf





N∑

j=0

λjΨj

(
εj ,ηj

)
∣∣∣∣∣∣
uA,u1,u2, . . . ,uNV−1



 .

In our case, this energy can be represented analytically by

Ψrel =
1

2
ε : C̄ : ε + ε : [(∆C · nA) · uA] +

1

2
uA · Ĉ · uA − τ̄ : ε

+
1

λM
(τ̄ · nA) · uA − 1

2

NV∑

I=1

{τ i · (ui − uI−1)} · nM + ᾱ,

where

uA = −Ĉ−1 ·
(

∆C : ε +
1

λM
τ̄

)
· nA,

uI = − 1

λM
C−1
M ·




I∑

i=1

NV∑

j=I+1

{λi λj (τ j − τ i)}


 · nM

symbolize optimal amplitudes of the applied perturbations determined by the mini-

mization. The quantities C̄ := λA CA+
∑
λI CM , ∆C := CA−CM , Ĉ := nA ·C·nA,

τ I := εtI : CI , τ̄ :=
∑ {λI τ I}, ᾱ = λA αA +

∑
λI αM + 1

2

∑ {τ I : εtI} just repre-
sent abbreviations, [1].
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A suitable relaxed dissipation functional is then be given for example by

(12) ∆∗ = k1 |λ̇| + k2 (|ṅA| + |ṅM |) ,
which leads to evolution equations of a classical elasto–plastic type, see [1].
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The Kurzweil integral approach to discontinuous rate independent
processes

Pavel Krejč́ı

Consider a real separable Hilbert space X endowed with a scalar product 〈·, ·〉,
and a family Z(v) of nonempty convex closed sets parameterized by elements v
from a closed subset V of a Banach space Y . For a given mapping u : [0, T ] → V ,
we look for a solution ξ : [0, T ] → X of the sweeping process

ξ̇(t) + ∂IZ(u(t))(ξ(t)) ∋ 0 ,(1)

ξ(0) = ξ0 ∈ Z(u(0)) ,(2)

where IZ(u(t)) is the indicator function of the set Z(u(t)), and ∂IZ(u(t)) is its
subdifferential. Our aim is to extend the results of [11, 8] to discontinuous inputs
u with locally unbounded variation. More specifically, we deal with the so-called
regulated functions , that is, functions u that admit both one-sided limits u(t−),
u(t+) at each point t ∈ [0, T ], with the convention u(0−) = u(0), u(T+) = u(T ).
Such functions were introduced in [1] and further investigated in [4, 5, 12]. We
denote by G(0, T ;X) the Banach space of regulated functions [0, T ] → X endowed
with the sup-norm. If V is not a linear subspace of Y , the set G(0, T ;V ) with
the natural metric induced by the norm of Y can still be treated as a complete
metric space. The space BV (0, T ;X) of functions of bounded variation is a dense
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subspace of G(0, T ;X). Alternatively, G(0, T ;X) can be defined as the closure of
BV (0, T ;X) in the sup-norm topology.

We restrict ourselves to left continuous inputs u, that is, u(t−) = u(t) for
all t ∈ [0, T ]. The space of all left continuous regulated functions is denoted by
GL(0, T ;X). We restate the inclusion (1) in the form

ξ(t) ∈ Z(u(t)) ∀t ∈ [0, T ] ,(3)

∫ T

0

〈w(t) − ξ(t+), dξ(t)〉 ≥ 0 ∀w ∈ G(0, T ;X) : w(t) ∈ Z(u(t)) ∀t ∈ [0, T ] ,(4)

with the Kurzweil integral (the original reference goes back to [9]) on the left hand
side of (4). The advantage of this setting is that the convergence properties of the
Kurzweil integral are compatible with the natural topologies of G(0, T ;X) (see
[2], where the Young integral as a special case of the Kurzweil integral was used
instead). The main result for the problem (2)–(4) reads as follows.

Theorem 1. Let the mapping v 7→ Z(v) be continuous with respect to the
Hausdorff distance. Then problem (2)–(4) has a unique solution ξ ∈ BVL(0, T ;X)
for every u ∈ BVL(0, T ;V ) and ξ0 ∈ Z(u(0)). If moreover Z(v) has nonempty
interior for every v ∈ V , then (2)–(4) has a unique solution ξ ∈ BVL(0, T ;X) for
every u ∈ GL(0, T ;V ), and the solution mapping S : GL(0, T ;V ) → GL(0, T ;X) :
u 7→ ξ is continuous.

The implicit problem, which consists in complementing (2)–(4) with an addi-
tional constitutive equation

(5) u(t) = g(t, ξ(t))

with a given function g, deserves special attention. Existence can be established by
the Schauder fixed point principle under fairly general assumptions. Uniqueness
and Lipschitz continuous data dependence is obtained by the Banach contraction
principle, provided the distance of convex sets is measured in terms of a stronger
concept than the Hausdorff one, and additional regularity of g with respect to
both t and u is required, see [3].

Quite surprisingly, there are two independent weak convergence concepts in
G(0, T ;X): the one induced by the dual space, which can be identified with a slight
extension of BV (0, T ;X), and the one related to the Helly selection principle. Rate
independent variational inequalities of the above type together with the Kurzweil
(Young) integral calculus provide a tool for extending Fraňková’s generalization of
the Helly selection principle proposed in [4], to the so-called functions of Φ- bounded
variation, see [2]. A detailed survey about regulated functions, rate independent
variational inequalities, and the Kurzweil integral, is given in [7].

An interesting special case corresponds to the choice V = Y = X and Z(v) =
v − K, where K ⊂ X is a fixed convex set. Then Eq. (1) can be written in the
form

(6) ξ̇(t) − ∂IK(u(t) − ξ(t)) ∋ 0 ,
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or, formally equivalently, as

(7) ∂MK∗(ξ̇(t)) + ξ(t) ∋ u(t) ,

where MK∗ is the Minkowski functional of the polar set K∗ to K. The Young
integral counterpart of (4) proposed in [6] reads

(8)

∫ T

0

〈u(t+) − ξ(t+) − w(t), dξ(t)〉 ≥ 0 ∀w ∈ G(0, T ;K) .

Following the energetic approach to rate-independent evolutions suggested in [10]
and using the Kurzweil integration-by-parts formula, we rewrite Eq. (8) as

1

2
|ξ(t)|2 − 〈u(t), ξ(t)〉 +

1

2

∑

τ∈[s,t]

|ξ(τ+) − ξ(τ)|2 + VarK∗

[s,t]
ξ(9)

A =
1

2
|ξ(s)|2 − 〈u(s), ξ(s)〉 −

∫ t

s

〈ξ(t), du(t)〉

for every 0 ≤ s < t ≤ T , where we set

VarK∗

[s,t]
ξ = sup

p∑

i=1

MK∗(ξ(σi) − ξ(σi−1)) ,

the supremum being taken over all divisions s = σ0 < σ1 < · · · < σp = t. This
term corresponds to the “hysteresis dissipation”. There is a difference here with
respect to the continuous case (cf. [10]), namely the additional dissipation term
1
2

∑
τ∈[s,t] |ξ(τ+) − ξ(τ)|2 in the energy balance. Note that only countably many

τ ’s enter into the sum, which is finite due to the bounded variation of ξ. It is
interesting to compare identity (9) with the one corresponding to the “viscous”
regularization as εց 0

(10) ∂MK∗(ξ̇ε(t)) + ε ξ̇ε(t) + ξε(t) ∋ u(t) ,

which has the form

1

2
|ξε(t)|2 − 〈u(t), ξε(t)〉 + ε

∫ t

s

|ξ̇ε(τ)|2dτ + VarK∗

[s,t]
ξε(11)

=
1

2
|ξε(s)|2 − 〈u(s), ξε(s)〉 −

∫ t

s

〈ξε(t), du(t)〉

for every 0 ≤ s < t ≤ T . The following result holds.

Theorem 2. Let K have nonempty interior in X, and let u ∈ GL(0, T ;X) be
arbitrary. Let ξ, ξε be solutions to (8) and (10), respectively, with the same initial
conditions. Then

(12) lim
ε→0+

|ξε(t) − ξ(t)| = 0 ∀t ∈ [0, T ] .

In particular, for every 0 ≤ s < t ≤ T , we have

(13) lim
ε→0+

(
ε

∫ t

s

|ξ̇ε(τ)|2dτ + VarK∗

[s,t]
ξε

)
=

1

2

∑

τ∈[s,t]

|ξ(τ+) − ξ(τ)|2 + VarK∗

[s,t]
ξ .
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Piecewise rigidity

Antonin Chambolle

(joint work with Alessandro Giacomini, Marcello Ponsiglione)

In an open connected set Ω of RN , it is well known that if ∇u = 0 (u a distribution),
then u is constant; if e(u) = (∇u + ∇uT )/2 = 0 (u RN -valued distribution) then
u is a rigid displacement Ax+ b (A+AT = 0). A classical result due to Liouville
(extended by Reshetnyak to Sobolev maps) shows that if ∇u ∈ SO(N) a.e., where
u ∈W 1,∞(Ω), then u is again affine: u = Rx+ b for some R ∈ SO(N).

Our purpose is to extend such results to functions with discontinuities, in the
class SBV or SBD. If u is a function, displacement, or deformation with a closed
discontinuity set Γ, it is clear that the results above remain true, up to the fact
that Ω \ Γ might be no more connected: for instance, if ∇u ∈ SO(N) a.e., one
deduces u =

∑
i(Rix + bi)χEi

, where Ri are rotations, bi N -vectors, and Ei the
connected components of Ω \ Γ. We want to extend this to situations where the
jump set Γ is just a rectifiable set, not necessarily closed (and possibly dense).

A function in L1(Ω) is said to be in SBV (Ω) if its distributional derivative is a
measure

Du = ∇u dx + (u+ − u−) ⊗ νuHN−1 Ju
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whereas it is of class SBD(Ω) if (it is RN -valued and)

E(u) = Du +DuT = e(u) dx + (u+ − u−) ⊙ νuHN−1 Ju .

Here, ∇u, e(u) ∈ L1, Ju is a (N − 1)-rectifiable set of normal νu (defined HN−1-
a.e.), u± are the traces of u on both sides of Ju.

It is known (cf [1, Thm. 4.23]) that if ∇u = 0 and HN−1(Ju) < +∞, u =∑
i aiχEi

where (Ei)i is a “Caccioppoli partition”, that is, a partition (up to a
negligible set) of Ω such that each Ei has finite perimeter in Ω (χEi

∈ BV (Ω)),
and

∑
i Per(Ei,Ω) < +∞. The assumption HN−1(Ju) < +∞ is here essential,

as shows the following example: u(x) := µ([0, x]) where µ =
∑∞
n=1

1
2n δrn

, with
(rn)n≥1 = Q ∩ (0, 1). This function is in SBV (0, 1), its derivative is a pure jump,
though, it is constant on no set of positive measure, it is even strictly increasing
from 0 to 1 on (0, 1).

We have provided in this talk a new proof of this result, based on a dis-
cretization/interpolation argument (inspired from [3, 4]) that provides us with
an approximation (uε) of u (with uε → u in L1(Ω)), such that ∇uε = 0, Juε

is a quite simple closed set (made of a finite union of facets of hypercubes),
and HN−1(Juε

) ≤ cHN−1(Ju) + ε < +∞. Hence for each ε, it is obvious that
uε =

∑
i a
ε
iχEε

i
. We get the result in the limit ε→ 0.

Which is interesting in this proof is that it easily extends to the case of SBD dis-
placements. Then, we find that u ∈ SBD(Ω) with e(u) = 0 a.e. and HN−1(Ju) <
+∞ is approximated with uε such that e(uε) = 0 a.e., Juε

is a nice closed set made
of a finite union of facets of hypercubes, with HN−1(Juε

) ≤ cHN−1(Ju)+ε < +∞.
Again, it follows that uε =

∑
i(A

ε
ix+ bεi )χEε

i
, with Aεi skew-symmetric and (Eεi )i

a Caccioppoli partition with uniformly bounded perimeter. In the limit, we get
u =

∑
i(Aix+ bi)χEi

.
In the nonlinear case, that is, for u ∈ SBV (Ω; RN ), with ∇u ∈ SO(N) a.e.

in Ω and HN−1(Ju) < +∞, the proof is more involved. We show, again, that
u =

∑
i(Rix+ bi)χEi

with Ri a rotation for each i.
The proof is as follows: With the same discretization/reinterpolation argument

as before, we can show that u is approximated with functions with “nice” jump
and equibounded gradient (in L∞). It follows, by approximation, that curlu is
a measure with |curlu| ≤ CHN−1 Ju. This curl measures how far ∇u is from
a true gradient. Using an appropriate Helmoltz decomposition, the approximate
rigidity estimate of Friesecke, James and Müller [5] and a Sobolev-type estimate
for divergence-free fields whose curl is a measure, we deduce that on each cube
Q ⊂ Ω of side h, there exists a rotation RQ such that

‖∇u−RQ‖Lp(Q) ≤ C
hN/p

hN−1
HN−1(Q ∩ Ju) ,

where p ∈ (1, N/(N − 1)) and C is a constant depending only on p and the
dimension N . We then cover most of Ω with such cubes, and define a function
Ψh as the piecewise constant rotation RQ in each cube Q, given by the above
estimate. It turns out that we can estimate the variation of Ψh (in each open set
A ⊂⊂ B ⊂ Ω, by CHN−1(B ∩ Ju) if h is small enough), and that Ψh → ∇u



638 Oberwolfach Report 11/2007

as h → 0. We find in the limit that D∇u is a measure absolutely continuous
with respect to HN−1 Ju. This shows that ∇u =

∑
iRiχEi

, from which follows
u =

∑
i(Rix+ bi)χEi

.
Most of these results have appeared in [2] (see also [3, 4]).
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Experiments with Local Minimizers in the Griffith Model

Christoph Ortner

(joint work with Matteo Negri)

We consider the rate-independent propagation of a crack in a brittle solid in anti-
plane deformation with prescribed crack path. The goal of the study is to exploit
the simplicity of this model problem in order to understand the problem of crack
evolution in the setting of Griffith [2] and of Francfort and Marigo [3] in full detail.

Let Ω = (−L,L)× (−1, 1) and let K(l) = {(x, 0) : −l ≤ x ≤ l} denote the crack
with length l. The problem can be now be reduced to computing only the variable
ℓ(t) denoting the length of the crack at time t. The elastic energy E(t, l) and the
fracture energy F(t, l) are, respectively, given by

E(t, l) = inf
u∈H1(Ω),u|ΓD

=g(t)

1

2

∫

Ω

|∇u|2 dx, and F(t, l) = E(t, l) +Gcl,

where Gc is the fracture toughness and g(t) the displacement applied on the Di-
richlet boundary ΓD = {(x,±1) : −L ≤ x ≤ L}.

We present two constructions of crack evolutions based on the equilibrium con-
dition ∂F

∂l ≥ 0, usually written as G ≤ Gc where G = −∂E
∂l , instead of the global

minimality condition in the model of Francfort and Marigo [3]. The first con-
struction is based on time-discretization: fix h > 0 and set tj = hj, j = 0, 1, . . . .
Furthermore, let ℓh be the piecewise constant interpolant of the nodal values ℓh(tj)
given by ℓh(0) = l0 and

ℓh(tj) = inf{l ≥ ℓh(tj−1) : G(t, l) > Gc}.
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Letting h → 0, we can extract a pointwise converging subsequence with a limit
ℓ : [0,∞) → [l0, L] satisfying the evolution law

G(t, ℓ(t)) ≤ Gc(1)

ℓ(t+ τ) − ℓ(t− τ) > 0 ∀τ > 0 ⇒ G(t, l) ≥ Gc ∀l ∈ [ℓ(t−), ℓ(t+)].(2)

When g is a monotone increasing load, i.e. g(t) = tg(1), the solution is almost

everywhere unique. This can be seen by writing G(t, l) = t2G(1, l) =: t2Ĝ(l). We
then show that, for

τ(l) =

√
Gc/Ĝm(l)

where Ĝm is the monotone decreasing envelope of Ĝ in [l0, L], the set of all soluti-
ons is given by all possible monotone inverses of τ which also satisfy the stability
condition. This provides a particularly simple geometric construction of crack evo-
lutions for pre-defined crack paths which we use to give a detailed comparison
between the Griffith model and the Francfort–Marigo model.

Finally, we discuss the modified energy balance formula, which solutions to (1)
and (2) satisfy:

(3) F(t1, ℓ(t1)) = F(t2, ℓ(t2)) +

∫ t2

t1

Et(t, ℓ(t)) dt−
∑

t∈S(ℓ)∩(t1,t2)

D(t),

where

D(t) =

∫ ℓ(t+)

ℓ(t−)

[
G(t, l) −Gc

]
dl.

This clearly shows that the assumption of rate independence is justified if, and
only if, ℓ is continuous. When it jumps, several interpretations of (3) are possi-
ble. In essence, one has to ask the question, whether elastic waves are dissipated
throughout the body in which case the model may be considered correct. On the
other hand, if kinetic energy is dissipated into the crack tip only, then one should
require an energy balance formula to hold and thus the crack should propagate
until D(t) = 0.

The talk concludes with some numerical examples which show a good corre-
spondence of an implementation of the Ambrosio–Tortorelli energy (see [1] for a
detailed description and applications in fracture mechanics) based on local mini-
mization with the exact solutions of the Griffith model.
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Quasistatic evolution in plasticity with softening

Maria Giovanna Mora

(joint work with G. Dal Maso, A. DeSimone, and M. Morini)

In plasticity theory the term softening refers to the reduction of the yield stress as
plastic deformation proceeds. We deal with this problem in the quasistatic case,
in the framework of small strain associative elastoplasticity in a bounded and
Lipschitz domain Ω ⊂ Rn.

The linearized strain Eu, defined as the symmetric part of the spatial gradient
of the displacement u, is decomposed as Eu = e+ p, where e and p are the elastic
and plastic strains. The stress σ depends only on e, through the formula σ = Ce,
where C is the elasticity tensor. The elastic domain – the set of admissible stresses
enclosed by the yield surface – depends on an internal parameter ζ and it has
the form {σ ∈ Mn×n

sym : σD ∈ K(ζ)}, where σD denotes the deviatoric part of σ

and K(ζ) is a subset of the subspace Mn×n
D of trace-free symmetric matrices. To

simplify the mathematics of the problem, we assume that the set

K := {(σ, ζ) ∈ Mn×n
D ×R : σ ∈ K(ζ)}

is a compact convex neighbourhood of (0, 0) in Mn×n
D ×R.

To express the evolution laws, it is convenient to introduce an internal variable
z, related to ζ by the equation ζ = −V ′(z), where V : R → R is a given function
of class C2 with bounded second derivatives, called the softening potential .

The strong formulation of the quasistatic evolution problem consists in finding
functions u(t, x), e(t, x), p(t, x), and z(t, x) satisfying the following conditions for
every t ∈ [0,+∞) and every x ∈ Ω:

(1) additive decomposition: Eu(t, x) = e(t, x) + p(t, x),
(2) constitutive equations: σ(t, x) := Ce(t, x) and ζ(t, x) := −V ′(z(t, x)),
(3) equilibrium: div σ(t, x) = 0,
(4) stress constraint: (σD(t, x), ζ(t, x)) ∈ K,
(5) associative flow rule: (ṗ(t, x), ż(t, x)) ∈ NK(σD(t, x), ζ(t, x)),

where dots denote time derivatives and NK(σ, ζ) is the normal cone to K at (σ, ζ).
The evolution is driven by a prescribed time-dependent boundary condition

u(t, x) = w(t, x) for every t ∈ [0,+∞) and every x ∈ ∂Ω .

The problem is also supplemented by initial conditions at t = 0.
Introducing the support function H(ξ, θ) := sup{ξ ·σ + θ ζ : (σ, ζ) ∈ K}, the

flow rule (5) can be written in the equivalent form

(5′) dissipation potential formulation: (σD(t, x), ζ(t, x)) ∈ ∂H(ṗ(t, x), ż(t, x)),

where ∂H(ξ, θ) denotes the subdifferential of H at (ξ, θ).
If V is strictly convex, this model describes plasticity with hardening, where the

yield surface expands as ṗ(t, x) 6= 0. In this case it is possible to give a variational
formulation of the problem, according to the theory of rate-independent processes
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developed in [5]. To this aim we introduce the energies

Q(e) := 1
2

∫

Ω

Ce(x) · e(x) dx , H(p, z) :=

∫

Ω

H(p(x), z(x)) dx ,

V(z) :=

∫

Ω

V (z(x)) dx .

The term H(p, z) is used to define the notion of dissipation of a function t 7→
(p(t), z(t)) on an interval [a, b] ⊂ [0,+∞), which is given by

DH(p, z; a, b) := sup

k∑

j=1

H(p(tj) − p(tj−1), z(tj) − z(tj−1)) ,

where the supremum is taken over all finite partitions {tj} of [a, b].
The variational formulation of the quasistatic evolution problem consists in

finding u(t, x), e(t, x), p(t, x), and z(t, x) satisfying the following conditions:

(a) global stability: for every t ∈ [0,+∞) we have Eu(t) = e(t) + p(t) in Ω,
u(t) = w(t) on ∂Ω, and

Q(e(t)) + V(z(t)) ≤ Q(ê) + H(p̂− p(t), ẑ − z(t)) + V(ẑ)

for every û, ê, p̂, ẑ such that Eû = ê+ p̂ in Ω, û = w(t) on ∂Ω;
(b) energy inequality: for every t ∈ [0,+∞) we have

Q(e(t)) + DH(p, z; 0, t) + V(z(t)) ≤ Q(e(0)) + V(z(0)) +

∫ t

0

〈Ce(s), Eẇ(s)〉L2 ds.

In the convex case, owing to the Euler-Lagrange equations, condition (a) is equi-
valent to the following property:

(a′) local stability: for every t ∈ [0,+∞) we have Eu(t) = e(t) + p(t) in Ω,
u(t) = w(t) on ∂Ω, and

div σ(t, x) = 0 , (σD(t, x), ζ(t, x)) ∈ K for x ∈ Ω ,

where σ and ζ are defined by (2).

In this work we assume V to be concave, which reflects the fact that the yield
surface shrinks as ṗ(t, x) 6= 0. By lack of convexity condition (a′) is no longer
equivalent to (a), but we only have (a) ⇒ (a′). In this case the selection criterion
provided by global minimality is not justified from the mechanical point of view.
Indeed, as we shall show in [2], global minimality fails to capture the softening
phenomenon altogether.

We explore a different selection criterion, based on the approximation by so-
lutions of some regularized evolution problems, depending on a small “viscosity”
parameter ε > 0. The ε-regularized problem consists in finding uε(t, x), eε(t, x),
pε(t, x), and zε(t, x) satisfying conditions (1), (2), (3), and

(4ε) regularized flow rule: (ṗε(t, x), żε(t, x)) = Nε
K(σε(t, x)D, ζε(t, x)),

where Nε
K(σ, ζ) := 1

ε

(
(σ, ζ) − PK(σ, ζ)

)
and PK is the projection onto K. We

observe that condition (4ε) is closely related to (5). It also acts as a penalization
leading to the stress constraint (4) as ε→ 0.
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The existence of a solution to the ε-regularized evolution problem can be proved
by a variational method based on time discretization. One can also show that
condition (4ε) is equivalent to the following two properties:

(4′ε) modified stress constraint: for every t ∈ [0,+∞) we have

(σε(t, x)D − εṗε(t, x), ζε(t, x) − εżε(t, x)) ∈ K for x ∈ Ω ,

(4′′ε ) energy balance: for every t ∈ [0,+∞) we have

Q(eε(t)) + DH(pε, zε; 0, t) + V(zε(t)) + ε

∫ t

0

‖ṗε(s)‖2
L2 ds+ ε

∫ t

0

‖żε(s)‖2
L2 ds

= Q(eε(0)) + V(zε(0)) +

∫ t

0

〈σε(s), Eẇ(s)〉L2 ds .

By accepting only those solutions of (a′) and (b) which can be approximated by
solutions of (1), (2), (3), (4ε) we regard quasistatic evolution as the limiting case
of a viscosity-driven dynamics. A similar approach in finite dimension was used in
[4].

The main difficulty in our approach is due to the fact that, by the nonconvexity
of the energy, the components pε and zε of the ε-regularized solution may develop
stronger and stronger space oscillations as ε → 0. As a consequence of this fact,
their weak limits do not satisfy, in general, (a′) and (b). To overcome this difficulty,
a weaker formulation in terms of Young measures is required. However, since the
functionals H and V have linear growth, the classical notion of Young measure is
not enough. To take into account possible concentrations at infinity, we use the
notion of generalized Young measure introduced in [3].

In addition, to write the Young measure version of (b) we need to introduce
a notion of dissipation for a time-dependent family of generalized Young measu-
res. A natural definition can be given by taking the limit of the dissipations of
suitable time-dependent generating functions. Unfortunately, this limit does not
depend only on the values of the generalized Young measures at each time, but
it also involves the mutual correlations between oscillations at different times. We
solve this problem by using the notion of system of generalized Young measures
introduced in [1]. This allows us to write a Young measure formulation of problem
(a′), (b) and to prove an existence result.
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Micromechanical modelling of evolving laminates in SMA single
crystals

Stanis law Stupkiewicz

(joint work with Henryk Petryk)

Laminated microstructures are common features accompanying stress-induced
martensitic transformations in shape memory alloys (SMA), and their evolution is
the main mechanism responsible for the interesting effects, such as pseudoelasticity,
observed in these materials. Micromechanical modelling of several related effects
has been the topic of our recent research. These results are summarized in this
talk.

A micromechanical model of stress-induced phase transformation in SMA single
crystals has been developed [1], starting from transformations of the atomic lattice
structure and using exact compatibility conditions on the interfaces under stress.
The transition to the behavior of a single crystal of a higher-rank laminated mi-
crostructure varying with the overall deformation has been made by combining the
micro-macro transition for rank-one laminates with a local phase transformation
criterion. The transformation criterion is rate-independent with a threshold value
for the thermodynamic driving force acting on a phase transformation front. The
intrinsic dissipation due to phase transition is thus naturally included in the mo-
del. The resulting pseudoelastic stress-strain response to a loading-unloading cycle
exhibits a characteristic hysteresis loop. Extension of the model to the finite-strain
framework is presented in [5].

Formation of untwinned internally-faulted martensite plates in Cu-based alloys
and the effect of stacking fault energy on the microstructure of martensite plates
have been studied in [2]. The microstructure, including the orientation of the
martensite plate and the density of stacking faults, is obtained as a solution of a
minimization problem for load multiplier.

The effect of martensite variant rearrangement (detwinning) during progressive
transformation has been accounted for in [3] by considering the propagation of
twin boundaries within twinned martensitic plates. Accordingly, the micro-macro
transition is applied for an evolving rank-two laminate. The predicted material
response corresponding to the development of a uniform laminated microstructure
within the representative volume element is characterized by significant softening.
It is thus concluded that such macroscopically uniform transformation pattern is
unstable and localization of transformation is expected.

Our current research activities concentrate on the effects of interfacial energies of
different origin and on the related size effects (initial results are presented in [4, 6]),
as well as on the transition to the scale of a polycrystalline aggregate accounting
for the interaction of neighbouring grains.
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Thin elastic sheets torn by a blunt tool: a simple crack model based
on Griffith’s propagation criterion

Basile Audoly

Spectacular saw-tooth patterns are obtained when one tears through a thin sheet
of plastic material clamped along its long sides, using a cylindrical tool. In the
experiments reported in Refs. [1, 2], a ’blunt’ cutting tool (with cylindrical or rec-
tangular profile) is perpendicularly driven through a long, rectangular thin elastic
sheet. We consider the case of a sheet that can be bent without breaking, but is
not ductile: when brought back to their planar configuration, the two lips of the
crack match perfectly. The sheet is clamped along its long edges while the tool is
moved along centerline of the sheet. As the tip advances, it progressively cuts the
material leaving behind a well defined and highly reproducible oscillatory path.
Moreover, there is a threshold for the tip width, below which the crack paths are
straight. We consider the geometric limit when the tool size is much larger than
this threshold.

In reference [3], we proposed a simple geometrical model that accurately repro-
duces the crack morphology as well as the details of the crack tip motion. This
model is first recalled shortly below. In the present contribution, we propose a
reformulation of this geometric model, based on a simple expression for the elastic
energy and on Griffith’s criterion for crack propagation. We argue that the two
formulations are roughly equivalent. Compared to the initial one, the advantage
of the new formulation is that it is minimalist (it does not make use of a para-
meter, such as the angle of propagation β of the initial formulation, that has to
introduced by hand), and is based on a popular propagation criterion.

We shall start by recalling the main ingredients of the model proposed in re-
ference [3]. This model was built on the remark that the typical bending energy
involved in the deformation of the sheet is too low to make the crack propagate.
The elastic sheet can be viewed as a membrane, and its bending modulus can
effectively be set to zero as long as one is interested in predicting only the crack
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motion. Whenever the intersection of the tool with the plane of strip is contai-
ned within the convex hull of the crack path, the presence of the tool can be
accommodated by bending the strip. This involves no membrane energy, and so it
cannot lead to crack propagation. The driving force for crack propagation comes
from the stretching energy of the sheet, and the latter is only present when the
intersection of the tool with the plane of the strip goes past the convex hull of the
crack path. We called α the angle, measured at the crack tip, of the sector defined
as the set difference of the convex hull of (the crack path union the tool) minus
the convex hull of the the crack path. This angle α measures loosely how much
the tool has moved beyond the convex hull of the crack path. Based on simple
scaling arguments, we proposed that propagation occurs when this angle reaches a
critical value αc. We also proposed that the direction of propagation of the crack
takes place along a direction given by a fixed angle β with respect to the edge of
the crack path. Both the angles αc and β were assumed to depend on material
parameters and on the film’s thickness. We tuned these parameters so as to fit the
experimental crack motion. Having only two adjustable parameters, this iterative
geometrical construction does a surprisingly good job at predicting the crack mo-
tion: not only does it reproduce the detailed crack path morphology, including the
presence of relatively sharp kinks every half period, it also explains the alternation
of dynamic and quasi-static crack propagation observed in the experiments.

In the present contribution, we note that another measure of the penetration
of the tool beyond the convex hull of the crack path is provided by the difference
ℓ− ℓ0, where ℓ is the perimeter of the ‘big’ convex hull (that is the convex hull of
the union of the tool and the crack path), and ℓ0 is the perimeter of the ‘small’
convex hull (that is the convex hull of the crack path), see figure 2. In fact, in a
simple geometry, the stretching energy of the membrane can be estimated as:

E ∼ E hw2

(
ℓ− ℓ0
w

)5/2

,

in order of magnitude. In this expression, E is Young’s modulus of the strip, h
its thickness, w the typical width of the tool. One can get rid of all constants by
proper rescaling. We should alter slightly the value of the exponent with the aim
to keep the numerical implementation as efficient as possible: we define the elastic
energy of the system as

(1) E = (ℓ− ℓ0)2.

Note that this energy E is a function of the tool’s position (through ℓ), of the crack
path (through ℓ and ℓ0) and of the tip position (through ℓ and ℓ0).

To start with, we shall analyze a simple crack geometry, sketched in Fig. 1:
we compute the critical value of the penetration angle α, and the direction of
propagation β predicted by our model. These angles are the two parameters of
the model given in Ref. [3]. By computing the values of αc and β predicted by the
new model, we shall show how two formulations are related. A simple geometric
calculation yields the opposite of the gradient of the difference of perimeters ℓ−ℓ0,
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Abbildung 1. Analysis of a simple crack geometry. The crack is
made up of a semi-infinite straight line, connected to a U-shaped
region. The tool is a straight blade, and penetrates by a small
angle past the crack’s convex hull.

with respect to the tool’s position T , as:

−∇T (ℓ− ℓ0) = (1 − cosα) ex + sinα ey.

Up to a positive multiplicative constant, this is proportional to the energy release
rate associated with the elastic energy (1). The direction of propagation is such
that this release rate is maximum. This yields the equation for the direction of
propagation β as tan(−β) = (1 − cosα)/ sinα. For small α, one has β ≈ −α/2
(note that the sign conventions for β have been changed with respect to the initial
paper [3]: the β in the original article is the opposite of the new one, and so the
latter reads +α/2). This new equation relates the two ‘free’ parameters of the
initial model. It is consistent with the values of αc and β obtained in the initial
paper by fitting the experiments. By writing the magnitude of the energy release
rate, one can similarly express the critical value of α in terms of the critical energy
release rate, Gc.

We have made numerical simulations of the crack motion, based on the elastic
energy (1) and on Griffith’s criterion for crack propagation. Typical simulations are
shown in Fig. 2. Like our original model, these simulations capture the striking
saw-tooth crack pattern, as well as the alternation of quasi-static and dynamic
regimes. The main difference with the previous model is that the present one has
only one adjustable parameter, the dimensionless critical energy release rate, and
can be expressed neatly using a single equation (1). A second asset is that the
case of a ‘large’ convex hull extending on both sides of the crack tip is handled
naturally; as a result, the kinks are smoothed out in the present simulation, much
like in the experiments, while the previous model, which does not handle the case
of two angles α gracefully, displayed sharp angles at the kinks.

I would like to thank Benôıt Roman and Pedro M. Reis for stimulating (and
ongoing) discussions on this topic.
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Abbildung 2. Numerical simulation of the model with an initial
T-shaped cut (seen on the left-hand side), and with dimensionless
critical energy release rate Gc = 0.04.

[3] B. Audoly, P. M. Reis and B. Roman, Cracks in thin sheets: when geometry rules the fracture

path, Phys. Rev. Lett. 95 (2005), 025502.

Elastic energy stored in a crystal induced by screw dislocations

Marcello Ponsiglione

This talk deals with energy minimization methods to model static elastic properties
of dislocations in crystals. We present the results obtained in [11], concerning
the asymptotic behavior of the elastic energy stored in a crystal, induced by a
configuration of dislocations, as the atomic scale tends to zero. Our approach is
completely variational, and is based on Γ-convergence. We consider the setting
of anti-planar linear elasticity, so that all the physical quantities involved in our
model will be defined on a domain Ω ⊂ R2, which represents an horizontal section
of an infinite cylindrical crystal. The elastic energy associated with a vertical
displacement u : Ω → R, in absence of dislocations, is given by

E(∇u) :=

∫

Ω

|∇u(x)|2 dx.

Now we assume that vertical screw dislocations are present in the crystal. To
model the presence of dislocations we follow the general theory of eigenstrains,
namely to any dislocation corresponds a pre-existing strain in the reference con-
figuration (we refer to [9] and [10] for details on this subject, and to the recent
paper [2] where the pre-existing strain approach is developed in a discrete setting).
In this framework a configuration of screw dislocations in the crystal can be re-
presented by a measure on Ω which is a finite sum of Dirac masses of the type
µ :=

∑
i zi|b| δxi

. Here xi’s represent the intersection of the dislocation lines with
Ω, b is the so-called Burgers vector, which in this anti-planar setting is a vertical
fixed vector whose modulus depends on the specific crystal lattice, and zi ∈ Z

represent the multiplicity of the dislocations. The class of admissible strains as-
sociated with a dislocation µ is given by the fields whose circulation around the
dislocations xi are equal to zi|b|. These fields by definition have a singularity at
each xi and are not in L2(Ω; R2). To set up a variational formulation it is then
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convenient to introduce an internal scale ε called core radius, which is compara-
ble with the atomic scale, and to remove balls of radius ε around each point of
singularity xi. More precisely to any admissible strain ψ we associate the elastic
energy

Eε(ψ) :=

∫

Ωε(µ)

|ψ(x)|2 dx,

where Ωε(µ) := Ω \ ∪iBε(xi). Given a dislocation µ, the elastic energy induced
by µ, in the absence of external forces, is given by minimizing Eε(ψ) among all
admissible strains.

This variational formulation has been recently considered in [4] to study the
limit of the elastic energy induced by a fixed configuration of dislocations as the
atomic scale ε tends to zero. The authors prove in particular that the energy is of
the order | log ε|.

We study the asymptotic behavior of the elastic energy induced by the dislocati-
ons in terms of Γ-convergence, in this regime of energies, i.e., rescaling the energy
functionals by | log ε|, without assuming the dislocations to be fixed, uniformly
bounded in mass nor well separated. We prove that the Γ-limit of the (rescaled)
elastic energy functionals as ε→ 0, with respect to the convergence of the disloca-
tions in a suitable topology (which turns out to be the flat convergence), is given
by the functional F defined by

(1) F(µ) :=
1

2π
|µ|(Ω).

The asymptotic elastic energy per unit volume is essentially proportional to the
number (and hence to the length) of the screw dislocations. Then we recover in
the limit as ε → 0 a line tension model. A similar result was obtained in [7],
[8], where the authors considered a phase field model for dislocations proposed
by [6]. They study the asymptotic behavior, in different rescaling regimes, of the
elastic energy given by the interaction of a non-local H1/2 elastic energy, a non-
linear Peierls potential and a pinning condition, under the assumption that only
one slip system is active. In particular, in the energy regime corresponding to a
rescaling of the order 1/| log ε|, their Γ-limit is given by the sum of a bulk term,
taking in account the pinning condition, and a surface term concentrated on the
dislocation lines. More in general energy concentration phenomena as a result of
the logarithmic rescaling are nowadays classical in the theory of Ginzburg-Landau
type functionals, to model vortices in superfluidity and superconductivity. We refer
to [3], [5], [1] and to the references therein.

Even if we do not assume the dislocations to be fixed, our analysis shows that,
as εn → 0, the most convenient way to approximate a dislocation µ with multi-
plicity zi ≡ 1, is the constant sequence µn ≡ µ. In this respect the main point
is that there is no homogenization process able to approach an energy less then
1/2π lim infεn

|µn(Ω)|. The latter term can be interpreted as the quantity usually
referred to as geometrically necessary dislocations. We conclude that in this energy
regime there is no energetic advantage for the crystal to create micro-patterns of
dislocations.
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These considerations become trivial if one assumes a priori a uniform bound
for the number of dislocations. However sequences {µn} with uniformly bounded
energy are not in general bounded in mass. The main reason is that one can
easily construct a short dipole µn := δxn

− δyn
, with |µn|(Ω) = 2, |xn − yn| →

0, and whose energetic contribution is vanishing. On the other hand, the flat
norm of these dipoles is given exactly by ‖µn‖f = |xn − yn|, and then it is also
vanishing. This is the reason why we study the Γ-convergence with respect to the
flat convergence, instead of weak convergence of measures. We prove that the equi-
coercivity property holds with respect to the flat convergence: sequences µn with
uniformly bounded energy, up to a subsequence, converge with respect to the flat
norm. The proof of this result represents the main difficulty in our analysis.

Our strategy is to divide the dislocations in clusters such that in each cluster
the distance between the dislocations is of order εδn, for some 0 < δ < 1. The
family of clusters with zero effective multiplicity, namely such that the sum of the
multiplicities in the cluster is equal to zero, will play the role of short dipoles;
we prove that these clusters give a vanishing contribution to the flat norm. Then
we prove that each cluster with non zero effective multiplicity gives a positive
energetic contribution. We deduce that the number of these clusters is uniform-
ly bounded with respect to ε. This will be enough to prove the equi-coercivity
property, and therefore to obtain a complete Γ-convergence result for the elastic
energy functionals.
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[4] Cermelli P., Leoni G.: Energy and forces on dislocations. SIAM J. Math. Anal. 37 (2005),
no. 4, 1131–1160.

[5] Jerrard, R. L., Soner, H. M.: The Jacobian and the Ginzburg-Landau energy. Calc. Var.
Partial Differential Equations 14 (2002), no. 2, 151–191.

[6] Koslowski M., Cuitino A. M., and Ortiz M.: A phase-field theory of dislocation dynamics,
strain hardening and hysteresis in ductile single crystal. J. Mech. Phys. Solids 50 (2002),
2597–2635.

[7] Garroni A., Müller S.: Γ-limit of a phase-field model of dislocations. SIAM J. Math. Anal.
36 (2005), no. 6, 1943–1964. 82B26 (49J45)

[8] Garroni A., Müller S.: A variational model for dislocations in the line tension limit. Arch.
Rat. Mech. Anal. 181 (2006), no. 3, 535–578.

[9] Mura T.: Micromechanics of defects in solids. Kluwer Academic Publisher, Boston, 1987.
[10] Phillips, R.: Crystals, defects and microstructures: modelling across scales. Cambridge Uni-

versity Press, New York, 2001.
[11] Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete

to continuous. SIAM J. Math. Anal. To appear.



650 Oberwolfach Report 11/2007

A variational approach to Gradient Flows and Rate Independent
Problems

Giuseppe Savaré

(joint work with Alexander Mielke, Riccarda Rossi)

Let (X, d) be a complete and separable metric space, let E : [0, T ] × D → R,
D ⊂ E, be a (time dependent) lower semicontinuous functional bounded from
below and differentiable with respect to time, with continuous partial derivative
∂tE . We also fix a convex function ψ : [0,+∞) → [0,+∞] with superlinear growth
and ψ(0) = 0.

Given an initial datum u0 ∈ D, we say that an absolutely continuous curve
u : [0, T ] → D is a ψ-Gradient Flow (ψ-GF) induced by E starting from u0 if
limt↓0 ut = u0, the map t 7→ Et(ut) is absolutely continuous, and it satisfies the
inequality

(1)
d

dt
Et(ut) + ψ(|u̇t|) + ψ∗(|∂Et|(ut)) ≤ ∂tEt(ut) for a.e. t ∈ (0, T ).

Here |u̇t| is the metric velocity of u and |∂Et|(·) is the metric slope of Et defined as

|u̇t| := lim
h→0

d(ut+h, ut)

|h| , |∂Et|(u) := lim sup
v→u

(
Et(v) − Et(u)

)+

d(v, u)
.

If

a: the functionals Et have locally compact sublevels,
b: the metric slope is lower semicontinuous,
c: the metric slope is a strong upper gradient, i.e. along each Lipschitz con-

tinuous curve v : (a, b) → D with |∂Et|(vt) ∈ L1(a, b), the functional E is
absolutely continuous and it satisfies

d

dt
Et(vt) ≥ ∂tEt(vt) − |∂Et|(vt)|v̇t| for a.e. t ∈ (a, b),

then for every u0 ∈ D it is possible to prove the existence of at least one ψ-GF u
starting from u0.

A gradient flow u can also be characterized by the maximal slope condition

d

dt
Et(ut) = ∂tEt(ut) − |∂Et|(ut) |u̇t| for a.e. t ∈ (0, T ),

and the velocity evolution law induced by ψ

∂ψ(|u̇t|) ∋ |∂Et|(ut) or, equivalently, |u̇t| ∈ ∂ψ∗
(
|∂Et|(ut)

)
, for a.e. t ∈ (0, T ).

We refer to [1] for the general theory of gradient flows in metric spaces in the
typical case

ψ(r) = ψ∗(r) =
1

2
r2, corresponding to |u̇t| = |∂Et|(ut).

When X is a reflexive Banach space with the distance induced by the norm ‖ · ‖X ,
the metric derivative of an absolutely continuous curve u is simply the norm of the
time derivative u′ of u (which exists a.e.). If, moreover, the Fréchet subdifferential
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∂Et : D(∂Et) ⊂ D → 2X
∗

has a strongly-weakly closed graph, then the metric
slope admits the minimal selection characterization

|∂Et|(u) = min
{
‖ξ‖X∗ : ξ ∈ ∂Et(u)

}
.

In this case a ψ-GF is also a solution of the doubly nonlinear evolution equation
(studied in a convex framework by [2])

∂Ψ(u′t) + ∂Et(ut) ∋ 0 a.e. in (0, T ),

where Ψ : X → [0,+∞] is the functional

Ψ(u) := ψ(‖u‖X) ∀u ∈ X.

The existence of a ψ-GF can be proved by passing to the limit in a variational
approximation scheme. In fact, denoting by τ > 0 a time step size, we can construct
a sequence (Unτ )n, n = 0, 1, . . . , N , Nτ ≥ T , such that

(2) Unτ minimizes the functional U 7→ τψ
(d(U,Un−1

τ )

τ

)
+ Enτ (U).

Denoting by Uτ the piecewise constant interpolant of the discrete values Unτ on
each interval ((n− 1)τ, nτ ], it is possible to prove that Uτk

→ u uniformly in [0, T ]
for a suitable vanishing sequence τk ↓ 0.

One of the crucial arguments of the proof relies on a refined discrete energy
inequality, which can be obtained by a clever variational interpolation technique
introduced by E. De Giorgi [3].

When ψ has a linear growth, the same discretization method (2) has been
introduced by A. Mielke and his collaborators [7, 8, 5, 6] for the approximation of
rate independent problems. We discuss the main technical differences between the
two situations and we show how to recover a rate independent evolution starting
from the ψε-family of gradient flows associated to the functions

ψε(r) := r + εr2,

when the “metric viscosity” parameter ε goes to 0.
The lack of equicontinuity estimates for the approximating solutions u can be

overcome by a reparametrization technique (recently introduced in [4]), which
yields in the limit a solution of the gradient flow associated to the driving function

ψ0(r) =

{
r if 0 ≤ r ≤ 1,

+∞ if r > 1.
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Deterministic stick-slip dynamics in a one-dimensional random
potential

Tim Sullivan

(joint work with Florian Theil)

In physics, engineering and other settings, it is important to understand the ma-
croscopic behaviour of systems whose evolution is determined by microscale effects.
It seems natural to consider these microscale effects to be random in nature (and,
therefore, beyond the scope of classical averaging and homogenization theory) and
to constitute some perturbation of a well-understood smooth structure. In the ca-
se of rate-dependent viscous systems, analysis of how the random microstructure
determines the macroscopic behaviour can be found in the Green-Kubo relations
and many further developments since their introduction in the 1950s [2] [4]. In
the realm of rate-independent plasticity theory, there is a large literature (see, for
example, [7]) surrounding ordinary differential inclusions such as

(1) −∇V
(
Xt

)
+ f(t) ∈ ∂ψγ

(
Ẋt

)
; X0 = x0;

which have been very successful in modelling plastic effects with their associated
structures of hysteresis loops, yield surfaces and stick-slip dynamics. Stick-slip
evolutions such as the movement of a dislocation line in a crystalline structure or
the Barkhausen effect in a magnetic domain can be seen in this way, cf. [3]. Our
interest lies in rigorously justifying such differential inclusions as scaling limits of
evolutions in perturbations of the potential V . Here we present such a derivation
for a one-dimensional example.

This derivation has been known since the 1990s in the case of a periodic pertur-
bation: it follows easily from, for example, [1] [6] that any forced one-dimensional
gradient flow Xε : R≥0 → R satisfying

Ẋε
t = −κXε

t − g

(
Xε
t

ε

)
+ f(εt); Xε

0 = x0;
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for ε, κ > 0, g ∈ C0(R; [γ−, γ+]) periodic and surjective and f ∈ BC0(R≥0; R)
exhibits rate-independent stick-slip behaviour in the limit as ε ↓ 0:

X0
t := lim

ε↓0
Xε
t/ε

is the unique solution of the ordinary differential inclusion (1), where ψγ : R → R≥0

is the convex, 1-homogeneous dissipation functional induced by g and given by

ψγ(ẋ) :=

{
γ−ẋ; ẋ ≤ 0;

γ+ẋ; ẋ ≥ 0.

Our result is that the same conclusion holds P-almost surely for perturbations
g belonging to a wide class of stochastic processes g : Ω × R → [γ−, γ+], whe-
re (Ω,F ,P) is some probability space. This result is noteworthy since X0 is in
principle a stochastic process dependent on the choice of “landscape parameter”
ω ∈ Ω.

Theorem 1 (tjs-ft, 2006–07). Let f ∈ BC0(R≥0; R) and let g : Ω×R → [γ−, γ+]
be a stochastic process. Then X0 P-almost surely satisfies (1) if, and only if, g
satisfies the following “continuity and frequent attainment of bounds” conditions,
collectively denoted (z):

(1) The sample realizations of g must be continuous P-almost surely.
(2) Define a sequence of stopping distances (random variables) D±

n : Ω →
[0,+∞] as follows: let D+

0 (ω) be the least x ≥ 0 such that g(ω, x) = γ+;
let D+

n+1(ω) be the least increase upon
∑n

i=0D
+
i (ω) such that the process

g(ω, ·) attains both values γ± in the interval
(

n∑

i=0

D+
i (ω),

n+1∑

i=0

D+
i (ω)

]
.

Define D−
n for x ≤ 0 similarly. Intuitively, each D±

n is the first return
distance of g from γ+ back to γ+ via the opposite extreme γ−. It is then
required that:
(a) For each n ≥ 0, D±

n < +∞ P-almost surely.
(b) The series

∑
n≥0D

±
n = +∞ P-almost surely.

(c) The ratio D±
n+1/

∑n
i=0D

±
i → 0 as n→ ∞ P-almost surely.

A fortiori, the law (X0)∗(P) induced on C0(R≥0; R) is a Dirac measure centred on
the unique deterministic solution to (1).

Note that a continuous, periodic, surjective function g : R → [γ−, γ+] certainly
satisfies (z) (and so Theorem 1 generalizes [1]), and that a simple prototype for a
stochastic process satisfying (z) is given by a two-sided, doubly reflected Wiener
process g : Ω × R → [γ−, γ+].

The key step in the proof of Theorem 1 is the identification of the interval

Aγ(f(t)) :=

[
f(t) − γ+

κ
,
f(t) − γ−

κ

]
⊂ R
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as a suitable limit of sets in the sense of [5]. In a general metric space (M, d), the
Kuratowski limit inferior of a family of subsets {Aε ⊆ M}ε>0 is defined to be

Li
ε↓0

Aε :=

{
x ∈ M

∣∣∣∣∣lim sup
ε↓0

dH(x,Aε) = 0

}
,

where dH(x,Aε) := infy∈Aε
d(x, y) is the usual Hausdorff semi-distance.

Lemma 2 (tjs-ft, 2006–07). Let

Ag(ω)
ε (F ) :=

{
x ∈ R

∣∣∣−κx− g
(
ω,
x

ε

)
+ F = 0

}

be the fixed-point set for the dynamics with a given realization ω ∈ Ω at scale ε > 0
and constant loading f(t) ≡ F . Then g satisfies (z) if, and only if,

Li
ε↓0

Ag(ω)
ε (F ) = Aγ(F ) for P-almost all ω ∈ Ω.

Abbildung 1. The P-almost sure trajectory ofX0
t (solid) against

t for some continuous forcing f(t) (dashed), showing the relation-
ship with maxAγ(f(t)) and minAγ(f(t)) (dotted).

One interpretation of Theorem 1 is that in modelling deterministic dynamics
in a wiggly potential x 7→ κ

2x
2 + εG

(
ω, xε

)
, with

G(ω, x) :=

∫ x

0

g(ω, x′) dx′,

it does not matter a great deal exactly which perturbation G(ω, ·) one chooses,
since the same rate-independent limit is obtained in P-almost all cases. In some
sense, random perturbations satisfying (z) are no worse than periodic ones.

It would be of interest to extend the above one-dimensional argument to higher-
or even infinite-dimensional cases, and/or to consider the addition of a noise term
representing the effect of a heat bath.

The author is grateful for the support of his Ph.D. supervisor, Dr Florian Theil.
The author’s studies are supported by the epsrc and the University of Warwick
Research Development Fund.
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Evolutionary problems with energies with linear growth

Johannes Zimmer

(joint work with Martin Kruž́ık )

We study a rate-independent evolution of problems where the energy W is a
function of the deformation gradient, W = W (Du), and grows linearly at infinity,

(1) c |s| − c2 ≤W (x, s) ≤ C(1 + |s|) for x ∈ Ω̄ ,

with constants 0 < c ≤ C. Here, Ω ⊂ Rn is a bounded domain with smooth
boundary.

The aim of this note is to sketch a framework under which the existence of a rate-
independent process with an energy of type (1) can be proved. Rate-independent
processes are here understood in the energetic formulation, i.e., characterised by
stability, energy inequality, and compatibility with initial conditions. This is made
precise below.

Before moving on to the evolutionary process, we should motivate the functional
analytic framework in the static context. The setting needs to be chosen such that
oscillation and concentration effects are taken into account. This can be seen in
the following toy model, where the task is to minimise the functional

min I(u) :=

∫ 1

0

[
(u′(x))

2

1 + (u′(x))
4 + θ2 |u′(x)| + (u(x) − x)2

]
dx,

with θ ≥ 0 among u ∈ W 1,1(0, 1) with u(0) = 0. The second term is introduced to
make the functional coercive; the third term favours solutions close to the identity.
The decisive term is the first one, which becomes minimal for u′(x) = 0 or in the
limit u′(x) → ±∞. One would thus expect approximative solution (minimising
sequences) to oscillate between gradient 0 and gradients which become arbitra-
rily large in modulus. A particular point here is that the minimising sequences
thus do not oscillate between finite values for the deformation gradient (as for
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the toy model
∫ 1

0

(
(u′(x))

2 − 1
)2

dx between ±1), but concentrate mass at ±∞.

Young measures [5, 1, 3, 4] are an appropriate tool to deal with oscillations, while
DiPerna-Majda measures [2] describe the limits of sequences with oscillations and
concentrations.

We use DiPerna-Majda measures to describe the evolution of rate-independent
processes with linear energies. Let u : Ω → Rm denote the deformation, where
Ω ⊂ Rn is a bounded domain with smooth boundary. We write q := (u, η, λ) for
a state; u denotes the deformation, η is the associated DiPerna-Majda measure,
and λ is derived from η. (To be precise, for a suitable compactification βRm×n of
Rm×n and for η ∼= (ν̂, σ) via slicing, we set λ(x) =

∫
βRm×n

Λ
1+|s|νx(ds)dσ(x) with

Λ bounded).
The following definitions are natural in the context of DiPerna-Majda measures

(we write g̃(s) := g(s)
1+|s| and recall that βRm×n is a suitable compactification of

Rm×n). The applied body force f give rise to

F (q) :=

∫

Ω

f(x, t) · u(x) dx and Ḟ (t, q) =

∫

Ω

∂f(x, t)

∂t
· u(x) dx;

the time-dependent elastic energy E(t, q) is

E(t, q) =

∫

Ω̄×βRm×n

W̃ (x, s)η(dsdx) −
∫

Ω

f(x, t) · u(x) dx.(2)

Γ is the energy augmented by a spatial regularisation,

Γ(t, q) := E(t, q) +

∫

Ω

̺ |∇λ(x)|2 dx,

with ρ > 0.
The dissipation distance D describes the energetic loss between two states of

the system characterised by η1 and η2. We choose D(q1, q2) =
∫
Ω ‖λ1−λ2‖dx. The

temporal dissipation is then given by

Diss(q, [t1, t2]) := sup
L∈N

{
L∑

l=1

D (η(τl), η(τl−1))
∣∣ t1 = τ0 < · · · < τL = t2

}
.

For given q0 in the state space Q, the process q : [0, T ] → Q is a solution if the
following three conditions hold:

(1) Stability: For every t ∈ [0, T ], we have

Γ(t, q(t)) ≤ Γ(t, q̃) +D(q(t), q̃) for every q̃ ∈ Q.

(2) Energy inequality: For every 0 ≤ t1 ≤ t2 ≤ T , we have

Γ(t1, q(t1)) + Diss(q, [t1, t2]) ≤ Γ(t2, q(t2)) −
∫ t2

t1

Ḟ (t, q(t))dt.

(3) Initial condition: q(0) = q0 .

In this setting, the existence of a process satisfying the above conditions can be
proved and suitable regularity assumptions for sufficiently small forces.
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Modeling of phase transitions in CuAlNi

Martin Kruž́ık

(joint work with A. Mielke, T. Roub́ıček)

Shape-memory alloys (=SMAs) belong to so-called smart materials which enjoy
important applications. SMAs exhibit specific, hysteretic stress/strain/tempera-
ture response and a so-called shape-memory effect. The mechanism behind it is
quite simple: atoms tend to be arranged in several crystalographical configuration
having different symmetry groups: higher symmetrical one (referred to as the aus-
tenite phase, typically cubic) has higher thermal capacity while lower symmetrical
one (called the martensite phase, typically tetragonal, orthorhombic, or monocli-
nic) has lower thermal capacity and may exist, by symmetry, in several variants
(typically 3, 6, or 12, respectively). We refer e.g. to [2] for a thorough survey. Here
we consider only on isothermal stress/strain-response modelling.

We consider a bounded Lipshitz domain Ω ⊂ R3 as a reference configuration
(canonically the stress-free austenite). Standardly, the displacement u : Ω → R3

and the deformation y : Ω→R3 are related by y(x)=x+u(x), x ∈ Ω. Hence the
deformation gradient is F=∇y=I+∇u, where I∈R3×3 denotes the identity matrix.
Mechanical response is phenomenologically desribed by a specific stored energy ϕ̂ =
ϕ̂(F ), assumed to have a p-polynomial growth/coercivity structure. The frame-
indifference, i.e. ϕ̂(F ) = ϕ̂(RF ) for any R ∈SO(3), the group of orientation-
preserving rotations, requires that ϕ̂(·) in fact depends only on the (right) Cauchy-
Green stretch tensor C := FTF . We abbreviate

ϕ(·) := ϕ̂(I + · ) .(1)

The overall free energy related to a displacement profile u is Φ(u) :=
∫
Ω ϕ(∇u)dx.

Considering a (time-varying) elastic support w(t, x) on a part Γ of the boundary
∂Ω, we expand it to the stored energy G(t, u) = Φ(u) + 1

2

∫
Γ(u − w(t, ·))⊤B(u −



658 Oberwolfach Report 11/2007

w(t, ·))dS with B⊤=B. Due to the multiwell character of ϕ, the deformation gra-
dient usually tends to develop fast spatial oscillations if it tends to minimize the
overall stored energy under prescribed boundary conditions, see [1, 2], resulting to
a microstructure that can effectively be described by so called gradient Young
measures, which are measurably parameterized probability measures x 7→ νx
on R3×3 that can be attained by gradients in the sense lim

k→∞

∫
Ω g(x)v(∇uk) =

∫
Ω
g(x)

∫
R3×3 v(A) νx(dA)dx for some sequence {yk}k∈N ⊂ W 1,p(Ω; R3) and all

g ∈ L∞(Ω) and v ∈ C0(R3×3), see [8]; the notation C0, Lp, W 1,p for function
spaces is standard. Let us denote the set of all such parameterized measures by
Gp(Ω; R3×3). The naturally extended (so-called relaxed) stored energy is then

Ḡ(t, u, ν) =

∫

Ω

∫

R3×3

ϕ(A) νx(dA)dx +

∫

Γ

(u−w(t, ·))⊤B(u−w(t, ·))
2

dS.(2)

The pair of “macroscopical” displacement u and the gradient Young measures ν
represents a quite natural mesoscopical description of the state of the body. The
“kinematically” admissible pairs (u, ν) are in

Q :=
{

(u, ν)∈W 1,p(Ω; R3)×Gp(Ω; R3×3);

∫

R3×3

Aνx(dA)=∇u(x) for a.a. x
}
.

Within microstructure evolution due to time-varying loading w, SMAs dissi-
pate energy. For sufficiently slow loading, these processes are activated and quite
rate independent, leading to a hysteretic stress/strain response. We assume dissi-
pative forces having a (pseudo)potential, say R, and that the energy dissipated
during transformation process depends (counting phenomenologically, beside pos-
sible rank-one connections, with various impurities) on the starting and the final
(phase)variant, only; this (simplifying) concept has been adopted also e.g. in [9].
We implement this philosophy with help of a frame-invariant “phase indicator”

smooth bounded function L̂ : R3×3 → RL with L denoting number of (phase) va-

riants. Then, with L(A) := L̂(I+A) like (1), the dissipation potential is postulated
as

R(ν) :=

∫

Ω

δ∗K(λ(x)) dx with λ(x) =

∫

R3×3

L(A) νx(dA)dx(3)

with a convex compact K ⊂ RL determining the activation stresses, δP its indi-
cator function, and δ∗K its conjugate which is, of course, homogeneous degree-1.
The quantity λ plays the role of a macroscopical volume fraction assigned through
(3) to the microstructure described by ν. We state an energetic formulation which
requires stability

∀(ũ, ν̃) ∈ Q : Ḡ
(
t, u(t), ν(t)

)
≤ Ḡ(t, ũ, ν̃) +R

(
ν(t) − ν̃

)
,(4)

and, for any 0 ≤ s < t ≤ T , the energy equality

Ḡ
(
t, u(t), ν(t)

)
+ VarR(ν; s, t)

= Ḡ
(
s, u(s), ν(s)

)
−
∫ t

s

∫

Γ

(u−w)⊤B
∂w

∂t
dSdτ ,(5)
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where VarR(ν; s, t) denotes the total variation over [s, t] of ν(·) with respect to R
from (3). It can be shown that the energetic formulation posseses a solution [5],
see [3] for a numerical approximation. We numecically tested the above scenario
on a single crystal of CuAlNi having the orthorhombic martensite; c.f. [3].

Fig. 1. The hysteretic pseudo-elastic stress-strain response corre-
sponding to the full loading/unloading cycle of a CuAlNi
1− 0− 0 oriented single crystal.

Literatur

[1] J.M. Ball,, R.D. James, Fine phase mixtures as minimizers of energy. Archive Rat. Mech.
Anal. 100 (1988), 13–52.

[2] K. Bhattacharya, Microstructure of martensite. Why it forms and how it gives rise to the
shape-memory effect. Oxford Univ. Press, New York, 2003.
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[5] A. Mielke, , T. Roub́ıček, Rate-independent model of inelastic behaviour of shape-memory

alloys. Multiscale Modeling Simul. 1 (2003), 571-597.
[6] A. Mielke, F. Theil, On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11

(2004) 151–189.
[7] A. Mielke, F. Theil, V.I. Levitas, A variational formulation of rate-independent phase trans-

formations using an extremum principle. Archive Rat. Mech. Anal. 162 (2002), 137–177.
[8] P. Pedregal, Parametrized Measures and Variational Principles. Birkäuser, Basel, 1997.
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dG(1) time discretisation for rate independent material simulations?

Carsten Carstensen

The simplest and most-established model example for rate-independent time
evolution is small-strain elastoplastic material behaviour with hardening [4, 5,
6]. The presentation discusses the primal and dual formulation and its time-
discretisation through discontinuous Galerkin methods, written dG(k) schemes
for a polynomial degree ≤ k. After a small motivation and known numerical expe-
riments, the presentations focusses on the mathematical justification of the dG(1)
scheme.

Using standard notation on Lebesgue and Sobolev function spaces, the data
on a Lipschitz domain Ω and the time interval (0, T ) with right-hand side f ∈
L2(0, T ; Ω)d, the Primal Formulation reads: Seek (u, p, ξ) ∈ W 1,2(0, T ;H1

0(Ω)d ×
L2(Ω; Rd×Rd×dsym×Rm) with homogeneous initial values and, for almost every time

t ∈ (0, T ) and for all v ∈ H1
0 (Ω)d and all (q, ζ) ∈ L2(Ω; Rd×dsym × Rm) ,

∫

Ω

C(ε(u(t)) − p(t)) : (ε(v) − ṗ(t) + q) dx −
∫

Ω

ξ(t) · H(ζ − ξ̇(t)) dx

≤
∫

Ω

f(t) · v dx+

∫

ΓD

g(t) · v ds+

∫

Ω

suppK(q, ζ) dx −
∫

Ω

suppK(ṗ(t), ξ̇(t)) dx.

The presentation follows [3, 1] and motivates a discontinuous Galerkin method
dG(1) for piecewise affine polynomials. The following typical figure displays the
history of discrete stress component σ11(10.2729, 0.1125, t) at some point as a
function of time in the time interval [0, 1] from [3].

One observes some oscillations of the Crank-Nikolson scheme (CN) around the
piecewise linear interpolant of the implicit Euler schme (bE). The discontinuous
Galerkin schemes dG(0) and dG(1) appear closer together and the higher-order
scheme appears more accurate than the lower-order one.
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The convergence analysis of the dG(1) encounters a new difficulty from ap-
proximation under constraints which can be circumvented through the following
lemma, posed in a general setting.

Lemma: Let K denote some convex and closed subset of some real Hilbert space
H and suppose that f ∈ C(a, b;K) ∩H2(a, b;H) then,

min
A,B∈K,A+B=2M

||f(a) −A||H ≤ (b − a)3/2‖f ′′‖L2(a,b;H).

The remaining details and proofs are subject to current research with Jochen
Alberty and Simone Hock.
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