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Introduction by the Organisers

The mini workshop Shape analysis for eigenvalues, organised by Dorin Bucur
(Chambéry), Giuseppe Buttazzo (Pisa) and Antoine Henrot (Nancy) was held
April 8th–April 14th, 2007. This meeting was attended by 18 participants.

The question of localizing or optimizing the eigenvalues differential operators
has applications in several domains like acoustics, quantum mechanics, visualiza-
tion, solid or fluid mechanics and bio-mathematics. Those questions have also a
specific mathematical interest since they melt geometrical questions with analy-
sis of partial differential equations and provide model problems for general and
applied shape optimization problems.

Despite (or because) their false simplicity, several problems are still open, al-
though formulated hundreds year ago (see for instance the recent books by Bucur
& Buttazzo Variational Methods in Shape Optimization Problems, Birkhäuser-
Verlag, 2005 and Henrot Extremum problems for eigenvalues of elliptic operators,
Birkhäuser, 2006) and give rise to important debates within the international sci-
entific community. Among them, we can cite
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- minimization of the eigenvalues of the Dirichlet Laplacian
- maximization of the eigenvalues of the Neumann Laplacian
- estimates of the fundamental gap for the Laplace or Schrödinger operators
- the hot spot or the nodal line conjecture
- minimization of the buckling load

Each of these problems is associated to one or several constraints for the ge-
ometries, which may be local or not local (convexity, connectedness).

One of the goals of the proposed mini-workshop was to bring together two
mathematical communities working on the topics above by quite different methods.
On the one hand explicit solutions to optimal shape problems for eigenvalues are
searched by means of direct estimations, symmetrizations, rearrangements; on the
other hand recent techniques of variational type have been developed to prove the
existence of an optimal shape and intensive research is carried out to prove the
regularity of the free boundary and to analyze the optimality conditions.

A second main issue was to present the state of the art on some famous open
problems and conjectures, and try to make a step forward in the direction of
solving them.

The organization of the mini-workshop was the following: mornings were de-
voted to lectures by participants while each afternoon began by an open problems
session and smaller working groups (4-5 persons) were organized to work on these
problems.
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Abstracts

Isoperimetric and Universal Inequalities for the Eigenvalues of the
Laplacian and Related Operators

Mark S. Ashbaugh

This talk will survey known isoperimetric and universal inequalities for the
eigenvalues of the Laplacian, centering on several of the classical results and more
recent developments stemming from them. The discussion will begin with the
eigenvalues of the Dirichlet Laplacian on domains in Euclidean space and will
branch out from there to include other spaces and other eigenvalue problems, such
as those for the buckling and vibration of a clamped plate. Problems concerning
the asymptotics of eigenvalues and various open problems may also be discussed.

Some references appear below. In general, [1], [5], [6], [8], [9], [10], [12], and
[13] are general references and survey articles (especially recommended are the
books [6], [8]), while [2], [7], [11], and [14] concern universal inequalities for eigen-
values and [3] and [4] concern isoperimetric inequalities for eigenvalues (especially
eigenvalue ratios). This list is far from complete, but should help serve to give
entry to the topics discussed in the talk. Further references, to such things as the
Faber-Krahn inequality, can be found in the books and survey articles referred to
below.
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Optimization problems for functions of eigenvalues

Giuseppe Buttazzo

We consider shape optimization problems of the form

min
{
F (A) : A ⊂ Ω, |A| ≤ m

}

where F is a given mapping and m > 0 is fixed. We deal with the problem of the
existence of an optimal solution in the class of quasi-open sets (see [1, 5]).

Theorem. Assume that:
• F is lower semicontinuous for the γ-convergence on quasi-open sets;
• F is nonincreasing with respect to the set inclusion.

Then there exists a solution to the minimization problem above.

When F does not satisfy the monotonicity assumption above in general the
existence of a domain solution may fail and only relaxed solutions exist (see [1, 4]),
that are nonnegative Borel measures, possibly +∞ valued, that vanish on all sets
of capacity zero. We denote by M0 the class of such measures.

An interesting case occurs when

F (A) = Φ(λ1(A), λ2(A), . . . )

where Φ is a given continuous function and λk(A) are the Dirichlet eigenvalues
of the Laplacian on A. If Φ is nondecreasing in each variable, due to the natural
monotonicity of eigenvalues with respect to the domain, we are in the framework of
the theorem above and a domain solution exists; otherwise in general the optimum
is only a measure µ ∈ M0.

The case Φ(λ1, λ2) where the cost depends only on the first two eigenvalues is
very particular (see [2]); in fact in this case the existence of an optimal domain
occurs for any continuous function Φ independently of the monotonicity assump-
tion.

Similarly, we consider the problem of finding an optimal partition of Ω

min
{
F (A1, . . . , Ak) : Ai ⊂ Ω, Ai ∩Aj = ∅ for i 6= j

}
.

Again, when F is nonincreasing in each variable, an optimal partition made by
quasi-open domains exists. The case of eigenvalues

F (A1, . . . , Ak) = Φ(λi1 (A1), . . . , λik
(Ak))
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falls in the framework above, for any choice of indices i1, . . . , ik.
A number of results and of open questions will be presented.
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One-dimensionality in some vector–valued elliptic problems

Friedemann Brock

(joint work with Raul Manasevich)

Let Ω be a bounded domain in RN and n ∈ N . For any weakly differentiable
vector-valued function u = (u1, . . . , un)T let ∇u denote the gradient of u and
|∇u| its Euclidean norm. Consider the eigenvalue problem for the vector-valued
p-Laplacian operator, (p > 1),

(E) − ∆pu ≡ div (|∇u|p−2∇u) = λ|u|p−2u in Ω, u = 0 on ∂Ω.

The ODE caseN = 1 has been extensively studied - also subject to other boundary
conditions - in [3] and [4]. It turned out that the components of the eigenvectors
are merely eigenfunctions of an associated scalar problem.
Our main result in [2] is:

Theorem 1: Let n ≥ 2. Then the first eigenvalue λ1 of problem (E) is equal
to the first eigenvalue of the corresponding scalar problem. Moreover, if u is an
eigenfunction for λ1, then any component of u is an eigenfunction of the corre-
sponding scalar problem.

The proof of Theorem 1 relies on some convex functional inequalities.
In recent years also some homogeneous anisotropic operators which are related to
the p-Laplacian have received some attention (see [1]). These operators permit
natural generalizations to the vector-valued case, and we have shown some results
similar to Theorem 1 for these operators.
Our research on this subject is still ongoing. Recently we found that our method
can also be applied to positive - non-minimizing - solutions of some vector–valued
problems. Below we give an example which is unpublished.
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Theorem 2: Let F ∈ C1((0,+∞)) ∩ C([0,+∞)), with F (0) = 0, and let

u ∈ C1(Ω, Rn) ∩W 1,p
0 (Ω, Rn) be a critical point with ui ≥ 0, (i = 1, . . . , n), of

Hn(v) :=

∫

Ω

((1/p)|∇v|p − F (|v|)) dx, v ∈W 1,p
0 (Ω, Rn).

Then ui = tiU , with ti ≥ 0, (i = 1, . . . , n), where U is a nonnegative critical point
of

H1(V ) :=

∫

Ω

((1/p)|∇V |p − F (|V |) dx, V ∈W 1,p
0 (Ω).
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A variational approach to shape optimization of eigenvalues

Dorin Bucur

A tentative way for dealing with isoperimetric problems for eigenvalues is to
use the direct methods of the calculus of variations (see [2]):

- prove the existence of a solution (which should be an open set)
- investigate its regularity (i.e. smoothness of the boundary)
- write the optimality conditions (get an overdetermined problem and extra

information on the solution)
In this talk, we discussed the global existence question and referred to the third

eigenvalue of the Dirichlet Laplacian (see [3]). This result states the existence of
a quasi-open set which minimizes the third eigenvalue of the Dirichlet Laplacian
among all (quasi)-open sets of prescribed measure of RN . Moreover, if bounded
quasi-open sets minimize λ3, ..., λk among sets of prescribed measure, then a min-
imizer also exists for λk+1. The main tool for proving global existence results
for shape functionals which are not of energy type is related to a concentration-
compactness result for the resolvent operators (see [1]).

Some recent work on the eigenvalues of the Neumann Laplacian was also re-
ported (see [4]).
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About regularity of optimal eigenfunctions for the Dirichlet-Laplacian
operator

Michel Pierre

Given D a bounded open subset of R
d and m ∈ (0, |D|) (where |D| denotes the

Lebesgue measure of D), there exists a quasi-open set Ω̂ solution of the following
minimization problem

Ω̂ ⊂ D, |Ω̂| = m, λk(Ω̂) = min{λk(Ω); Ω ⊂ D measurable, |Ω| = m},

where λk(Ω) denotes the k-th eigenvalue of the Laplacian operator on Ω with
homogeneous Dirichlet boundary conditions (see [3] for a proof).

The question which is discussed is the regularity of Ω̂ and of the associated
eigenfunctions.

For k = 1, one knows that, if there is ’enough room’ in D so that it contains a
ball of volume m, then this ball is the unique optimal shape (see e.g. in [4]). In
other cases, the following is true:
(i) all eigenfunctions are locally Lipschitz continuous in D. As a consequence,

there exists at least one optimal set Ω̂ which is open. They are all open if D is
connected (see [2]).
(ii) If D is not connected, optimal sets are not necessarily regular as shown by

easy examples. But, if D is connected, all Ω̂ has finite perimeter and:
- the reduced boundary ∂∗Ω̂ is a regular manifold
- Hd−1(∂Ω̂ \ ∂∗Ω̂) = 0. If d = 2, the boundary ∂Ω̂ itself is regular (see [1]).

For k = 2, the situation is not so clear. If there is ’enough room’ in D for two
disjoint balls of volume m/2 each, then it is known that their union is the unique
optimal shape (see e.g. [4]). In other cases, the following is known:

(i) if D is not connected, optimal sets and eigenfunctions may be irregular

as seen by easy examples. However, if D is connected, Ω̂ is either (quasi-
)connected or the union of two (quasi-)connected quasi-open sets Ω1,Ω2

with capacity(Ω1 ∩ Ω2) = 0 and the following regularity holds [5]:

(ii) if Ω̂ is (quasi-)connected, then the corresponding eigenfunction is locally
Lipschitz continuous in D
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(iii) it is also the case if capacity(Ω̃1∩Ω̃2) = 0 where Ω̃i denotes the fine closure
of Ωi

(iv) it remains to understand the other cases.

Among other open problems:

- for k = 1: how much can one improve the estimate on the size of the

singular part of the boundary of Ω̂?
- for k = 2: can one prove symmetry of Ω̂ when, say, d = 2 and D is a

rectangle?
- for k ≥ 3, can one prove (or disprove) the (Lipschitz-)continuity of the

eigenfunctions (assuming D is connected)?
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Optimization of eigenmodes with respect to the domain

Édouard Oudet

(joint work with Antoine Henrot)

1.1. Historical background. The first result in that area has been obtained by
Faber and Krahn which proved that the ball minimizes the first eigenmode of the
laplacian among sets of constant volume (see [2] and [5]) . Quite in the same time,
Polya and Szegö [7] established that the union of two disconnected balls of the
same volume minimizes the second eigenmode. More recently, Buttazzo and Dal
Maso obtained in [1] a general existance result for this kind of shape optimization
problem.

In 1973, Troesch gave in [8] numerical values of the second eigenmode of the
laplacian for some convex shapes in dimension 2 and raised the question :

Does the stadium minimizes the the second eigenmode of the laplacian among
convex sets of given volume ?

This question is the starting point of our study. We first address some theoret-
ical results directly related to this question. Then, we study the general problem
of minimizing numerically one eigenmode of the laplacian among sets of constant
volume.
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1.2. Some theoretical results related to the problem of Troesch ([3], [4]).
• Regularity of an optimal shape Ω∗ :
Proposition 1 Ω∗ is at least C1.
Proposition 2 Ω∗ can not be of regularity C2,α with α > 0.

In the following, we assume that Ω∗ of class C1,1.

• Simplicity of λ2(Ω
∗) :

Proposition 3 λ2(Ω
∗) 6= λ3(Ω

∗).

• Geometry properties of the boundary of Ω∗ :
Proposition 4 ∂Ω∗ contains exactly two flat parts.

• The answer to Troesch’s question :
Proposition 5 The stadium does not minimize λ2 among convex sets of given
volume.

1.3. Numerical optimization of the eigenmodes of the Laplace operator
[6]. In this part we present new techniques enabling to approximate numerically
the solutions of the following problems :

(1) min{λ2(Ω),Ω ⊂ R
2, Ω convex, |Ω| = 1}

(2) min{λk(Ω),Ω ⊂ R
2, |Ω| = 1} for k ≥ 3.

The method we are presenting combines two approaches that were generated
in the last twenty years, respectively the homogeneization method and the level
set method. We give a short description of the three main numerical methods
in shape optimization, namely the boundary variation, the homogeneization and
the level set methods. For each of them we shall underline the drawbacks when
applying those techniques to minimize the eigenmodes of the Laplace operator. In
consequence we shall develope a new process.

In conclusion we shall report numerical results. On one side we improve the
values published in [9] and on the other side we propose below a geometrical
description of the ten first optimal sets for the problem (2).
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Spannung die kreisförmige den tiefsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss. (1923),
169–172.

[3] A. Henrot, E. Oudet, Le stade ne minimise pas λ2 parmi les ouverts convexes du plan, C.
R. Acad. Sci. Paris Sér. I Math., 332 (2001), 417–422.

[4] A. Henrot, E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirich-
let boundary conditions, Archive for Rational Mechanics and Analysis, 169 (2003), 73–87.



1006 Oberwolfach Report 18/2007

No Optimal union of discs Computed shapes
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9

64.293 64.293

8

78.4782.462

7

88.9692.2506
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5
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4

133.52138.37

3

143.45154.62

Figure 1. Best-known shapes
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[7] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Ann. Math.
Stud. 27 (1952).

[8] B. A. Troesch, Elliptical membranes with smallest second eigenvalue, Math. Comp. 27
(1973), 767–772.

[9] S. A. Wolf and J. B. Keller, Range of the first two eigenvalues of the laplacian, Proc. Royal
Soc. London, 447A (1994), 397–412.

The Faber-Krahn inequality for Robin problems

Daniel Daners

The talk is based on [4] and joint work with James Kennedy [5] resolving an old
conjecture explicitly stated in [3, 7], but going back much further, with a weaker
result in [8]. The aim is to prove a Faber-Krahn inequality for the Laplacian
with Robin rather than Dirichlet boundary conditions. This means we replace the
fixed membrane by an elastically supported membrane and prove that amongst all
membranes of the same measure, the disc has the lowest ground frequency. More
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precisely, we consider the first eigenvalue λ1(Ω) of

−∆u = λu in Ω,
∂u

∂ν
+ βu = 0 on ∂Ω,

where Ω ⊂ R
N , N ≥ 2, is bounded, ν the outward pointing unit normal and β > 0

constant. We compare it to the first eigenvalue of the corresponding problem on a
ball B of the same measure. The problem has a simple first eigenvalue λ1(Ω) > 0
with eigenfunction ψ > 0 normalised by ‖ψ‖∞ = 1. Building on ideas from Bossel
[1], treating the problem for N = 2, we establish the following theorem.

Theorem 1 Suppose Ω ⊂ R
N (N ≥ 2) is a bounded Lipschitz domain and B is a

ball with the same measure as Ω. Then λ1(B) ≤ λ1(Ω). Moreover, if Ω is a C2-
domain and λ1(B) = λ1(Ω), then Ω is a ball. The proof avoids symmetrisation
methods. It makes use of the functional

HΩ(ϕ,Ut) :=
1

|Ut|

(∫

St

ϕdσ +

∫

Γt

β dσ −

∫

Ut

ϕ2 dx
)
,

where Ut := {x ∈ Ω: ψ(x) > t}, |Ut| its Lebesgue measure, St := {x ∈ Ω: ψ(x) =
t} and Γt := ∂Ω∩ ∂Ut. It is defined for ϕ ∈ C(Ω) and m := minx∈Ω̄ ψ(x) < t < 1.
The key to prove Theorem is the following theorem valid for C2-domains.

Theorem 2 Let ϕ ∈ C(Ω̄) with 0 ≤ ϕ ≤ β. If ϕ 6= |∇ψ|/ψ, then there exists
a set S ⊂ (m, 1) of positive measure such that HΩ(ϕ,Ut) < λ1(Ω) for all t ∈ S.
Moreover, HΩ(|∇ψ|/ψ, Ut) = λ1(Ω) for almost all t ∈ (m, 1). We construct
ϕ ∈ C(Ω) by rearrangement of ϕ∗ := |∇ψ∗|/ψ∗, where ψ∗ is the first eigenfunction
on B. The isoperimetric inequality yields HB(ϕ∗, Br(t)) ≤ HΩ(ϕ,Ut) for all t ∈
(m, 1), where Br(t) is a ball of the same measure as Ut. Then Theorem follows
from Theorem and a uniqueness property in the isoperimetric inequality. For
Lipschitz domains approximation results from [2, 6] are used.
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Recent progress on an optimal shape problem for the first eigenvalue
of the buckling plate

Alfred Wagner

An old conjecture of Polya states that among all planar domain the disc minimizes
the first buckling eigenvalue for the plate. This eigenvalue is defined as

Λ(Ω) = min{

∫
Ω

|∆u(x)|2 dx

∫
Ω

|∇u(x)|2 dx
: u ∈ H2,2

0 (Ω)}.

Thus the conjecture states, that there exists a domain Ω∗ ⊂ IR2 such that

Λ(Ω∗) = min{Λ(Ω) : Ω ⊂ IR2, |Ω| = 1}

and that Ω∗ is a disc of area 1. Weinberger and Willms proved this conjecture
under the following assumptions:

• there exists an optimal set Ω∗ which is smooth;
• Ω∗ is connected and simply connected.

Their proof can be found in [5] (e.g.). In [4] the authors proved the existence of
an optimal domain in the class of simply connected domains.

In this contribution we reformulate the problem as a free boundary problem, which
involves a penalization term for the control of the measure of the support of the
admissible functions. More precisely we consider the functional

Jǫ(u) =

∫
B

|∆u(x)|2 dx

∫
B

|∇u(x)|2 dx
+ fǫ(Ω(u)) for u ∈ H2,2

0 (B),

where

fǫ(Ω(u)) =
1

ǫ
(|Ω(u)| − 1) if |Ω(u)| ≥ 1

and zero otherwise. Ω(u) denotes the support of u. The set ∂Ω(u) is called free
boundary. This formulation is very much in the spirit of the work of H. Alt, L.
Caffarelli and their coauthors (see e.g. [1] - [3]). The aim of this talk is to present
a proof for the optimal regularity of u.

Strategy:

• Prove the existence of a minimizer u in X := {u : ‖u‖C1,α(B) ≤ K};
• Prove that ∆2u+ Λ∆u ≤ 0 in {u ≥ 0} and ∆2u+ Λ∆u ≥ 0 in {u ≤ 0} in

the sense of distributions;
• Prove C1,α - regularity for any minimizer u;
• Prove ∆u ∈ L∞

loc(B);

• Prove u ∈ C1,1
loc (B).

There are various implications for the regularity of the free boundary.
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• Density estimates from above an below which are uniform in free boundary
points;

• Rectifiability of the free boundary.
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On Anti-Eigenvalues for Elliptic Systems and a Question of McKenna
and Walter

Bernd Kawohl

(joint work with Guido Sweers)

Imagine a simply supported horizontal beam in an elastic ambient medium. Under
an upward load f ≥ 0 it will bend upwards but be pushed down by a restoring force
proportional to its deformation u, so u(4) = f − bu in (=, 1), say, with u = u′′ = 0
at the boundary points 0 and 1. For b = 0 the solution will be concave and as
b increases it may loose first concavity and later even positivity. This b will be
called critical. One can also study this problem for negative b and finds out that
at b = −λ2

1, where λ1 denotes the first eigenvalue of the Dirichlet Laplacian, the
positivity preserving property (ppp for short) fails again.

If we extrapolate the problem to higher dimensions, we expect the equation
(∆)2u = f(x) − bu(x) in a bounded and connected domain Ω under u = δu = 0
as boundary conditions to satisfy a ppp as long as b ∈ (−λ2

1(Ω), bc(Ω)], where bc
depends on Ω. Notice that one can reduce the fourth order equation to an elliptic
system (A) given by −∆u = f − bv and −∆v = u in Ω with u = v = 0 on
∂Ω. McKenna and Walter conjectured that among all domains of given volume,
the shape function bc(Ω) attains its maximum for the ball Ω∗, in other words
bc(Ω) ≤ bc(Ω

∗).
Guido Sweers and I were able to disprove this conjecture in [1] by relating the

problem to the elliptic system (B) −∆u = f−λv and −∆v = f in Ω with u = v = 0
on ∂Ω, in which u ≥ 0 for f ≥ 0, provided λ ≤ λc(Ω). In fact, λc(Ω)2 ≤ bc(Ω) and
λc(Ω) can go to infinity when Ω has the shape of an amoebae with thin tentacles.

We also investigated the conjecture if the maximum of λc(Ω) among plane
convex domains is attained for the disk. The answer is again negative. For the
proof we had to investigate the ratio of an iterated Greens function G2(x, y) =∫
ΩG(x, z)G(z, y) dz overG(x, y). The L∞ norm of this ratio depends on Ω and has
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a probabilistic interpretation. Its inverse equals λc(Ω). For a particular domain S
we were able to estimate it in [2] and show that λc(S) > λc(S

∗), which disproves
this conjecture as well. Estimating the supremum of G2/G is extremely delicate
because G vanishes at the boundary. Therefore only a short outline of the estimate
was published in [2], while the actual proof requires some 85 pages and can be
downloaded from www.mi.uni-koeln.de/̃ kawohl.

The question as to which convex domains of given volume maximize bc(Ω) and
λc(Ω) remains open. Numerical experiments suggest that bc(Ω) might become
maximal for a regular pentagon.
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A fourth order Steklov eigenvalue problem

Filippo Gazzola

(joint work with Alberto Ferrero, Tobias Weth)

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2, let d ∈ R and
consider the boundary eigenvalue problem

(1)





∆2u = 0 in Ω
u = 0 on ∂Ω
∆u = duν on ∂Ω ,

where uν denotes the outer normal derivative of u on ∂Ω. I am interested in
studying the eigenvalues d of (1). Problems with eigenvalues in the boundary
conditions are called Steklov problems from their first appearance in [7]. A solution
of (1) is a function u ∈ H2 ∩H1

0 (Ω) such that

(2)

∫

Ω

∆u∆v dx = d

∫

∂Ω

uνvν dS for all v ∈ H2 ∩H1
0 (Ω).

Taking v = u in (2) shows that all the eigenvalues of (1) are strictly positive. Let

d1 = d1(Ω) := min




u ∈ [H2 ∩H1

0 (Ω)] \H2
0 (Ω);

∫

Ω

|∆u|2

∫

∂Ω

u2
ν





.

It represents the least positive eigenvalue and, as pointed out by Kuttler [6], it is the
sharp constant for a priori estimates for Laplace equation under nonhomogeneous
Dirichlet boundary conditions. This follows from Fichera’s principle of duality [4].
Moreover, d1 also plays a crucial role in the positivity preserving property for the
biharmonic operator under Steklov boundary conditions, see [1, 5]. In the talk, I
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describe the spectrum of (1), study some isoperimetric properties of d1 and show
a generalized version of Fichera’s principle, see [2, 3] for the details.
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Open Problems suggested by F. Gazzola concerning his talk.

Concerning the first eigenvalue d1(Ω) of the biharmonic Steklov boundary problem,
I suggest to following questions:

1) The monotonicity property: is it true that if Ω1 ⊂ Ω2 then d1(Ω2) ≤ d1(Ω1)?
I believe this is not true.

2) Does there exist an optimal convex set of given measure or perimeter which
minimizes d1? I believe the answer is yes.

3) Is it possible to perform some numerical computations and/or to show a kind
of Babuska paradox?

Optimimization problem for weighted Sobolev constants

Catherine Bandle

(joint work with Alfred Wagner)

Let D ⊂ RN be a bounded open set, let a(x), b(x) be two positive, Lipschitz
continuous weights and consider for p > 1 the following Sobolev constant

Sp(D) = inf
v

∫

D

a(x)|∇v|p dx, v ∈ K(D) where(1)

K(D) = {w ∈W 1,p
0 (D) : w ≥ 0 a.e.,

∫

D

b(x)w dx = 1}.

The optimization problem addressed in this talk is:

sp(m) = inf
D
Sp(D) where D ⊂ B(fixed fundamental domain),(2)

and

∫

D

b(x)dx ≤ m.
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The strategy is to solve the unconstrained variational problem

Jǫ,m = inf
K(B)

∫

B

a(x)|∇v|p dx+ fǫ(

∫

{v>0}

b(x) dx),(3)

where

fǫ(s) =

{
1
ǫ (s−m) : s ≥ m

0 : s ≤ m.

We prove

(1) Jǫ,m is attained.
(2) Jǫ1,m ≤ Jǫ2,m for ǫ1 ≥ ǫ2.
(3) From an argument given in [2] it follows that there exists ǫ0 such that for

all ǫ < ǫ0
Jǫ,m = Jǫ0,m ≤ sp(m).

We then study the regularity of the minimizers uǫ. It turns out that under an
additional assumption on b(x) which is needed for technical reasons and is satisfied
for instance for |x|q , 1

(1+]x]q)s and exponentials, we have

(1) uǫ is Hölder continuous,
(2) for p ≥ 2, the minimizers are Lipschitz continuous.

Hence the following main result cf. [1] holds true:
There exists an optimal domain D0 ⊂ B such that sp(m) = Sp(D0). If p ≥ 2 then
D0 is a Lipschitz domain.
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Sharp dynamic bounds for eigenvalues of the Laplacian

Pedro Freitas

The purpose of this talk is twofold. On the one hand, we wish to present a line
of research for the study of low eigenvalues of the Laplace operator on bounded
Euclidean domains, based upon recent numerical results and conjectures [1, 2].
On the other hand, we shall report on some recent results which were obtained in
this direction.

We are mainly interested in bounds for eigenvalues giving equality for some
domain Ω0, and containing a correction term which takes into account the de-
viation from Ω0. As examples of such results, we present some new bounds for
triangles and n−dimensional star–shaped domains [3, 4, 5]. From the last of these,
it is possible to derive new relations between geometric and spectral properties of
a domain, such as the following lower bound for the isoperimetric constant of a
convex domain [5]:
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Theorem 1 Let Ω be a bounded convex domain of R
n. Then

|∂Ω|

|Ω|1−1/d
≥

|∂B1|

|B1|1−1/d

π

2
√
λ1(B1)

√
λ1(Ω)

λ1(B)
,

where λ1(X) denotes the first Dirichlet eigenvalue of the domain X and B and B1

are the balls of volume |Ω| and of unit radius, respectively.

References

[1] P. Antunes and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar
regions, Exp. Math. 15 (2006), 333–342.

[2] P. Antunes and P. Freitas, A numerical study of the spectral gap, preprint (2007).
[3] P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle, Proc.

Amer. Math. Soc. 134 (2006), 2083-2089.
[4] P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and

rhombi, to appear in J. Funct. Anal. (2007).
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The Best Damped Disk

Steven J. Cox

(joint work with Mark Embree)

We consider the wave equation on the unit disk with radial damping subject to
Dirichlet bounday conditions,

utt(r, θ, t) − ∆u(r, θ, t) + 2a(r)ut(r, θ, t) = 0

u(1, θ, t) = 0, u(r, θ, 0) = u0(r, θ), ut(r, θ, 0) = v0(r, θ)

It is useful to take U(t) = [u(t) ut(t)] and interpret our pde as Ut = A(a)U where

A(a) =

(
0 I
∆ −2a

)
.

From here one goes on to study the eigenvalues and eigenfunctions of A(a). The
best damped drum is the a for which A(a) has the least spectral abscissa. If
V = [u v] is an eigenfunction associated with the eigenvalue λ then v = λu and
∆u− 2av = λv, or

r(rur(r, θ))r + uθθ(r, θ) − 2λr2a(r)u(r, θ) = λ2r2u(r, θ)

subject to u(1, θ) = 0. We now separate variables by writing u(r, θ) = R(r)T (θ).
Inserting this into our pde and dividing by RT gives

r(rR′)′/R+ T ′′/T − 2λr2a = λ2r2

It follows that T ′′/T is constant, say −γ, i.e.,

T ′′(θ) + γT (θ) = 0, T (0) = T (2π) T ′(0) = T ′(2π)

and so

γn = n2 and Tn(θ) = An cos(nθ) +Bn sin(nθ), n = 0, 1, 2, . . .
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and so we have a one parameter family of equations in r,

r(rR′)′ − n2R− 2λr2aR = λ2r2R, R(1) = 0. (1)

The central question then is: How do the eigenvalues, λ, of (1) vary with n and a?
Following the methods of Castro and Cox [2] we construct, for each n, a one pa-

rameter family of dampings for which the associated spectral abscissa approaches
−∞. Regarding the full operator, A(a), we show that our designs are asymptot-
ically optimal (in the sense of Asch and Lebeau [1]) but suffer from small real
eigenvalues.
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Geodesics between probability measures and the dimensional distance

Qinglan Xia

In mathematics, there are at least two different but very important types of optimal
transportation: Monge-Kantorovich problem and ramified transportation (dealing
with tree-type branching structures). In [1], Buttazzo etc. give a very nice ap-
proach in attempting to unify these two theories by considering path functionals
in Wasserstein spaces. The length of a function f : [0, 1] → (P (X),W2) is given

by
∫
J(f(t))|ḟ (t)|W2

dt. After picking suitable functionals J on the space of prob-
ability measures, they got both types of transportation. Their approach agrees
well with Monge-Kantorovich problem. However, as for ramified transportation,
their approach is similar but still a little bit different to optimal transport paths
studied in [3]. In this talk, I fill in this gap by considering geodesic problems in
the space of probability measures under different (semi-)metrics J . The length

of a curve f : [0, 1] → P (X) will be
∫
|ḟ(t)|Jdt, where |ḟ(t)|J denotes the (semi-

)metric derivative. By choosing suitable (semi-)metrics, we will get both types
of transportation. This approach agrees well with both of them. A special kinds
of (semi-)metric may be induced from suitable functionals on ”transport plans”,
which are probability measures in product spaces. Under some suitable functionals
on ”transport plans”, the length of optimal transport paths (i.e. geodesics) be-
tween any two probability measures will determine a distance between measures.
We will mainly consider a special family of functionals determined by a parameter
α. For any given two probability measures, its distance will be finite whenever
the parameter α is less than a critical value. What interesting is that this critical
value itself determines another distance between these two measures. I will call
this distance ”dimensional distance” because it contains mainly the dimensional
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information about these measures. It generalizes the ”irrigation dimension” stud-
ied by [2] to the case ”a < 0”, which corresponds to the self-similar dimension of
fractals including cantor sets and others.
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New optimization problems for the second eigenvalue of the Laplacian

Antoine Henrot

(joint work with Dorin Bucur)

Let λ2(Ω) be the second eigenvalue of the Laplace operator on the domain Ω
with Dirichlet boundary conditions. The problem of minimization of λ2(Ω) with
a volume constraint is now well-known (with or without convexity assumption),
see e.g. [2] or [1]. In this talk, we investigate two other problems of minimization
for λ2(Ω) in two dimensions:

(1) with a perimeter constraint,
(2) with a diameter constraint.

More precisely, for the first problem, we prove:
Theorem 1 :
There exists an optimal plane domain Ω∗ which minimizes λ2(Ω) among domains
of given perimeter. Moreover Ω∗ has the following properties:

• it is convex,
• its boundary is C∞,
• it has (at least) one axis of symmetry,
• its boundary contains neither segment, nor arc of circle.

For the second problem, we prove:
Theorem 2 :
There exists an optimal plane domain Ω∗ which minimizes λ2(Ω) among domains
of given diameter. The set Ω∗ is convex and is a body of constant width. The disk
is a local minimizer.

The conjecture, supported by the last assertion of Theorem 2 and some nu-
merical evidence is that the disk is the global minimizer for that problem. Let us
remark that it was quite unexpected for such a problem of minimization of the
second eigenvalue.
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Partially overdetermined elliptic problems

Ilaria Fragalà

(joint work with Filippo Gazzola)

We consider an elliptic equation of the kind −∆(u) = f(u) on a bounded
domain Ω in Rn, and we complement this equation with two boundary data: a
homogeneous Dirichlet condition u = 0 and a constant Neumann condition |∇u| =
c, which are required to hold either the former on ∂Ω and the latter on a proper
subset Γ ⊂ ∂Ω, or the viceversa. We investigate symmetry of domains Ω where the
resulting boundary value problem, that we call “partially overdetermined”, admits
a solution. The “totally overdetermined” case when Γ ≡ ∂Ω has been studied in
the seminal paper [2].

We give some positive symmetry results, which hold under different kind of
assumptions on Γ, f , and c; some of these results can be extended also to the case
of exterior partially overdetermined problems.

More precisely, we analyze the problem when some further information is avail-
able in one of the following aspects:

(I) regularity of Γ;
(II) maximal mean curvature of Γ;

(III) geometry of Γ.

For each of these situations, our approach is completely different. In case (I)
we treat partially overdetermined problems as initial value problems in the spirit
of Cauchy-Kowalewski Theorem; in cases (II) and (III) we take advantage re-
spectively of the P -function and the moving planes methods already existing in
literature, adapting them to our framework with some suitable modifications. The
only common feature is that, in any of the cases (I), (II), (III), our proof strategy
consists in showing that the partially overdetermined problem can be turned into
a totally overdetermined one.

It remains essentially open to establish whether symmetry continues to hold
under weaker requirements: the problem of finding the minimal assumptions which
ensure symmetry deserves further investigation.

In the last part of the talk we discuss the possibility that, without any kind of
additional assumptions with respect to the totally overdetermined case, counterex-
amples to symmetry for partially overdetermined problems can be constructed in
the framework of shape optimization. We address two possible shape optimization
problems which may lead to a counterexample. One of them concerns the shape
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optimization for the second Laplace-Dirichlet eigenvalue among all convex planar
domains with a given area.
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On Riesz and Carleman Means of Eigenvalues

Lotfi Hermi

(joint work with Evans M. Harrell II)

The results described in this report are based on two preprints [4] [5], both of which
are concerned with inequalities for Riesz and Carleman means and consequences
thereof. Riesz means are “smoothed” averages of the eigenvalues, 0 < λ1 < λ2 ≤
λ3 ≤ · · · , of the fixed membrane problem

−∆u = λ u in Ω ⊂ R
n

u = 0 on ∂Ω.

They are generalizations of the Weyl counting function for the eigenvalues, N(λ).
The Riesz mean of order σ > 0 is defined by

Rσ(λ) =
∑

k

(λ− λk)
σ
+

where x+ := max(0, x). In the same vein, the Carleman mean of order (σ, µ) is
defined by

Cµ
σ (λ) =

∑

k

(λ− λk)
µ
+

λσ
k

.

These means are to be interpreted in the obvious way when σ or µ → 0+. It has
been known since Weyl [9] that, as λ→ ∞,

(1) N(λ) ∼ Lcl
0,n |Ω|λn/2

and

Rσ(λ) ∼ Lcl
σ,n |Ω| λσ+n/2.

Here Lcl
σ,n is the classical constant given by

Lcl
σ,n =

Γ(1 + σ)

(4π)
n/2

Γ(1 + σ + n/2)
.

When σ ≥ 1, Laptev-Weidl proved [8]

(2) Rσ(λ) ≤ Lcl
σ,n |Ω| λσ+n/2.
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Note that (1) is equivalent to, when k → ∞,

λk ∼
k2/n

(
Lcl

0,n |Ω|
)2/n

.

The thrust behind many of these inequalities is to prove the Pólya conjecture

λk ≥
k2/n

(
Lcl

0,n |Ω|
)2/n

.

The results described in this report focus on four theorems from [4]. Connec-
tions between the universal inequalities of Harrell-Stubbe [6] [3] (see also [2]) and
the domain-dependent Berezin-Li-Yau inequality (2) are also made, via a host of
integral transforms such as the Laplace, Weyl, and Riemann-Liouville fractional
transforms, adding new tools to an already rich class of convexity and Legendre
transform methods (see [8], [1], [3] to cite a few examples). The first result is a
new monotonicity principle, to wish two independent proofs are produced in [4]
and [5].

Theorem 1. The function

λ 7→
Rσ(λ)

λσ+n/2

is a nondecreasing function of λ, for λ ≥ λ0, for a fixed λ0 > 0 and σ ≥ 2.

This theorem is central to the proof of the following.

Theorem 2. When σ ≥ 2, the Berezin-Li-Yau inequality (2) is equivalent to the
classical inequality of Kac [7],

(3) Z(t) :=

∞∑

k=1

e−λkt ≤
|Ω|

(4πt)
n/2

.

Theorem 3. For 0 ≤ σ < n/2, µ > 0, let Mn,σ =
e

n
2
−σ

(
n
2 − σ

) n
2
−σ

, then

(4) Cµ
σ (λ) ≤Mn,σ

Γ(n
2 − σ)

Γ(n
2 )

Γ(µ+ 1)Γ(n
2 − σ + 1)

Γ(µ+ n
2 − σ + 1)

|Ω|

(4π)
n/2

λ
µ+
n

2
−σ
.

This theorem is in fact a corollary to the Kac’s inequality (3). One would
hope to prove this result with the sharp constant expected from semiclassical
considerations.
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Theorem 4. For σ ≥ 1

Rσ(λ) ≥ H−1
n λ

−n/2
1

Γ(1 + σ)Γ(1 + n/2)

Γ(1 + σ + n/2)
(λ− λ1)

σ+n/2
+ .

Here

Hn =
2 n

j2n/2−1,1J
2
n/2(jn/2−1,1)

,

where Jα(x) denotes the Bessel function of order α and jα,p is its p−th zero.
Results stronger than Theorem 4 appear in [5], resulting in universal Weyl-type

upper bounds for λk and
∑k

j=1 λk in terms of λ1.
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The phase–field method in optimal design

Blaise Bourdin

The phase field method is a versatile, robust, and rigorous framework for topology
optimization problems. It is based on the penalization of the variation of the prop-
erties of designs (i.e. perimeter penalization), and its variational approximation.
It uses a smooth function, the phase-field, to represent the materials involved in
the device or the system.

Consider the following optimal design problem of finding p materials occupying
p disjoint regions D1, . . . , Dp of a ground domain Ω, and minimizing the objective
function F , under a perimeter constraint:

(P) : inf
D1,...,Dp admissible

F (D1, . . . , Dp) +
∑

1≤i≤j≤p

length(∂Di ∩ ∂Dj).
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In the phase field framework, one uses a single differentiable function ρ =
(ρ1, . . . , ρp) to represent all the materials. For any ε > 0, one defines the fol-
lowing problem:

(Pε) : inf
ρ
Fε(ρ) +

∫

Ω

1

ε
W (ρ) + ε|Dρ| dx,

where W is a p–wells function, such that W (ρ) = 0 if one and only one of the
components of ρ is equal to 1, and strictly positive otherwise. Then, under some
technical conditions on F , one can prove that when ε→ 0, the solutions of problem
(Pε) converge in some sense to that of (P). Moreover, since (Pε) is a well-posed
problem, whose arguments are classical differential functions, the convergence re-
sult suggests a numerical algorithm, that is to solve (Pε) for a “small enough” ε.

This framework has already been applied to several problems in structural op-
timization, including the stiffness optimization of pressurized structures, as illus-
trated in the following figure.

Figure 1. Optimal design of pressurized structure. From left to
right: schematic of the problem, phase field ρ for the initial design
on a half domain (blue corresponds to a liquid under pressure,
magenta to some elastic material and yellow to the void), and the
final design.

Open problems proposed by Mark Ashbaugh

1. The fundamental gap problem, or van den Berg’s conjecture. One
looks at the gap λ2−λ1 between the first two eigenvalues of the Dirichlet Laplacian
−∆ on a bounded convex domain Ω, or at the same quantity for the Schrödinger
operator −∆+V where V is a potential defined and convex on Ω. The conjecture
is

λ2 − λ1 ≥ 3π2/d2

where d is the diameter of the domain (sup of the distance between any two points
of the domain). This result was conjectured by van den Berg [8] in 1983. In 1985
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Singer, Wong, Yau, and Yau [12] obtained the lower bound π2/4d2. The best
result to date is the lower bound π2/d2 of Yu and Zhong [13].

For more information on this problem, see the write-up “The Fundamental Gap”
for the AIM workshop, “Low eigenvalues of Laplace and Schrödinger operators,”
from May 2006. This can be found at the website http://www.aimath.org /past-
workshops/loweigenvalues.html. Further material on the problem can be found at
the same site under “open problems”.

2. λk+1/λk(Ω) ≤ λ2/λ1|n−ball where Ω is a domain in R
n. This optimal in-

equality for λk+1/λk was conjectured by Payne, Pólya, and Weinberger (henceforth
PPW) in their 1956 paper [11]. If this bound holds, then it is expected that a
saturating case would be that of a domain that in the limit approaches k identical
disconnected n-balls.

The conjectured bound is known for k = 1, 2, 3 (see [3], [4]). For all other cases
the best bound known is only 1 + 4/n, proved in the original 1956 paper of PPW.

3. λ2m/λm(Ω) ≤ λ2/λ1|n−ball where Ω is a domain in R
n. If this bound holds,

then it is expected that a saturating case would be that of a domain that in the
limit approaches m identical disconnected n-balls.

The conjectured bound is known for m = 1, 2 (see [3], [4]). Obviously, the PPW
conjecture listed in item 2 above would follow from this conjecture. No weaker
bounds of this form that are suggestive of this bound are known. However, there
are bounds for λk/λ1 and λk/λ2 that “accumulate” only according to the powers
of 2 in k, so suggestive of the λ2m/λm conjecture at least covering the worst case,
“on average”. Thus, one has [5]

λ2k/λ1(Ω) ≤ (λ2/λ1|n−ball)
k

and a similar bound for λ2k/λ2.
4. The Pólya conjectures. No list of this kind would be complete without

the Pólya conjectures for the Dirichlet and Neumann eigenvalues of the Laplacian
for domains in Euclidean space. Here we denote the Dirichlet and Neumann eigen-
values of the Laplacian on a bounded domain Ω ⊂ R

n by {λk}∞k=1 and {µk}∞k=0,
respectively (note that we have purposely indexed the Dirichlet eigenvalues from 1,
and the Neumann eigenvalues from 0). In two dimensions the conjectured bounds
read

λk ≥ 4πk/A ≥ µk,

where A represents the area of Ω. In n dimensions the general inequalities read

λk ≥ 4π2k2/n/(Cn|Ω|)2/n ≥ µk,

where Cn = πn/2/Γ(n/2 + 1) is the volume of the ball of unit radius in R
n and

|Ω| is the volume of Ω. For further discussion of the Pólya conjectures, including
references to the literature, see, for example, [6] and/or [5].

Other References. More on these and related open problems can be found in
[1], [2], [6], [5], [9], and [8].
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Conjecture concerning a Faber-Krahn inequality for Robin problems

Open problem proposed by Friedemann Brock and Daniel Daners

For β > 0 it was proved in [2, 3] that amongst all domains Ω of equal measure,
the ball minimises the first eigenvalue of

−∆u = λu in Ω,
∂u

∂ν
+ βu = 0 on ∂Ω.

If β < 0 we conjecture that the ball maximises the first eigenvalue. The conjecture
is supported by partial results in [1].
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On a long-standing conjecture by Pólya-Szegö

Open problem proposed by Ilaria Fragala

The electrostatic capacity of a convex body is usually not simple to compute.
We discuss a possible approximations of it, which is related to a long-standing
conjecture by Pólya-Szegö. It states that, among all convex bodies, the “worst
shape” for the approximation exists and is the planar disk. The first part of this
conjecture was proved in [1], where we established some related results which give
further evidence for the validity of the second part. We also suggest a complemen-
tary conjecture related to some overdetermined boundary value problems.

References
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