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Introduction by the Organisers

The mini-workshop on Projective normality of smooth toric varieties, organized
by Christian Haase (Berlin), Takayuki Hibi (Osaka), and Diane Maclagan (New
Brunswick), was held August 12th-18th, 2007. A small group of researchers
with backgrounds in combinatorics, commutative algebra, and algebraic geometry
worked on the conjecture that embeddings of smooth toric varieties are projec-
tively normal. This very basic question appears in different guises in algebraic
geometry, commutative algebra, and integer programming, but specific cases also
arise in additive number theory, representation theory, and statistics. See the
summary by Diane Maclagan for three versions of the same question.

There were a limited number of contributed talks in the mornings, setting the
theme for the afternoon working groups. Monday morning began with Diane
Maclagan describing the problem, and Winfried Bruns surveying the known re-
sults in the polyhedral formulation. This was followed on Tuesday morning by
Benjamin J. Howard and Hidefumi Ohsugi on special cases of normality, and an



2284 Oberwolfach Report 39/2007

introductory talk by Milena Hering on the geometric vanishing theorem approach
to the problem. On Wednesday morning Hal Schenck described a commutative
algebra approach developed on site together with Greg Smith, while Sam Payne
explained the Frobenius splitting approach. The commutative algebra approach,
with optimization notes, continued in the talk of Ngô Viêt Trung on Thursday
morning. Najmuddin Fakhruddin also explained his proof of the extended two-
dimensional case on Thursday morning. Finally, on Friday we heard from Christian
Haase and Andreas Paffenholz on some techniques for showing normality in spe-
cial cases, and Francisco Santos on lattice Delaunay simplices which are potential
starting points in search for a counterexample.

In the afternoons we split into working groups which then reported on their
findings before dinner. These discussions continued through breaks, and in gaps
between talks. The atmosphere of the group was very energetic, and we hope that
the momentum generated during the meeting will continue with some of the ideas
developed being pursued by the participants.

As a direct outcome of the workshop, we would like to mention

• many examples of very-ample-yet-non-normal polytopes found by Win-
fried Bruns,

• a joint effort of Christian Haase, Benjamin Nill, Andreas Paffenholz, and
Francisco Santos to (finally) settle the ample+nef additivity question in
dimension two, as well as

• a dynamic survey on projective normality and related questions to be
edited by Diane Maclagan.

The organizers and participants sincerely thank the institute for providing excel-
lent working conditions and the unique Oberwolfach spirit. We are also grateful
for funding from the NSF grant supporting young US-based participants, which
allowed an extra participant to attend.

In what follows we present, in addition to summaries of the talks, brief accounts
on the outcome of brainstorming sessions and working groups.

Christian Haase
Takayuki Hibi
Diane Maclagan
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Abstracts

Introduction to the problem

Diane Maclagan

The goal of this workshop was to consider the following problem.

Definition 1. A smooth lattice polytope is a simple lattice polytope where the
first lattice points on each ray of a top-dimensional cone of the normal fan generate
the lattice.

Question 1. (Projective Normality) Let P be a smooth lattice polytope in
Rd. Is every lattice point in kP for k ≥ 2 a sum of k lattice points in P?

We note that the smoothness hypothesis is essential here; for example, consider
the polytope P = conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 3), (2, 1, 3), (1, 2, 3)) ⊂ R3.
The lattice point (1, 1, 1) lies in 2P , but is not the sum of two lattice points in
P . Question 1 has an affirmative answer in dimension d = 2, since every two-
dimensional lattice polytope has a unimodular triangulation (a triangulation of P
with lattice points as vertices such that each simplex has normalized volume one).

A variant of Question 1 is the following.

Question 2. (Oda) Let P be a smooth lattice polytope and let Q be a lattice
polytope whose normal fan is a coarsening of that of P . Is every lattice point z in
the Minkowski sum P + Q = {x + y : x ∈ P, y ∈ Q} a sum z = u + v where u is a
lattice point in P and v is a lattice point in Q?

In the case that P and Q are lattice polytopes with the same normal fan, a
positive answer to Question 1 in dimension d + 1 implies a positive answer to
Question 2 in dimension d. To see this, consider the polytope R = conv(P ×
{0}, Q×{1}) ⊆ Rd+1. This is smooth if P and Q are smooth with the same normal
fan, and the lattice points slice of 2R with last coordinate one are in bijection with
the lattice points in P +Q. This observation seems to be originally due to Mustaţǎ.
Question 1 is also known in dimension two, due to work of Fakhruddin [1].

These questions also have formulations in commutative algebra and algebraic
geometry. Let S = k[x1, . . . , xn], where k is a field, and grade S by deg(xi) = ai ∈
Zr. The vectors ai divide pos(ai : 1 ≤ i ≤ n) into open chambers.

Definition 2. The chamber σ ⊂ pos(ai : 1 ≤ i ≤ n) containing a point b ∈
pos(ai) is the collection of those c ∈ pos(ai that can be written as a rational
combination of the same collections of r of the ai as b. The chamber σ is smooth
if whenever σ ⊂ pos(a1, . . . ,ar) we have det([a1 . . .ar]) = ±1.

Question 3. Let the chamber of b ∈ pos(ai) be smooth. Is the multiplication
map

Sb × . . . Sb → Skb
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surjective for all k ≥ 2? If b lives in a smooth chamber, and c lives in its closure,
is the multiplication map

Sb × Sc → Sb+c

surjective?

The connection with Questions 1 and 2 is seen by taking Pb = conv(u :
deg(xu) = b). Then the first sentence of Question 3 is Question 1, and the
second is Question 2.

In algebraic geometry these questions have the following formulation.

Question 4. Let XΣ be a smooth projective toric variety, and let L be an ample
line bundle on XΣ. Is the embedding given by the complete linear series of L
projectively normal? In other words, is the multiplication map

H0(XΣ,L) ⊗ · · · ⊗ H0(XΣ,L) → H0(XΣ, L⊗k)

surjective? If N is a nef line bundle, is the multiplication map

H0(XΣ,L) ⊗ H0(XΣ,N ) → H0(XΣ,L ⊗N )

surjective?

The first of these is a reformulation of Question 1, while the second is a refor-
mulation of Question 2.

All these questions appear in an unpublished manuscript of Oda [2].

References

[1] Najmuddin Fakhruddin. Multiplication maps of linear systems on smooth projective toric
surfaces. arXiv:math.AG/0208178, 2002.

[2] Tadao Oda, Problems on Minkowski sums of convex lattice polytopes, 1997, Preprint.

Covering properties of affine monoids

Winfried Bruns

Let C ⊂ Rd be a finitely generated rational cone, i. e. the set of all linear
combinations a1x1 + · · · + anxn of rational vectors x1, . . . , xd with coefficients
from R+. We can of course assume that xi ∈ Zd, i = 1, . . . , n. In this note a cone
is always supposed to be rational and finitely generated. Moreover, we will assume
that C is pointed : if x,−x ∈ C, then x = 0. Finally, it is tacitly understood that
C has full dimension d.

The monoid M(C) = C ∩ Zd is finitely generated by Gordan’s lemma (for
example, see [4, Section 2.A]). Since C is pointed, M is a positive monoid so that
0 is the only invertible element in M(C).

It is not hard to see that M(C) has a unique minimal system of generators that
we call its Hilbert basis, denoted by Hilb(M(C)) or simply Hilb(C). It consists of
those elements z 6= 0 of M(C) that have no decomposition z = x + y in M(C)
with y, z 6= 0.
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We have investigated combinatorial conditions on Hilb(C) expressing that C
or M(C) is covered by certain “simple” subcones or submonoids, respectively.
To this end we define a u-subcone of C to be a subcone generated by vectors
x1, . . . , xd ∈ Hilb(C) that form a basis of the group Zd. In particular, x1, . . . , xd

are linearly independent, and if just this weaker condition is satisfied, then the
cone S generated by x1, . . . , xd is called an f -subcone. In this case we let Σ(S)
denote the submonoid of Zd generated by x1, . . . , xd.

One says that C satisfies (UHC) if C is the union of its u-subcones. A weaker
condition than (UHC) is the integral Carathéodory property (ICP): C has (ICP)
if every element of M(C) can be written as a linear combination of at most d
elements xi ∈ Hilb(C) with coefficients ai ∈ Z+.

Both (UHC) and (ICP) can be formulated more generally for positive affine
monoids M ⊂ Zd. However, by a theorem of Bruns and Gubeladze [3, Theorem
6.1] (see also [4, 2.B]) a monoid M must be normal if it satisfies (ICP), i. e. it
is of the form M(C). In loc. cit. it is also shown that (ICP) is equivalent to the
formally stronger condition that M is the union of its submonoids Σ(S) where S
runs over the f -subcones. (This condition is called (FHC) in [3].) The equivalence
is of crucial importance for the algorithm checking (ICP).

While we view (UHC) and (ICP) as structural properties of (normal) affine
monoids, these properties have first been discussed in the context of integer pro-
gramming: see Cook, Fonlupt and Schrijver [6] and Sebő [9].

It was asked by Sebő [9] whether every cone C has (ICP) or (UHC), and he
proved that (UHC) holds if d ≤ 3. A counterexample to (UHC) in dimension
6, called C10 in the following, was found by Bruns and Gubeladze [3], and then
verified to violate (ICP), too, in cooperation with Henk, Martin, and Weismantel
[5]. The counterexample has a Hilbert basis of 10 elements that lie in a hyperplane.
Therefore it is the cone over a 5-dimensional polytope P5, and the lattice points of
P5 form the Hilbert basis of C10. The symmetry group of P5 is remarkably large:
it has 20 elements and acts transitively on the lattice points; see loc. cit.

Another noteworthy property of C10 was discovered by Santos [8]: the un-
derlying polytope P5 is the projection of the Ohsugi-Hibi polytope that has a
unimodular triangulation, but no regular unimodular triangulation.

For a long time it remained an open problem whether (UHC) is strictly stronger
than (ICP), but in the fall of 2006 the author found examples that satisfy (ICP)
but fail (UHC). The smallest of them has a Hilbert basis of 12 elements, again
lying in a hyperplane.

The details of the search strategy and the algorithms that decide (UHC) and
(ICP) are described in [1]. The article discusses also some aspects of the actual
implementation, such as memory requirements and computing times.

Despite the existence of the counterexamples, one can fairly say, at least heuris-
tically, that almost all cones satisfy (UHC). All our experiments seem to indicate
that C10 is the core counterexample to (ICP) and (UHC). In fact, all counterex-
amples to these properties that we have been found contain it.
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Since the positive results cover cones of dimension 3 and the counterexamples
live in dimension 6, it is unclear whether all cones in dimensions 4 and 5 have
(UHC). It would be very desirable indeed to clarify the situation.

A nonnormal, very ample polytope of dimension 3. It has been known for a long
time that there exist nonnormal lattice polytopes P ⊂ Rd with the following
property: the set (P ∩ Zd) − x generates the monoid R+(P − x) ∩ Zd for every
vertex x of P . (We assume that Zd is the smallest affine lattice containing P ∩Zd.)
It is justified to call such polytopes very ample since they correspond to a very
ample line bundle L on a normal projective toric variety V . The embedding of
V into projective space afforded by L is projectively normal if and only if the
monoid generated by the vectors (y, 1) ∈ Zd+1, y ∈ P ∩ Zd, is normal, in which
case P is called normal. While every normal polytope is very ample, the converse
is disproved by an example of Bruns and Gubeladze [2]: the polytope spanned by
the 10 facet-vertex incidence vectors of the minimal triangulation of the projective
plane is very ample, but not normal (in the affine lattice generated by them).

While all polytopes of dimension 2 are normal, the author has meanwhile found
a nonnormal very ample polytope of dimension 3. All its 8 lattice points are
vertices, given by

(1, 7, 2), (1, 5, 3), (1, 4, 4), (1, 6, 3),

(0, 2, 3), (0, 0, 4), (0, 9, 0), (0, 7, 1).

It seems very likely that this is the smallest such example. Its integral symmetry
group is of order 8.

Acknowledgement. The author is very grateful to Joseph Gubeladze for inspir-
ing discussions within the MFO’s RiP program in July 2006. They led to the new
developments in the fall of 2006.
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integer analogue of Carathéodory’s theorem, J. Reine Angew. Math. 510 (1999), 179–185.
[6] W. Cook, J. Fonlupt, and A. Schrijver, An integer analogue of Carathéodory’s theorem. J.
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[9] A. Sebő, Hilbert bases, Carathéodory’s theorem, and combinatorial optimization, in ‘Integer

Programming and Combinatorial Optimization’ (R. Kannan, W. Pulleyblank, eds.), Univer-
sity of Waterloo Press, Waterloo 1990, 431–456.



Mini-Workshop: Projective Normality of Smooth Toric Varieties 2291

Edge Unimodular Polytopes

Benjamin Howard

For simplicity we assume that the lattice is Zd ⊂ Rd. Suppose that P ⊂ Rd is
a lattice polytope such that the edge directions of P form a unimodular system.
This means there is a matrix M ∈ Zd×n, where all d by d determinant minors of
M are either 0, 1, or −1, and for each edge uv of P (where u and v are adjacent
vertices of P ) there exists a column w of M such that u− v = kw for some k ∈ Z.
If P has this property, we say that P is edge-unimodular.

Both Theorem 1 and Corollary 2 below were proven in [3]. The application in
[3] was to flag matroid polytopes (see [1]) which are always edge-unimodular, since
the edges of flag matroid polytopes are parallel to roots of SL(n, C), and the roots
of SL(n, C) are a unimodular system.

Theorem 1. Suppose that M is a unimodular matrix, and that P and Q are
lattice polytopes with edges parallel to columns of M . Then, P ∩Zd + Q∩Zd =
(P + Q) ∩ Zd.

Corollary 2. If P is edge unimodular, then P is normal.

Proof. Suppose that P is edge-unimodular. Let Q = (k − 1)P . Then P and Q
meet the criterion of Theorem 1, so P ∩ Zd + (k − 1)P ∩ Zd = kP ∩ Zd. �

Clearly P ∩ Zd + Q ∩ Zd = (P + Q) ∩ Zd if and only if for all lattice points w,
P ∩(w−Q)∩Zd is nonempty whenever P ∩(w−Q) is nonempty. We now consider
strengthening this condition in stages. Given a face F of a lattice polytope P , let
Λ(F ) denote the sublattice of Zd spanned by the edge directions in F . Given two
lattice polytopes P and Q, we say they are pairwise face unimodular if for any
face F of P and face G of Q, the abelian group Zd/(Λ(F ) + Λ(G)) is torsion-free.
The following list shows successively stronger conditions on the pair P, Q of lattice
polytopes:

(1) For all w ∈ Zd, if P ∩ (w − Q) 6= ∅ then P ∩ (w − Q) ∩ Zd 6= ∅.
(2) For all w ∈ Zd, the intersection P ∩ (w−Q) is a lattice polytope (possibly

empty).
(3) The polytopes P, Q are pairwise face unimodular.
(4) The edge directions of P together with the edge directions of Q all fit into

one unimodular matrix, as in the premise of Theorem 1.

One can easily prove that

(4) =⇒ (3) =⇒ (2) =⇒ (1).

Here we will list examples (all due to Francisco Santos) where (1) does not imply
(2) and where (3) does not imply (4). However I still don’t know an example
where (2) does not imply (3), but I doubt that (2) and (3) are equivalent.

Example 3. (The stop sign) Let P = Q be the smooth polygon which is the
convex hull of the points (1, 0), (2, 0), (3, 1), (3, 2), (2, 3), (1, 3), (0, 2), (0, 1). Let
w = (3, 1). Then P ∩ (w − Q) has vertices (1, 0), (2, 0), (5/2, 1/2), (2, 1), (1, 1),
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and (1/2, 1/2), two of which are non-integral. This example shows that (1) does
not imply (2), since all lattice polygons are normal.

Example 4. (The cube with three truncated edges) Start with the 3-cube with
side lengths 3. We position the cube with one vertex at the origin and the opposite
vertex at (3,3,3). Let e = conv((0, 0, 0), (0, 0, 3)), f = conv((3, 0, 0), (3, 3, 0)), and
g = conv((0, 3, 3), (3, 3, 3)). Now truncate these three edges by cutting at a 45◦

angle to the cube. For example, truncation of edge e has the effect of removing the
vertices of e and replacing them with (1, 0, 0),(1, 0, 1),(0, 1, 0),(0, 1, 1). This results
in a polytope with nine facets. Let P be this polytope. Now, the edge directions
of P are all parallel to columns of the matrix

M =




1 0 0 1 0 1
0 1 0 −1 1 0
0 0 1 0 −1 1



 ,

which is not unimodular since the determinant of the right-most 3 by 3 minor is
equal to 2. However any other minor has determinant ±1. Furthermore for any
pair F, G of proper faces of P there is a column among the final three columns
of M which isn’t parallel to any edge of F or G. On the other hand if F or G is
equal to the entire polytope P then Λ(F )+Λ(G) = Z3. In either case the quotient
group Zd/(Λ(F ) + Λ(G)) is torsion-free. Taking Q = P , this shows that (3) does
not imply (4).

There was a debate at Oberwolfach as to whether the condition that P is
edge-unimodular is equivalent to P being facet-unimodular, which means that the
directions perpendicular to the facets of P are unimodular. It has been shown that
any facet-unimodular polytope is normal. In fact, any facet-unimodular polytope
has a unimodular triangulation [2, Prop 2.4, p 60].

However, it turns out that edge-unimodular does not imply facet-unimodular,
and neither does facet-unimodular imply edge-unimodular. The following two
examples are both due to Francisco Santos:

Example 5. (Edge-unimodular but not facet-unimodular) Let P be the three
dimensional permutahedron, which is the convex hull of all 24 component-permu-
tations of the vector (3, 2, 1, 0). This a flag matroid polytope (corresponding to
the full flag variety SL(4)/B) and so it is edge-unimodular. However, P is not
facet-unimodular.

Example 6. (Facet-unimodular but not edge-unimodular) Let P be the Birkhoff
polytope B3, equal to the convex hull of the six permutation matrices in R3×3.
It is known that P is a transportation polytope, and all transportation polytopes
are facet-unimodular. But P is not edge-unimodular.
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Smooth edge polytopes

Hidefumi Ohsugi and Takayuki Hibi

Let G be a finite graph on the vertex set V (G) = {1, . . . , d} allowing loops
and having no multiple edges, and E(G) = {e1, . . . , en} the set of its edges (and
loops). If e = {i, j} is an edge of G between i ∈ V (G) and j ∈ V (G), then
we define ρ(e) = ei + ej . Here ei is the ith unit coordinate vector of Rd. In
particular, for a loop e = {i, i} at i ∈ V (G), one has ρ(e) = 2ei. The edge polytope
of G is the convex polytope PG (⊂ Rd) which is the convex hull of the finite set
{ρ(e1), . . . , ρ(en)}.

If e = {i, j} is an edge of G, then ρ(e) cannot be a vertex of PG if and only if
i 6= j and G has a loop at each of the vertices i and j. With considering this fact,
we assume that G satisfies the following condition:

(∗) If i and j are vertices of G and if G has a loop at each of i and j, then the
edge {i, j} belongs to G.

Let K[t] = K[t1, . . . , td] denote the polynomial ring in d variables over K. If
e = {i, j} is an edge of G, then te stands for the monomial titj belonging to K[t].
Thus in particular, if e = {i, i} is a loop of G at i ∈ V (G), then te = t2i . The
edge ring of G is the affine semigroup ring K[G] (⊂ K[t]) which is generated by
te1 , . . . , ten over K.

Let K[x] = K[x1, . . . , xn] denote the polynomial ring in n variables over K. The
toric ideal of G is the ideal IG (⊂ K[x]) which is the kernel of the surjective ring
homomorphism π : K[x] → K[G] defined by setting π(xi) = tei for i = 1, . . . , n.

By using combinatorial technique, we determine all graphs G for which PG is
simple. From this classification, it follows that

Theorem. Let G be a finite graph allowing loops and having no multiple edge,
and suppose that G satisfies the condition (∗). Then the following conditions are
equivalent:

(i) PG is smooth ;
(ii) PG is simple.

Moreover if PG is simple, then the toric ideals IG possesses a squarefree quadratic
initial ideal. (In particular, K[G] is normal and Koszul.)
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Vanishing theorems

Milena Hering

The purpose of this lecture is to review basic properties of line bundles on
projective varieties, and to present some vanishing theorems that are helpful for
understanding properties of embeddings induced by line bundles, such as projective
normality and quadratic generation of the ideal cutting out the image.

We first recall some basic notions for line bundles on projective varieties. Let
L be a line bundle on a projective variety X . Recall that L is called globally
generated, if for every point p in X , there exists a global section of L not van-
ishing at p. This implies that the global sections H0(X, L) induce a morphism,
φL : X → P

(
H0 (X,  L)

)
. If this morphism is an embedding, L is called very

ample. Moreover, L is called ample if L⊗m is very ample for some m. We are
interested in the question when a line bundle is normally generated, i.e., the nat-
ural map Symm H0(X, L) → H0(X, Lm) is surjective for all m ≥ 0. An ample
and normally generated line bundle is very ample, and if X is normal, it gives
rise to a projectively normal embedding, i.e., the homogeneous coordinate ring of
φL(X) ⊂ P

(
H0 (X, L)

)
is integrally closed.

These properties translate into the toric world as follows. Let M ∼= Zd be a
lattice, and let P ⊂ MZ ⊗ R be a lattice polytope. Then P corresponds to a
normal toric variety X = XP , together with an ample line bundle L. An arbitrary
lattice polytope Q corresponds to a globally generated (ample) line bundle on
X , if its normal fan is refined by (equal to) the normal fan to P . Moreover, if
Q corresponds to an ample line bundle on X , it corresponds to a very ample
line bundle if and only if for every vertex v of Q, the Hilbert basis of the cone
generated by {u − v | u ∈ Q} is contained in (Q − v) ∩ M . In particular, every
ample line bundle on a smooth toric variety is very ample. Morever, the line
bundle corresponding to Q is normally generated, if the natural map

Q ∩ M + · · ·Q ∩ M︸ ︷︷ ︸
m

→ mQ ∩ M

is surjective for all m ≥ 0.
In the following we review some very basic cases of classical vanishing theorems

guaranteeing projective normality. Their proof is due to Lazarsfeld and relies on
the theory of Koszul cohomology developed by Mark Green in [2]. For more details
see for example . [3].

First, we give a criterion for projective normality of a very ample line bundle
in terms of vanishing of twists of the ideal sheaf of the corresponding line bundle.

Lemma 7. Let L be very ample, and let IX be the ideal sheaf of the embedding
induced by L. Then L is normally generated if and only if

H1(P(H0(X, L)), IX(m)) = 0 for all m ≥ 0.

However, the main point of this note is to relate projective normality and qua-
dratic generation to cohomology vanishing of certain vector bundles associated to
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a globally generated line bundle. Let L be globally generated. Then there exists
a short exact sequence

0 → ML → H0(X, L) ⊗OX → L → 0.

Tensoring this sequence with a line bundle L′, and taking long exact sequence
of cohomology, we obtain the following condition for multiplication maps to be
surjective.

Lemma 8. Let L, L′ be globally generated line bundles on a projective variety
X . If H1(X, ML ⊗ L′) = 0, then the natural map H0(X, L) ⊗ H0(X, L′) →
H0(X, L ⊗ L′) is surjective. Moreover, if H1(X, L′) = 0, the converse holds.

In particular, we get the following criterion for projective normality.

Proposition 9. Let L be a globally generated line bundle. If H1 (X, ML ⊗ Lm) =
0 for all m ≥ 1, then L is normally generated. Moreover, if H1(X, Lm) = 0 for all
m, the converse holds.

There is a similar criterion governing the degrees of the generators of the ideal
IX of the image of X under the map induced by L.

Lemma 10. Let L be a globally generated line bundle on X . Suppose

H1(X,

2∧
ML ⊗ Lj) = 0

for j ≥ ℓ. Then IX is generated in degree ℓ + 1.

In particular, for ℓ = 1, the lemma implies that the ideal IX is generated by
quadric equations.

When we work of a field of characteristic zero, it suffices to prove the vanishing
of H1(X, M⊗2

L ⊗ Lj) for j ≥ ℓ. Or that the natural map

H0(X, L) ⊗ H0(X, ML ⊗ Lj) → H0(X, ML ⊗ Lj+1)

is surjective for all j ≥ ℓ.

Remark 11. There exist similar vanishing theorems guaranteeing that the ho-
mogeneous coordinate ring of the embedding is Koszul, see for example [4]; the
above vanishing theorems extend to criteria for the line bundle to satisfy Greens
property Np, see [3].

Using this vanishing theorem, Ein and Lazarsfeld prove the following theorem.

Theorem 12 ([1]). Let X be a smooth projective variety of dimension n, A very
ample on X , and N nef. Assume that A ≇ OPn(1). Then  L = KX ⊗ An+1 ⊗ N is
normally generated, and the ideal of the embedding induced by  L is generated by
quadratic equations.

For lattice polytopes this has the following consequences. We call a lattice poly-
tope smooth, if it corresponds to an ample line bundle on a smooth toric variety.
Equivalently, the primitive lattice vectors spanning the rays of each maximal cone
of the normal fan form a lattice basis.
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Corollary 13. Let P be a smooth polytope of dimension n, and let Q be a
polytope whose normal fan is refined by that of P . Then conv〈int(nP ) + Q〉 is a
normal polytope.
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A syzygy approach to projective normality

Hal Schenck

For any variety X , if D is a very ample divisor with h0(D) = n + 1, then for
all i ≥ 1 there are isomorphisms

H1(IX(t)) ≃ Hi+1
m (I)t ≃ Extn(S/I, S)−t−n−1,

where S = k[x0, . . . , xn], Hi
m is the local cohomology functor at m = 〈x0, . . . , xn〉,

and I is the ideal of X in the embedding induced by D.
Hochster gives a beautiful recipe for computing Tori(S/I, k)b, where b is a

multidegree, in particular one can associate a simplicial complex ∆b:

Tori(I, k)b ≃ H̃i(∆b).

An explicit description of ∆b may be found in Sturmfels, “Gröbner bases and
Convex polytopes”. Translating, we find that failure of projective normality is
encoded by the existence of a semigroup weight b which corresponds to a copy
of Sn−1 on n + 1 vertices. For the Bruns-Gubeladze example of a triangulation
of RP2, this gives a very concrete description of failure of projective normality.
Question: is this criterion actually useful in hunting counterexamples (or finding
a proof)? (Joint work with Greg Smith).

• Report of session on resolving the singularities of the polytope

P = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2)},
(Bruns, Gubeladze, Santos, Schenck, Trung)

The normal fan of P consists of 4 cones, each of which is simplicial. A check
shows that each cone has multiplicity four, hence each cone needs to be subdivided
into four cells. This can be done (minimally) in two ways, and results in two
different smooth polytopes (remark: we chose to move from the fan approach to
dilating P and truncating to desingularize).

One of the two resulting smooth polytopes was obtained by taking a cube, and
pruning at the vertices. In this case, the resulting normal fan has 14 rays. The
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second polytope consists of a pair of plane octagons, embedded in parallel planes
at different heights. In this case, the resulting normal fan has 10 rays. Both of
these families can be shown to have unimodular covers, and so for this specific
example, there were no counterexamples to the conjecture.

Frobenius splittings of toric varieties

Sam Payne

We discuss Frobenius splittings of toric varieties with a view toward questions
about projective normality and quadratic generation for projective embeddings.
Frobenius splittings are notorious in the context of toric varieties for their role in
unsuccessful attempts to prove that smooth projective toric varieties embedded by
complete linear series are always projectively normal and cut out by quadrics. See,
for instance, [2]. Nevertheless, these unsuccessful attempts do inspire hope that
Frobenius splittings may be a useful tool for studying questions about projective
normality and quadratic generation of toric varieties.

Frobenius splittings are a positive characteristic technique developed by Mehta,
Ramanathan, and their collaborators in the 1980s. The original paper of Mehta
and Ramanathan [4] is exceedingly well written and remains an excellent first in-
troduction to the subject. For a more comprehensive exposition, see the recent
book of Brion and Kumar [1]. Frobenius splittings were rapidly applied to give
elegant unified proofs that all ample line bundles on generalized Schubert varieties
of all types are very ample and give projectively normal embeddings whose images
are cut out by quadrics [6, 5]. In characteristic zero, these results are deduced
from the positive characteristic case using general semicontinuity theorems. On
toric varieties, the Frobenius endomorphisms lift to endomorphisms over Z, and it
is easiest to work independently of the characteristic using these lifted endomor-
phisms, as follows.

Fix an integer m ≥ 2. Let T be a torus with character lattice M , and let
N = Hom(M, Z) be the dual lattice. Let Σ be a complete fan in NR, with X =
X(Σ) the associated toric variety with dense torus T . Multiplication by m on
NR preserves the fan Σ and maps the lattice N into itself, and therefore gives an
endomorphism

F : X → X.

The restriction of F to the dense torus T is given by t 7→ tm, and this determines
F uniquely. In the special case where the base field is Fp and m = p, F is the
absolute Frobenius morphism on X . Pulling back functions by F gives a natural
inclusion of OX -algebras

F ∗ : OX →֒ F∗OX .

Definition 3. A splitting of X is an OX -module map π : F∗OX → OX such that
the composition π ◦ F ∗ is the identity on OX .
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From the existence of a splitting, standard arguments show that for every ample
line bundle L on X , Hi(X, L) = 0 for i > 0 [4, Proposition 1]. These arguments are
simple, using only the projection formula, that sheaf cohomology commutes with
direct sums, and that F ∗L ∼= Lm for all line bundles L on X . A remarkable feature
of this approach is that one can obtain information on all ample line bundles on
X simultaneously from a single map of coherent OX -modules.

Proposition 14. Every toric variety has a canonical splitting.

Proof. (Sketch.) Suppose X = Uσ is affine. Then k[Uσ] and F∗k[Uσ] are naturally
identified with the semigroup rings k[σ∨∩M ] and k[σ∨∩ 1

mM ], respectively. Then

the canonical splitting π0 is given for u ∈ 1
mM by

π0(xu) =

{
xu if u ∈ M,
0 otherwise.

The general result follows from the affine case by gluing. �

Properties of this canonical splitting π0 are closely related to Smith’s proof that
toric varieties are globally F -regular [7, Proposition 6.3]. It follows from the
existence of a splitting that the higher cohomology of ample line bundles on toric
varieties must vanish. The standard proof of this vanishing is quite different and
uses a topological interpretation of the cohomology of line bundles on toric varieties
and the convexity of the support functions associated to ample toric line bundles.
See [3] for details.

To apply the standard machinery of Frobenius splittings to questions about
projective normality and quadratic generation, we will need to look at splittings of
toric varieties other than the canonical splitting π0. Typically, we will be interested
in splittings of X × X that are compatible with the diagonal, and splittings of
X × X × X that are compatible with large semidiagonals, in the following sense.

Let Y ⊂ X be a subvariety cut out by an ideal sheaf I.

Definition 4. A splitting π : F∗OX → OX is compatible with Y if π(F∗I) = I.

Since π is a splitting, the image of F∗(I) must contain I, so compatibility with Y
is the requirement that the image of F∗(I) must be contained in I. It follows from
the short exact sequence 0 → I → OX → OY → 0 that a splitting of X compatible
with Y induces a splitting of Y ; this motivates the definition. Standard arguments
show that if X is split compatibly with Y and L is an ample line bundle on X , then
the restriction map H0(X, L) → H0(Y, L|Y ) is surjective. See [4, Proposition 3].

Example 15. The canonical splitting π0 is compatible with all T -invariant sub-
varieties of X .

Example 16. If X is positive dimensional, the canonical splitting of X × X is
not compatible with the diagonal ∆. To see this, observe that if u ∈ 1

mM is not
in M , then 1−xu ⊗ x−u is in F∗I∆, but π0(1−xu ⊗ x−u) = 1, which is not in I∆.

Suppose X×X is split compatibly with the diagonal, and let L and L′ be ample
line bundles on X . It follows from the existence of a compatible splitting that the



Mini-Workshop: Projective Normality of Smooth Toric Varieties 2299

restriction map

H0(X × X, p∗1L) ⊗ H0(X × X, p∗2L
′) → H0(∆, (p∗1L ⊗ p∗2L

′)|∆)

is surjective. Since this restriction agrees with product map

H0(X, L) ⊗ H0(X, L′) → H0(X, L ⊗ L′),

it follows by taking L = L′ that every ample line bundle on X gives a projectively
normal embedding [6]. A slightly more intricate argument shows that if X×X×X
is split compatibly with the union of the large semidiagonals ∆ × X and X × ∆,
then the images of all such embeddings of X are cut out by quadrics [5]. Since the
canonical splitting of X × X is not compatible with ∆, to apply these standard
techniques we must look for other splittings of X × X and X × X × X and ask
which of these, if any, are compatible with the diagonal and the union of the large
semidiagonals, respectively.

Some progress has been made toward giving combinatorial characterizations of
toric varieties X such that X × X is split compatibly with the diagonal and such
that X ×X×X is split compatibly with the union of the large semidiagonals, and
these efforts and some partial results were discussed during the workshop. Details
may appear elsewhere.
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Normality and Integer Linear Programming

Ngo Viet Trung

Theme: Methods of Integer Linear Programming can be used to study the nor-
mality of certain polytopes.

1. Integer Round-up Property

Let P ⊂ Rn be a rational polyhedron. We say that P has the integer decompo-
sition property (ID) if x ∈ kṖ ∩Zn, k ≥ 1 implies x = x1 + · · ·+xk for xi ∈ P ∩Zn.
If P is a lattice polytope, then ID means nothing else than P is normal.

It is known that ID of certain rational polyhedra can be characterized by the
so-called integer rounding properties of Integer Linear Programming.

Let v1, ..., vm be non-negative integral vectors in Rn such that vi 6≤ vj for all
i 6= j. Let

P := conv{x ∈ Nn : ∃ i s.t. x ≤ vi}.
The normality of P can be studied by means of the matrix A = (v1, ..., vm).

We say that A has the integer round-up property (IRU) if

min{|y| : y ≥ 0 integral, Ay ≥ c} = ⌈min{|y| : y ≥ 0, Ay ≥ c}⌉
for all c ∈ Zn. Note that IRU can be tested in polynomial time.

Theorem 17. [1] P has ID iff A has the IRU.

An instance of the above class of polytopes is the knapsack polytope:

P = conv{x ∈ Nn| ax ≤ λ},
where a ∈ Nn and λ ∈ N are given. There have been a lot works in finding
knapsack polytopes which have or don’t have IRU.

Now we will present a class of matrices with IRU.
Let G be a simple graph. A colouring of G is an assignment of colours to the

vertices such that adjacent vertices have different colours. Let c(G) denote the
minimal number of colours of colourings of G. It is clear that

c(G) ≥ max{|K| : K is a clique of G}.
One calls G perfect if equality holds above for all induced subgraphs of G.

Let A now be the incidence matrix of the maximal cliques of G. It is known
that G is perfect iff the system xA ≤ 1 is tottally dual integral (TDI), i.e. the
equation

max{cx : x ≥ 0, xA ≤ 1} = min{|y| : y ≥ 0, Ay ≥ c}
has an integral optimal solution y for all c ∈ Zn. It is obvious that TDI implies
IRU.

Corollary 18. P has ID if A is the incidence matrix of the maximal cliques of a
perfect graph.



Mini-Workshop: Projective Normality of Smooth Toric Varieties 2301

2. Normal square-free monomial ideals

Let R = K[X ] be a polynomial ring. Let Xv1 , ..., Xvm be square-free monomials
and I = (Xv1 , ..., Xvm). We want give a combinatorial condition for I to be a

normal ideal, that is Ik = Ik for all k ≥ 1. It is obvious that I is normal iff the
Rees algebra R[It] is normal.

If the monomials Xv1 , ..., Xvm have the same degree, say d, we denote by Q the
lattice polytope spanned by the vectors (e1, 0), ..., (en, 0), (v1, 1), ..., (vm, 1) in the
hyperplane x1 + · · ·xn = (d − 1)xn+1 + 1 of Rn+1, where e1, ..., en are the unit
vectors of Rn. In this case, R[It] is the polytopal ring of Q. In particular, if P is
the polytopes spanned by the vectors v1, ..., vm, we may identify P with a facet of
Q. Therefore, if I is normal, then Q and hence P is normal.

Since I is generated by square-free monomials, I is an intersection of prime
ideals: I = P1∩· · ·∩Ps. One calls the ideal I(k) := P k

1 ∩· · ·∩P k
s the kth symbolic

power of I. We have

Ik ⊆ Ik ⊆ I(k).

Therefore, I is normal if I(k) = Ik for all k ≥ 1.
Let A = (v1, ..., vm). We say that A has the max-flow min-cut property

(MFMC) if

max{|y| : y ≥ 0 integral, Ay ≤ c} = min{cx : x ≥ 0 integral, xA ≥ 1}
for all c ∈ Nn.

Theorem 19. [2] [3] I(k) = Ik for all k ≥ 1 iff A has MFMC.

For instance, A has MFMC if A is a balanced matrix, i.e. A has no square
submatrix of odd size of the form



1 1 0 · · · 0
1 0 1 · · · ·
0 1 0 · · · ·
· ·
· ·
· 0 1
0 · · · · 1 1




In general, we have

max{|y| : y ≥ 0 integral, Ay ≤ c} ≤ max{|y| : y ≥ 0, Ay ≤ c}
= min{cx : x ≥ 0, xA ≥ 1} ≤ min{cx : x ≥ 0 integral, xA ≥ 1}.

Theorem 20. [2] [6] I(k) = Ik for all k ≥ 1 iff

min{cx : x ≥ 0, xA ≥ 1} = min{cx : x ≥ 0 integral, xA ≥ 1}
for all c ∈ Nr.

One may guess that Ik = Ik for all k ≥ 1 iff

max{|y| : y ≥ 0 integral, Ay ≤ c} = max{|y| : y ≥ 0, Ay ≤ c}
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for all c ∈ Nr. But that is not true. Instead of that we find the following condition.
We say that A has the integer round-down property (IRD) if

max{|y| : y ≥ 0 integral, Ay ≤ c} = ⌊max{|y| : y ≥ 0, Ay ≤ c}⌋
for all c ∈ Nn.

Theorem 21. [7] I is normal iff A has IRD.

If I is generated by monomials of degree 2, then I is the edge ideal of a graph.
In this case, one can give a characterization for the normality of I in terms of the
underlying graph [4], [5].
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Lattice points in Minkowski sums of lattice polygons

Najmuddin Fakhruddin

The following theorem was proved in [1]:

Theorem 1. Let X be a smooth projective toric surface, L an ample line bundle
on X , and M a line bundle on X which is generated by global sections. Then the
multiplication map H0(X,L) ⊗ H0(X,M) → H0(X,L ⊗M) is surjective.

The combinatorial description of toric varieties and base point free line bun-
dles on them shows that the above theorem is equivalent to the following purely
combinatorial result:

Theorem 2. Let P and Q be convex lattice polygons with the normal fan at each
vertex of P being unimodular and the normal cone of P refining that of Q. Then

PZ + QZ = (P + Q)Z .
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In the above P + Q denotes the Minkowski sum of P and Q and the subscript
Z on a polygon denotes the lattice points in that polygon.

The proof consists in reducing to the case that Q is a triangle of a specific type
which allows one to check the equality explicitly. The vertex unimodularity of P is
used to show that the triangle produced by the reduction step has vertices which
are lattice points.

During the workshop S. Payne suggested that the Oda conjecture could be
extended to all convex lattice polytopes by putting an appropriate condition on
lattice lengths of edges. In the case of polygons there are no extra conditions; this
suggests that Theorem 2 should hold without the unimodularity condition on P
or, in the geometric language of Theorem 1, without the nonsingularity hypothesis
on the toric surface.
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On Fanos and Chimneys

Christian Haase and Andreas Paffenholz

A lattice polytope which has a (regular) unimodular triangulation is normal – see
the hierarchy of properties listed later in this volume, in the section “What else do
we know?”. We use this fact to describe a surprisingly effective method to prove
projective normality (and more) for smooth reflexive polytopes.

Let P ⊂ Rd×{1} be a lattice polytope. To each such polytope we can associate
a toric ideal IP in the following way. Let A = {a1, . . . , an} be the set of lattice

points in P . for any a ∈ A there is a monomial ta = ta
1 · · · tad

. The toric ideal IP

is defined as the kernel of the mapk[x1, . . . , xn] −→ k[ta1 , . . . , tan ]

xi 7−→ tai .

A triangulation T of P is unimodular if every simplex has normalized volume 1.
T is regular if there exists a height function h := V(P ) → R such that the pro-
jection of the lower hull of conv{(v, h(v)) | v ∈ V(P )} is T . A non-face in a
triangulation is a set S ⊆ A of the vertices of T that does not define a face of the
triangulation. It is minimal if any proper subset defines a face.

For S ⊆ A we write xS for the monomial
∏

ai∈S xi. The Stanley-Reisner ideal
of a triangulation is the monomial ideal

IT := 〈xS | S is a non-face of T 〉.
The connection between regular unimodular triangulations and toric ideals is

given by the following theorem.
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Theorem 22 (Sturmfels [4]). The toric ideal IP has a square-free initial ideal if
and only if P has a regular unimodular triangulation.

In this case, the initial ideal coincides with the Stanley-Reisner ideal of the
triangulation.

Hence, to prove that some toric ideal has a square-free initial ideal it suffices
to construct a regular unimodular triangulation of the associated polytope. Not
only does such a triangulation imply projective normality, knowledge about the
minimal non-faces also yields degree bounds for Gröbner bases.

We applied this method to the classes of d-dimensional smooth reflexive poly-
topes for d ≤ 7. A lattice polytope is called reflexive, if it contains 0 and its polar
polytope is again a lattice polytope. The polar of a smooth reflexive polytope is
a Fano polytope. Explicit representations of these Fano polytopes for d ≤ 7 were
recently computed by Mikkel Øbro [3]. There are 5, 18, 124, 866, 7622 and 72256
smooth reflexive polytopes in dimensions 2, 3, 4, 5, 6 and 7 respectively.

Theorem 23. All smooth reflexive d-polytopes for d ≤ 7 are normal. All but
8 (out of 7622) of the 6-dimensional and 120 (out of 72256) of the 7-dimensional
smooth reflexive polytopes have a regular unimodular triangulation.

Our construction of a regular unimodular triangulation proves normality (in
fact, quadratic generation) for all but the 128 exceptional polytopes. They may
well have such a triangulation. For the remaining ones we checked normality
using the program enormalz by Bruns and Koch [1]. Previously it was shown by
Lindsay Piechnik that all smooth reflexive d-polytopes have a regular unimodular
triangulation for d ≤ 4.

We sketch our method. Let Q ⊂ Rd be a lattice polytope. For two integral
linear functionals l, u with l ≤ u along Q we define the chimney polytope

P := {(x, y) ∈ Rd × R | x ∈ Q, l(x) ≤ y ≤ u(x)}
associated to Q, l and u. This is again a lattice polytope (see Figure 1).

P

u

π

Q

l

Figure 1. An example of the chimney construction. Here l ≡ 0
and u(x) = 3 − x.

Assume that the polytope Q has a regular unimodular triangulation. This
defines a subdivision of the polytope P by intersecting P with the infinite prisms
over the simplices of the triangulation. Any maximal triangulation of such prisms
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x

y

z

x

y

Figure 2. The projections Pxyz and Pxy

is unimodular. Subdividing all of P in this way we obtain a regular unimodular
triangulation of P .

This gives a simple method to check whether a lattice polytope admits a regular
unimodular triangulation. Namely, given a lattice polytope P , we can search for
unimodular transformations Φ of P such that Φ(P ) has the above form. Project
to Q and check whether Q has a regular unimodular triangulation. Iterate.

More generally, in the above construction we can allow more than one functional
bounding from below or above. We have to use a refinement of this subdivision in
the projection. To this end we define a push-forward of a subdivision.

Here is an example. Consider the following polytope given by eight inequalities
in variables x, y, z, w.

(1)

0 ≤ x
0 ≤ y ≤ 3 − x
0 ≤ z

x − 1 ≤ z
0 ≤ w ≤ 2 + x − z

w ≤ 4 − y − z

We have ordered the inequalities so that each variable is bounded above or below
by integral linear functionals in the previous variables. We want to project P to
x-y-z-space. This projection Pxyz has the representation (see Figure 2 on the left)

0 ≤ x
0 ≤ y ≤ 3 − x
0 ≤ z ≤ 2 + x

x − 1 ≤ z ≤ 4 − y .

Observe that Pxyz has facets z ≤ 2 + x and z ≤ 4 − y whose pull-backs are not
facets of P . They are implied by the inequalities 0 ≤ w and w ≤ 2 + x − z,
respectively w ≤ 4 − y − z.

The push-forward of the trivial subdivision of P divides Pxyz along the plane
x+y = 2, the projection of the ridge formed by the two upper bounds on w in (1),

0 ≤ w ≤ 2 + x − z
w ≤ 4 − y − z

}
x + y = 2 .
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This is a lattice subdivision, as the intersection of this hyperplane with Pxyz is the
convex hull of the lattice points (1, 1, 0), (0, 2, 0), (0, 2, 2), (2, 0, 4), and (2, 0, 1).

We can project this again to obtain a subdivided polytope Pxy in the x-y-plane
given by the inequalities 0 ≤ x and 0 ≤ y ≤ 3 − x (see Figure 2 on the right).
Any (regular and unimodular) triangulation of this subdivision can be used to
construct a triangulation of P .

We implemented this method using the software package polymake by Gawrilow
and Joswig [2]. We applied it iteratively to each polytope and checked whether
we can find a sequence of projections down to dimension 2, where we know that
any lattice polytope admits a regular unimodular triangulation.
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Normality and Hadamard simplices

Francisco Santos

In this note we explore how to construct non-normal polytopes and smooth
polytopes based on the Hadamard simplices. Unfortunately, we do not get poly-
topes with both properties at the same time.

1. Hadamard simplices; an introduction

Let C be the ±1 cube in Rd. That is, C = [−1, 1]d. Let ∆ be any regular
simplex with vertices contained in those of C (∆ exists only for certain values of
d. See below). We call ∆ a Hadamard simplex. It is easy to check that:

Lemma 24. A subset {v1, . . . , vd+1} ⊂ {−1, +1}d is the vertex set of a Hadamard
simplex if and only if any of the following equivalent conditions holds:

(1) The (d + 1) × (d + 1) matrix with columns {(v1, 1), . . . , (vd+1, 1)} equals√
d + 1 times an orthogonal matrix. Such a ±1 matrix is called a Hadamard

matrix (cf. [1], Chapter 3, 2.13; for a recent survey on Hadamard matrices
see [3]).

(2) The Hamming distance between any two of the vi’s equals (d + 1)/2. As
usual, the Hamming distance between two vectors is the number of coor-
dinates on which they differ. In {−1, +1}d the Hamming distance is half
the L1-distance.

These descriptions imply the following basic properties of Hadamard simplices:

ftp://www.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software
http://arxiv.org/abs/0704.0049
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• For a Hadamard simplex to exist in dimension d > 1, d + 1 must be
a multiple of four. Indeed, the three Hamming distances between three
vertices vi, vj and vk of ∆ should be equal to (d + 1)/2. But at least one
of them is even. The Hadamard conjecture is that this condition on d is
also sufficient. It has been verified up to d + 1 = 664 [3, 2].

• Since the tensor product of Hadamard matrices is a Hadamard matrix,
Hadamard simplices exist in at least all dimensions of the form 2k − 1.

• Hadamard simplices are reflexive polytopes. Actually, the polar of a
Hadamard simplex ∆ is −∆.

• The determinant of a Hadamard matrix is (d + 1)(d+1)/2. Hence, the
volume of a Hadamard simplex, normalized to the unimodular simplex in
the lattice generated by {−1, 1}d, equals (d + 1)(d+1)/2/2d.

The last property, saying that Hadamard simplices are “big”, is what makes us
believe they could be a starting point to the construction of smooth non-normal
polytopes. Of course, “big” empty simplices are easy to construct directly even
in Z3, but Hadamard simplices do have a property that cannot arise in dimension
three. It is known that lattices of dimension up to four only have unimodular
Delone simplices. However:

Proposition 25 ([5]). For every dimension d = 2k − 1 there is a 0/1-Hadamard
simplex that is a Delaunay simplex in a sublattice Λ ⊆ Zd of index 2d−k =
2d/(d + 1). That is, Λ is a lattice with Delone simplices of normalized volume
(d + 1)(d+3)/2/4d.

2. Smooth and not-normal truncations of Hadamard simplices

We omit the proof of the following statement:

Lemma 26. For m < (d + 1)/4, the dilated Hadamard simplex m∆ does not
contain two antipodal points from the boundary of the cube [−1, 1]d.

In particular, it does not contain two opposite non-zero lattice points.

Corollary 27. Let m < (d + 1)/4 be an odd natural number. Considered as a
polytope in the affine lattice Λ = (1 + 2Z)d, the dilated Hadamard simplex m∆ is
not normal.

Proof. Let P = m∆. Then, the origin is in (P + P ) ∩ (Λ + Λ) but it is not in
(P ∩ Λ) + (P ∩ Λ); the latter is by the previous lemma. �

This result is interesting in the light of the following fact: for any lattice poly-
tope P in Rd, dP is normal (considered in the lattice dΛ, for any affine lattice
containing the vertices of P ).

We are finally interested in the polytope m∆ ∩ nC, for m, n ∈ N. We will
always assume that n < m < nd, since for n ≥ m we have m∆∩nC = m∆ and for
m ≥ nd we have m∆∩nC = nC. Also, we assume that m and n are both odd, so
that the lattices (m + 2Z)d and (n + 2Z)d containing their vertices coincide with
Λ := (n + 2Z)d.

We propose the following questions:
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Question 5. (1) Is m∆ ∩ nC always a lattice polytope in Λ?
(2) For which values of m and n is it normal?
(3) For which values of m and n is it smooth?

We believe the answer to the first question to be yes. The same argument of
Corollary 27 shows that for m < (d + 1)/4 the polytope m∆ ∩ nC is not normal.
An easy argument shows that for m > nd − nd+1

4 it is smooth: at every vertex
all but one of the facets are coming from the cube. But between those bounds we
know nothing.
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Strategies for proving projective normality of ample line bundles on
smooth projective toric varieties

Problem session of the Mini-Workshop on projective normality

Introduction. In this session one half of the participants gathered ideas and
approaches to find positive results for projective normality. We first separated
suggestions that might work only in special cases from the ones that should be
more useful for the general situation. Then we focused on collecting methods
and strategies that seemed promising to pursuit. Contributions came from diverse
areas as enumerative combinatorics, convex geometry, commutative algebra, and
algebraic geometry. Finally, we made notes of open questions and conjectures
whose solution or disprove should shed some light on the problems addressed.

In what follows, P ⊂ Rd is a d-dimensional lattice polytope. We say P is
smooth, if the normal fan of P consists of unimodular cones, or equivalently, the
toric variety X associated to the normal fan of P is smooth. We call P normal, if
the ample line bundle on X associated to P is projectively normal, or equivalently,
every lattice point in kP is the sum of k lattice points in P (for all k ∈ Z≥1). We
remark that it suffices to check this condition for 2 ≤ k ≤ d− 1 (for instance, this
can be derived from the fact that any lattice polytope can be triangulated into
empty lattice simplices).

The open question we are going to refer to as the main conjecture is the follow-
ing: Are smooth polytopes normal?
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Summary of possible approaches. Let P be smooth.

(1) d = 3. The case d = 2 being elementary, the first unsettled situation
is the three-dimensional case. Proofs of the main conjecture have been
announced however none has been confirmed by now, so the problem is
still considered to be open. Here, the question can be easily formulated:
Is every lattice point in 2P the sum of two lattice points in P?

(2) Vanishing theorems and onion skins. In cohomology theory there ex-
ist many vanishing theorems that were recently successfully applied (key-
words: adjoint line bundles, multigraded regularity of line bundles) to
show that line bundles are normal (respectively, nef, very ample, Np). In
particular, a theorem due to Ein & Lazarsfeld says that Ad+2 + B + KX

is projectively normal, if A is an ample and B a nef line bundle. One may
even take d + 1 instead of d + 2, if X is not projective space.

From the combinatorial point of view these ideas are closely related to
taking so-called onion skins of lattice polytopes. This means to ”shrink”
the polytope by moving a facet one integral distance more to the in-
side. Since under suitable assumptions the smaller polytope is going to be
smooth again, we might be able to use some induction.

(3) Close lattice points. The attempt that seems to be the most natural
one from the viewpoint of convex geometry is the following: Let x be a
lattice point of height k in the cone over P ×1 (we may assume k ≤ d−1).
Now, we should look for a lattice point y in P × 1 that is ”close” to x/k,
meaning that x − y is also in the cone over P × 1. This would give the
nice decomposition x = y + (x− y), where x− y is a lattice point of height
k − 1.

(4) Generating functions. It is suggested to use results of Brion and Barvi-
nok & Woods on the generating functions enumerating lattice points in
lattice polytopes. Comparing the generating function for the lattice points
in 2P = P + P with the one enumerating the sum of lattice points in P ,
normality turns out to be equivalent to the vanishing of an explicit but
complicated series.

(5) Frobenius splitting. There is a condition for general smooth projective
varieties, not necessarily toric, that implies that every ample line bundle
is projectively normal. This is the assumption that X × X is split com-
patibly with the diagonal ∆ ⊂ X × X . However, in the toric case only
a rather limited class of smooth projective varieties is expected to admit
such a Frobenius splitting. Still, it may be useful to identify the asso-
ciated smooth (and necessarily normal) lattice polytopes, since it might
turn out that more lattice polytopes could appear as faces of these normal
polytopes.

Summary of related open questions.

(1) Find a purely combinatorial proof of a result stated in (2) above which has
an algebro-geometric proof: X smooth implies D := Ad+2 +B +KX being
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normal. Does the lattice polytope associated to D have even a unimodular
covering? Here is another related question: if P is any lattice d-polytope,
is (d − 1)P not only always a normal polytope, but does it also have a
unimodular covering?

(2) We expect that simple lattice polytopes with ”long” edges are normal,
where ”long” means some invariant uniform in the dimension. More pre-
cisely, we suggest the following conjecture: Let P be a simple lattice poly-
tope. Let k be the maximum over the heights of Hilbert basis elements
of tangent cones to vertices of P . Then, if any edge of P has length ≥ k,
the polytope P should be normal. Note that this generalizes the main
conjecture on smooth polytopes.

(3) We are interested in finding a good description of the region R in the
ample cone of a projective normal toric variety consisting of projectively
normal line bundles. In particular, we would like to know the answers to
the following questions:
(a) Is R a semigroup? Equivalently, are Minkowski sums of normal lattice

polytope with the same normal fan again normal?
(b) Is R a module over the nef cone? Equivalently, is the Minkowski sum

of a normal lattice polytope and a lattice polytope with a coarser
normal fan again normal?

(c) Is R convex?
(d) Are there only finitely many ample (respectively, nef) line bundles

not in R?
If the variety is smooth, the last point is a weaker variant of the main
conjecture.

problem session reported by Benjamin Nill

Searching for a counterexample, Monday afternoon

Problem session of the Mini-Workshop on projective normality

The suggestions made are listed below, where the marked ones are those on
which the participants plan to focus more deeply in the coming days:

(1*) Try to use known strange polytopes to generate candidates for a coun-
terexample. In particular, one could try to resolve the projective toric variety,
corresponding to the very ample non-normal polytope associated with the trian-
gulation of the real projective plane, and then find a small projective embedding
of the obtained smooth variety.

(2) There was a suggestion to generate explicit large class of non-normal poly-
topes, with a potential possibility to make them smooth by some sort of polytope
modification, without forcing the normality property.

(3) Find smooth polytopes every vertex of which admits an opposite facet not
too far from the vertex (in the lattice distance sense). Such polytopes have bet-
ter chances to fail the normality because there is not much room to propagate
unimodular covers from the vertices deep inside the polytope.
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(4) A Dueck-Hosten result was mentioned: every normal lattice d-polytope with
d + 2 or d + 3 lattice points has a unimodular triangulation.

(5*) How can one find lattice polytopes P with the property that the number
of lattice points in it is essentially smaller than that in 2P? If P is also smooth
then the we have a candidate. This question is related to the size of the degree 2
part of the corresponding toric ideal: the more such degree 2 relations the better
the chances for the desired inequality.

(6*) Test the smooth polytopes, coming from smooth Fano toric varieties and
their small projective embeddings.

PS. Bruns-Gubeladze-Serkan have a rudimentary implementation of a more
general algorithm which will be refined in the near future.

(7) Are there some nice invariants that detect the non-normality of a polytope?
Do the Ehrhart functions help?

(8) Filter out smooth polytopes by the Hilbert connectivity property: every two
lattice points are linked by such a broken line inside the polytope that the directed
edges are Hilbert basis elements of the corner cones. In general this property may
not be related to the normality property, but for smooth polytopes the relationship
may be strong enough to lead to a real candidate.

(9*) Let P be a smooth polytope and F ⊂ P be a face. If all edges of P ,
meeting F at a vertex, have lattice length at least 2 then conv(L(P \ F )) is also
smooth and is smaller than P . Iterate this process as many times as possible to
arrive at a ”tight smooth polytopes”.

(10) Start by a polytope with an adjacent pair of unimodular vertices and close
up the corresponding pair of unimodular corner cones to a small smooth polytope.

problem session reported by Joseph Gubeladze

Summary of Discussion, Tuesday Afternoon

Problem session of the Mini-Workshop on projective normality

This note records the discussion of a working group comprising Paffenholz,
Craw, Hasse and Smith. The afternoon’s task was to produce a counterexample
to the conjecture that every ample bundle on a smooth toric variety defines a
projectively normal embedding. The method assigned to our group was to modi-
fying the projective embedding arising from a normally generated line bundle; in
combinatorial terms, our task was to produce a smooth, non-normal polytope by
modifying in some way a normal one.

Rather than tackle this problem head-on, we chose to modify a nonsmooth
polytope that is ‘close’ to being non-normal. More specifically, our starting point
was a 3×3 Birkoff transportation polytope B3. While non-smooth, the toric ideal
arising from embedding by the sections of this line bundle is not quadratically
generated and hence is close in some sense to being non-normal.

The polytope that we considered is the convex hull of those lattice points in Z9

such that, putting the coordinates into a 3× 3 matrix, each row-sum and column-
sum must equal 3. The resulting four-dimensional polytope has 6 vertices and 9
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facets, where every vertex is incident to 6 facets. We chose to shrink by deleting
the vertex

v =




3 0 0
0 3 0
0 0 3



 ,

i.e., we consider the polytope obtained from the convex hull of the remaining lattce
points. The neighbouring lattice points on the edges emanating from v are




2 1 0
0 2 1
1 0 2



 ,




2 0 1
1 2 0
0 1 2



 ,




3 0 0
0 2 1
0 1 2



 ,




2 0 1
0 3 0
1 0 2



 ,




2 1 0
1 2 0
0 0 3



 ,

Using Polymake, we deduced that the resulting polytope has 10 vertices, 24 edges,
25 faces, 11 facets, and it is normal. Thus, we had not yet achieved our aim.
Repeating the process on the remaining 5 vertices of the original polytope led to
a smaller polytope that is nevertheless not normal. Going further still, we shrunk
the polytope as far as possible with the hope of producing a non-normal example,
but this proved not to be the case.

Thus, we this brief study, our repeated shrinking of a relatively small four-
dimensional polytope failed to produce a non-normal polytope.

problem session reported by Alastair Craw

Report on the session ”Investigating the Ohsugi–Hibi example”

Problem session of the Mini-Workshop on projective normality

This group consisted of Ohsugi, Hibi, Santos, and Schenck. The Ohsugi-Hibi
example (OH, “Toric ideals generated by quadratic binomials” J.Alg 218, p. 509–
527 (1999)) is a non-normal, Koszul semigroup ring, generated by the monomials
(given by subscripts).

123, 134, 145, 125, 236, 456, 347, 257

The resulting variety is a projective four-fold X ⊆ P7, which is in fact a complete
intersection, with ideal generated by

x2x8 − x4x7, x1x6 − x3x5, x1x3 − x2x4.

Two natural questions are

(1) Is X smooth?
(2) Is the divisor corresponding to the embedding very ample?

It is easy to write down the Jacobian matrix for the equations of the embedded
variety. One row contains only the variables x1, . . . , x4, and it is easy to check that
all points of the form (0 : 0 : 0 : 0 : ∗ : ∗ : ∗ : ∗) lie on X . Since X is a complete
intersection, the singular locus of the embedded object consists of those points
where the Jacobian matrix drops rank, which implies that X ⊆ P7 is singular.
The group also investigated triangulations of the polytope; by passing to the Gale
dual diagram we showed that there are 20 of them.

problem session reported by Hal Schenck
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What else is known?

Christian Haase

(joint work with all workshop participants)

This is a report on two brainstorming sessions where we tried to list as many
results as possible related to the projective normality question. Please accept
my apologies as this list may seem chaotic (and it is), and in places there are
contributions which I have not or falsely attributed.

1. A hierarchy

Let P ⊂ Rd be a lattice polytope and let C ⊂ Rd+1 be the cone it generates.
Then we have the following hierarchy of properties listed in decreasing strength.
Compare [MFO04, p. 2097f].

(1) P ∩ Zd is totally unimodular
(2) P is compressed (any pulling triangulation is unimodular)
(3) P has a regular unimodular triangulation (RUT)
(4) P has a unimodular triangulation (UT)
(5) P has a unimodular binary cover (a Z2 cycle generating Hd(P, ∂P ; Z2)

formed by unimodular simplices)
(6) P has a unimodular cover (UC)
(7) C has a free Hilbert cover (FHC: every lattice point is a Z≥0-linear com-

bination of linearly independent lattice points in P × {1})
(8) C has the integral Carathéodory property (ICP: every lattice point is a

Z≥0-linear combination of dim C many lattice points in P × {1})
(9) P is normal

Most of the implications (i) ⇒ (i + 1) are strict. The 3-dimensional 0/1-cube is
compressed but not unimodular. Example 28 below has a unimodular triangula-
tion, yet not a regular one. There are tetrahedra which have a unimodular cover
but fail to have a unimodular binary cover [KS03]. The most recent example is
the one by Bruns proving FHC 6⇒ UC [Bru07], while FHC and ICP are, in fact,
equivalent. The first normal polytope without ICP is described in [BGH+99].

There are infinitely many properties which fit between properties (8) and (9),
as we now explain. Define the Carathéodory rank CR(C) of a cone C to be the
least number k so that every lattice point in C is a Z≥0-linear combination of k
Hilbert basis elements. Then ICP is just the statement CR(C) = dim C. The
maximal Carathéodory rank CRd of a d-dimensional cone is between 7d/6 and
2d − 2 by [BGH+99] and by [Seb90] respectively. Gubeladze believes that the
function CRd /d is increasing with limit equal to 2.

2. Examples of normal polytopes

Faces of normal polytopes, products and dilations of normal polytopes are again
normal. The same is true for the other properties in our hierarchy.
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The polytope is very ample if and only if its semigroup has only finitely many
holes.

Example 28 ([OH99]). Let G = (V, E) be a graph. Then the edge polytope P (G)
is the convex hull in RV of the sum of unit vectors ei + ej for every edge ij ∈ E.

Ohsugi and Hibi describe a polytope which has a unimodular triangulation but
not a regular one — see Ohsugi’s abstract in this report. Santos observed that it
projects to the polytope disproving ICP [MFO04, p. 2097f].

Another class of normal polytopes coming from combinatorial structures are

• base polytopes of discrete polymatroids,
• the convex hull of the 0/1 incidence vectors of branchings of a directed

graph,
• the anti-blocking polytope of the incidence vectors of cliques of a perfect

graph.

Here are more examples of (classes of) normal polytopes.

Theorem 29. For any lattice d-polytope P , and c ∈ Z≥d−1, the dilate cP is
normal. For c ≥ O(d2.1d+5), cP even has a unimodular cover [BG02].

It is conceivable (though certainly not easy) that this super exponential bound
can be reduced significantly when one restricts to smooth polytopes.

The following names were invented during the conference.

Definition 5. A lattice polytope is edge unimodular if there is a totally unimod-
ular collection V of vectors so that every edge of P is parallel to an element of
V .

We call P pairwise face unimodular if for any two faces F, F ′ ≺ P , we have
(V +V ′)∩Zd = (V ∩Zd)+(V ′∩Zd) where V and V ′ are the linear spaces parallel
to F and F ′ respectively.

Eventually, P is facet unimodular if the primitive facet normals form a totally
unimodular collection.

Edge unimodular implies pairwise face unimodular, but there are examples
showing that edge unimodular and facet unimodular are independent notions.
The zonotope generated by the An root system, also known as the permutahedron
is not facet normal starting in dimension 3. On the other hand, a deformation
of the rhombic dodecahedron conv([0, 1]3 ∩ [−1, 0]3) will not be edge unimodular.
Paco Santos came up with these examples.

Matroid polytopes are edge unimodular. The following theorem was inspired
by the study of flag matroid polytopes in type A, corresponding to torus orbit
closures in SL(n)/P .

Theorem 30 (Ben Howard, this report). Pairwise face unimodular ⇒ normal.

The proof does not yield UC or any stronger property.

Theorem 31 (Santos 97 unpublished, [OH01, Sul04]). P is compressed if and
only if P can be realized as the intersection of a linear space with the unit cube.
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Examples of such polytopes are order polytopes, hypersimplices or stable poly-
topes of perfect graphs.

Theorem 32. Facet unimodular ⇒ RUT.

The main source of such polytopes are flow polytopes: given a graph with an

acyclic orientation G = (V, ~E), and a demand vector d ∈ ZV , form the polytope
{

f ∈ R~E
≥0 :

∑

e∈δ+(v)

fe −
∑

e∈δ
−

(v)

fe = dv for all v ∈ V
}
.

If G is the equioriented complete bipartite graph, then this flow polytope is also
known under the name transportation polytope.

Example 33. The Minkowski sum of linearly independent segments is an affine
cube. These polytopes are normal. Hence, general zonotopes are normal, as they
can be subdivided into affine cubes.

What about unimodular cover in either case?

Theorem 34 (Haase after Kaibel and Wolf). Let P be smooth so that all lattice
points in P are vertices. Then P is a product of unimodular simplices.

Work in progress: all smooth reflexive polytopes in dimension up to 5 have
RUTs. In dimension 6 all but 10 (out of ∼8000) have RUTs, and in dimension 7
all but 200 (out of ∼75000).

3. Examples of non-normal polytopes

The prism conv
[

0 1 0 1 2 1
0 0 1 1 1 2
0 0 0 3 3 3

]
is actually the Minkowski sum of two unimodular

simplices, but not normal. From it one can construct two 4-dimensional unimod-
ular simplices in 4-space whose Minkowski sum has it as a facet. Also, this prism
appears as a facet of a reflexive 4-polytope. (Three dimensional reflexive polytopes
have a RUT.)

The triangle-vertex incidence polytope of the 6-vertex real projective plane is
very ample, but not normal. The hole has coordinates (1, 1, 1, 1, 1, 1).

The triangle-vertex incidence polytope of the simplicial complex on the vertex
set {0, . . . , 6} with facets 012, 023, 034, 041, 125, 345, 236, 146 is Koszul despite
not being very ample, and not having a quadratic Gröbner basis.

Many Frobenius/knapsack simplices conv[0, n1e1, . . . , nded] are not normal. (See
references O. Marcotte & Scheithauser/Terno, and many others.)

Anti-blocking polyhedra which do not satisfy the rounding up condition (com-
pare Trung’s abstract in this report).

4. Related questions

A necessary numerical criterion for normality is that the h∗ vector be an M -
sequence. Is at least this true for smooth polytopes?

Meta question: what does the set of normal (very) ample line bundles in the
nef cone look like? Here are a few instances.
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• Is the set a semigroup or even a module over the nef cone? That is,

P, Q normal with the same normal fan
?⇒ P +Q normal (which kP + lQ

are normal?)
Stronger: NQ coarsens NP

• In dimension two, does Fakhruddin’s theorem need the smoothness as-
sumption? (See Fakhruddin’s and Santos’ abstracts in this report.)

• X smooth toric
?
 finitely many non projectively normal (very) ample line

bundles
More vaguely: what does the set of normal (very) ample line bundles

in the nef cone look like?

• If P has all edge lengths ≥ d (?)
?⇒ P normal

Close cousins of the projective normality question, e.g., in the context of Green-
Lazarsfeld’s properties Np, are the following.

• Normal smooth toric
?⇒ quadratically generated

• Normal toric Koszul
?⇒ quadratic Gröbner basis

Here are some questions related to the diagonally split property. (Compare
Payne’s abstract in this report.)

• Which polytopes arise as faces of diagonally split polytopes?
• Does diagonally split for p = 2 imply diagonally split for all p? (Answer

obtained during the workshop: yes for d = 2, no for d ≥ 3.)
• Give a combinatorial proof for “diagonally split ⇒ normal”.

Suppose we have a set of lattice points (not necessarily all lattice points in the
convex hull) which yield a very ample embedding. Can one bound the height of
the highest hole in the semigroup by the normalized volume of the polytope? This
is related to the Eisenbud-Goto conjecture, and to Herzog’s multiplicity question.

Which anti-blocking polyhedra are smooth? (Compare Trung’s abstract in this
report).
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