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Introduction by the Organisers

The half-size workshop was organized by Anton Alekseev (Geneve), Rui Loja Fer-
nandes (Lisboa), Eckhard Meinrenken (Toronto) and Markus Pflaum (Frankfurt).
Marius Crainic (Utrecht) also acted as an unofficial organizer. The programme
consisted of 17 lectures and covered a range of areas in Poisson Geometry and its
applications where significant progress has been achieved recently. The aim of the
workshop was to emphasize the main themes in Poisson Geometry that play the
role of driving forces and organizing principles of the field. A significant number
of young researchers, who have made already important contributions to the field,
participated in this meeting. During the workshop all participants were involved
in a great number of informal discussions, some of which gave rise to new collabo-
rations. In total, 27 researchers have participated in this meeting from institutions
in 9 different countries in Europe, USA and Canada, including 4 researchers from
German institutions.
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The organizers and participants thank the Mathematisches Forschungsinstitut
Oberwolfach for providing a truly inspiring atmosphere for this conference. In the
following we include the abstracts in alphabetical order.



Poisson Geometry and Applications 1245

Workshop: Poisson Geometry and Applications

Table of Contents

Camilo Arias Abad (joint with Marius Crainic)
Classifying spaces and representations up to homotopy . . . . . . . . . . . . . . . 1247

Paul Bressler (joint with A.Gorokhovsky, R. Nest, B. Tsygan)
Deformations of algebroid stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251

Henrique Bursztyn (joint with G. Cavalcanti and M. Gualtieri)
Generalized Kähler and hyper-Kähler quotients . . . . . . . . . . . . . . . . . . . . . . 1253

Alberto S. Cattaneo
Coisotropic Submanifolds, Reduction and Applications . . . . . . . . . . . . . . . 1255

Vladimir Fock (joint with Aleksandr Goncharov)
Double of a cluster variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257

Simone Gutt
Symplectic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262

Andre Henriques
An action of the cactus group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264

Hans-Christian Herbig (joint with Martin Bordemann, Markus Pflaum)
On homological phase space reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267

Yvette Kosmann-Schwarzbach
Modular classes of Lie algebroids: recent results . . . . . . . . . . . . . . . . . . . . . 1270

David Mart́ınez Torres (joint with Marius Crainic and Rui Loja Fernandes)
Poisson manifolds of compact type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272

Eva Miranda (joint with Philippe Monnier and Nguyen Tien Zung)
Rigidity of Poisson group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275

Hessel Posthuma (joint with M. Pflaum, X. Tang and H-H Tseng)
Orbifolds and their quantizations as noncommutative geometries . . . . . . . 1278

Tudor S. Ratiu (joint with Petre Birtea, Juan-Pablo Ortega)
Convexity in symplectic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

Pavol Ševera
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Abstracts

Classifying spaces and representations up to homotopy

Camilo Arias Abad

(joint work with Marius Crainic)

Given a Lie groupoid G, the classifying space BG is a topological space which
should be thought of as a homotopic substitute for the orbit space. For instance,
if T is the transformation groupoid associated to the action of a Lie group G on a
manifold M then B(T ) is the homotopic quotient of the action and its cohomology
is the equivariant cohomology of the action:

H•(T ) ∼= H•
G(M)

The homotopy type of an orbifold represented by a proper étale groupoid G is
defined to be the homotopy type of BG [8]. BG is defined as the thick geometric
realization of the simplicial manifold G•, the nerve of G. This simply means that
BG is the quotient space:

BG = (
∐

k≥0

Gk ×∆k)/ ∼

where ” ∼ ” is the equivalence relation generated by:

(x, δi(y)) ∼ (di(x), y)

Here ∆k denotes the standard k-simplex, δi is the inclusion of the k-simplex as
the i-th face of the k + 1-simplex and di : Gp → Gp−1 is the map that forgets the
i-th component.
When a Lie group acts properly on a manifold, the equivariant cohomology can be
computed using the Cartan model [4], the Weil model [6] or the model of Kalkman
[7]. Getzler [5] constructed a model for the equivariant cohomology in the non-
compact case and later Behrend [2] generalized Getzler’s construction to compute
the cohomology of classifying spaces of more general groupoids. For an arbitrary
Lie groupoid G, the cohomology of BG can be computed using the Bott-Shulman
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double complex
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in which the vertical differentials are the De-Rham operators and the horizontal
differentials are the sum of pullback maps:

δ =

p∑

i=0

(−1)idi
∗

By computing the horizontal cohomology of the above double complex, Bott [3] de-
scribed the relationship between the classifying space BG and the representations
of a Lie group G. More precisely, he constructed a spectral sequence

Epq1 = Hp−q
diff (G,Sq(g∗))⇒ Hp+q(BG)

which generalizes the Chern-Weil homomorphism. In case G is compact, the spec-
tral sequence degenerates at the first stage and immediately gives:

H2q(BG) ∼= Sq(g∗)G

It turns out that the spectral sequence of Bott exists for arbitrary Lie groupoids.
The first step in this construction is to make sense of the adjoint representation of a
Lie groupoid. A representation of a Lie groupoid G over M is a map (i.e. smooth
functor) φ : G → Gl(E) where E is a vector bundle over M and Gl(E) is the
groupoid of linear isomorphism between the fibers. This notion of representation
is too restrictive and does not allow for a good defintion of the adjoint represen-
tation. Instead, one has to consider representations of Lie groupoids in complexes
of vector bundles, called representations up to homotopy. In a representation up
to homotopy an arrow

g : x→ y,

acts as a map of complexes

g̃ : E•
x → E•

y ,

but we allow this action not to respect the associativity. That is, in general (̃g1g2)
and g̃1◦ g̃2 are not the same map of chain complexes. However, they are homotopic
maps, and there is a controlled and coherent way of choosing the homotopies.
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Instead of giving a general definition, we describe here the case of representations
of length one.

Definition 1. Let E = (E0 ⊕ E1, D0) be a complex of vector bundles of length
one. A representation up to homotopy of G on E is given by the following:

(1) A non-associative action: i.e. a smooth map form G to GL(E) which
commutes with the structure maps except possibly with the composition.
We denote the action of g on E by g̃.

(2) An operator D2 ∈ Γ(G2,Hom(s∗(E1), t∗(E0))), where s and t denote the
source and target map.

This data is subject to the equations:

• For v ∈ Eps(g)
D0(g̃(v)) = g̃(D0(v))

This means that each element g ∈ G acts on the complex (E•, D0) as a
map of complexes.
• For v ∈ Eps(g2)

(̃g1g2)(v)− g̃1(g̃2(v)) = D2(g1, g2)(D
0(v)) +D0(D2(g1, g2)(v)),

This says that the action may fail to respect the composition, but this
failure is controlled by the operator D2 in the sense that the map

D2(g1, g2) : E1
s(g2) → E0

t(g1),

is a homotopy between the maps of complexes

g̃1g2 : E•
s(g2) → E•

t(g1)

and
g̃1 ◦ g̃2 : E•

s(g2) → E•
t(g1)

• For v ∈ Eps(g3)

g̃1(D
2(g2, g3)(v)) − D2(g1g2, g3)(v) +D2(g1, g2g3)(v)−D

2(g1, g2)(g̃3(v) = 0

There is a differentiable cohomology with coefficients in representations up to
homotopy which is denoted by H•

diff(G,E).

The notion of representation up to homotopy is the global analog of Quillen’s
superconnection [9]. The infinitesimal version is described in [1]. Representations
up to homotopy are to be thought of as representations in the cohomology vector
bundle. Since the rank of the cohomology may vary, the pointwise cohomology is
not a vector bundle and one is forced to work at the level of complexes. In case
the pointwise cohomology has constant rank the representation up to homotopy
descends to the cohomology vector bundle:

Proposition 2. Let (E,D) be a regular representation up to homotopy of a
groupoid G. Then, there is a representation up to homotopy structure DH(E)

in the cohomology complex H(E) and a quasi-isomorphism:

Φ : (E,D)→ (H(E), DH(E))
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In particular, a representation up to homotopy in an acyclic complex has zero
cohomology.
A Lie groupoid G comes with an obvious choice of a complex of vector bundles on
which one can represent it: A→ TM . This complex does have the structure of a
representation of G, this is the adjoint representation.

Theorem 3. Let G be a Lie groupoid and σs an Ehresmann connection on G.

(1) The choice of σs gives the adjoint complex A → TM the structure of a
representation up to homotopy.

(2) If γs is any other Ehresmann connection on G, then the representations
up to homotopy Ad(G)σs and Ad(G)γs are isomorphic.

This representation is called the adjoint representation of G and is denoted by
Ad(G).

The adjoint representation of a Lie groupoid is an intermediate notion between
the tangent bundle of a manifold and the adjoint representation of a Lie group.
We think of it as the space of vector fields on the orbit space.

Example 4.

(1) When G is a Lie group one recovers the usual adjoint representation.
(2) IfM is a manifold seen as a unit groupoid, then the complex corresponding

to the adjoint representation of M is nontrivial only in degree one and we
have C(M,Ad)1 = X(M).

(3) Assume that G is a Lie group and π : P → B is a principal G-bundle. The
cohomology with coefficients in the adjoint representation of the transfor-
mation groupoid is just the space X(B) of vector fields on the base.

Once we have a good notion of adjoint representation we can take duals and
symmetric powers, morally, to obtain differential forms out of vector fields. In this
way we obtain new representaions up to homotopy Sq(Ad∗). Exactly as Bott did
for the case of groups, one can compare this representations with the horizontal
cohomology of the Bott-Shulman double complex:

Theorem 5. Let G be a Lie groupoid. Then:

Hp
δ (Ω

q(G•)) ∼= Hp−q
diff (G,Sq(Ad∗))

An immediate corollary of this formula is:

Theorem 6. Let G be a Lie groupoid. There is a spectral sequence converging to
the cohomology of BG:

Epq1 = Hp−q
diff (G,Sq(Ad∗))⇒ Hp+q(BG)

In the case of Lie groups the shift in degree immediately implies that the spectral
sequence vanishes above the diagonal. This is not the case for arbitrary groupoids:
here the grading in the complex may be negative and there may be cohomology
in negative degrees. This should be no surprise because already in the case of
compact group actions the spectral sequence is non-zero above the diagonal: it
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becomes a spectral sequence obtained from a filtration on the Cartan model. For
compact groups the spectral sequence vanishes below the diagonal. One expects
that the spectral sequence also vanishes below the diagonal for proper groupoids.
At the moment we do not have the proof of this in general. We do know it is true
in two special cases:

Proposition 7. If G is either a regular proper groupoid or the transformation
groupoid of a proper action then the spectral sequence vanishes below the diagonal.
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Deformations of algebroid stacks

Paul Bressler

(joint work with A.Gorokhovsky, R. Nest, B. Tsygan)

Suppose that k is an algebraically closed field of characteristic zero.
Suppose that R is a commutative k-algebra. A (unital, associative) R algebra

A determines in a natural way a R-linear category, denoted A+, with one object
whose R-algebra of endomorphisms is (the opposite algebra) Aop. The category
A+ is an example of an R-algebroid. Precisely, an R-algebroid is a non-empty
R-linear category C such that any two objects are isomorphic.

Suppose that X is a space and A is a sheaf of R algebras on X . The assignment
X ⊇ U 7→ A(U)+ determines a prestack in R-linear categories, denoted A+, on

X . The associated stack Ã+ is naturally equivalent to the stack of locally free

A-modules of rank one. The stack Ã+ is an example of an R-algebroid stack.
Precisely, an R-algebroid stack is a stack in R-linear categories C such that

• every x ∈ X has a neighborhood U such that the category C(U) is non-
empty
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• for every U ⊆ X , x ∈ U , A,B ∈ C(U) there exists a neighborhood x ∈
V ⊆ U such that A|V ∼= B|V .

Suppose that M is a manifold with the structure sheaf of complex valued func-
tions denotedOM . Since the sheaf of C-algebrasOM does not admit any nontrivial
automorphisms, it follows that it does not have any twisted forms (i.e. any sheaf
of C-algebras locally isomorphic to OM is, in fact, globally isomorphic to OM ,

and such an isomorphism is unique). However, the C-algebroid stack Õ+
M does

have twisted forms. These are in a natural bijective correspondence with O×
M -

gerbes and are classified by H2(M ;O×
M ) (which, in the C∞-setting, is canonically

isomorphic to H3(M ; Z)).
Jointly with A. Gorohovsky, R. Nest, and B. Tsygan we consider the for-

mal deformation theory of twisted forms of Õ+
M . Let S be one such. For each

Artin C-algebra R with maximal ideal mR one has the 2-groupoid Def(S)(R)
of flat R-deformations of S (viewed as a C-algebroid stack). The assignment
R 7→ Def(S)(R) defines a functor on the category of Artin C-algebras.

Examples of (groupoid-valued) functors on the category of Artin k-algebras are
obtained in the following way. Suppose that g is a nilpotent differential graded
Lie algebra (DGLA) such that gi = 0 for i < −1. Then, one has the 2-groupoid
MC2(g) whose objects are Maurer-Cartan elements of g.

Suppose that g is a DGLA such that gi = 0 for i < −1. An Artin k-algebra R
determines the nilpotent DGLA g ⊗k mR, hence the 2-groupoid MC2(g ⊗k mR).
The assignment R 7→ MC2(g ⊗k mR) defines a functor on the category of Artin
C-algebras.

Our principal result is a construction of a DGLA which “controls” the formal

deformation theory of a twisted form S of Õ+
M , M – a C∞-manifold (and, more

generally, an étale groupoid equipped with an integrable complex distribution).
Namely, to S as above we associate a DGLA gS with giS = 0 for i < −1 and a
canonical equivalence of formal deformation theories (2-groupoid valued functors
on the category of Artin C-algebras)

R 7→ Def(S)(R) ∼= MC2(gS ⊗C mR)

The DGLA gS is given explicitly as follows. As a graded Lie algebra it is equal to

Γ(M ; Ω•
M⊗OM

C
•
(JM )[1]), where Ω•

M is the algebra of complex-valued differential

forms on M , JM is the sheaf of (infinite) jets of functions, and C
•
(JM )[1] is the

graded Lie algebra (under the Gerstenhaber bracket) of OM -linear, continuous,
normalized Hochschild cochains on JM . The differential is given by ∇can+ δ+ ιF ,
where ∇can is the derivation induced by the canonical flat connection on JM , δ is
the Hochschild differential, and ιF denotes the adjoint action (with respect to the

Gerstenhaber bracket) of F ∈ Γ(M ; Ω2
M⊗OM

JM ) whose image F ∈ Γ(M ; Ω2
M⊗OM

JM/OM ) satisfies ∇canF = 0 and represents the image of the class of S under
the natural map H2(M ;O×

M )→ H2(M ; DR(JM/OM )) (the de Rham cohomology
of the canonical flat connection on JM/OM ).
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Generalized Kähler and hyper-Kähler quotients

Henrique Bursztyn

(joint work with G. Cavalcanti and M. Gualtieri)

My talk discussed the reduction of Courant algebroids and generalized complex
structures in the presence of symmetries, with special focus on generalized Kähler
and hyper-Kähler quotients. The content of the talk was based on the papers
[1, 2].

1. Actions and reduction data

Since generalized geometrical structures are defined in terms of TM⊕T ∗M , we
consider actions which give rise to symmetries of the Courant algebroid structure
on this bundle.

Let G be a Lie group with Lie algebra g, and consider TM ⊕ T ∗M equipped
with its natural symmetric pairing and Courant bracket

[[(X, ξ), (Y, η)]] = ([X,Y ],LXη − iY dξ + iX∧YH),

where H ∈ Ω3
cl(M) is a closed 3-form. We say that ψ̃ : g → Γ(TM ⊕ T ∗M) is a

lifted action if it is a bracket-preserving map whose image is isotropic. We assume
that this action integrates to a G-action making TM ⊕ T ∗M into a G-equivariant

bundle. The projection of ψ̃ to TM defines an action ψ : g→ Γ(TM) in the usual
sense. If G is compact, the problem of lifting an action is equivalent to finding an
equivariant closed extension of the 3-form H .

The set-up to describe our reduction procedure for generalized geometrical

structures is a triple (ψ̃, h, µ), where ψ̃ : g → Γ(TM ⊕ T ∗M) is a lifted action, h

is a G-module and µ : M → h∗ is an equivariant map. We refer to such triple
as reduction data. We will always assume that 0 is a regular value of µ, and that
the G-action on µ−1(0) is free and proper, so that Mred = µ−1(0)/G is a smooth
manifold. Our goal is to transport generalized geometrical structures from M to
Mred. We start with the Courant bracket.

2. Reduction of Courant brackets

Given reduction data (ψ̃, h, µ), we consider the distribution

K := {ψ̃(u) + d〈µ,w〉, u ∈ g, w ∈ h} ⊂ TM ⊕ T ∗M.

It follows from the reduction data axioms that K|µ−1(0) and K⊥|µ−1(0) are G-

equivariant vector bundles over µ−1(0), and K|µ−1(0) ⊆ K
⊥|µ−1(0).

Proposition 1. The vector bundle

Ered :=
K⊥|µ−1(0)

K|µ−1(0)

/
G −→ µ−1(0)

inherits the structure of an exact Courant algebroid.
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If H = 0 and ψ̃ = ψ : g→ Γ(TM), then Ered = T (µ−1(0)/G)⊕ T ∗(µ−1(0)/G)
with no 3-form; in general, Ered is isomorphic to T (µ−1(0)/G) ⊕ T ∗(µ−1(0)/G)
equipped with a possibly nontrivial 3-form Hred, but this identification may not
be canonical.

3. Reduction of Dirac and generalized complex structures

Let us consider reduction data (ψ̃, h, µ) and the associated reduced Courant
algebroid Ered over µ−1(0)/G. Suppose that L ⊂ TM ⊕ T ∗M is a G-invariant
Dirac structure. We can try to transport it to Ered by considering the distribution

(1) Lred :=
(L ∩K⊥ +K)|µ−1(0)

K|µ−1(0)

/
G

The operation above reduces to pull-back of Dirac structures when g = {0}, and
push-forward when h = {0}, µ = 0. The distribution (1) defines a maximal
isotropic subspace of Ered pointwise, but it may not be a smooth vector bundle
(it is smooth, e.g., if L ∩K⊥|µ−1(0) has constant rank). In case Lred is smooth,
then it is automatically integrable and defines a reduced Dirac structure in Ered.
The same conclusions are valid for complex Dirac structures if one replaces K by
K ⊗ C.

One can now adapt this procedure for generalized complex structures on M ,
recalling that these are defined by complex Dirac structures L ⊂ TM ⊕ T ∗M ⊗C

satisfying the additional transversality condition L ∩ L = {0}. We can state a
simple condition in terms of the associated endomorphism J : TM ⊕ T ∗M →
TM ⊕ T ∗M which is sufficient to guarantee that Lred will be smooth and define
a generalized complex structure on µ−1(0)/G:

Theorem 2. If JK = K over µ−1(0), then Lred defines a generalized complex
structure on µ−1(0)/G.

Extreme examples of this result include holomorphic quotients of complex mani-
folds (in this case h = {0} and µ = 0) and Hamiltonian reduction of symplectic
manifolds (in this case h = g and µ is the moment map). The condition JK = K
interpolates between the condition for a complex group action to be holomorphic
and the moment map condition in symplectic geometry. There are also “exotic”
examples e.g. reducing symplectic structures to complex structures, see e.g. [1].

4. Generalized Kähler and hyper-Kähler reduction

A generalized Riemannian metric G is compatible with a generalized complex
structure J if JG = GJ . In this case, the pair (J ,G) is called a generalized
hermitian structure. In this case, one can weaken the hypothesis in Theorem 2

by considering the distribution KG := GK⊥ ∩K⊥. Given reduction data (ψ̃, h, µ)
and assuming that J and G are G-invariant, we have:

Theorem 3. If JKG = KG over µ−1(0), then J can be reduced to Ered and G
induces a compatible generalized metric.
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This theorem has as direct corollaries the reductions for generalized Kähler and
generalized hyper-Kähler structures, and allows one to view usual hyper-Kähler
quotients in terms of generalized Kähler reduction. A nontrivial example that
fits into this framework is the construction of generalized Kähler/hyper-Kähler
structures on moduli spaces of instantons.
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Coisotropic Submanifolds, Reduction and Applications

Alberto S. Cattaneo

A Poisson algebra is a commutative algebra endowed with a Lie bracket which
is also a biderivation. Deformation quantization is a formal deformation of the
product in the direction of the Poisson bracket. New Poisson algebras may be
obtained as subquotients. Namely, given an ideal for the commutative product,
one gets a Poisson subalgebra by considering its Lie normalizer. This Poisson
subalgebra contains a Poisson ideal given by its intersection with the original
ideal. The quotient is called a reduction.

A Poisson manifold is a smooth manifold whose algebra of functions is a Pois-
son algebra. Equivalently, it is a smooth manifold endowed with a Maurer–Cartan
element in the graded Lie algebra of multivector fields, i.e., a bivector field whose
Schouten-Nijenhuis bracket with itself vanishes. By a celebrated theorem of Kont-
sevich every Poisson manifold admits a deformation quantization. This follows
from the existence of an L∞-quasi-isomorpshim from multivector fields to multid-
ifferential operators.

Reduction of Poisson manifolds requires some regularity constraints. The Pois-
son bivector field yields a morphism from the cotangent to the tangent bundle of
the manifold. By restriction and projection, it yields a morphism from the conor-
mal bundle of every submanifold to its normal bundle. The submanifold is called
pre-Poisson if this bundle map has constant rank. One extreme case is when this
map is zero, and the submanifold is called cosymplectic since there is an induced
symplectic structure on the normal bundle; by Dirac’s formula this induces a Pois-
son structure on the cosymplectic submanifold. The other extreme case is when
the morphism is surjective, that is, when the conormal bundle is mapped to the
tangent bundle, and the submanifold is called coisotropic.

Pre-Poisson submanifolds are endowed with an integrable distribution (actually
with a Lie algebroid structure) such that the algebra of invariant functions has a
Poisson structure as described in the first paragraph. As the leaf space may not
be a smooth manifold, Kontsevich’s method cannot be applied.
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If the Poisson manifold is actually symplectic, a pre-Poisson submanifold is the
same as a presymplectic submanifold (i.e., a submanifold on which the kernel of the
restriction of the sympectic form has constant rank). Cosymplectic submanifolds
are the same as the symplectic ones. If a Poisson manifold is integrable and the
subgroupoid over a submanifold is smooth, then it is presymplectic if and only if
the submanifold is pre-Poisson.

By a result of Calvo and Falceto, improved by the author together with Zambon,
for every pre-Poisson submanifold one can find a cosymplectic submanifold which
contains it coisotropically. So, in a sense, it is enough to understand coistropic
submanifolds.

Deformation quantization of coisotropic submanifolds may be approached by
the Batalin–Fradkin–Vilkovisky (BFV) method. Namely, one extends a tubular
neighborhood of the coisotropic submanifold to a graded Poisson manifold endowed
with a function of degree one which Poisson commutes with itself and such that
the cohomology with respect to its Hamiltonian vector field is isomorphic in degree
zero to the Poisson algebra of invariant functions. Existence of such a function is
guaranteed by homological perturbation theory. One then looks for a deformation
quantization of the extended graded manifold and for a deformation of the above
function to an element that squares to zero. The deformation quantization of
(a certain Poisson subalgebra of) the Poisson algebra of invariant functions is
achieved as the zeroth cohomology with respect to the adjoint action of the above
element. The existence of such an element is however not guaranteed. Potential
obstructions (anomalies) lie in the second cohomology group.

A different way to approach deformation quantization in this setting has been
proposed by Lyakhovich and Sharapov and, independently, by the author together
with Felder. The main observation is that the sum of the Poisson bivector field
and the Hamiltonian function above is a Maurer–Cartan element in the multivector
fields of the extended graded manifold. The existence of an L∞-morphism to the
multivector fields associates to this element an A∞-structure. When this is flat,
deformation quantization as above is given by its zeroth cohomology.

One may equivalently consider a smaller graded manifold, namely the odd
conormal bundle of the coisotropic submanifold. By a result of Roytenberg its
graded Lie algebra of multivector fields is canonically anti-isomorphic to that of
a formal neighborhood of the the zero section in the normal bundle. So a choice
of embedding of the normal bundle in the origianl Poisson manifold produces the
sought-after Maurer–Cartan element. This way one also gets an L∞-structure
associated to the coisotropic submanifold (this structure had already appeared in
Oh and Park in relation with the problem of studying deformations of coisotropic
submanifolds). By a result of Schätz this L∞-structure is quasi-isomorphic to the
differential graded Lie algebra structure obtained in BFV. By a result of Schätz and
the author, different choices of embeddings yield L∞-quasi-isomorphic structures.

The same procedure for deformation quantization may be obtained via the
Poisson sigma model, a two-dimensional topological field theory with target a
Poisson manifold. It turns out, by Calvo and Falceto, that boundary conditions
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respecting the symmetries are labeled by pre-Poisson submanifolds (branes). If
in addition one requires compatibility with perturbation theory around the zero
Poisson structure, the branes have to be coisotropic.

Working on the disk, yields, in the absence of anomalies, deformation quantiza-
tion of reductions of coisotropic submanifolds, bimodule structures associated to
clean intersections, and bimodule morphisms associated to triple clean intersec-
tions. In particular, as the graph of a Poisson map is a coisotropic submanifold,
in the absence of anomalies one gets a quantization as the bimodule associated to
a morphism of the associative algebras. Composition of Poisson maps gets quan-
tized as composition of bimodules. In terms of the morphisms, the composition of
quantizations is the quantization of compositions up to conjugation with respect
to a special element.

In the case of a Poisson–Lie group, in the absence of anomalies, the above pro-
cedure yields a deformation quantization with the structure of a Hopfish algebra.
Conjecturally one gets a true Hopf algebra if the Poisson structure is linearizable
at the neutral element. For more details, see [1] and references therein.
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Double of a cluster variety

Vladimir Fock

(joint work with Aleksandr Goncharov)

Cluster variety is an algebraic variety (strictly speaking, a scheme) defined by com-
binatorial data by explicit set of coordinate charts and transition functions. More
precisely, for any collection of combinatorial data, called seed one associates three
varieties A|I|, X|I|, and D|I|. These varieties posses canonical pre-symplectic, Pois-
son and symplectic structures, respectively. One defines also a discrete group D|I|

acting on all the three types of varieties and preserving the respective structures.
The manifolds X|I| and D|I| admit a quantisation (noncommutative deformation
of the algebra of functions) which is also D|I|-invariant.

Varieties admitting cluster descriptions are simple Lie groups, moduli spaces of
Stokes parameters, moduli of flat connections on Riemann surfaces, configuration
spaces of flags, Teichmüller spaces and their generalisations, the spaces of measured
laminations and some others. One of the important features of cluster varieties is
that they are defined not only over a field but also over semifields (semigroups w.r.t.
addition and groups w.r.t. the multiplication). For example, one can consider
Teichmüller space, space of measured laminations and the space of flat PSL(2,F)-
connections over a surface Σ as the same cluster manifold but defined over the
semifield R>0 of positive real numbers, tropical semifield Rt (which is ordinary R
as a set with maximum for the addition operation and ordinary addition for the
multiplication), and a field F, respectively.

Let us give the precise definitions
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A cluster seed, or just seed, I is a quadruple (I, I0, ε, d), where
i) I is a finite set;
ii) I0 ⊂ I is its subset;
iii) ε is a matrix εij , where i, j ∈ I, such that εij ∈ Z unless i, j ∈ I0.
iv) d = {di}, where i ∈ I, is a set of positive integers, such that the matrix

ε̂ij = εijdj is skew-symmetric.
The elements of the set I are called vertices, the elements of I0 are called frozen

vertices. The matrix ε is called exchange matrix, the numbers {di} are called
multipliers, and the function d on I whose value at i is di is called multiplier
function. We omit {di} if all of them are equal to one, and therefore the matrix ε
is skew-symmetric, and we omit the set I0 if it is empty.

An isomorphism σ between two seeds is a map I = (I, I0, ε, d) and I′ =
(I ′, I ′0, ε

′, d′) is an isomorphism of finite sets σ : I → I ′ such that σ(I0) = I ′0,
dσ(i) = di and εσi,σj

= εij . Observe that the automorphism group of a seed may
be nontrivial.

For a seed I we associate a torus XI = (F×)I , called X -torus, another torus
AI = (F×)I , called X -torus and the third one DI = (F×)I×I called D-torus or
a double torus. We denote the standard coordinates on these tori by {xi|i ∈ I},
{ai|i ∈ I} and {yi, bi|i ∈ I}, respectively.

The X -torus is equipped with the Poisson structure

(1) {xi, xj} = ε̂ijxixj

The A-torus is equipped with the pre-symplectic structure (closed 2-form ω
possibly degenerate)

(2) ω =
1

2

∑

i,j

ε̂ij
dai ∧ daj
aiaj

The D-torus is equipped with the symplectic form

(3) ωD =
1

2

∑

i,j

ε̂ij
dbi ∧ dbj
bibj

+
∑

i

d−1
i

dbi ∧ dyi
biyi

The inverse of this form is a nondegenerate Poisson structure which can be written
as

(4) {yi, yj} = ε̂ijyiyj , {yi, bj} = δijd
iyibj , {bi, bj} = 0

Observe that these sructures are constant in logarithmic coordinates.
Isomorphism between two X -tori XI and XI′ is a map given in coordinates by

xσ(i) = xi, where σ is an isomorphism of the seeds. Observe that there are much
less isomorphisms of X -tori then just isomorphisms of the corresponding Poisson
manifolds. Isomorphisms of A- and D-tori are defined analogously.

There exist the following maps between the tori:

(5) AI → XI, xi =
∏

j

a
εij

j ;
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(6) AI ×AI → DI, yi =
∏

j

a
εij

j , bi = ai/ãi,

Here ãi are coordinates on the second AI-factor.

(7) DI → XI, xi = yi,

and

(8) DI → XI, xi = yi
∏

j

b
εij

j .

All the maps are compatible with the respective symplectic, pre-symplectic and
Poisson structures. Namely the map (5) is a composition of the quotient by the
kernel of the pre-symplectic form and a symplectic map to a symplectic leaf. The
map (6) maps the symplectic form to the pre-symplectic one. The map (7) is
Poisson, the map (8) is anti-Poisson (Poisson with the opposite Poisson structure
on the X -torus). The maps (7) and (8) are dual to each other in the sense on
Poisson pairs.

Let I = (I, I0, ε, d) and I′ = (I ′, I ′0, ε
′, d′) be two seeds, and k ∈ I − I0. A

mutation in the vertex k is an isomorphism µk : I → I ′ satisfying the following
conditions:

(1) µk(I0) = I ′0,
(2) d′µk(i) = di,

(3) ε′µk(i)µk(j) =




−εij if i = k or j = k otherwise
εij if εikεkj < 0
εij + εik|εkj | if εikεkj ≥ 0

Two seeds related by a sequence of mutations are called equivalent.
Mutations induce rational maps between the corresponding seed tori, which are

denoted by the same symbol µk and are given by the formulae

xµk(i) =





x−1
k if i = k
xi(1 + xk)

εik if εik ≥ 0
xi(1 + (xk)

−1)εik if εik ≤ 0
.

for the X -torus,

aµk(i) =





∏
j|εjk>0

a
εjk

j +
∏

j|εjk<0

a
−εjk

j

ak
if i = k

ai if i 6= k
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for the A-torus and

bµk(i) =





(1 + xk)
−1

∏
j|εjk>0

b
εjk

j + (1 + (xk)
−1)−1

∏
j|εjk<0

b
−εjk

j

bk
if i = k

bi if i 6= k

yµk(i) =





y−1
k if i = k
yi(1 + yk)

εik if εik ≥ 0
yi(1 + (yk)

−1)εik if εik ≤ 0
.

for the D-torus.
Since in the sequel we shall extensively use compositions of mutations we would

like to introduce a shorthand notation for them. Namely, we denote an expression
µµi(j)µi by µjµk, µµµi(j)

µi(k)µµi(j)µi by µkµjµi, and so on.

Mutations have the following properties (valid for mutation of seeds as well as
for mutations of respective tori):

• Every seed I = (I, I0, ε, d) seed is related to other seeds by exactly ♯(I−I0)
mutations.

A1 µiµi = id
A1 ×A1 If εij = εji = 0 then µiµjµjµi = id.

A2 If εij = −εji = −1 then µiµjµiµjµi = id. (This is called the pentagon
relation.)

B2 If εij = −2εji = −2 then µiµjµiµjµiµj = id.
G2 If εij = −3εji = −3 then µiµjµiµjµiµjµi = id.

By id we mean here an isomorphism of the seeds or tori. Conjecturally all relations
between mutation follow from these ones.

Given a seed one can produce a ♯(I − I0) seeds by mutations. Continuing this
procedure one obtains a ♯(I − I0)-valent tree whose vertices are seed (or seed tori)
and edges are pairs of mutually inverse mutations. Obviously if we start from any
other seed from the tree we obtain the same tree. Every two tori of the tree are
related by exactly one composition of mutations. Call two points of two different
tori equivalent if they are related by the composition of mutations. The cluster
manifold (denoted by X|I|, A|I| or D|I| depending on which kind of tori are used)
is the affine closure of disjoint union of the tori quotiented by the equivalence
relation.

Algebraically one can define this manifold as the spectrum of the intersection of
inverse images of Laurent polynomials under all possible compositions of mutations
acting on the respective kind of tori.

Each particular seed tori can be considered as a coordinate chart of the cor-
responding cluster manifolds and compositions of mutations can be considered as
transition functions between the charts.

Mutations respect the Poisson structure when acting on X tori, pre-symplectic
structure when acting on A-tori and symplectic when acting on D-tori. Thus the
cluster manifolds X|I|, A|I| and D|I| acquire the respective structures. (In fact
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the formula for mutation of the matrix ε can be considered a a corollary of this
property and the mutation formulae for, say, X -tori).

Mutations commute with the maps (5),(6),(7) and (8) thus these maps are
defined between the respective cluster varieties compatible with pre-symplectic,
symplectic and Poisson structures thereof.

Mutations are rational maps with positive integral coefficients and thus the
cluster manifold can be defined not only over a field but over any semifield as
well. For semifields without -1 (like the semifields of positive real numbers or the
tropical semifields) the mutations are isomorphisms and thus the whole manifold
is isomorphic to every coordinate torus.

The symmetry group D|I| of a cluster manifold permuting the seed tori is called
the (generalised) mapping class group of the cluster manifold. The name comes
from the case of Teichmüller space, when this group is the actual mapping class
group. The group depends on the equivalence class of a seed only and is common
for cluster manifolds of types X , A and D. Every sequence of mutations together
with an isomorphism of the initial and the final seed gives an element of the
mapping class group. Conversely, given a seed, every mapping class group element
can be presented by a sequence of mutations starting from the given seed together
with the isomorphism between the final seed and the initial one. Two sequences of
mutations different by the relations A1–G2 correspond to the same mapping class
group elements.

Example.
Let us consider the simplest nontrivial example: the seed I = {I, ε} with I =

{1, 2} and ε12 = 1. There are exactly 5 isomorphism classes of seed tori equivalent
to a given one, however all the five seeds are isomorphic, thus the mapping class
group is Z/5Z.

The simplest geometric meaning has the space X . It is the space of 5-tuples of
points (p1, . . . , p5) on the projective line P 1 such that pi 6= pi+1 (mod 5) and mod-

ulo the automorphisms of P 1. The 5-tuple of coordinate systems on this space
is numerated by triangulations of the pentagon with vertices 1, . . . , 5. For every
internal diagonal one associates the cross-ratio of the four points of the quadri-
lateral which this diagonal cuts into halves. Mutations correspond to removing a
diagonal and replacing it by another one of the quadrilateral. The same variety
over R>0 is the configuration space of 5-tuples of points on RP 1 with prescribed
cyclic order.

The A-space is the space of collections of 10 nonvanishing vectors v1, . . . , v10 in
F2 equipped with a nonzero bivector ω. The collections are considered up to the
action of the group SL(2,F) of linear transformations preserving ω and subject to
the relations vi = −vi+5 (mod 10) and vi ∧ vi+1 (mod 10) = ω. The map X|I| → X|I|

is given by the obvious projection of F2 − {0} → P 1. For the internal diagonal of
the pentagon with ends i and j one associates the coordinate vi ∧ vj/ω.

The D variety is the space of flat SL(2,F) connections on a sphere with 5
different points on the equator removed with parabolic monodromy around these
points. Consider the associated vector bundle and choose a monodromy invariant



1262 Oberwolfach Report 23/2007

section about each singular points. Then trivialise the bundle over the northern
hemisphere. The five chosen sections give five vectors v1, . . . , v5 in F2. The same
procedure over the southern hemisphere gives five vectors w1, . . . , w5 in another
copy of F2. Given a triangulation of the pentagon we associate to every internal
diagonal two coordinates x and b. The coordinate x is just the cross ratio of four
points in P 1 defined by the vectors vi standing at the corners of the quadrilateral
cut by the diagonal (just like for the X -space). The coordinate b is given by b =
(vi∧vj)/(wi∧wj), where i and j are the ends of our diagonal. The two projections
to the X variety are obviously given by projectivising the collections of vectors {vi}
and {wi}, respectively. The same manifold over R>0 can be identified with the
space of complex structures on a sphere with five punctures on the equator.
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Symplectic Connections

Simone Gutt

A symplectic connection on a symplectic manifold (M,ω) is a torsion free
linear connection ∇ for which the symplectic 2–form ω is parallel. The space
of symplectic connections on (M,ω) is an affine space modelled on the (infinite
dimensional) space of symmetric covariant 3–tensorfields on M .

In view of Darboux theorem, symplectic geometry is by essence global. Consid-
eration of symplectic connections is nethertheless interesting, showing deep links
between conditions on a symplectic connection (holonomy or curvature conditions
for example) and the geometry of the manifold.

Given a symplectic manifold (M,ω), one can choose an almost complex com-
patible structure J . A symplectic connection ∇ preserves J (in the sense that
∇J = 0) iff it is the Levi Civita connection associated to the pseudo Riemannian
metric g defined by g(X,Y ) = ω(X, JY ); so it is unique and it only exits in a
(pseudo)Kähler situation.

Another example where there is a unique preferred connection is given by a
symmetric symplectic space (M,ω, S), i.e. a symplectic manifold (M,ω) with
symmetries attached to each of their points. This means there is a smooth map
S : M ×M → M (x, y) → sxy such that each sx (called the symmetry at x)
squares to the identity [s2x = Id] and is a symplectomorphism of (M,ω) [s∗xω = ω],
such that x is an isolated fixed point of sx, and such that sxsysx = ssxy ∀x, y ∈M .
On a symmetric symplectic space, the unique symplectic connection for which each
symmetry sx is an affinity is given by ωx(∇XY, Z) = 1

2Xxω(Y + sx⋆Y, Z).

The curvature tensor R∇ at a point x belongs to the space Rx of 2-forms
on TxM with values in the Lie algebra sp(TxM,ωx) of the group Sp(TxM,ωx) =
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{ A ∈ End(V ) | ωx(Au,Av) = ωx(u, v) ∀u, v ∈ V } satisfying Bianchi’s first
identity. In dimension 2n ≥ 4, the space Rx , decomposes under the action of
Sp(TxM,ωx) into two irreducible subspaces. The corresponding decomposition of
the curvature tensor reads R∇

x = E∇
x +W∇

x , where E∇ is completely determined
by the Ricci tensor r∇ and where W∇ is traceless. A symplectic connection ∇ on
(M,ω) is called of Ricci-type if W∇ = 0; and Ricci-flat if E∇ = 0 (hence iff
r∇ = 0).

The first part of the talk was a survey concerning local and global models for
a manifold with a symplectic connection with “special curvature”. For a written
survey on this subject, I refer to [2]. In particular, local models for any Ricci-type
connection are given by elementary symplectic reduction of the flat standard sym-
plectic vector space (M = R2n+2,Ω) for the action of exp tA. with A a nonzero
element in the symplectic Lie algebra sp(R2n+2,Ω).
This reduction procedure yields a symmetric space if and only if the element
A ∈ sp(R2n+2,Ω) satisfies A2 = λ Id. In that case the quotient has a global struc-
ture of manifold and one obtains in this way all connected symmetric symplectic
spaces with canonical connection of Ricci type (up to covering and restriction to
a connected component). The only compact example is Pn(C). One can interpret
this reduction as a reduction of a minimal nilpotent adjoint orbit of Sp(R2n+2,Ω).
Extending this construction to other simple groups [4] Cahen and Schwachhofer
gave local models for all Bochner-Kähler connections, Bochner-Lagrangian con-
nections or connections with “special” holonomies.

In my talk I also presented some new results on three ongoing research projects
concerning Ricci-type symmetric symplectic spaces.

The first, joint with S. Waldmann, deals with deformation quantisation of those
spaces. Classical algebraic methods to construct a deformation quantization on
Pn(C) with nice convergence properties, as developed by Bordemann et al. [1], can
be extended to the framework of Ricci-type symmetric spaces for A2 = λ Id with
λ 6= 0. The construction and convergence for Pn(C) yields a reverse procedure
from the asymptotic expansion of Berezin-type symbolic calculus we developed
with Cahen and Rawnsley in the framework of geometric quantization on some
Kähler manifolds,

The second project, joint with M. Cahen, A. Dilawar and J. Rawnsley, deals
with a property of some symmetric Ricci type spaces : the existence of a subgroup
of the transvection group acting simply transitively on the space. Such subgroups
are of course examples of symplectic groups .

A bridge between those two projects is the fact that quantisation of the ambient
symmetric space (in particular convergent ones) could provide universal deforma-
tion formulas for those special subrgroups.

The third project, joint with M. Cahen, J. Rawnsley and N. Richard, deals with
extrinsic symmetric spaces. An extrinsic symmetric spaces (M,ω) is a symplec-
tically embedded submanifold of (R2n+2p,Ω) so that φxM ⊂ M ∀x ∈ M , where
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φx is the affine transformation of R2n+2p given by symmetry with respect to the
normal space at x: φx(x+X+N) = x−X+N with X ∈ TxM and N ∈ (TxM)⊥Ω .
There exist only flat 2-dimensional extrinsic symmetric spaces but one can build
higher dimensional examples (a 4-dimensional submanifold in R6 with nilpotent
transvection group).
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An action of the cactus group

Andre Henriques

Let M0,n(R) denote the Deligne-Mumford compactification of the moduli space
of real curves of genus zero with n marked points. Its points are the isomorphism
classes of stable real curves of genus zero, that is, curves obtained by glueing RP1’s
in a tree-like way, and such that each irreducible component has at least 3 special
points. Let [M0,n+1(R)/Sn] denote the quotient orbifold of M0,n+1(R) by the
action permuting the first n marked points. In [3], J. Kamnitzer and the author
showed that the cactus group Jn := π1([M0,n+1(R)/Sn]) acts on tensor powers of
Kashiwara crystals in a way similar to how the braid group acts on tensor powers
of quantum group representations.

The big cactus group J ′
n is the fundamental group of [M0,n(R)/Sn]. It fits into

a short exact sequence 0 → π1(M0,n(R)) → J ′
n → Sn → 0, and its elements can

be represented by movies, such as the following one:

Let Fℓm :=
(

1
1
1
1

∗
)∖
SLm be the variety of flags 0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Rm,

equipped with volume forms ωi ∈ ΛiVi. The goal of this note is to construct an ac-
tion of J ′

n on the totally positive part A(n)>0 of the variety A(n) := (Fℓm)n/SLm.
The space A(n)>0 is a certain connected component of the locus A(n)reg ⊂ A(n),
where the flags are in generic position. One gets similar actions on

(
(N\G)n/G

)
>0

for other reductive groups G.
The space A(n)>0 was introduced by Fock and Goncharov [1]. For m = 2, it

agrees with the Teichmüller space of decorated ideal n-gons, that is, the space
of isometry classes of hyperbolic n-gons with geodesic sides, vertices at infinity,
and horocycles around each vertex. It is also an example of a cluster variety, i.e.



Poisson Geometry and Applications 1265

it comes with special sets of coordinate systems, whose transition functions are
given by cluster exchange relations [2]. For m = 2, the coordinates are due to
Penner [4]. To each pair i, j of vertices of the n-gon, he associates the quantity
∆ij := exp(1

2dij), where dij denotes the hyperbolic length between the intersection
points of the horocycles around i and j, and the geodesic from i to j. These
coordinates are then subject to the following exchange relations [4]:

(1)

dij
djk

dkℓ

diℓ
dik

djℓ
∆jℓ =

∆ij∆kℓ + ∆jk∆iℓ

∆ik
.

For general m, the coordinates on A(n) are indexed by tuples (i1, . . . , in) ∈ Nn

whose sum equals m, and such that at least two entries are non-zero. The co-
ordinate ∆i1...in then assigns to ((V 1

• , ω
1
•), . . . , (V

n
• , ω

n
• )) ∈ (Fℓm)n the ratio of

ω1
i1 ∧ · · · ∧ ω

n
in with the standard volume form on Rm. These coordinates satisfy

∆...i...j...k...ℓ... =
(
∆...i+1...j...k...ℓ−1... ·∆...i...j−1...k+1...ℓ...+

∆...i...j...k+1...ℓ−1... ·∆...i+1...j−1...k...ℓ...

)/
∆...i+1...j−1...k+1...ℓ−1... ,

which generalizes (1). Let A(n)>0 be the locus where all the ∆’s are > 0. It is

a space isomorphic to R
(n−2)·(m+1

2 )+(m+1)−n

>0 , and each triangulation of the n-gon
provides such an isomorphism [1]. More precisely, the isomorphism corresponding
to a triangulation is given by the coordinates ∆0...0i0...0j0...0k0...0, where i, j, k are
located at the vertices of the triangles. For example, for n = 8, m = 4, and the

triangulation of the 8-gon, the corresponding coordinates on A(n)>0 are in
natural bijection with the bullets in the following figure:

(2)

We now explain a general machine for producing actions of J ′
n on various spaces.

Suppose that we are given two manifolds X△ and XI , equipped with maps

(3) r X△

d1
d2

d3=d0
−−−→−−−→
−−−→ XI ι

subject to the relations r3 = 1, ι2 = 1, and di ◦ r = r ◦ di−1. Such data can
then be reinterpreted as a contravariant functor X• : C → {manifolds} from the
category C := { △ ←←

← I }, whose two objects are the oriented triangle “△” and
the unoriented interval “I”, and whose morphisms are the obvious embeddings

and automorphisms. Let Ĉ be the category whose objects are the 2-dimensional
finite simplicial complexes with oriented 2-faces and connected links, and whose
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morphisms are the embeddings. There is an obvious inclusion C →֒ Ĉ, and every

object of Ĉ can be written essentially uniquely as the colimit of a diagram in C.
Assuming d1×d2×d3 : X△ → X3

I is a submersion, then there is a unique extension

of X• to Ĉ sending colimits to limits. For example, using that extension, we get
X ∼= X△ ×XI

X△.

Theorem 1. Let X• be a functor as above, and denote by the same letter its

canonical extension to Ĉ. Suppose that we are given isomorphisms

τ : X → X and θ : X△ → X△

making the following diagrams commute:

1)

X

4

Πd′i
��7

77
77

77
τ // X

4

Πd′′i
����
��
��
�

X4
I

where d′

i : X → XI , d′′

i : X → XI , i = 1. . 4,
are induced by the four face inclusions I →֒ �.

2)

X
τ //

1/2

��

X

1/2

��
X

τ // X

where 1/2 : X → X and 1/2 : X → X are
induced by half turn rotation of the square.

3)

X
τ //

1/4

��

X

1/4

��
X X

τoo

where 1/4 : X → X and 1/4 : X → X are
induced by rotation by a quarter turn.

4)

X X
τ×1 //

X

1×τ

GG�����
τ×1 // X

1×τ // X
��
1×τ

11111
note that “1×τ” and “τ ×1” only become well
defined once we have axioms 1) and 2).

5) di ◦ θ = d4−i

6) θ ◦ r = r−1 ◦ θ

7) θ2 = 1,

8)

X
τ //

θ×θ

��

X

θ×θ

��
X

τ◦1/2 // X

then there is a natural action of J ′
n on the manifold that X• associates to a trian-

gulated n-gon. (For example, one gets an action of J ′
8 on X ).

We now use the above theorem to equip A(n)>0 with a J ′
n action. Indeed,

the manifolds X△ := A(3)>0 and XI := A(2)>0 fit into a diagram (3), and so

provide a functor Ĉ → {manifolds}. The space associated to a triangulated n-gon
is A(n)>0, as can be seen from the parameterization (2). We let τ be the composite

τ : X
∼

−→ A(4)>0
∼

−→ X ,
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and θ be the map sending (F1, F2, F3) ∈ (Fℓm)3 to (F⊥
3 , F

⊥
2 , F

⊥
1 ), where the

orthogonal of a flag F is given by (V1, . . . , Vm−1)
⊥ := (V ⊥

m−1, . . . , V
⊥
1 ), along with

± the obvious volume forms. The axioms 1) – 8) are then easy to check.
Both τ and θ are composites of cluster exchange relations. But the action of

J ′
n on A(n)>0 is not cluster (it doesn’t satisfy the Laurent phenomenon; it doesn’t

preserve the canonical presymplectic form). The reason is that θ is actually the
composite of a cluster map with an automorphism that negates the cluster matrix.
In particular, it negates the presymplectic form.
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On homological phase space reduction

Hans-Christian Herbig

(joint work with Martin Bordemann, Markus Pflaum)

It is known [1] that the BFV-method can be succesfully employed to construct star
products on symplectic reduced spaces obtained by regular Marsden-Weinstein
reduction. We will see that the method, suitably modified, does also work for
certain cases of singular reduced spaces (these results have been published in [2,
3]). In proving that we are able to greatly simplify the the argument of [1] by
systematically using the language of homological perturbation theory (see e.g. [4]
and references therein). To be more specific, the method applies to Hamiltonian
actions of a compact, connected Lie group G on a symplectic manifold (M,ω) with
moment map J : M → g∗ such that

(1) the components of J generate the ideal IZ of the zero fibre Z := J−1(0) ,
(2) the Koszul complex K• = K•(C∞(M), J) on J (over the ring C∞(M)) is

acyclic.

There are several examples of singular moment maps which fulfill these require-
ments (for regular value 0 ∈ g∗ of J they are plainly fulfilled). Among them the
commuting variety of [5] and the (1, 1,−1,−1)-resonance of [6], the latter is known
to have a nonorbifold quotient. In order to check condition (1) we use the tech-
niques developed in [7] based on the normal coordinates for J and thereby reduce
the question to a basic problem in real algebraic geometry. If condition (1) is true,
then it is easy to check whether the Koszul complex is exact. In fact, it is sufficient
that Zr := {z ∈ Z | TzJ is onto} is dense in Z. This can be proven by using the
faithful flatness of the ring of germs of smooth functions over the subring of germs
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of analytic functions and a theorem of Vasconcelos [8, Theorem 19.9]. In the above
situation the Koszul complex on J is a dg commutative algebra resolution of the
commutative algebra C∞(Z). Moreover, we may augment the Koszul resolution by
the restriction map res : K0 = C∞(M)→ C∞(Z). As a final preparatory step, we
observe that the augmented Koszul complex (which is exact) admits continuous
contracting homotopies: prol : C∞(Z)→ K0 = C∞(M) and hi : Ki → Ki+1. This
can be shown using the extension theorem and the splitting theorem of Bierstone
and Schwarz [9]. If Z is singular one cannot expect the prolongation map prol to
be multiplicative. We can summarize what we have done so far using the language
of homological perturbation theory:

(
C∞(Z), 0

) res
⇆

prol

(
K, ∂

)
, h(1)

is a contraction in the category of complexes of Fréchet spaces, such that res is a
map of dg commutative algebras.

Out of the Koszul complex one now constructs a dg Poisson algebra (A , {, },D =
{θ, }) which is called the BRST-algebra. This is done in a standard fashion. First
one adjoins variables (of degree 1) which are dual to the Koszul generators (which
are now of degree −1) and extends the Poisson structure appropriately. The dif-
ferential D = {θ, } is the inner derivation corresponding the charge θ, which has
incorporated in the bracket of g and the moment map J . It turns out that D is
the sum of the Koszul differential ∂ and the Lie algebra cohomology differential δ
of the g-modulde K. Using a version of the basic perturbation lemma we obtain
a contraction

(
C•

(
g, C∞(Z)

)
, d

) res
⇆

Φ
(A •,D), H(2)

in the category of (bounded) complexes of Fréchet spaces. Here, the left hand
side is the complex of Lie algebra cochains of the g-module C∞(Z). Since res is
multiplicative we can transfer the Poisson algebra structure along this contraction
and obtain a Z-graded Poisson algebra structure on the Lie algebra cohomology
H•(g, C∞(Z)). Note that the subalgebra H0(g, C∞(Z)) can be canonically identi-
fied with the Poisson algebra of smooth function on the singular reduced space.

In order to find a continuous star product for the reduced Poisson algebra
we proceed as follows. First we construct (again in a standard fashion [1]) a
deformation quantization of the right hand side of (2). This is a dg associative
K[[ν]]-algebra (A [[ν]], ∗,Dν), where Dν is a quasi-inner derivation ν−1 ad∗(θν) cor-
responding to charge θν . By construction, the charge is made up from the bracket
of g and a quantum moment map Jν : g→ C∞(M)[[ν]] (and an unimportant trace
term due to operator ordering). Our main result is a deformation of contraction
(2). There are formal series of continuuos linear maps dν , resν , Φν and Hν wich
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deform d, res, Φ and H such that

(
C•

(
g, C∞(Z)[[ν]]

)
, dν

) resν
⇆

Φν

(A •[[ν]],Dν), Hν(3)

is a contraction. The proof is essentially done by repeatedly applying two incar-
nations of the basic perturbation lemma to contraction (1). In principle, we can
transfer the dg associative algebra on the right hand side of (3) to the cohomology
of the left hand side. Unfortunately, the cohomology of the deformed differential
dν (which turns to be the Lie algebra cohomology differential of a certain deformed
representation of g on C∞(Z)[[ν]]) is in general not just H•(g, C∞(Z))[[ν]]. One
way out is to take from the beginning a quantum moment map which corresponds
to an invariant star product on M . In this case one can show that dν = d and
we obtain a Z-graded associative algebra structure on H•(g, C∞(Z))[[ν]] deforming
the bracket of (2). In particular, in zeroth cohomology this yields a continuous
star product on the singular reduced space. Another way out is to use the fact that
H1(g, C∞(Z)) = 0 for g semisimple (this can be shown using [10, Theorem 2.13]).
In this case, there is a topological linear isomorphism between the invariants of
the classical and the deformed g-module structures on C∞(Z)[[ν]].

Finally, let us discuss what happens if one drops assumption (2), i.e., if the
Koszul complex is not exact. There are prominent examples for this to happen,
e.g., the system of one particle with zero angular momentum in dimension ≥ 3.
The standard proposal of the physicists (see e.g. [11]) is to replace the Koszul
complex on the right hand side of contraction (1) by what they call a Koszul-
Tate resolution (these resolutions are also traded under the name Tate-resolution
or dg resolvent). Such a resolution is constructed inductively by adjoining free
supercommuting variables in order to kill homology degreewise. What seems to
be not so well known is the fact that the adjunction process does not terminate
for non complete intersection singularities. For the example above one knows that
the number of variables grows exponentially with the degree. The author does not
know of any example of a moment map where the Koszul-Tate resolution has been
computed to all degrees. It is known that in the Koszul-Tate case one can still
construct an analogue of contraction (2) in order to provide a dg Poisson model
for the reduced algebra (see e.g. [11, 3]). However, the complex on the left hand
side is considerably larger than the Chevalley-Eilenberg complex. The question of
quantization of the charge, which in the Koszul-Tate case turns out to be a huge
object, is unsolved (for more details see [3]).
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Modular classes of Lie algebroids: recent results

Yvette Kosmann-Schwarzbach

We present recent results and work in progress on the modular classes and relative
modular classes of Lie algebroids, a report mainly based on joint papers with
Camille-Laurent Gengoux [7], Alan Weinstein [10], Milen Yakimov [11] and Franco
Magri [9].

On a Poisson manifold, given a volume form, the map which associates to a
function the divergence of the corresponding hamiltonian vector field is a deriva-
tion, i.e., a vector field, called a modular vector field. It is a 1-cocycle in the
Lichnerowicz-Poisson cohomology, and its class, called the modular class, is inde-
pendent of the volume form [12] [15]. If the manifold is not orientable, densities
must be used instead of volume forms.

Evens, Lu and Weinstein [4] introduced the notion of a modular class of a
Lie algebroid, and they observed that the modular class of a Poisson manifold is
one-half that of its cotangent Lie algebroid.

It is straightforward [6] to extend the notion of modular class from the case
of a Poisson manifold to that of a Lie algebroid A with a Poisson structure, i.e.,
a section π of ∧2A such that [π, π]A = 0, where [ , ]A is the Schouten-Nijenhuis
bracket on Γ(∧•A) defining its Gerstenhaber structure. The question that then
arises is how to determine what relation exists in general between the modular
class θ(A, π) and the modular class Mod(A∗) of the dual A∗ of A equipped with
the Lie algebroid structure defined by π.

In order to solve this problem, the notion of relative modular class, which also
appears in [5] under the name of modular class of a morphism, was introduced
in [10]. If Φ : E → F is a morphism of Lie algebroids over the same base,
then ∧•Φ∗ is a chain map from the complex Γ(∧•F ∗) of the Lie algebroid F to
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the complex Γ(∧•E∗) of the Lie algebroid E . Therefore ModE − Φ∗(ModF ) is
a cohomology class in the Poisson cohomology of E. This is the relative class,
denoted ModΦ(E,F ). Then the relation

θ(A, π) =
1

2
(Mod(A∗)− (π♯)∗ModA)

is valid in general and, since Mod(TM) = 0, it reduces to the fact recalled above
in the case of Poisson manifolds. The relative modular classes of general, not
necessarily base-preserving, morphisms are treated in [8].

A twisted Poisson structure, also called Poisson structure with background [14],
on a Lie algebroid A is a pair (π, ψ), where ψ is a 3-cocycle on A and

1

2
[π, π]A = (∧3π♯)ψ .

A representative of the modular class θ(A, π) = 1
2 (Mod(A∗)−(π♯)∗ModA) isX+Y ,

with iXλ = −dAiπλ, where λ is a section of ∧topA∗, and Y = π♯iπψ [7].
In the spinor approach to Poisson and Dirac structures [1] [13], the modular field

appears as the obstruction to the existence of a pure spinor defining the graph of
π which is closed in the Lie algebroid cohomology of A. This fact extends to the
twisted case, replacing dA by dA + ǫψ, where ǫψ is exterior product of forms by ψ.

In the case of a regular Poisson or twisted Poisson structure, the modular class
can be computed in terms of the characteristic class of a representation of the
image of π♯ on the top exterior power of its kernel [11]. This result extends to Lie
algebroid extensions with unimodular kernel [8].

These definitions and properties can be applied to Lie algebras, considered as
Lie algebroids over a point, whence the notion of twisted triangular r-matrix. In
[11], we obtained a formula for the modular class of a Lie algebra equipped with
a twisted triangular r-matrix in terms of the infinitesimal character of the adjoint
representation of p in g/p, where p is the carrier of the r-matrix, i.e., its image in
the Lie algebra. When the carrier of the r-matrix is a Frobenius Lie algebra with
respect to a 1-form ξ, the modular class is the unique element X in p such that
ad∗

Xξ is equal to the above character. This method is applied to the computation
of the class defined by the Gerstenhaber-Giaquinto r-matrix on sl(n,R).

Other examples of modular classes appear in the theory of Poisson-Nijenhuis
manifolds [3] [9]. When a Poisson tensor π and a Nijenhuis tensor N on a manifold
are compatible, there is a hierarchy of vector fields, NXk−1−Xk, k ≥ 1, where Xk

is a modular vector field for the k-th Poisson structure Nkπ, which are cocycles
in the Poisson cohomology defined by Nkπ, and independent of the choice of a
volume form. Up to a factor of one-half, these modular vector fields coincide
with the well-known hierarchy of commuting hamiltonian vector fields defined
on a Poisson-Nijenhuis manifold. This construction has been generalized to Lie
algebroids with a Poisson-Nijenhuis structure [2].
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Poisson manifolds of compact type

David Mart́ınez Torres

(joint work with Marius Crainic and Rui Loja Fernandes)

A Poisson structure on a manifold M is a bivector Π ∈ X2(M) closed under
the Schouten bracket. Any manifold carries a Poisson structure supported on an
arbitrary open set, which means that there is no link between the topology of a
manifold and the existence of Poison structures on it. Global questions in Poisson
geometry are rather difficult to answer; invariants of a Poisson structure (M,Π),
such as the Poisson cohomology groups HΠ(M), are in practice of little use.

The complexity of Poisson geometry is already seen at a the local level, due
to the huge set of local models. Therefore, it is natural to try to single out a
class of Poisson manifolds for which a Poisson topology can be developed. By
this we mean that the Poisson structure should be linked to the topology of the
ambient manifold, this relation resulting in a better behavior of the global Poisson
invariants, and constraining the possible (semi)-local models and the way in which
these can be glued in order to yield the Poisson structure.

Recall that a Poisson structure (M,Π) induces a Lie algebroid structure [·, ·]Π
on T ∗M . It seems natural to constraint a Poisson structure by putting extra
requirements on its induced Lie algebroid structure.
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A Poisson structure is called integrable if the induced Lie algebroid integrates
into a Lie groupoid. If this is the case, the canonical integration Σ(M) ⇉ M
is endowed with a canonical (multiplicative) symplectic form Ω, via symplectic
reduction in an infinite dimensional Banach manifold [2]. Therefore, a natural
question is to study under which conditions one can bypass the infinite dimensional
setting.

Integrability of a Poisson structure can be understood as a constraint on the
variation of symplectic areas of spheres. This is better seen in the regular case
[2]: for a regular Poisson manifold (M,Π) the isotropy Lie algebra gx at any
point x ∈ M is abelian, its dual being identified with the normal space νx. The
monodromy lattice Nx is the image of the map

(1) ∂ : π2(Ox)→ gx

sending each homotopy class [S] in the symplectic leaf Ox based at x to

(2) v 7→
d

dt

(∫

S2

S∗
t,vωt

)

|t=0

, v ∈ g∗x = νx,

where St,v : S2 → M is a smooth deformation of S = S0 so that each Sv,t maps
the sphere into a symplectic leaf (Ot, ωt), in such a way that the base point (the
north pole say) is sent to a curve representing v ∈ νx.

Since integrability amounts to uniform discreteness of the monodromy lattices
[1], we then conclude its relation with the variation of symplectic areas of spheres
(and a similar interpretation holds in the non-regular case, as long as the isotropy
Lie algebras are of compact type).

Definition 1. A Poisson manifold (M,Π) is said to be of compact type (PMCT) if
the Lie algebroid (T ∗M, [·, ·]Π) is integrable, and its canonical integration
Σ(M) ⇉ M is a (Hausdorff) compact manifold.

The Poisson manifold is called proper if Σ(M) ⇉ M is a (Haussdorf) proper
manifold. Properness is a semi-local property, meaning that it holds if and only if
for some cover of M by open saturated subsets (i.e., one coming from a cover of
the leaf space), the induced Poisson structures on all subsets are proper.

If (M,Π) is proper then the isotropy groups Gx, x ∈ M , are compact, the
symplectic leaves have finite fundamental group and the leaf space M is Haussdorf
(see [5]). Moreover the following remarkable linearization result holds:
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Theorem 2. [5] Let (M,Π) be a proper Poisson structure, with s : Σ(M)→M a
locally trivial fibration. Let x ∈ M and Σx a small enough slice to Ox through x,
open and saturated w.r.t to the transverse Poisson structure. Then

(1) s−1(Σx) is a symplectic submanifold of (Σ(M),Ω), the Gx-action on s−1(x)
extends to a Hamiltonian free action on (Σx,ΩΣx

), and there is a Poisson
isomorphism

φ : (U ,ΠU )→ (s−1(x)×Gx
g∗/Gx,Πred),

where U is the saturation of Σx w.r.t the Poisson structure, and the target
of φ is (a saturated neighborhood of the zero section of) the reduced Poisson
space.

(2) The leaf space carries an integral affine structure.

Notice that the above result gives in particular semi-local models for PMCT,
the data being P → (O, ω) a principal bundle over a symplectic manifold so that
P is compact and π1(P ) = {1}. Moreover, one can show that infinite dimensional
reduction to build (Σ(M),Ω) can be avoided.

Corollary 3. The open subset of (Σ(M),Ω) integrating (U ,ΠU ) is isomorphic to
the symplectic reduction at zero of the Gx-Hamiltonian space
(s−1(Σx)× s

−1(Σx),ΩΣx
⊕−ΩΣx

).

Being of compact type has global consequences for the Poisson structure, as
implied by the following result:

Theorem 4. If (M,Π) is a PMCT then

(1) [Π] ∈ H2
Π(M) is non vanishing.

(2) The Poisson tensor cannot have zeroes (0 dimensional symplectic leaves)

Notice for example that the linear Poisson structure on the dual of a Lie algebra
semi-simple of compact type is proper, but none of the results of theorem 4 hold
for it.

It is easy to see that a symplectic manifold is of compact type if and only if it
is compact and has finite fundamental group.

Regarding PMCT which are not symplectic, one has the following

Theorem 5. There is a one to one correspondence between regular PMCT of
rank one all whose leaves are simply connected, and S1 quasi-Hamiltonian spaces
(X,ωX , S

1, µ) with free action and π1(X) = {1} (the latter under a suitable equiv-
alence relation). Moreover, the symplectic groupoid integrating the Poisson man-
ifold is built by globalizing the construction in corollary 3, hence avoiding infinite
dimensional reduction.

Examples of Poisson manifolds as in theorem 5 are difficult to construct. The
total space M could be described as a mapping torus Y × [0, 1]/ϕ, with symplectic
leaves (Yθ, ωθ), θ ∈ [0, 1]/0 ∼ 1, and the affine structure on M = [0, 1]/0 ∼ 1
given by the one on the interval. One observes that (i) the cohomology classes
[ωθ] should vary linearly with slope ξ say, since (Yθ, ωθ) are the reduced spaces of
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a S1-Hamiltonian space and Duistermaat-Heckman theorem applies, (ii) ξ should
be non-trivial because otherwise according to equations 1 and 2 the monodromy
lattice would be trivial and hence the isotropy groups non-compact, and (iii)
[ωθ]

dξdimY/2−d = 0, d ≥ 1, due to the non-variation of the symplectic volumes
of the leaves.

In [4] -addressing a problem in Hamiltonian actions- a PMCT as in theorem 5
is constructed by taking Y to be the K3 surface with an appropriate return map
ϕ. The construction of the leafwise symplectic form is rather delicate and uses
very involved results of global analysis.

Theorem 5 can be used to construct new examples out the one of Kotschick, by
crossing the associated quasi-Hamiltonian S1-space of theorem 5 with appropriate
Hamiltonian S1-spaces.

Questions such as the existence (or non-existence) of non-regular PMCT, fur-
ther study of global properties of PMCT, and the analysis of other notions of
“compactness” (e.g. having a compact integration) are the subject of ongoing
research [3].
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Rigidity of Poisson group actions

Eva Miranda

(joint work with Philippe Monnier and Nguyen Tien Zung)

In this talk we first review some classical results of rigidity for group actions of
compact Lie groups on smooth manifolds and then we prove some rigidity results
in the case the group action preserves a Poisson structure. The details of these
proofs can be found in the paper [11] and the preprint [10].

In the general case of actions of compact Lie groups on smooth manifold there
are two well-known results that entail rigidity. The first one is the theorem of
Bochner [1] that says that actions of compact Lie groups can be linearized in a
neighbourhood of a fixed point for the action. The second one is the theorem
of Palais [12], that establishes that C1-close actions of compact Lie groups are
conjugated via a diffeomorphism close to the identity.
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1. Local rigidity in a neighbourhood of a fixed point

Let (P,Π) be a Poisson manifold and let ρ stand for a Poisson action of a
compact Lie group G. Ginzburg proved in [6] that Poisson actions are rigid by
deformations. In fact using the proof of rigidity by deformations provided in the
book [7], we can prove rigidity by deformations for actions preserving additional
structures.

In the case when we are not given a path of actions connecting both actions
and preserving the Poisson structure, the first attempt is to try to use Moser’s
path method as can be done in the symplectic case (see [14] and [2]).

Unlike the symplectic case, the path method does not seem to work so well for
Poisson structures. Locally, we can construct paths using the smooth geometric
data given by the theorem of Vorobjev [13] associated to the Poisson structure.

In order to guarantee that the geometric data are smooth we need to assume an
additional hypothesis on the Poisson structure at a point, which we call tameness
[11].

In [11] this tameness condition is studied and several examples of tameness and
non-tameness are given. In particular, all 2 and 3-dimensional Lie algebras are
tame Poisson structures and all semisimple Lie algebras of compact type are tame.

For this class of Poisson structures, we can find Weinstein’s splitted coordinates
[15] for the Poisson structure such that the group action is locally linear as it is
proven in [11]. Namely,

Theorem 1. Let (Pn,Π) be a smooth Poisson manifold, p a point of P , 2k =
rank Π(p), and G a compact Lie group which acts on P in such a way that the ac-
tion preserves Π and fixes the point p. Assume that the Poisson structure Π is tame
at p. Then there is a smooth canonical local coordinate system (x1, y1, . . . , xk, yk,
z1, . . . , zn−2k) near p, in which the Poisson structure Π can be written as

(1) Π =
k∑

i=1

∂

∂xi
∧

∂

∂yi
+

∑

ij

fij(z)
∂

∂zi
∧

∂

∂zj
,

and in which the action of G is linear and preserves the subspaces {x1 = y1 =
. . . xk = yk = 0} and {z1 = . . . = zn−2k = 0}.

We can combine this result with Conn’s linearization theorem [5] for semisimple
Lie algebras of compact type, to obtain the following equivariant linearization
result (also contained in [11]).

Theorem 2. Let (Pn,Π) be a smooth Poisson manifold, p a point of P , 2r =
rank Π(p), and G a compact Lie group which acts on P in such a way that the
action preserves Π and fixes the point p. Assume that the linear part of transverse
Poisson structure of Π at p corresponds to a semisimple compact Lie algebra k.
Then there is a smooth canonical local coordinate system

(x1, y1, . . . , xr, yr, z1, . . . , zn−2r)
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near p, in which the Poisson structure Π can be written as

(2) Π =

r∑

i=1

∂

∂xi
∧

∂

∂yi
+

1

2

∑

i,j,k

ckijzk
∂

∂zi
∧

∂

∂zj
,

where ckij are structural constants of k, and in which the action of G is linear and

preserves the subspaces {x1 = y1 = . . . xr = yr = 0} and {z1 = . . . = zn−2r = 0}.

2. Rigidity for close smooth actions.

In the case that we consider C1-close Hamiltonian actions with moment maps
µ0 : M −→ g∗ and µ1 : M −→ g∗ on a compact Poisson manifold (M,Π), we can
prove a rigidity result for the case the Lie algebra g is semisimple of compact type.
Two moment maps µ0 : M −→ g∗ and µ1 : M −→ g∗ are C1-close if they are close
in the C1-topology.

More precisely we can prove [10],

Theorem 3. Let µ0 : M −→ g∗ and µ1 : M −→ g∗ be C1-close moment maps
with M compact and g semisimple of compact type, then there exists a Poisson
diffeomorphism Φ such that µ1 = µ0 ◦ Φ.

The proof uses the inverse theorem of Nash and Moser [8] via the statement
provided by Hamilton in [9] which uses exact sequences.

Roughly speaking, the result of Hamilton says that if a linear-complex defined
on graded Fréchet spaces is locally exact via tame homotopy operators, then a
non-linear complex which has this associated linear-complex is also locally exact
via tame homotopy operators (for details and definitions about graded Fréchet
spaces and this tameness condition see [8]).

In our case a Hamiltonian action induces on the set of smooth functions C∞(M)
the structure of a a g-module. We can associate a Chevalley-Eilenberg complex
to this g-module as explained in [3]. The space of cochains is given by multilinear
alternating functions from g to C∞(M) and the differential is that of Chevalley
and Eilenberg [3].

Using an adaptation of a lemma of Conn [5] valid in the case g is semisimple
of compact type and a weak version of Sobolev lemma, we can prove that this
Chevalley-Eilenberg is locally exact via homotopy operators that are tame. We
then associate a non-linear complex to this complex and apply Hamilton’s state-
ment of Nash-Moser theorem to prove that the new complex is exact.

Exactness of the non-linear complex complex gives µ1 = µ0 ◦ Φ where Φ is
the time-1-map of a Hamiltonian vector field. So indeed Φ is not only a Poisson
diffeomorphism but also a Hamiltonian diffeomorphism.

In the case M is not compact but M = BR is a ball centered at the origin of
Rn, we can prove the following result contained in [10]. The proof uses an iterative
method inspired by Newton’s method explained in [8] to define the equivalence of
the nearby Hamiltonian actions.
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Theorem 4. Let µ0 : BR −→ g∗ and µ1 : BR −→ g∗ be two C1-close moment
maps with g semisimple of compact type, then there exists a Poisson diffeomor-
phism Φ : BR/2 −→ BR/2 such that µ1 = µ0 ◦ Φ.
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Orbifolds and their quantizations as noncommutative geometries

Hessel Posthuma

(joint work with M. Pflaum, X. Tang and H-H Tseng)

Orbifolds are a natural generalization of the concept of a manifold with a rich
geometric structure. In particular, its orbifold cohomology has many surprising
features, most notably a ring structure [2] generalizing, in a nontrivial way, the
cup product on the cohomology of a manifold.

As a manifold with singularities, orbifolds can also be viewed as examples of
noncommutative spaces. This point of view yields different cohomological tools,
such as Hochschild and cyclic (co)homology. The aim of this project is to study the
relation between both cohomologies, in particular its ring structure. For this, the
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Hochschild cohomology is of particular importance, because it carries a graded
product, known as the Yoneda or cup product. To actually relate this to the
cohomology of the underlying obifold, we need a deformation quantization, for
which we assume the existence of a symplectic structure. Such a space is known
as a symplectic orbifold, they very often arise as symplectic quotients with respect
to proper group actions on symplectic manifolds.

The set-up is as follows: Let X be an orbifold and G a proper étale groupoid
modelling X . We denote the convolution algebra of G by AG. In [3], its Hochschild
cohomology was computed to be

(1) H•(AG, AG) ∼= Γ∞
(
X̃,Λ•−ℓTX̃ ⊗ ΛℓNX̃

)
.

Here X̃ is the so-called inertia orbifold, a disconnected space whose connected
components embed into X locally as fixed point sets for the local group actions.
An atlas of this orbifold is provided by considering the space of loops

B0 := {g ∈ G, s(t) = t(g)},

on which G acts by conjugating loops. The vector bundles TX̃ and NX̃ are the
tangent bundle and the normal bundle with respect to the local embedding into
X . Finally ℓ : X̃ → N is the locally constant function given by ℓ = dim(NX̃).

To describe the cup-product on this space of “multivector fields”, we need to
introduce a third orbifold: consider the space

S := {(g1, g2) ∈ G1 × G1, s(g1) = t(g1) = s(g1) = t(g1)}.

There are three obvious maps pr1, pr2,m : S→ B0 given by projection onto the first
and second component, and multiplication of loops. Again, G acts by conjugating
loops and the quotient orbifold is denoted by X3. With this, the cup product on
the Hochschild cohomology (1) is given by:

ξ ∪ η :=

∫

m

pr∗1ξ ∧ pr
∗
2η.

Here the integral means integration over the fiber of m, which is discrete, and the
formula is ultimately understood on the level of germs; recall that G is étale.

There is an important subtlety hidden in the above formula for the cup-product.
Recall that ξ and η are actually sections of exterior powers of the tangent bundle
to X tensored with the determinant line of the normal bundle. This determinant
has the effect that the wedge product is zero if the normal bundles pr∗1NX̃ and
pr∗2NX̃ have a nontrivial intersection. In other words, the germ of the cup product

ξ ∪ η at a point x ∈ X̃ is supported on the subset y ∈ m−1(x) for which

(2) ℓ(m(y)) = ℓ(pr1(y)) + ℓ(pr2(y)).

Next, we consider a formal deformation quantization A~

G
of the convolution

algebraAG given by a G-invariant deformation quantization of G0, which we assume
to be symplectic. For this algebra, the Hochschild cohomology is given by

H•(A~

G, A
~

G) ∼= H•−ℓ
(
X̃,C((~))

)
.
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This result extends [5] to the category of symplectic orbifolds. The proof uses the

~-filtration to identify the left hand side with the Poisson cohomology of X̃: since
X̃ is symplectic- the symplectic form on X pulls back to a symplectic form on X̃-
this yields the right hand side.

With this isomorphism, the cup-product is given on the level of differential
forms by

(3) α ∪ β :=

∫

mℓ

pr∗1α ∧ pr
∗
2β,

where mℓ is the restriction of m to the sub-orbifold of points satisfying the condi-
tion (2). Notice that this condition implies that locally the spaces on which pr∗1α
and pr∗2β are supported, have a transversal intersection, so that the formula is
well-defined.

The above formula for the cup product indeed does resemble the product defined
in [2] on the cohomology of X̃, but there is an important difference: one easily
checks that in the formula for that product, there is no condition on the fibers of
m! Therefore one has deal with the non-transversal intersections as well.

To write down a similar formula for a product, but without the assumption (2),
one can use the Thom isomorphism to take a wedge product in X to deal with
the non-transversal intersections. To make the Thom form invertible, one uses
equivariant cohomology with respect to the fiberwise S1-action on NX̃ associated
to the choice of an almost complex structure. As a module over HS1(pt.) =
C[t] we can complete the equivariant cohomology by taking the tensor product

with ⊗C[t]C((t)). Because the action of S1 is trivial on X̃ we have of course

that H•
S1(X̃) ⊗C[t] C((t)) = H•(X̃,C((t))). But the S1 action is crucial for the

construction of the ring structure.
If we denote by ThÑ the equivariant Thom form of the normal bundleNX̃ → X̃ ,

there is a natural product on Ω•(X̃)((t)) given by

α ∧t β :=

∫

m

pr∗1(α ∧ ThÑ) ∧ pr∗2(β ∧ ThÑ)

pr∗mThÑ
.

With this product, the equivariant cohomology is an associated graded ring, which
turns out to be isomorphic to an equivariant version of Chen–Ruan’s orbifold
cohomology. In this sense, the above de Rham model is a non-abelian version of
the model in [1].

The relation with the Hochschild ring is as follows: the equivariant orbifold
cohomology ring has a natural filtration given by

(4) Fk := {α ∈ H•
S1(X̃)⊗C[t] C((t)), deg(α)− ℓ ≥ k}.

Taking the graded quotient with respect to this filtration enforces the condition (2),
in which case we have m∗

ℓNX̃
∼= pr∗1NX̃⊕pr

∗
2NX̃ . In this case, the contributions of

the equivariant Thom forms cancel, and the product reduces to (3). We therefore
have:
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Theorem 1. The Hochschild cohomology ring of a deformation quantization of a
symplectic orbifold with product (3) is canonically isomorphic to the graded quo-
tient of the equivariant orbifold cohomology ring with respect to the filtration (4).

For details we refer to [4].
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Convexity in symplectic geometry

Tudor S. Ratiu

(joint work with Petre Birtea, Juan-Pablo Ortega)

This talk is based on some results in joint work with Petre Birtea and Juan-Pablo
Ortega contained in [2, 3]. For background material see [10].

The convexity properties of the momentum map provide crucial information
on the bifurcation behavior of symmetric Hamiltonian systems. The momentum
polytope imposes severe a priori restrictions on the dynamics of such systems.
The classical proofs of Atiyah [1] and Guillemin-Kirwan-Sternberg [6, 7, 9] rest
on Morse theoretical arguments. In a remarkable paper, Condevaux, Dazord,
and Molino [4] show that these convexity properties ultimately rely on pure point
set topological arguments. Their approach has been formalized and extended by
Hilgert, Neeb, and Plank [8] who formally introduced the ”local-to-global princi-
ple” on which a large part of the proof of the convexity theorem rests.

In all these theorems the studied object is the momentum map of a symplectic
Lie group action. However, the existence of the momentum map is not guaranteed.
Worse, if one intends to extend these theorems to the category of Poisson mani-
folds, then the existence of the momentum map implies that the action necessarily
preserves the symplectic leaves, which is a very strong hypothesis; there are many
Poisson actions of Lie groups whose orbits cut across symplectic leaves. This is
why it is of interests to study general symplectic actions and see what convexity
properties are still present in this context.

Let (M,ω) be a connected symplectic manifold and G a Lie group acting prop-
erly and canonically on M . We denote by AG the generalized distribution on M
whose leaves are the G-orbits and by A′

G := {Xf | f ∈ C∞(U)G, U open G · U ⊂
U} its polar. Both AG and A′

G are smooth integrable generalized distributions
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(in the sense of Stefan and Sussmann) and we have A′
G(m) = (g ·m)ω ∩ TmM

m
Gm

,
where Mm

Gm
is the connected component of the isotropy type submanifold MGm

:=
{x ∈ M | Gx = Gm} containing m, g ·m is the tangent space at m to the orbit
G ·m and (g ·m)ω is its ω-orthogonal complement in TmM .

The optimal momentum map J : M −→M/A′
G is defined as the canonical

projection onto the leaf space of A′
G which is, in most cases, not even a Hausdorff

topological space, let alone a manifold. This map has the Noether property: If
h ∈ C∞(M)G is a G-invariant function, then J is conserved on the flow of Xh;
this is why J is called a “momentum map”.

The G-action on M induces a continuous action on M/A′
G given by g ·J (m) :=

J (g ·m). This action is smooth in the sense of presheaf spaces. This is the unique
G-action on M/A′

G that makes the optimal momentum map G-equivariant and
it coincides with the usual smooth G-action on the leaf space of any distribution
spanned by G-equivariant vector fields.

The optimal momentum map has the following universality property. For any
map K : M → P , where P is any set, satisfying the Noether property there is a
unique ϕ : M/A′

G → P such that K = ϕ ◦ J .
Assume that the G-action admits a momentum map J : M → g∗ with non-

equivariance one-cocycle σ : G→ g∗, where σ(g) := J(g ·m)−Ad∗
g−1 J(m); σ does

not depend on m ∈ M because M is connected. Let Θ : G × g∗ → g∗, Θ(g, ν) :=
Ad∗

g−1 ν+σ(g) be the associated affine action and let Gµ be the isotropy subgroup

of µ with respect to Θ. Then, if J(m) = µ and J (m) = ρ, we have J−1(ρ) =
(J−1(µ) ∩Mm

Gm
)m, where (J−1(µ) ∩ Mm

Gm
)m denotes the connected component

of J−1(µ) ∩Mm
Gm

containing m ∈ M . In addition, Gρ = NGµ
(Gm)c(m), where

NGµ
(Gm)c(m) is the closed subgroup of NGµ

(Gm) := N(Gm)∩Gµ consisting of all

elements in NGµ
(Gm) that leave (J−1(µ)∩Mm

Gm
)m invariant, and N(Gm) denotes

the normalizer of Gm in G. It turns out that for any m ∈ M , the intersection
J−1(J(m)) ∩Mm

Gm
is an embedded submanifold of M , even though, in general,

the level sets of the optimal momentum map are just initial submanifolds of M .
From these results it follows that the reduction procedure can be carried out for
the optimal momentum map, that is, Mρ := J−1(ρ)/Gρ is a smooth symplectic
regular quotient manifold whose symplectic form ωρ is characterized by

π∗
ρωρ(m)(Xf (m), Xh(m)) = {f, h}(m),

for any f, h ∈ C∞(M)G, where πρ : J −1(ρ) → Mρ is the canonical projection.
This formula is valid even if M is only a Poisson manifold, that is, the optimal
reduced spaces (Mρ, ωρ) are always symplectic. The usual corollaries of the
reduction theorem, such as the reduction of dynamics and the Poisson bracket,
hold in this case too.

There is a second momentum map that always exists for any symplectic action,
namely the cylinder valued momentum map introduced in [4]. Its construction
goes like this. Let π : M × g∗ →M be the trivial principal (g∗,+)-bundle relative
to the action ν · (m,µ) := (m,µ− ν), with m ∈ M and µ, ν ∈ g∗. Define the flat
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connection one-form α ∈ Ω1(M × g∗; g∗) by

〈α(m,µ)(vm, ν), ξ〉 := (iξM
ω)(m)(vm)− 〈ν, ξ〉, vm ∈ TmM, ξ ∈ g, µ, ν ∈ g∗.

For (z, µ) ∈ M × g∗, let M̃ := (M × g∗)(z, µ) ⊂ M × g∗ be the holonomy bundle

through (z, µ); M̃ consists of all points in M × g∗ that can be joined to (z, µ)
by a horizontal curve. Let H := H(z, µ) denote the holonomy group of α with
reference point (z, µ) which is an Abelian zero dimensional Lie subgroup of (g∗,+)
by the flatness of α. The Bundle Reduction Theorem guarantees that the principal
bundle ((M × g∗)(z, µ),M, π|(M×g∗)(z,µ),H(z, µ)) is a reduction of the principal
bundle (M × g∗,M, π, g∗) and that the connection one-form α is reducible to a
connection one-form on (M × g∗)(z, µ). Let H be the closure of H in g∗. Then
C := g∗/H ∼= Ra × Tb for some a, b ∈ N, is a cylinder. Let πC : g∗ → g∗/H = C

be the quotient projection and K̃ : M̃ → g∗ the projection on the second factor.
Define the cylinder valued momentum map K : M → C by K(m) = πC(ν),

where ν ∈ g∗ is any element such that (m, ν) ∈ M̃ . It is a strict generalization
of the standard momentum map since the G-action has a standard momentum
map if and only if the holonomy group H is trivial. In this case, the cylinder
valued momentum map coincides with the standard momentum map. As expected,
the choice of (z, µ) in the definition of K is irrelevant: any two cylinder valued
momentum maps differ by a constant in C. Note also that the Hamiltonian
holonomy H is the image of the period homomorphism Pω : π1(M, z)→ g∗,

〈Pω([γ]), ξ〉 :=

∫

γ

iξM
ω, for any ξ ∈ g.

The cylinder valued momentum map has all the usual properties of a momentum
map. For example, it is is conserved along the flow of the Hamiltonian vector field
of any G-invariant function. It turns out that the annihilator Lie(H)◦ ⊂ g of
the Lie algebra Lie(H) ⊂ g∗ of the Lie group H is a Lie subalgebra of g. Then

the Reduction Lemma holds, namely, ker(TmK) =
((

Lie(H)
)◦
·m

)ω
. Similarly

the Bifurcation Lemma holds: range (TmK) = TµπC ((gm)◦), where µ ∈ g∗ is any
element such that K(m) = πC(µ). The cylinder valued momentum map K is
not equivariant, in general. It turns out that the coadjoint action drops to the
cylinder g∗/H and that there is an associated cocycle that makes K equivariant.
Thus there is a good reduction theory associated to K. We state the main result
only in the regular case [11]; for the singular case see [12].

Let (M,ω) be a connected paracompact symplectic manifold and G a Lie group
acting freely and properly on it by symplectic diffeomorphisms. Let K : M →
g∗/H be a cylinder valued momentum map for this action. Then g∗/H carries a
natural Poisson structure and there exists a smooth G-action on it with respect
to which K is equivariant and Poisson. Moreover:
(i) The reduced space M [µ] := K−1([µ])/G[µ], [µ] ∈ g∗/H, inherits a natural
Poisson structure from (M,ω) that is, in general, degenerate.
(ii) The symplectic leaves of M [µ] are the optimal reduced spaces.
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(iii) The reduced spaces obtained by foliation reduction equal the orbit spaces
M[µ] := K−1([µ])/N[µ], where N is a normal connected Lie subgroup of G whose

Lie algebra is the annihilator n :=
(
Lie

(
H

))◦
⊂ g of Lie

(
H

)
⊂ g∗ in g.

(iv) The quotient Lie group H[µ] := G[µ]/N[µ] acts canonically freely and properly

on M[µ] and the Poisson manifold M[µ]/H[µ] is Poisson diffeomorphic to M [µ].
All these reduced spaces are, in general, distinct. But they are equal if there is

a momentum map. Is there a convexity result of K since reduction works so well?
The answer is positive and the proof of such a result relies on several results.

The first one is the following. Let f : X → V be a continuous map from a
connected Hausdorff topological space X to a Banach space V that is open onto
its image and has local convexity data. Then the image f(X) is locally convex.
If, in addition, f(X) is closed in V then it is convex.

The second pillar of the convexity theorem is a generalization of the local-to-
global principle that we state here only in the finite dimensional case; see [2] for
an infinite dimensional version. Let f : X → V be a closed map with values in a
convex subset of a finite dimensional Euclidean vector space V and X a connected,
locally connected, first countable, and normal topological space. Assume that f
has local convexity data and is locally fiber connected. Then all the fibers of f
are connected, f is open onto its image and the image f(X) is a closed convex
set. We do not go here into the details of what “local convexity data” means
and refer for the technical details to the original papers. The point is that if
one combines these two results with the Marle-Guillemin-Sternberg normal form
one immediately finds generalizations of the usual convexity theorems (for toral
and compact non-commutative Lie group actions) by replacing the hypothesis on
the compactness of M with the closedness of the momentum map. In addition,
the same technique extends the convexity result of Poisson-Lie group actions on
compact symplectic manifolds (see [5]) to those whose Poisson-Lie momentum map
is closed.

For the cylinder valued momentum map the following result holds. Let (M,ω)
be a connected paracompact symplectic manifold, G a connected Abelian Lie group
acting properly and canonically on M with closed Hamiltonian holonomy H. Let
K : M → g∗/H be a cylinder valued momentum map. If K is closed then K(M) ⊂
g∗/H is a weakly convex subset of g∗/H. Here one needs to think of g∗/H as a
length metric space with the length metric naturally inherited from g∗. If g∗/H
is uniquely geodesic then K(M) is convex, K has connected fibers, and it is open
onto its image. In particular, this shows that the image of an Abelian Lie group
valued momentum map is a weakly convex subset. The notion of weakly convex
subset is discussed in the context of path metric spaces in the original papers.
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Morita equivalence of quantum tori and moduli spaces of flat
connections on surfaces

Pavol Ševera

We notice that many interesting symplectic manifolds connected with Poisson-Lie
groups are, in fact, moduli spaces of flat connections on surfaces with boundary,
with boundary conditions given by Lagrangian subalgebra. Moreover, flat connec-
tions that extend from such a surface to a given 3dim body, form a Lagrangian
submanifold (at least formally: the formally computed tangent spaces are La-
grangian). These Lagrangian submanifolds then turn the symplectic manifolds
into groupoids, modules etc.

As the basic example, if

h1, h2 ⊂ g

is a Manin triple, and the surface (together with the boundary condition) is this
square
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then the moduli space is the Lu-Weinstein double symplectic groupoid correspond-
ing to the Manin triple. One of the two products is given by

and the other by the same picture with reversed colours.
The symplectic form on such a moduli space can be expressed it terms of

holonomies of the flat connections (this is just a simple modification of a for-
mula of Alekseev and Malkin to our surfaces with boundaries). The idea is to lift
the flat connections to a (possibly non-flat) connections with values in a central
extension of g by closed 2-forms. The integral of the curvature of this lifted con-
nection over the surface is the symplectic form, and as an integral of curvature,
it is equal to the lifted product of holonomies along the boundary (and possible
cuts). This product is the mentioned formula for the symplectic form.

Some of these symplectic and Lagrangian manifolds are connected with Morita
equivalence of quantum tori. Namely, they provide a symplectic version of the
equivalence, and this symplectic version works also for arbitrary Poisson-Lie groups,
not just for tori with zero Poisson structures.

We need 3 mutually transversal Lagrangian subalgebras of g:

h1, h2, h ⊂ g.

We have a Lie bialgebra as above, plus a new subalgebra h. Let us consider
the following polygons, with boundary conditions indicated by colours, and the
corresponding moduli spaces of flat connections.
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The two squares give us two symplectic groupoids Γ and Γ′ (their bases are Poisson
homogeneous spaces). The pentagon gives a symplectic bimodule M5 of Γ and Γ′.
The triangle, on the other hand, gives a symplectic manifold M3, which is both Γ
and Γ′ module, but not a bimodule, as these two actions don’t commute (they are
twisted by the double symplectic groupoid of the Manin triple h1, h2 ⊂ g).

Neither M3 not M5 provide a Morita equivalence between the groupoids Γ
and Γ′ (M5 is not invertible (indeed, M5 ⊗Γ M̄5 is given by a hexagon rather
than square), while M3 is not even a bimodule). However, after quantization (if
it makes sense) we will have Morita equivalence of algebras, provided the double
symplectic groupoid is quantized to the trivial Hopf algebra. This is what happens
in the case of quantum tori.

Deformation quantization of surjective submersions and principal fiber
bundles

Stefan Waldmann

(joint work with Martin Bordemann, Nikolai Neumaier, and Stefan Weiss)

In the last years, in mathematical/theoretical physics it become fashionable to
consider noncommutative space-times and study (quantum) field theories on such
space-times. The idea is that this might be a kind of effective theory to incor-
porate at least some aspects of quantum gravity. The typical model, which was
studied intensely, is the flat Minkowski space-time R1,3 endowed with a noncom-
mutative structure arising from the Weyl-Moyal star product corresponding to a
(typically symplectic) constant Poisson structure θ on R1,3. Here one has at least
two flavors: formal star products, i.e. treating the deformation parameter λ as a
formal parameter and study everything in the context of formal power series, or
convergent like e.g. the C∗-algebraic framework of Rieffel. In my talk I will use
the formal framework which is technically much simpler.

(Quantum) field theories consist usually of two types of fields: matter fields
and gauge fields. Matter fields are usually sections Γ∞(E) of a certain vector
bundle E over space-time M , like e.g. some spinor fields etc. Since the whole
structure of a vector bundle is encoded in the module structure of the sections
over the algebra of smooth functions over M , it is straightforward to define the
analogue of matter fields in a noncommutative setting: one wants to deform this
module structure of Γ∞(E) overC∞(M) into a module structure over the deformed
algebra (C∞(M)[[λ]], ⋆) where ⋆ is the (given) star product on M . In fact, this
can always be achieved and is unique up to a certain notion of equivalence, see [1],
even including extra structure like positive fiber metrics.

For the gauge fields the question is less obvious: in more geometric terms, gauge
theories are described in terms of principal fiber bundles pr : P −→M with some
structure Lie group G. In my talk I pointed out by some (counter-) examples
that the most reasonable definition of a deformation quantization of a principal
fiber bundle is as follows: one looks for a right module structure • for C∞(P )[[λ]]
over C∞(M)[[λ]] deforming the canonical right module structure via pr∗ subject
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to the condition that g∗(f • a) = g∗(f) • a for all g ∈ G, f ∈ C∞(P )[[λ]] and
a ∈ C∞(M)[[λ]]. If one only looks for a right module structure then the definition
still makes sense for a surjective submersion pr : P −→M , whether it comes from
a principal action of some Lie group or not.

The main idea is now to construct such a right module multiplication • =∑∞
r=0 λ

rRr order by order. Since R0(f, a) = fpr∗a is already given and a right
module structure for the undeformed product, one obtains by the usual argument
a cohomological obstruction in the second Hochschild cohomology of C∞(M) with
values in the bimodule of differential operators Diffop(P ) on P (we require for
technical reasons that all operators Rr should be differential). For a principal
fiber bundle, one has to require the G-equivariance of the differential operators in
addition, whence in this case the bimodule is Diffop(P )G. In general not much is
known about Hochschild cohomology groups with values in some bimodules beside
that they tend to be rather large spaces. Here however, the situation is very simple
as the bimodules in question turn out to be very non-symmetric:

Theorem 1. For a surjective submersion pr : P −→M one has

HHk(C∞(M); Diffop(P )) =

{
Diffopver(P ) k = 0

{0} k ≥ 1.

If in addition pr : P −→M is a G-principal fiber bundle, one has

HHk(C∞(M); Diffop(P )G) =

{
Diffopver(P )G k = 0

{0} k ≥ 1.

In both cases “ver” stands for vertical differential operators.

With the vanishing of the second cohomology, the existence is of course a trivial
consequence: for all surjective submersions there exists a deformation quantization
(for any given star product ⋆ on the base M). Moreover, thanks to the vanishing of
the first cohomology group, also the equivalence of such deformations is trivially
understood: any two deformations are equivalent. In case of a principal fiber
bundle, the additional G-equivariance does not change these results.

Since the module structure is essentially unique, one can show in addition that
the commutant, i.e. the module endomorphisms turn out the be a deformation of
the classical commutant within all differential operators, i.e. Diffopver(P ). Thus
one obtains an induced “star product” ⋆′ for Diffopver(P )[[λ]] together with a left
module structure •′ of (Diffopver(P )[[λ]], ⋆′) on C∞(P )[[λ]]. In fact, both deformed
algebras turn out to be mutual commutants.

There are several applications of this result: first, one can use the deformed
principal bundle indeed for an analogue of the construction of associated vector
bundles. This is of course at the heart of any noncommutative field theory and
reproduces the deformed vector bundles. Second, for the case where the associated
vector bundle is a line bundle this construction shines some new light on the Morita
theory of star products, see [2] for an overview. Third, the commutant can be seen
as the “jet expansion” of a star product ⋆′ on a bigger Poisson manifold in which
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P is a coisotropic submanifold. Thus one obtains a phase space reduction picture
and gains some new insight in the phase space reduction of star products. Finally,
a more explicit construction is available, at least for the symplectic case, by an
adapted version of Fedosov’s construction [3].
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Poisson Structures on Flag Varieties

Milen Yakimov

(joint work with K. A. Brown, K. R. Goodearl, and B. Webster)

Let G be a complex simple algebraic group and (B,B−) be a pair of opposite Borel
subgroups. Denote by T = B ∩ B− the corresponding maximal torus of G. Let
∆+ be the set of positive roots of g = Lie(G), related to T ⊂ B. Fix root vectors
eα ∈ gα, fα ∈ g−α, normalized by 〈eα, fα〉 = 1, where 〈., .〉 is a nondegenerate
invariant bilinear form on g. The standard Poisson structure πG on G is given by

πG =
∑

α∈∆+

Leα
∧ Lfα

−
∑

α∈∆+

Reα
∧Rfα

where Lx and Rx refer to the left and right-invariant vector fields on G, corre-
sponding to x ∈ g.

Fix a standard parabolic subgroup P ⊇ B of G and denote the projection
p : G→ G/P . The push-forward πG/P = p∗(πG) is a well defined Poisson structure
onG/P and the map p : (G, πG)→ (G/P, πG/P ) is a surjective Poisson submersion.
We study the Poisson structure πG/P on G/P by means of a certain weak splitting
of the surjective Poisson submersion p and then use it for applications to Lie theory,
combinatorics, and dynamical systems.

First recall:

Definition 1. (Crainic, Fernandes, [3]) Assume that (M,Π) is a smooth Poisson
manifold. A submanifold X of M is called a Poisson–Dirac submanifold if the
following two conditions are satisfied:

(i) For each symplectic leaf S of (M,Π), the intersection S ∩X is clean (i.e., it
is smooth and Tx(S∩X) = TxS∩TxX for all x ∈ S∩X) and S∩X is a symplectic
submanifold of (S, (Π|S)−1).

(ii) The family of symplectic structures (Π|S)−1|S∩X is induced by a smooth
Poisson structure π on X .

One has the following criterion:
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Proposition 2. (Xu, Crainic, Fernandes, [9, 1]) Assume that (M,Π) is a Poisson
manifold and that X is a submanifold for which there exists a subbundle E of TXM
such that

(i) TXM = TX ⊕ E and
(ii) the restriction of the Poisson tensor Π to X splits as

Π|X = π + πE

for some smooth bivector fields π ∈ Γ(X,∧2TX) and πE ∈ Γ(X,∧2E).
Then X is a Poisson–Dirac submanifold of (M,Π) and the induced Poisson

structure on it coincides with π.

Now we define the notion of weak splitting of a surjective Poisson submersion:

Definition 3. ([5]) Assume that (M,Π) and (N, π) are Poisson manifolds and
that p : (M,Π)→ (N, π) is a surjective Poisson submersion. A weak splitting of p
is a partition

N =
⊔

a∈A

Nα

of (N, π) into Poisson submanifolds such that for each a ∈ A, there exists a smooth
lifting ia : Nα〉M (of p|p−1(Na) : p

−1(Na)〉Nα) with the properties:
(i) ia(Na) is a Poisson–Dirac submanifold of (M,Π) and
(ii) the induced Poisson structure on iα(Na) is ia∗(π|Na

).

This notion can be viewed as a generalization of the quasiclassical analog of the
notion of conditional expectation in operator algebras.

The Poisson structure πG is invariant under the left and right actions of the
maximal torus T on G. Denote the corresponding induced structure on G/T by
πG/T . Let p′ : (G/T, πG/T ) → (G/P, πG/P ) be the surjective Poisson submersion
induced by p.

Denote by W the Weyl group of G and by WP the parabolic subgroup of W
corresponding to P . Let WWP

max be the set of (unique) maximal length representa-
tives of the cosets from W/WP . Recall that one has the decomposition of the flag
variety G/P into Schubert cells:

G/P =
⊔

w∈W
WP
max

B− · wP.
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Now we have:

Theorem 4. ([5]) The partition into Schubert cells

G/P =
⊔

w∈W
WP
max

B− · wP

and the morphisms

iw : B− · wP → G/T, given by iw(uwP )→ uwT, for u ∈ U− ∩ wB−w−1,

where U− is the unipotent radical of B−, provide a weak splitting of the surjective
Poisson submersion p′ : (G/T, πG/T ) → (G/P, πG/P ). In addition, the images of
iw satisfy the condition in Proposition 2.

As a consequence of this, all symplectic leaves of (G/P, πG/P ) are symplectic
submanifolds of symplectic leaves of (G/T, πG/T ). It also implies the following
result on T -orbits of symplectic leaves of (G/P, πG/P ).

Theorem 5. ([2, 5]) There are only finitely many T -orbits of symplectic leaves on
(G/P, πG/P ), parametrized by pairs (w1, w2) ∈ WWP

max ×W such that w1 ≤ w2 in
the Bruhat order. The torus orbit corresponding to the pair (w1, w2) is given by

Sw1,w2 = (U−
w1
ẇ1 ∩B

+w2B
+) · P,

(where ẇ1 is a representative of w1 in the normalizer of T in G) and is biregularly
isomorphic to the intersection B− ·w1B∩B ·w2B of opposite Schubert cells in the
full flag variety G/B. Thus, the T -orbits of symplectic leaves on (G/B, πG/B) are
exactly the intersections of opposite Schubert cells in G/B.

The above partition of G/P is exactly Lusztig’s partition [6], defined for the
purposes of studying total positivity in partial flag varieties.

The Poisson structures πG/P have interesting applications to Lie theory, com-
binatorics, and dynamical systems. Consider the special case when P has abelian
unipotent radical. Then G/P is an example of a Hermitian symmetric space of
compact type. The orbit structure of the action of the standard Levi factor L of
P on G/P was described in [7]. It is shown in [5, §4] that all L-orbits on G/P
are Poisson submanifolds and that the Poisson structure πG/P vanishes at all base
points of Richardson, Röhrle, and Steinberg [7] and conjecturally only there. In
other words the Poisson structure πG/P “sees” these special base points. Now
consider the case of the full flag varieties G/B. In relation to combinatorics, it is
proved in [8], that all strata of the Deodhar stratifications [4] of intersections of
dual Schubert cells in G/B are coisotropic with respect to πG/B. The coordinate
rings of these intersections are also natural candidates for “upper cluster algebras”
[1].
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Morita equivalence of Poisson manifolds via stacky groupoids

Chenchang Zhu

(joint work with Henrique Bursztyn)

The aim of this talk is to present our program to define Morita equivalence in the
category of all Poisson manifolds via Morita equivalence of their stacky symplectic
groupoids. The talk is based on [3]. Early in [7], Xu invented Morita equivalence
of Poisson manifolds with the inspiration from Rieffel’s Morita equivalence of C∗-
algebras. However it works only for integrable Poisson manifolds, i.e. those Poisson
manifolds who process symplectic groupoids. A symplectic groupoid [6] is a Lie
groupoid S ⇒ P with a symplectic form ω on S satisfying

(1) pr∗1ω + pr∗2ω = m∗ω,

on the set of composable arrows S ×P S (m is the multiplication on S). Then
the base P of the symplectic groupoid S ⇒ P has an induced Poisson structure
such that the source map s : S → P is a Poisson map and the target t : S → P
is anti-Poisson. In fact there is a one-to-one correspondence between integrable
Poisson manifolds and source-simply connected symplectic groupoids.

Morita equivalence of Lie groupoids is well-studied and now widely used in
the theory of differentiable stacks. Roughly speaking, differentiable stacks can be
viewed as Lie groupoids up to Morita equivalence (see for example [1]). Adding
compatible symplectic structure inside, [7] established Morita equivalence of sym-
plectic groupoids and proved further that Poisson manifolds P1 and P2 are Morita
equivalent if and only if their symplectic groupoids are Morita equivalent.

Now [4] [5] show that even a non-integrable Poisson manifold processes a sort
of symplectic groupoid S ⇒ P , but S is not anymore a manifold but an étale
differentiable stack1 which processes a compatible symplectic form as in (1). Then

1An étale differentiable stack is a differentiable stack presented by an étale Lie groupoid.
Careful readers find out that S is presented by a groupoid and itself again is a groupoid over a
manifold P . But these two groupoids are two different ones. In fact putting them together we
have a Lie 2-groupoid [8].
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the one-to-one correspondence is extended to the set of all Poisson manifolds and
that of source-2-connected symplectic stacky groupoids (see Theorem 8).

In our program, we first build Morita equivalence for stacky groupoids, then we
add compatible symplectic forms inside and build Morita equivalence for symplec-
tic stacky groupoids and hence for the base Poisson manifolds.

1. Stacky groupoids and their principal bundles

We first say a few more words on the stacky groupoid G ⇉ M we use. For
an exact definition, we refer the reader to [8]. The space of arrows G is a dif-
ferentiable stack, and the space of objects M is a manifold. It has s, t, m, e,
i as source, target, multiplication, identity, and inverse map respectively, just as
in the case of Lie groupoids. The only difference now is that the multiplication
is not strictly associative but associative up to a 2-morphism α which satisfies a
pentagon condition. The same happens to all the other identities we had before
for Lie groupoids. Namely all these identities such as (gh)k = g(hk), 1g = g,
etc., do not hold strictly, but still hold up to something in a controlled way. This
‘2’-phenomenon is new when we step into the world of stacks. It will come back to
haunt us all the time (for example Definition 1). The alternative way is to work
with Lie 2-groupoids which are essentially equivalent to SLie groupoids [8]. We
established Morita equivalence of Lie 2-groupoids there.

To shorten the notation, we call these stacky groupoids SLie groupoids, and
when G is further an étale differentiable stack, a W-groupoid2. A symplectic W-
groupoid is a W-groupoid which has a compatible symplectic form as in (1).

To build Morita equivalence, we first need the notion of principal bundles of
stacky groupoids.

Definition 1 (SLie (W-)groupoid actions). Let G be an SLie (W-)groupoid over
M , X differentiable stack and J : X → M a smooth morphism. A right G-action
on X is a smooth morphism

Φ : X ×M G → X ,

satisfies the following properties:

(1) Φ ◦ (Φ× id) = Φ ◦ (id×m) holds up to a 2-morphism a;
(2) J ◦ Φ = s ◦ pr2, where pr2 : X ×M G → G;
(3) Φ ◦ (id× (e ◦ J)) = id holds up to a 2-morphism b.

2The ‘W’ comes from Alan Weinstein, who suggested this stacky approach to one of the
authors.
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The 2-morphisms satisfy higher coherences, which roughly says that the following
diagrams commute:

((xg1)g2)g3

ssgggggggggggggggggggggg

(xg1)(g2g3)

''OOOOOOOOOOO
(x(g1g2))g3

ggOOOOOOOOOOO

x(g1(g2g3)) // x((g1g2)g3)

77ooooooooooo

x(g · 1)

zzttttttttt

""FF
FF

FF
FF

F

(xg) · 1 // xg

Given such an action, we can form a quotient stack X/G as in [2]. Unfortunately,
the quotient stack is not always a differentiable stack again. For this, we need
principality of the action.

Recall that an action Φ : X×MG→ X of a Lie groupoid G ⇉ M on a manifold
X is principal if and only ifX/G is a manifold and pr1×Φ : X×MG −→ X×X/GX
is an isomorphism. We have the following definition:

Definition 2 (Principal SLie (W-) groupoid bundles). Let G ⇒ M be an
SLie (-W) groupoid. A left G-bundle over a differentiable stack X is a differentiable
stack X together with a smooth morphism π : X → S and a right action Φ
satisfying

(2) π ◦ Φ = π ◦ pr2

up to a 2-isomorphism α : π ◦pr2 → π ◦Φ. (Here pr2 : G×M X → X is the natural
projection.) The 2-isomorphism α satisfies a further coherence condition.

The bundle is principal if π is a surjective submersion and

pr1 × Φ : X ×M G → X ×S X

is an isomorphism. Then the action Φ is also called principal.

Example 3 (A point as a principal Z bundle). A point pt is a principal Z bundle
over the stack BZ. The action of Z on pt is trivial, so it is not principal in the
classical sense. However, pt is a principal Z bundle as in Definition 2 because
pt ×BZ pt = Z (see [1] for the definition of fibre product of differentiable stacks)
and

pt× Z→ pt×BZ pt,

is an isomorphism of stacks.
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Theorem 4. Let G be an SLie (W-) groupoid. If π : X → S is a G-principal
bundle over S, then X/G is a differentiable stack and is isomorphic to the base
S. Moreover X/G is presented by a Lie groupoid whose space of arrows is EΦ/G1

and whose space of objects is X0. Here X1 ⇒ X0 is a Lie groupoid presentation
of X , G1 ⇒ G0 is that of G and EΦ is the H-S bibundle of the G-action Φ.

2. Morita equivalence of SLie groupoids

Definition 5 (Morita equivalence of SLie groupoids). Two SLie groupoids G1 ⇉

M1 and G2 ⇉ M2 are Morita equivalent if there is a differentiable stack X and
two smooth morphisms Ji : X → Gi (moment maps) such that

(1) J1 : X →M1 is a right principal G2-bundle;
(2) J2 : X →M2 is a left principal G1-bundle;
(3) Φ2◦(Φ1×id) = Φ1◦(id×Φ2) holds up to a 2-isomorphism a which satisfies

six higher coherence conditions.

In this case we call X a (G1,G2)-Morita bibundle.

It is simple to check that Morita equivalence is reflexive (G itself is a (G,G)-
Morita equivalence) and symmetric (use inverses to make right actions into left
and vice-versa). However transitivity is nontrivial and we need to use Theorem 4.

Moreover we also have,

Proposition 6. If two W-groupoids are Morita equivalent via Morita bibundle X ,
then X is an étale differentiable stack.

Proposition 7. Two W-groupoids Gi ⇒ Mi are Morita equivalent via Morita
bibundle X . If G1 ⇒M1 is a Lie groupoid, then X is a manifold and G2 ⇒M2 is
also a Lie groupoid.

Finally, two symplectic W-groupoids (G1, ω1) ⇉ M1 and (G2, ω2) ⇉ M2 are
Morita equivalent if they are Morita equivalent as SLie groupoids via a symplectic
étale stack (X , ω) satisfying

pr∗1ω1 + pr∗2ω = Φ∗
1ω, on G1 ×M1 X ,

where Φ1 is the action of G1 on X , and the same for ω and ω2.

Theorem 8. [5] For any symplectic W-groupoid G ⇉ M , the base manifold M
has a unique Poisson structure such that the source map s is Poisson. In this case,
we call G a symplectic W-groupoid of the Poisson manifold M .

On the other hand, for any Poisson manifold M , there are two symplectic
groupoids G(M) and H(M) of M . G(M) has 2-connected source fibre and H(M)
has only 1-connected source fibre.

Definition 9. Two Poisson manifolds M1 and M2 are called strongly Morita
equivalent if G(M1) and G(M2) are Morita equivalent as symplectic W-groupoids.
Respectively, they are called weakly Morita equivalent if H(M1) and H(M2) are
Morita equivalent as symplectic W-groupoids.
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Strong Morita equivalence implies the weak one, and weak Morita equivalence
coincides with the classical one in [7] when applied to integrable Poisson manifolds.
But strong Morita equivalence is something new. For example, in [7], with their
usual symplectic forms, R2 and the 2-sphere S2 are Morita equivalent since all the
simply connected symplectic manifolds are Morita equivalent in the classical sense.
But they are not strongly Morita equivalent because they have different π2 groups.
In fact, only 2-connected symplectic manifolds are strongly Morita equivalent to
each other. We hope this π2-phenomenon will help in symplectic geometry, for
example, in the aspect of preservation of prequantization.
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