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Abstract. Over the last 20 years risk management has become one of the
more challenging tasks in the financial and insurance industries. With the cur-
rent uncertainty in the financial institutions and markets, risk management
is a major and pressing topic of interest. Risks in insurance and finance are
often described by stochastic models such as stochastic differential equations,
which describing the evolution of prices of risky assets (i.e., stock shares, in-
terest rates, foreign exchange rates, etc.) or by difference equations for time
series. In order for these models to be useful, optimal statistical methods
have to be utilized to fit the models to data. This workshop drew together
researchers from a myriad of areas related to risk management including sta-
tistics, econometrics, applied probability theory, and econometrics. The main
objective was to account for the state of the art of statistical and probabilistic
modeling in risk management and, in particular, to collect problems which
need an urgent theoretical solution.
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Introduction by the Organisers

The Mathematics and Statistics of Quantitative Risk Management Workshop, or-
ganized by Thomas Mikosch (Copenhagen), Richard A. Davis (New York), and
Paul Embrechts (Zürich), was held March 16th–March 22nd, 2008. This meeting
was well attended with over 40 participants from four continents. This workshop
was a blend of researchers with various backgrounds in mathematical finance, sta-
tistics, econometrics, extreme value theory, applied probability, and insurance.

Modern quantitative risk management integrates a wide range of sophisticated
mathematical techniques and tools. An overview from the statistical side is given
in the recent monograph by McNeil, Frey, Embrechts. Relevant areas of research
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include the theory of high-dimensional data structures; rare event simulation; the-
ory of risk measures; (multivariate) time series analysis; extreme event modeling
and extreme value statistics; optimization; and linear, quadratic, and convex pro-
gramming. Recent questions related to multi-period risk measures involve deep
results from a variety of fields. Functional data analysis is instrumental for de-
signing and analyzing risk measures, a geometric theory of extremes is useful for
the analysis of generalized risk scenarios, Malliavin calculus has become important
for the calculation of risk measure sensitivities, functional regular variation is a
relevant concept for analyzing stochastic processes exhibiting extreme behavior,
advanced rare event simulation techniques, numerical and optimization methods,
Lévy processes and more general diffusions are the building blocks for constructing
dynamic stochastic models in finance and econometrics.

As evidenced by the recent upheavals in the markets and financial institutions,
there is a pressing and critical need to develop and refine tools and methods in
quantitative risk management. Expanding on the theory in quantitative risk man-
agement should have immediate impact for the financial and insurance industries
as well as for supervisory authorities. The objective is to design mathematically
tractable, practically relevant and statistically estimable risk measures. An ad-
vanced theory also allows one to critically study the present use of tools and
methods in quantitative risk management.

Risks in insurance and finance are described by mathematical and probabilistic
models such as partial differential equations and stochastic differential equations
describing the evolution of prices of risky assets — price of stock, composite stock
indices, interest rates, foreign exchange rates, commodity prices — or difference
equations describing the evolution of financial returns. The 2003 Nobel prize
winning ARCH model is an outstanding example. Applications of these models
require advanced simulation and numerical methods and statistics plays a vital
role in the estimation of unknown parameters (possibly infinite dimensional) from
historical data.

Due to their complexity, problems of quantitative risk management require mul-
tidisciplinary solutions. They involve functional analysts who design and analyze
risk measures, probabilists who model with stochastic differential equations and
time series, applied probabilists who solve the simulation problems, numerical an-
alysts who deal with high-dimensional integration and optimization problems, and
statisticians who fit stochastic models to the data and predict future values of risky
assets.

Among the challenging problems which were discussed at the meeting are:

• Risk problems are often high-dimensional: a portfolio typically consists of
several hundred assets. Modern mathematics and statistics does not offer
immediate solutions. For example, the number of historical observations
is often smaller than the number of parameters in the model. Techniques
from function data analysis (FDA) may prove useful in this context. FDA
methods are designed to deal with panel data in which the number of
panels, which consist of time series, can be large.
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• Risks are dependent across the assets and through time. A key prob-
lem is the sensitivity of a particular modeling paradigm to model miss-
specification of multivariate models. Robustness to parameter estimation
does not quite fit the bill, since, for example, parameters coming from a
particular copula (arising from a multivariate distribution) may be com-
pletely meaningless if the true model does not involve such quantities. Em-
phasizing this aspect of sensitivity to model miss-specification encompasses
a number of the issues that were ultimately addressed at this workshop.

• Financial and insurance data are not stationary. They contain structural
breaks due to changes in the economic or social environments. A relevant
question is how such changes can be incorporated in theoretical models
and in the corresponding statistical analysis of data. Given one accepts
structural breaks, a natural questions arises as to the range of data on
which one may conduct reliable inferences.

• Various popular models for risk management are based on statistical ideas
and techniques (copulas, variance-covariance models, historical simula-
tion,...). Although these methods are popular, their limitations have not
been theoretically studied. For example, it is unclear what sense popu-
lar classes of copulas (Gaussian, student, Archimedean, etc.) achieve in
a universe of multivariate distributions where the classes of distributions
described by them are far from being dense in the class of all multivariate
distributions. The discussions at the workshop did not solve the problem,
but the talks given brought more theoretical clarity as regards the estima-
tion of certain types of copulas such as Archimedean, extreme value, and
Paretean copula.

• Modern risk management asks for the determination/estimation and ag-
gregation of risk measures calculated at high quantiles (99.9% and above)
and across different time periods, from ten days to one year. This requires
careful statistical analysis. The discussions showed that multivariate ex-
treme value theory comes close to its boundaries of applicability and tech-
niques. Rare event simulation using importance sampling can be useful,
but may break down when heavy-tailed risks are involved.

• It was also pointed out where mathematical theory reaches its limits. For
instance, the non-existence of useful risk measures on spaces of random
variables with infinite mean (as a consequence of results in functional
analysis) was shown. The numerical calculation of risk measures and the
solution of related optimization questions (capital allocation, calculation
of worst case scenarios) leads to challenging mathematical problems which
can be hard to solve.

• A natural topic of the workshop was the recent worldwide crisis of credit
portfolios. In the past, mathematical models have been designed to avoid
the present situation and they are implemented in the framework of the
Basel II accord. But they obviously have not been used successfully. Both
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formal and informal reasons for the present situation were discussed. Al-
though it would be inappropriate to blame a mathematical model for its
failure, there is evidence that various models are too simplistic and do not
incorporate market information sufficiently fast. Further, it appears that
the statistical analysis of the data was not conducted with sufficient care.

Some of the main objectives of the workshop are summarized here:

• Theory and statistical practice of risk management bear a multitude of
contradictory problems which were discussed in a rigorous way.

• The workshop emphasized some of the major problems in this area. The
critique mainly concerns statistical problems although modeling problems
(called “model risk” in practice) were given serious consideration.

• The workshop brought together some of the leading academic researchers
to discuss successes, failures and limitations of present statistical technol-
ogy in risk management.

• The mixture of researchers from different fields who often do not go to
the same conferences, was viewed as a successful experiment by all partic-
ipants.

• The workshop set the stage for future statistical and mathematical research
in the area of quantitative risk management. At present there seem to
exist more problems than solutions. Therefore a future meeting (perhaps
in 2011) to address these issues would be useful.
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Abstracts

Weighted Empirical Processes for Lévy Processes

Boris Buchmann

(joint work with Alexander Szimayer)

Consider a Lévy process L = (Lt)t≥0 on R, i.e., a process defined on a probabil-
ity space (Ω,F , P ) with independent stationary increments and càdlàg paths. The
finite dimensional distributions of L are completely determined by the distribution
of L1 and its characteristic function satisfies the Lévy-Khintchine formula:

E exp(iθL1) = exp

(

iθγ−
σ2

2
θ2+

∫

R\{0}

(eiθx−1−iθx1|x|≤1) Π(dx)

)

.

Here σ ≥ 0, γ ∈ R and Π is a nonnegative Borel measure Π on R\{0} satisfying

(1)

∫

R\{0}

(

x2∧1
)

Π(dx) < ∞ .

The measure Π is called the Lévy measure Π of L. It is uniquely determined by
its Lévy tail Π : R\{0} → R

+
0 , defined by

Π(x) = Π([x,∞)) , x > 0 , Π(x) = Π((−∞, x]) , x < 0 .

The Lévy measure Π is finite if and only if L exhibits finitely many small jumps on
any nonempty open interval almost surely. This phenomenon is called finite activ-

ity. Vice versa, processes with infinite Lévy measures are called processes of infinite

activity. Lévy processes of finite activity include compound Poisson processes and
are important, for instance, in the standard model of risk and and queuing theory
[e.g. Daykin, Pentikäinen & Pesonen (1994), Grandell (1991) or Asmussen (1987)].
In the past years processes with infinite activity have attracted many researchers
and occur in such diverse applications as storage modeling [Moran (1959), Brock-
well & Chung (1975)], turbulence [Barndorff-Nielsen (1998)] and finance [Madan
& Seneta (1987), Eberlein & Keller (1995), Barndorff-Nielsen (1998), Rydberg
(1999), Eberlein & Raible (1999), Barndorff-Nielsen & Sheppard (2001)]. Typical
examples are gamma-processes, stable processes, hyperbolic Lévy motions, gen-
eralized Lévy motions, normal inverse Gaussian processes and variance gamma
processes, but more general processes are also of interest [Klüppelberg, Kypri-
anou & Maller (2004)]. Recently, Lévy processes entered time series modeling in
continuous-time [Brockwell (2001), Klüppelberg, Lindner & Maller (2004) among
others].

In this talk we are concerned with the insufficiently resolved question how the
Lévy measure should be estimated non-parametrically. Many authors have con-
sidered the parametric inference of Lévy processes [Akritas (1982), Höpfner &
Jacod (1993), Höpfner (1997) and Woerner (2001), (2003), (2004) and references
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therein]. Recently, Figueroa-Lopez & Houdre (2006) studied nonparametric infer-
ence for Lévy densities. Jongbloed, van der Meulen & van der Vaart (2005) pro-
posed density estimators within the subclass of self-decomposable distributions.
For compound Poisson processes, Buchmann & Grübel (2003) have constructed
estimators for the distribution function of the jumps [cf. also Buchmann & Grübel
(2004)]. Van Es, Gugushvili & Spreij (2006) investigated nonparametric density
estimation for compound Poisson processes.

Although considerations of the nonparametric inference for general Lévy pro-
cesses goes back to Rubin & Tucker (1959) and Basawa & Brockwell (1982), it
is advocated by them to estimate the distribution function of the finite measure
dK(x) = x2/(1+x2) dΠ(x). As this approach does not provide us with any insight
about the nature of a possible singularity of Π, we depart from it and estimate the
tail of Π itself (with no restrictions other than (1)). We employ weight functions
to deal with possible singularities at zero and study the asymptotic properties of
the corresponding weighted empirical processes. Within a special class of weight
functions, we give necessary and sufficient conditions that ensure strong consis-
tency and asymptotic normality of the weighted empirical processes, provided that
complete information on the jumps is available. At the right end-point of Π, such
conditions follow easily from the classical results by O’Reilly (1974) and Lai (1974).
At zero this is no longer true due to a possible singularity of the Lévy measure.
To cope with infinite activity processes, we also depart from the assumption, that
trajectories are observed in full by analyzing sampling schemes where the possibly
infinitely many small jumps are neglected. We establish a bootstrap principle and
provide a simulation study for some prominent Lévy processes, such as α-stable
processes and variance-gamma.
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[7] Brockwell, P. (2001). Lévy-Driven CARMA Processes. Ann. of the Inst. of Statist. Math.
53, 112–124.

[8] Barndorff-Nielsen, O.E. & Sheppard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-
based models and some of their use in financial economics. J. Roy. Statist. Soc. Ser. B 63,
167–241.

[9] Brockwell, P. & Chung, K.L. (1975). Emptiness times of a dam with stable input and
general release function. J. Appl. Prob. 12, 212–217.
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A Market Model for Stochastic Mortality

Andrew Cairns

Recent years have seen the development of a number of models for the fu-
ture development of aggregate mortality rates. Amongst these the Olivier and
Smith model (Olivier and Jeffery, 2004, and Smith, 2005) was developed within
the forward-rate framework discussed by Cairns et al. (2006) and Miltersen and
Persson (2005). This model has a number of useful properties that make it a very
good model for use in the valuation of life insurance contracts that incorporate
embedded options. We discuss here a generalization of the Olivier and Smith
model. Dynamics of the model in its published form are driven by a sequence of
univariate gamma random variables.We demonstrate that the model in this form
does not adequately match historical data. We discuss a generalization of the
model that uses multivariate Gamma random variables as drivers.This approach
potentially gives us much greater control over the term structure of volatility of
spot survival probabilities and over the correlation term structure. We introduce
a possible approach for simulation of multivariate gamma random variables.

Cairns, A.J.G., Blake, D., and Dowd, K. (2006a) Pricing death: Frameworks for
the valuation and securitization of mortality risk.ASTIN Bulletin, 36: 79-120.
Miltersen, K.R., and Persson, S.-A. (2005) Is mortality dead? Stochastic forward
force of mortality determined by no arbitrage. Working paper, Norwegian School
of Economics and Business Administration
Olivier, P., and Jeffery, T. (2004) Stochastic mortality models. Presentation to
the Society of Actuaries of Ireland. See
www.actuaries.ie/Resources/events papers/PastCalendarListing.htm

Smith, A.D. (2005) Stochastic mortality modelling. Workshop on the Interface
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between Quantitative Finance and Insurance, International Centre for the Math-
ematical Sciences, Edinburgh. See
http://www.icms.org.uk/archive/meetings/2005/quantfinance/

Quanto Options and Mixture Exponential Jump-Diffusions

Ngai Hang Chan

A foreign equity option (or quanto option) is a derivatives security whose value
depends on an exchange rate and a foreign equity. In this talk, the valuation of
quanto options is studied when the foreign equity prices and the exchange rates
follow double exponential jump diffusions (DEJD). In particular, the two under-
lying assets are allowed to have common jumps and dependent jump sizes. The
jump sizes are modeled by the multivariate exponential distribution of Marshall
and Olkin (1967). Analytical pricing formulas are obtained for various types of
quanto options. When the exchange rate and foreign asset evolve as DEJD, it is
shown that the domestic equivalent asset follows a mixture exponential jump dif-
fusion (MEJD). Laplace transforms of various forms under MEJD are derived and
the corresponding Laplace inversions are implemented. The proposed approach is
applied to options on two assets such as the quanto options and path-dependent
options under MEJD. Numerical results demonstrate the usefulness of the pro-
posed approach.

Ruin estimates for certain risk processes driven by Markov chains

with general state space

Jeffrey F. Collamore

We study stochastic recurrence equations for certain Markov-driven processes
which arise in insurance and financial mathematics, as well as other applied ar-
eas. Our primary objective is to consider an insurance company in a Markov-
driven stochastic economic environment, and to develop sharp asymptotics for the
probability of ruin. Thus, for example, the investment returns may be modeled
according to an ARMA process or stochastic volatility model. Such investment
processes can be viewed as Markov chains in a general state space. Our main result
asserts that the probability of ruin decays at a certain polynomial rate, which we
characterize, and thereby extend results of Goldie (Ann. Appl. Probab., 1991).
Also, we develop corresponding asymptotics for the tail of a GARCH(1,1) process,
or related process, but with a Markov- dependent driving sequence, as may arise,
e.g., under regime switching. In establishing the above asymptotics we uncover,
moreover, a close connection with geometric recurrence for certain Markovian op-
erators which arise, e.g., in large deviations theory. Here we develop recurrence
properties for these operators under a nonstandard Gärtner-Ellis-type assumption
on the underlying driving process.
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The asymptotic behaviour of the density of the supremum of a stable

process

Ron A. Doney

(joint work with M. Savov)

The asymptotic behaviour of both the lower tail and the upper tail of the
distribution of the maximum of a stable process at a fixed time has been known
since the work of Bingham, [6]. (A simpler derivation can be found in Chapter
VII of [4].) This talk is devoted to the solution of the analogous question for the
corresponding density. This turns out to be considerably more difficult, but the
result may have important implications for some areas, such as optimal stopping.

Let X be a strictly stable process of index α ∈ (0, 2), which has positive jumps,
so that its Lévy measure has density

ν(x) =

{

c+x
−(α+1), x > 0

c−|x|
−(α+1), x < 0

,

where c+ > 0, c− ≥ 0. Assume also that X is not a subordinator. Then if S is
its maximum process it is known that both Xt and St have continuous density
functions, ft and mt say, and by scaling we have ft(x) = t−ηf(x/tη) and mt(x) =
t−ηm(x/tη), where η = 1/α and f and m stand for f1 and m1. From (14.37), p
88 in [9] we know that

(1) f(x) ∼ Ax−(α+1) as x→ ∞,

where the constant A is known explicitly, and from Proposition 4, p 221 in [4]

(2) P (S1 > x) ∼ P (X1 > x) ∼ Aα−1x−α as x→ ∞.

We show that in fact we can improve this to

(3) m(x) ∼ f(x) ∼ Ax−(α+1) as x→ ∞.

We also consider the corresponding small time problem : here the known result is
that

(4) P (S1 ≤ x) ∼ Bxαρ, as x ↓ 0,

where ρ = P (X1 > 0), and we establish the obvious conjecture that

(5) m(x) ∼ B
′

xαρ−1 as x ↓ 0,

with B′ = αρB.
Our method of proof involves relating m to several other quantities, such as

the the density of the position of a standard stable meander at time 1, the density
of the value of the stable process conditioned to stay positive at time 1, and the
bivariate density of the ladder height process of X at time 1. As a byproduct, we
get the asymptotic behaviour of these quantities.
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Systemic risk

Mark Davis

This meeting on financial risk management started on the day that a major Wall
Street bank, Bear Stearns, was sold to J.P. Morgan for $2 a share, having col-
lapsed in a few days after an illustrious 85-year history. This talk was an attempt
to see what the implications of this event might be for mathematical modelling of
inter-bank financial risk.

As one commentator put it, Bear Stearns was not “too big to fail”, but was
“too interrelated to fail suddenly”. This puts the spotlight on the modelling of
interactions between market counterparties. Traditionally, ‘correlation’ in credit
risk has been handled either by ‘latent variable’ models or by ‘contagion’ models.
An instance of the latter is the ‘infectious defaults’ model of Davis and Lo (2001)
which posits a simple mechanism whereby default by one obligor may trigger off
default by others. However, this model and others like it are too schematic to
mirror the complex interactions existing in reality. Additionally, most credit risk
models calculate only the distribution of actual losses, while in many cases the
most significant risk is loss of mark-to-market value due to changing asset prices
or defaults in some other part of the credit spectrum.

A one-period model of n interacting agents in a financial system has been pro-
vided by Hyun Song Shin in a 2006 BIS Working Paper. In this model, the agents
have random income, hold some quantity of real assets and leverage themselves by
issuing debt in the form of zero-coupon bonds. Settlement of all payments at the
end of the period, taking into account the seniority ranking of the bonds, leads to
a fixed-point problem which can be shown to have a unique solution under quite
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general conditions. Combining this with risk-neutral valuation leads to simulta-
neous valuation of all the debt in the system. None of it can be valued in isolation.

Shin’s model is undoubtedly a major step in the right direction but, like most
good research, it opens up as many questions as it answers. Among them are

• Extension to dynamic models, with consequent questions about design of
trading strategies to manage risk.

• The role of ‘information’: obviously it is unrealistic to suppose that the
exact structure of debt across the market is known to all participants, and
lack of such knowledge affects asset prices. It would be valuable to have a
model that quantifies these effects.

• Scalability: at the moment, network models like Shin’s are only imple-
mentable for very small n. Some way of scaling them up needs to be found,
perhaps distinguishing between ‘local’ interactions and some ‘global’ pic-
ture.

The penalty function for time consistent utility functions

Freddy Delbaen

For a Brownian motion Wt ∈ R
d, t ≤ T we characterize the time consistent

utility functions as follows: for ξ ∈ L∞ : ut(ξ) = inf{EQ[ξ +
∫ T

t fn(qn)du|Ft]|Q ∼

P} where dQ/dP = ξ(q,W ) and f : [0, T ]× Ω × R
d → Rt is a function convex in

q and predictable in (t, w). Furthermore the normalization fu(0) := 0 comes from
the assumption that u=(ξ) ≥ 0 implies EP [ξ] ≥ 0. The method of proof is via
a truncation and essentially based on Rao’s representation of supermartingales of
class D. In the case where f only depends on q and if g is the Legendre transform
of f , the ut(ξ) process relates to solutions of BSDE dYt = g(Zt)dt−ZtdWt where
YT = ξ and Y remains bounded. The case lim sup(g(ξ)/|ξ|2) <∞ identifies ut(ξ)
with Yt but if lim sup(g(ξ)/|ξ|2) = +∞ then this relation breaks down.

Empirical Processes of Extreme Cluster Functionals

Holger Drees

(joint work with Holger Rootzén)

In the literature on extreme value statistics for time series, quite general results
are known about estimators of the marginal tails. Usually it is assumed that the
suitably standardized exceedances Xi,n := an(Xi − un) converge in distribution

to a generalized Pareto distribution, i.e. P (X1,n > x|X1,n > 0) → (1 + γx)
1/γ
+ for

some extreme value index γ ∈ R; here (un)n∈N denotes a sequence of thresholds
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tending to the right endpoint of the range of the marginal d.f. F. Rootzén (2007)
analyzed the asymptotic behavior of the tail empirical process

en(x) :=
1

√

nF (un)

n
∑

i=1

(

1{Xi,n>x} − F (un + anx)
)

, x ∈ R,

for strong mixing time series and for absolutely regular time series; here F denotes
the survival function of X1. From a previous version of that paper, Drees (2000,
2003) derived a weighted approximation for this tail empirical process under abso-
lute regularity and discussed statistical applications, like the analysis of estimators
of the extreme value index or extreme quantiles. However, the tail empirical pro-
cess does not describe the extreme value dependence structure of the times series.
By and large, results on the asymptotic behavior of estimators of the extremal de-
pendence structure under suitable mixing conditions are restricted to estimators
of the extremal index and, more general, the distribution of the size of clusters of
extreme observations. Unfortunately, these estimators are of very limited value in
quantitative risk management. For instance, the distribution of the total sum of
losses exceeding a high threshold in a period of given length cannot be described
in terms of the cluster size distribution. We discuss empirical processes which
capture more general aspects of the dependence between extreme observations of
an absolutely regular stationary time series (Xi)i∈N. To this end, the time series
is split into mn blocks of length rn, say, and the core of a cluster is defined as the
minimal sequence of consecutive standardized observations Xi,n which contains all
positive values in one block. Now, following an approach by Yun (2000) (see also
Segers, 2003), let F be a family of cluster functionals, i.e. measurable functionals
f(Yj,n) of a block Yj,n := (Xi,n)(j−1)rn<i≤jrn

which only depend on the pertaining
core. We give sufficient conditions for the convergence of the empirical process

Zn(f) :=
1

√

nF (un)

mn
∑

i=1

(f(Xi,n) − E(f(Xi,n))) , f ∈ F ,

to a Gaussian process with continuous sample paths. The results are obtained by
first applying a ‘big blocks - small blocks’-technique and then general functional
limit theorems for empirical process of i.i.d. observations. Since these general con-
ditions are quite abstract and involved, we also discuss important special cases, like
(generalized) tail array sums (including the process of upcrossings over extreme
intervals) and functionals describing the distribution function of order statistics in
a cluster. In particular, it turns out that the general approach leads to conditions
for the convergence of the tail empirical process which are usually easier to verify
than the conditions established by Rootzén (2007).
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Advanced credit portfolio modeling and CDO pricing

Ernst Eberlein

(joint work with R. Frey and E. A. von Hammerstein)

Modeling dependence is a key issue when one derives the loss distribution of a
portfolio of credit instruments. We extend the factor model approach of Vasiček
by using more sophisticated distributions for the factors. Completely different
distributions from the class of generalized hyperbolic distributions and their limits
can be chosen for the systematic and the idiosyncratic factor in this approach.
As a result an almost perfect fit to market quotes of DJ iTraxx Europe standard
tranches is achieved. The correlation structure remains flat over all CDO tranches
and maturities. No base correlation framework is needed.
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Modelling the term structure of CDO losses

Damir Filipovic

(joint work with Ludger Overbeck and Thorsten Schmidt)

We consider the loss process Lt on a pool of credits (CDO) with overall nominal
normalized to 1. Define the (T, x)-bond as the instrument which pays 1{LT≤x} at
maturity T . Its price at t ≤ T is given by risk neutral expectation

P (t, T, x) = E[e−
R

T

t
rs1{LT≤x} | Ft],

where rt denotes the short rates. The risk free T -bond is then simply P (t, T ) =
P (t, T, 1).

It turns out that all contingent claims with payoff F (LT ) can be written as linear
combination of (T, x)-bonds. This makes them so fundamental.

The ultimate goal is to provide a term structure model of Heath-Jarrow-Morton
type for P (t, T, x), that is,

P (t, T, x) = 1{Lt≤x} exp

(

−

∫ T

t

(f(t, u) + φ(t, u, x))du

)

for some Itô processes

f(t, T ) = f(0, T ) +

∫ t

0

a(s, T )ds+

∫ t

0

b(s, T )dWs

φ(t, T, x) = φ(0, T, x) +

∫ t

0

α(s, T, x)ds +

∫ t

0

β(s, T, x)dWs.

We provide necessary conditions on the joint dynamics of f(t, T ), φ(t, T, x) and Lt

such that the (T, x)-bond market is arbitrage-free. Conversely, we give sufficient
conditions on the stochastic basis such that for any given volatility specification
b(t, T ) and β(t, T, x), there exists a loss process Lt and a(t, T ), α(t, T, x) such that
P (t, T, x) above defines an arbitrage-free collection of (T, x)-bonds.

Finally, we provide an affine specification of the above generic model, which allows
for efficient computation of CDO derivatives such as credit default swaps (CDS).

Rank-Based Inference for Bivariate Extreme-Value Copulas

Christian Genest

(joint work with Johan Segers)

Several nonparametric estimators are available for the Pickands dependence
function of a bivariate extreme-value copula. All of them, however, require knowl-
edge of the univariate margins. In this paper, rank-based versions of some of
these estimators are proposed for the case where the margins are unknown. In
particular, the asymptotic distributions of rank-based versions of the estimators
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of Pickands [Bull. Inst. Internat. Statist. 49 (1981) 859-878] and Capéraà, Fou-
gères and Genest [Biometrika 84 (1997) 567–577] are found using results on the
limit behavior of a class of weighted bivariate empirical processes. Small- and
large-sample comparisons indicate that even when the margins are known, a more
efficient estimator arises if the information about the margins is ignored and ranks
are used instead. This work is joint with Johan Segers, from Université catholique
de Louvain.

Multivariate risk processes: interaction and destabilization

Rudolf Grübel

(joint work with Nicole Bäuerle)

Suppose that N(t) is the number of claims arriving at an insurance company
up to time t and that the successive claim sizes are U1, U2, . . .. We assume that
there is a continuous premium income with rate c and that the initial capital is
r0. Then the company surplus at time t is given by

R(t) = r0 + c · t−

N(t)
∑

k=1

Uk.

In the classical Cramér-Lundberg model of risk theory N = (N(t))t∈R is a Pois-
son process with constant rate and claim sizes are independent and identically
distributed; further, N and (Ui)i∈N are assumed to be independent. A classical
quantitative risk measure in this situation is the exponential rate of decrease of
the probability of ruin,

P (R(t) < 0 for some t > 0 |R0 = r0),

regarded as a function of the initial capital r0, as r0 → ∞.

We consider an extension of this model to more than one business line. A crucial
point is the modelling of the multivariate counting process N = (N1, . . . , Nd),
where Ni now counts the number of claims of type i, 1 ≤ i ≤ d. We take N to
be a multivariate birth process. These are specified by their birth rate function
β : N

d
0 → R

d
+. We discuss four prototypical examples for d = 2: an independent

case with constant β, a case with repelling intensities, a case with attracting inten-
sities, and finally a ‘binary’ case, where claims of a specific type are only accepted
if the number of claims of this type is smaller than the corresponding number for
the other type.

Of particular interest is a class of models with repelling intensities that can be
obtained from the independent case via h-transforms. We give the resulting β as
a function of a distribution that is concentrated on the d-dimensional probability
simplex, which leads to directional mixing. We show that these counting processes
do not stabilize and obtain a fluid limit result. For the resulting surplus processes
we investigate the asymptotic behavior of the (global) ruin probabilities. It turns



The Mathematics and Statistics of Quantitative Risk Management 779

out that rate of exponential decrease can be written as the infimum of all relevant
rates of the associated one-dimensional mixture models.

Empirical log-optimal portfolio selection

Laszlo Gyorfi

Consider the problem of optimal trading for assets. The dynamic portfolio selec-
tion is a discrete time model for multi-period trading, where in each trading period
there is a rebalancing between the assets. For a stationary and ergotic market pro-
cess, we introduce an empirical portfolio selection, which achieves asymptotically
the best possible growth rate. Our theoretical results are illustrated for NYSE
data.

Ruin probabilities in the presence of general semimartingale

investments and heavy-tailed claims

Henrik Hult

(joint work with Filip Lindskog)

In this paper we study the asymptotic decay of finite time ruin probabilities for
an insurance company that faces heavy-tailed claims, uses predictable investment
strategies and makes investments in risky assets whose prices evolve according to
quite general semimartingales. We show that the ruin problem corresponds to
determining hitting probabilities for the solution to a random perturbation of a
stochastic integral equation. We derive a large deviation result for the hitting
probabilities that holds uniformly over family of semimartingales and show that
this result gives the asymptotic decay of finite time ruin probabilities under optimal
investment strategies.

Operational risk, Pareto copulas and regular variation

Claudia Klüppelberg

(joint work with Sidney Resnick)

Introduction. Operational Risk is defined as the risk of losses resulting from inad-
equate or failed internal processes, people and systems, or external events. It is
classified in different loss types and business lines, where we model the operational
loss in each of these cells by a compound Poisson process model. More precisely,
we model the vector of all such processes as a multivariate compound Poisson
process and the bank’s total aggregate operational loss process as the summation

X+(t) = X1(t) +X2(t) + · · · +Xd(t) , t ≥ 0 .
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Denote its distribution function by F+
t (·) = P (X+(t) ≤ ·). As risk measure we

use the total Operational Value-at-Risk up to time t at confidence level κ, which
is defined as the quantile

VaR+
t (κ) = G+←

t (κ) = inf{z ∈ R : G+
t (z) ≥ κ} , κ ∈ (0, 1) ,

for κ near 1 (e.g. 0.999). Under heavy tailed loss severities in at least one cell,

P (X+(t) > z) ∼ E[N+(t)]P (∆X+ > z) =: E[N+(t)]G
+
(z), z → ∞,

which implies for regularly varying (R−α), subexponential (S) or rapidly varying
(R−∞) loss distributions that

VaR+
t (κ) := G+←(κ) ∼ F←

(

1 −
1 − κ

E[N+(t)]

)

, κ ↑ 1.

For precise formulations with references we refer to Böcker and Klüppelberg (2006,
2007).

The Pareto Copula. We are interested in the influence of dependence between
the compound Poisson process components on the total loss process X+(·) and
VaR+

t (·). We study this by embedding the problem into the more general Lévy
process setting. We start with a triangular array of {Xn,j , n ≥ 1, j ≥ 1} in R

d

with rows iid and Xn,1 ∼ Fn. For Xn,j = (X
(i)
n,j , i = 1, . . . , d) we set F

(i)
n (x) =

P{X
(i)
n,1 ≤ x} for x ∈ R. Assume for simplicity the one dimensional marginal

distributions F
(i)
n are continuous. We introduce the marginal transformation

Pn,j = (P
(1)
n,j , . . . ,P

(d)
n,j) =

( 1

1 − F
(1)
n (X

(1)
n,j)

, . . . ,
1

1 − F
(d)
n (X

(d)
n,j)

)

,(1)

which yields standard Pareto marginals; i.e. P{P
(i)
n,j > x} = x−1, x ≥ 1 for

i = 1, . . . , d.

Definition 1. Suppose Xn,1 has distribution Fn with continuous marginals. De-
fine Pn,j as in (1). Then we call the distribution ψn of Pn,j a Pareto copula.

The Pareto Lévy Copula.

Proposition 2 (de Haan and Resnick (1977), Resnick (1987,2007)). Let Xn,1 be

a random vector with distribution Fn such that nFn(·)
v
→ ν(·) holds. Let ψn be its

Pareto copula. Then the following holds.

(a) There exists a Radon measure ψ∞ on the Borel subsets of [0,∞] \ {0} such

that nψn(n·)
v
→ ψ∞(·).

(b) For i = 1, . . . , d we have ψ
(i)
∞ ((x,∞]) = ψ∞

(

[0,∞]i−1 × (x,∞]× [0,∞]d−i
)

=

x−1 for x > 0.
(c) ψ∞ is a Lévy measure on R

d
+.

Definition 3. We call the Lévy measure ψ∞ a Pareto Lévy copula and a Lévy
process (X∞(t))t≥0 a Pareto Lévy process.
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Remark 4. The marginal processes {X
(i)
∞ (t)}t≥0 are 1-stable processes with only

positive jumps. However, the multivariate process {X∞(t)}t≥0 is not stable unless
ψ∞ has the homogeneity property ψ∞(t·) = t−1ψ∞(·).

The following marginal transformation of an arbitrary Lévy measure ν on
[0,∞] \ {0} yields a Pareto Lévy process. Assume for simplicity that the one-
dimensional marginal Lévy measures are continuous. Define ν(x) = ν((x1,∞] ×
· · · × (xd,∞]) for x ∈ [0,∞] \ {0}. Then

ν(x) = ψ
( 1

ν(1)(x1)
, . . . ,

1

ν(d)(xd)

)

, x ∈ [0,∞] \ {0} ,

and ψ defines a Pareto Lévy copula.

Example 5. (1) Independence Pareto Lévy-copula:
ψ⊥(x) = x−1

1 I{x2=...=xd=0} + · · · + x−1
d I{x1=...=xd−1=0}.

(2) Complete (positive) dependence Pareto Lévy copula:
ψ‖(x) = min(x−1

1 , . . . , x−1
d )

(3) Archimedian Pareto Lévy copula: ψ(x) = φ←(φ(x−1
1 ) + · · · + φ(x−1

d ))
for a so-called generator φ : [0,∞] → [0,∞] with certain regularity properties.
(4) Clayton Pareto Lévy copula: ψθ(x) = (xθ

1 + · · · + xθ
d)
−1/θ.

Note that limθ→∞ ψθ(x) = ψ‖(x) and limθ→0 ψθ(x) = ψ⊥(x)

Estimating Total OpVar. Denote by VaRi
t(·) the stand alone OpVaR of cell i and

by VaR+
t (·) the total OpVaR.

Theorem 6. Assume X1, . . . , Xd are completely dependent cell processes and the

loss severity distributions Fi are strictly increasing. If F+ ∈ S ∩ R−α for α ∈
(0,∞], then

VaR+
t (κ) ∼

d
∑

i=1

VaRi
t(κ) , κ ↑ 1 ,

Theorem 7. Assume X1, . . . , Xd are independent cell processes. If F1 ∈ R−α for

α ∈ (0,∞) and

limx→∞ F i(x)/F 1(x) = ci ∈ [0,∞) for all i = 2, . . . , d, then

VaR+
t (κ) ∼ VaR1

t

(

(λ1 + c2λ2 + · · · + cdλd) t

1 − κ

)

, κ ↑ 1 .

Definitions and relations, which yield the following lemma can be found in
Klüppelberg and Resnick (2007).

Lemma 8. Let ν be a Lévy measure with regularly varying marginals ν(i) and

homogeneous Pareto Lévy copula of order -1 : ψ(t·) = t−1ψ(·). Then the Lévy

measure ν is multivariate regularly varying.

Theorem 9. Assume that the Lévy measure is multivariate regularly varying and

that all marginal Lévy measures ν(i) ∈ R−α for 0 < α < ∞. Assume further that
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the loss severity distributions Fi are strictly increasing and continuous. Then, X+

is compound Poisson with frequency parameter λ+ and loss severity tail

F
+
(z) ∼

ν+((1,∞])

λ+
F 1(z) ∈ R−α ,

where ν+((z,∞]) = ν({x ∈ R
d
+ :

∑d
i=1 xi > z}) for z > 0. Furthermore, total

OpVaR satisfies given by

VaRt(κ)∼F←1

(

1 −
1 − κ

t ν+((1,∞])

)

, κ ↑ 1 .

Example 10. [Clayton Lévy copula] For i = 1, 2 let ν(i) ∈ R−α for 0 < α < ∞.
Since the Clayton Lévy copula is homogeneous of order -1, the Lévy measure ν is
multivariate regularly varying. By analytic nonsense,

ν+((1,∞]) =: λ1 + λ2 c(α, θ, λ1, λ2) ,

with c(α, θ, λ1, λ2) > 0. Then we obtain for total OpVar

VaR+
t (κ) ∼ F←1

(

1 −
1 − κ

(

λ1 + λ2 c(α, θ, λ1, λ2)
)

t

)

, κ ↑ 1 .
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Importance sampling, diffusions and rare event simulation

Don McLeish

We consider Monte Carlo estimation of rare events using exponential families
of importance sampling distributions. In various examples it is shown that the
exponential tilt is suboptimal. For the uniform distribution the exponential tilt
or the beta density have relative error which is bounded as the probability of
the rare event approaches 0 and this with the inverse transform implies there
is a tilt giving relative error that is bounded (and less than around 0.738) for
any continuous distribution. It is suggested that the extreme value distribution
determined by the tails of the loss (for example the Gumbel distribution when the
loss is either exponentially distributed or Normally distributed) is a candidate for
an efficient importance sampling distribution.
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A New perspective on Archimedean Copulas

Alex McNeil

It is shown that a necessary and sufficient condition for an Archimedean cop-
ula generator to generate a d-dimensional copula is that the generator is a d-
monotone function. Moreover the class of d-dimensional Archimedean copulas is
shown to coincide with the class of survival copulas of d-dimensional L1-norm
symmetric distributions that place no point mass at the origin. The d-monotone
Archimedean copula generators may be characterized using a little-known inte-
gral transform of Williamson (1956) in an analogous manner to the well-known
Bernstein-Widder characterization of completely monotone generators in terms of
the Laplace transform. These insights allow the construction of new Archimedean
copula families and provide a general solution to the problem of sampling multi-
variate Archimedean copulas.

Generalized Affine Models

Nour Meddahi

(joint work with Bruno Feunou)

Affine models are very popular in modeling financial time series as they al-
low for analytical calculation of prices of financial derivatives like treasury bonds
and options. The main property of affine models is that the conditional cumu-
lant function, defined as the logarithmic of the conditional characteristic function,
is affine in the state variable. Consequently, an affine model is Markovian, like
an autoregressive process, which is an empirical limitation. The paper generalizes
affine models by adding in the current conditional cumulant function the past con-
ditional cumulant function. Hence, generalized affine models are non-Markovian,
such as ARMA and GARCH processes, allowing one to disentangle the short term
and long-run dynamics of the process. Importantly, the new model keeps the
tractability of prices of financial derivatives. This paper studies the statistical
properties of the new model, derives its conditional and unconditional moments,
as well as the conditional cumulant function of future aggregated values of the
state variable which is critical for pricing financial derivatives. It derives the ana-
lytical formulas of the term structure of interest rates and option prices. Different
estimating methods are discussed (MLE, QML, GMM, and characteristic func-
tion based estimation methods). The paper presents an empirical example where
one models jointly the high-frequency realized variance and the daily asset return
and provides the term structure of risk measures such as the Value-at-Risk, which
highlights the powerful use of generalized affine models.
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Inference for Continuous Semimartingales Observed at High

Frequency: A General Approach

Per Mykland

(joint work with Lan Zhang)

The econometric literature of high frequency data usually relies on moment es-
timators which are derived from assuming local constancy of volatility and related
quantities. We here show that this first order approximation is not always valid
if used naively. We find that such approximations require an ex post adjustment
involving asymptotic likelihood ratios. These are given. Several examples (powers
of volatility, leverage effect, ANOVA) are provided. The first order approxima-
tions in this study can be over the period of one observation, or over blocks of
successive observations. The theory relies heavily on the interplay between stable
convergence and measure change, and on asymptotic expansions for martingales.
Practically, the procedure permits (1) the definition of estimators of hard to reach
quantities, such as the leverage effect, of volatility, (2) the improvement in effi-
ciency in classical estimators, and (3) easy analysis.

Aggregating Risk Capital, with an application to Operational Risk

Giovanni Puccetti

(joint work with Paul Embrechts)

In the Basel II regulatory setup for operational risk in banking, banks are re-
quested to set aside capital for the purpose of offsetting Operational Risk. We an-
alyze how interdependencies between individual random losses and the risk calcu-
lation procedure may influence different estimates for the minimum capital charge
required.

Some functional central limit theorems for linear processes

Alfredas Račkauskas

(joint work with Ch. Suquet and R. Norvaǐsa)

Our contribution to Donsker-Prohorov invariance principle involves three direc-
tions of extension, dealing with:

• other topological frameworks for the weak convergence of partial sum pro-
cesses;

• dependent random variables;
• infinite dimensional random elements.

We consider the space BVp[0, 1] of functions having finite p variation, p > 2, and
the space Hα[0, 1] of functions having continuity as tα, 0 < α < 1/2. Necessary
and sufficient conditions for weak convergence of partial sum processes shall be
discussed for both functional frameworks.
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Some applications of the results to multiple change problems in data shall be
discussed.

Contracting for optimal investment under risk constraints

Chris Rogers

This talk considers the problem of a principal who wishes to maximize his
expected utility of wealth at some fixed future time, and employs an agent to
trade his portfolio. The utilities of principal and agent will typically be different,
but we show that the principal can offer the agent a contract under which the
agent acting in his own best interests will achieve the principal’s optimum. We
then show how in a simple complete market setting a principal constrained to
satisfy a law-invariant coherent risk measure constraint on his terminal wealth can
construct a contract with his agent (trader) such that the agent acting without
any constraints in his own self-interest will trade to the principal’s optimum.

Extremes of stable random fields

Parthanil Roy

We consider a point process sequence induced by a stationary symmetric α-
stable (0 < α < 2) discrete parameter random field. It is easy to prove, following
the arguments in the one-dimensional case in Resnick and Samorodnitsky (2004),
that if the random field is generated by a dissipative group action then the point
process sequence converges weakly to a cluster Poisson process. For the conserva-
tive case, no general result is known even in the one-dimensional case. We look
at a specific class of stable random fields generated by conservative actions whose
effective dimensions can be computed using the structure theorem of finitely gener-
ated Abelian groups. The corresponding point processes sequence is not tight and
hence needs to be properly normalized in order to ensure weak convergence. This
weak limit is computed using extreme value theory and some counting techniques.

Stochastic ordering and risk measures for portfolio vectors

Ludger Rüschendorf

The aim to introduce risk measures for portfolio vectors is to measure not only
the risk from the variation of the components but also that arising from positive
dependence between the components. We introduce some classes of portfolio risk
measures as aggregation risk measures or generalized distortion risk measures and
investigate their consistency w.r.t. dependence orderings like the supermodular,
the directional convex or the ∆-monotone ordering. General convex risk measures
are consistent w.r.t. the convex order. An analog of the Kusuoka representation
result is given characterizing law invariant convex risk measures. It turns out that
in the general case minimal correlation risk measures play the role in d ≥ 1 that



786 Oberwolfach Report 15/2008

the expected shortfall plays in d = 1.
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The effect of memory on functional large deviations of infinite moving

average processes and ruin probabilities

Gennady Samorodnitsky

(joint work with Souvik Ghosh)

We argue that in financial and other applications it is very useful to look at
the phenomenon of long range dependence through lenses other than correlations.
While concentrating on a doubly infinite moving average model with exponen-
tially light tails we study functional large deviations, that are more informative
than correlations.

The large deviations are very similar to those of an i.i.d. sequence as long as
the coefficients decay fast enough. If they do not, the large deviations change dra-
matically. We study this phenomenon in the context of functional large, moderate
and huge deviation principles. We also describe the change in the order of mag-
nitude of ruin probabilities depending on the rate of decay of the moving average
coefficients.

Conditional limit laws for multivariate excesses

Philippe Soulier

(joint work with Ann-Laure Fougeres)

The aim of this talk is the estimation of the conditional limit distribution of
a random variable Y given that another random variable X exceeds an threshold
x that tends to infinity. We focus on the framework proposed by Balkema and
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Embrechts (2007), who assume that the level lines of the density of the pair (X,Y )
are asymptotically locally elliptical. We propose estimators of the normalizing
sequences and of the limiting distribution.

Open Problems in Financial Statistics

Michael Steele

This talk began with a discussion of a risk/reward paradox. We all agree that
across assets, higher returns are typically associated with higher risks. Neverthe-
less, when we look at intertemporal returns we find the opposite effect; typically
periods of higher volatility produce lower returns. One can explain some — but
not all — of this phenomenon by Black’s leverage effect, so some paradox remains.
The other four problems concerned (a) a permutation technique for evaluating
the uncertainty of trading strategies, (b) the use of ”simulated verisimilitude” in
model selection, (c) the contrast between effective mean reversion strategies (as
in rebalanced portfolios) and momentum strategies (as in sector momentum), and
(e) ”Things Change” — the challenge of non-stationarity as illustrated by a half-
dozen examples of major economic features that ”changed” and never ”changed
back.”

What Finance Has Done for Life Insurance - and Vice Versa

Mogens Steffensen

We present standardized methods for modeling and valuation of life insurance
payment streams. These are based on assumptions about simple dependence struc-
tures and simple modeling of capital gains. We discuss how the mathematics of
finance has influenced the view on these assumptions and how this influence has
moved the industry concerning design and management. But the enlightenment
is not one-way: We also provide an example of what life insurance can offer fi-
nance. The talk is based on the article ’Life insurance’ to appear in Encyclopedia
of Quantitative Finance.

Max-stable processes, representations and ergodicity

Stilian Stoev

Max-stable stochastic processes arise in the limit of component-wise maxima
of independent processes, under appropriate centering and normalization. In this
talk, we present necessary and sufficient conditions for the ergodicity and mixing
of stationary max-stable processes.

The large classes of moving maxima and mixed moving maxima processes are
shown to be mixing. Other examples of ergodic doubly stochastic processes and
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non-ergodic processes will be given. The developed ergodicity and mixing con-
ditions involve a certain measure of dependence. We will address the statistical
problem of estimating this measure of dependence.

Efficient estimation for ergodic diffusions sampled at high frequency

Michael Sørensen

A general theory of efficient estimation for ergodic diffusions sampled at high
frequency is presented. High frequency sampling is now possible in many applica-
tions, in particular in finance. The theory is formulated in term of approximate
martingale estimating functions and covers a large class of estimators including
most of the previously proposed estimators for diffusion processes, for instance
GMM-estimators and the maximum likelihood estimator. The asymptotic sce-
nario considered is that the time between observations, ∆, goes to zero, while the
number of observations, n, goes to infinity fast enough that n∆, the observation
time horizon, goes to infinity. The latter assumption is needed to ensure that
drift parameters can be estimated consistently. This type of asymptotics for dif-
fusions models has previously been considered by Prakasa Rao (1988), Yoshida
(1992), Kessler (1997) and Gobet (2002). Simple conditions on the estimating
functions are given that ensure rate optimality, where estimators of parameters in
the diffusion coefficient converge faster than estimators of parameters in the drift
coefficient, and efficiency. The conditions turn out to be equal to those implying
small ∆-optimality in the sense of Jacobsen (2002) and thus give an interpretation
of this concept in terms of the classical statistical concepts rate optimality and
efficiency. Optimal martingale estimating functions in the sense of Godambe and
Heyde are shown to be give rate optimal and efficient estimators under weak and
natural conditions.
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Modelling conditional and unconditional heteroscedasticity with

smoothly time-varying structure

Timo Teräsvirta

(joint work with Cristina Amado)

The modelling of time-varying volatility of financial returns has been a flourish-
ing field of research for almost a quarter of a century following the introduction of
the Autoregressive Conditional Heteroskedasticity (ARCH) model by Engle (1982)
and the Generalized ARCH (GARCH) model developed by Bollerslev (1986). The
increasing popularity of the class of GARCH models has been mainly due to their
ability to describe the dynamic structure of volatility clustering of stock return
series, specifically over short periods of time. However, one may expect that eco-
nomic or political events or changes in institutions cause the structure of volatility
to change over time. This means that the assumption of stationarity may be in-
appropriate under the evidence of structural changes in return financial series. In
a recent paper, Mikosch and Starica (2004) argued that stylized facts in financial
returns such as the long-range dependence and the ’integrated GARCH effect’ can
be well explained by unaccounted structural breaks in the unconditional variance;
see also Lamoureux & Lastrapes (1990). Diebold (1986) was the first to suggest
that occasional level shifts in the intercept of the GARCH model can bias the
estimation towards an integrated GARCH model.

Another line of research has focused on explaining non-stationary behavior of
volatility by long-memory models, such as the Fractionally Integrated GARCH
(FIGARCH) model by Baillie, Bollerslev & Mikkelsen (1996). The FIGARCH
model is not the only way of handling the ’integrated GARCH effect’ in return
series. Baillie & Morana (2007) generalized the FIGARCH model by allowing a
deterministically changing intercept. Hamilton & Susmel (1994) and Cai (1994)
suggested a Markov-switching ARCH model for the purpose, and their model has
later been generalized by others. One may also assume that the GARCH pro-
cess contains sudden deterministic switches and try and detect them; see Berkes,
Horváth & Kokoszka (2003) who propose a method of sequential switch or change-
point detection.

Yet another way of dealing with high persistence would be to explicitly assume
that the volatility process is smoothly non-stationary and model it accordingly.
Dahlhaus & Subba Rao (2006) introduced a time-varying ARCH process for mod-
elling non-stationary volatility. Their tvARCH model is asymptotically locally
stationary at every point of observation but it is globally non-stationary because
of time-varying parameters. Engle & Gonzalo Rangel (2005) assumed that the
variance of the process of interest can be decomposed into two components, a sta-
tionary and a non-stationary one. The non-stationary component is described by
using splines, and the stationary component follows a GARCH process. The pa-
rameters of the latter are estimated conditionally on the spline component. I study
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two non-stationary GARCH models for situations in which volatility appears to
be non-stationary. The first one is an additive time-varying parameter model, in
which a time-dependent component is added to the GARCH specification. In the
second alternative, the variance is multiplicatively decomposed into the stationary
and non-stationary component as in Engle and Gonzalo Rangel (2005). These
two alternatives are quite flexible representations of volatility and can describe
many types of non-stationary behavior. Model building plays a central role in this
approach. The standard GARCH model is first tested against these time-varying
alternatives. If the null hypothesis is rejected, the structure of the time-varying
component of the model is determined using the data. This is done by testing a
sequential of hypothesis testing. After parameter estimation, the final model is
evaluated by misspecification tests following the ideas in Eitrheim & Teräsvirta
(1996) and Lundbergh & Teräsvirta (2002).

Open problem: The asymptotic properties of the maximum likelihood estimators
of these nonlinear (time-varying parameter) GARCH models. Existing results on
nonlinear GARCH models can be found in Straumann & Mikosch (2006) and Meitz
& Saikkonen (in press). The idea of a multiplicative time-varying GARCH model
can be applied to estimating the autoregressive conditional duration (ACD) model
with diurnal variation. Typically, this is done by first estimating the diurnal vari-
ation, for example by splines and then the ACD parameters conditionally on the
spline-adjusted durations. It appears that the same idea can also be apply to es-
timating the parameters of autoregressive models of logarithmic realized variance;
see Andersen, Bollerslev, Diebold & Labys (2003).
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The Essence of Roy’s Safety-first Principle and Asset-liability

Management

Hoi Ying Wong

(joint work with Mei Choi Chiu, Hoi Ying Wong and Duan Li)

Roy (1952) proposes the safety-first principle for portfolio selection that min-
imizes the probability of disaster subject to the mean constraint that the final
wealth if greater than the pre-selected disaster level. This paper studies the dy-
namic safety-first principle in continuous time and applies it to asset and liability
management. The safety-first problem is traditionally approximated either by con-
sidering an upper bound for the disaster probability, derived from the Chebycheff
inequality, or by dropping out the mean constraint. We investigate the consequence
of the latter approximation and show that it makes the safety-first principle be-
come a target-driven principle. We then apply a martingale approach to solve the
latter approximation for an investor who has uncontrollable and nonreplicable lia-
bilities. Without dropping out the mean constraint, we show that the safety-first
principle is ill-posed if the martingale approach is employed. However, if an in-
vestor gives up unreasonably high profits and sets an upper bound for the funding
level, then the problem can be solved analytically. Setting an upper bound for the
funding level is practiced in the UK pension law. This provides an application of
this study.

Reporter: Parthanil Roy and Anders Hedegaard Jessen
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