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Introduction by the Organisers

The workshogKomplexe Analysjorganised by Jean-Pierre Demailly (Grenoble), Klaus
Hulek (Hannover), Ngaiming Mok (Hong Kong) and Thomas Retétr(Bayreuth) was
held August 24th—August 30, 2008. This meeting was welhaliéel with 46 participants
from Europe, US, and the Far East. The participants inclsaedral leaders in the field
as well as many young (non-tenured) researchers.

The aim of the meeting was to present recent important segsulseveral complex
variables and complex geometry with particular emphastspics linking diterent areas
of the field, as well as to discuss new directions and open@mud Altogether there were
nineteen talks of 60 minutes each, a programme which Idfiicgent time for informal
discussions and joint work on research projects.

One of the topics at the center of the conference was thefadas®n theory of higher
dimensional varieties. Y. Kawamata lectured on the conmestbetween the minimal
model programme and derived categories; A. Corti discuasedpproach to the finite
generation of the canonical ring without minimal modelg, 4iill in connection with the
seminal work which was presented by J. McKernan in the lasti@ex Analysis meeting
in Oberwolfach 2006, where the finite generation of the caraning of varieties of
general type was announced. Extension theorems, non wagisihd positivity result for
certain directimage sheaves play a role in the global ¢legagon of complex manifolds.
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This was largely discussed by M. Paun and B. Berndtsson einwlork analytic methods
are central, whereas the talks by Kawamata and Corti were wicain algebraic nature.
Also very much on the analytic side and connected to Beradissalk, H. Tsuji lectured
on generalised Kahler-Einstein metrics. Families of @ctye manifolds over higher-
dimensional base spaces were considered in the talk by Skkisb Direct images of
coherent sheaves also play a central role in this context.

About five years ago, Campana introduced new variations erctimcept of “orb-
ifolds”; they were already the suject of talks in past sassiand have turned out to be of
increasing interest — in the present session, new resuliseonyperbolicity of orbifolds
were presented in the talk by E. Rousseau.

As to varieties with special geometry, K. Oguiso spoke on-algebraic hyperkahler
manifolds and, with a ratherferent flavour, F. Catanese on complex and real threefolds
fibered by rational curves, with a special emphasis on rggmbhic geometry. J. Chen
discussed the influence of terminal singularities in thadeeensional geometry, a more
algebraic topic. On the analytic side, A. Teleman reporteceaent progress in the classi-
fication of non-Kahler surfaces in the so called Kodairag€MdIl, using gauge-theoretical
methods, and S. K. Yeung lectured on new results on fake ginageplanes. Group ac-
tions and envelopes of holomorphy were the topics of theliglX. Zhou. S. Boucksom
discussed equidistribution of Fekete points on complexifols, in relation with energy
functionals for Monge-Ampere operators.

R. Lazarsfeld presented a very interesting new approactutly properties of linear
systems and line bundles via convex geometry.

Overall, moduli spaces appeared to be a central theme in tinkshop, and were
discussed extensively in at least four talks: V. Gritsenkastdered moduli spaces of K3-
surfaces; S. Grushevsky spoke on intersection numbersigbdion the moduli space of
curves, and K. Ludwig and G. Farkas lectured on the modukepaf spin and Prym
curves, their singularities, Kodaira dimension and enatnex geometry.
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Abstracts

Positivity properties of twisted relative canonical bundes
Bo BERNDTSSON
(joint work with Mihai Paun)

The object of the talk is to construct certain metrics ontnadacanonical bundles,
using (generalized) Bergman kernels. In order to explaamtlethod we will start with a
discussion of such metrics on one fixed manifold, and thenenoomo the relative case.

Let Z be a compact complex manifold and lebe a holomorphic line bundle ovés
equipped with a (possibly singular) metric, This metric will always be assumed to have
positive curvature current, so th@b¢ > 0. This metric orlL induces a natural?>-metric
on the space of sections to the adjoint buriite+ L, through

2 2 2
Ul = flul? = f ule.
Z

From thisL?-metric we get @8ergman kernedlefined by
By(2) = B(2) = suplu@P’,

with the supremum taken over all global holomorphic seatiofKz + L with L2-norm at
most 1. (In case there is no global holomorphic section aifinorm, we let the Bergman
kernel be 0.) Here of course the pointwise valu@@ depends on the choice of a local
frame, soB is not a function but defines a metric &a + L, ¢ = logB. More precisely,
we can lefy be an arbitrary smooth metric &€y + L, and defineB by

B(2)e™* = sup|u(z)|?e™.

Jointly with the Bergman kernel, we shall also consider aaml@yous construction for
twisted multiples of the canonical bundle. This is defineditst letting

2 2 —
o= [ e,
Z

Then one can imitate the definition of the Bergman kernel kifinoy
By.m(2) = suplu(2)l%,

this time taking the supremum over all global holomorphatiess tomKz + L of m-norm
not exceeding 1(see [8], [6], [10]) . By constructid®,, is a metric oormKz + L with

the property that any global section of this bundle havingeibh®™-norm, ispointwise
bounded with respect to this metric.
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0.1. The relative case. Let nextX andY be projective manifolds and Igtbe a surjective
holomorphic map. (More generally, we could allow a propejesiive map fromX to an

open manifoldy and assume tha¢ has some holomorphic line bundtewith a metric of

strictly positive curvature.) We consider the relativeaaical bundle

KX/Y = Kx - p*(Ky)

For generig/in Y, the fiberp=(y) = X, is then smooth and the restrictionof,y to X, is
(isomorphictoKy,. LetL be a line bundle oveX, and lety be a metric with semipositive
curvature current oh. Over the generic fibers we can then construct the Bergmareker
and them-Bergman kernel in the way described in the introductionisMray we get
naturally defined metrics dix,y + L andmKy,y + L over the Zariski open set of generic
fibers. These metrics have no immediate regularity progees the fibers vary, but it is
not too hard to check (using normal families) that they aleadt upper semicontinuous.

Our first result says that the (relative) Bergman kernel im#tat we obtain in this way
over the set of generic fibers has nonegative curvaturerdiaed extends to a metric on
Kx,v+L over all of X that also has nonnegative curvature. This holds under sugrgstion
that the Bergman kernel is not identically equal to zerohia there is at least some fiber
on whichKy, + L has a section with finite?-norm.(The first result in this direction, in a
non-twisted situation, is the very influential theorem ofitai [4].)

After that we consider the (Zariski open) setydd in the basé&’ where the dimension
of HO(X,, Kx, + L) is minimal. Over this set we have a naturally defined vectordte
with fibers HO(X,, Kx, + L), and this bundle has a naturally defined metric, namley the
L2-metric. Note that this is a singular metric, and that (jils ivhat happens for singular
metrics on line bundles), some sections may have infiniteandie define a notion of
positivity for such singular metrics which generalizesfighs positivity in the nonsingu-
lar case, and prove that thé-metric is positive in this sense. This follows in the same
way as the positivity of the Bergman kernel metric, but isrargjer property.

Using these notions we finally prove analogous results ®ntBergman kernel, gen-
eralizing to the twisted case Kawamata’s positivity theor¢7], for multiples of the
canonical bundle.

Ouir first result is a fairly simple consequence of the mainltdsom [1] on positivity
of direct image bundles, if we assume that the metridLois smooth of nonnegative
curvature, and that moreover our surjective npep a smooth fibration. The main point
in the present work is the extension to nonsmooth metricgandral surjective maps. To
overcome the diiculty coming from nonsmoothness of the metric, we work in aska
dense Stein manifold, where we can regularize our metrattlzen extend. The fliculty
coming from nonsmoothness of the fibration is handled via jamaai estimate where the
Ohsawa-Takegoshi extension theorem is the key point.

Both these issues require new ideas in the case oftBergman kernel. In particular,
it is not enough to work in a Stein subdomain since divisoesrat removable fok/™ if
m > 1. This is where our use of nonsmooth metricssentorbundles comes in. Instead
of regularizing our metric oh we regularize the nonsmooth metric on the vector bundle
with fiber HO(X,, Kx, + L), which is a much simpler, local problem.
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One application of these results is a Bergman kernel proth@iKawamata subad-
junction theorem, [7], another is an estimate for restdatelumes due to Takayama and
Hacon-McKernan, [9],[5].
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Convergence towards equilibrium on complex manifolds
SF:BASTIEN Boucksom
(joint work with Robert Berman, David Witt Nystrom)

1. THE SETTING

Let L be a holomorphic line bundle over a compact complex manifottf complex
dimensiom. Following [3], let (E, ¢) be aweighted subsethat is a compact subsEtof
X together with the weight of a continuous Hermitian metri? on the restriction_|.
Finally letu be a probability measure supportediby

The asymptotic study ds— oo of the space of global sectioss H°(X, kL) endowed
with either theL.? norm

I 0 = [ 187
or theL® norm
lSllL=Exp) = sgp|s4e‘k¢

is a natural generalization of the classical theory of aythal polynomials. The latter
indeed corresponds to the case

EcC'cP"'=: X
endowed with the tautological ample bund}l) =: L. Itis of course well-known that
HO(P", O(K)) identifies to the space of polynomials of total degree astkoThe section
of L cutting out the hyperplane at infinity induces a flat Hermitiaetric onL overC", so

that a continuous weight on L|e is naturally identified with a function i€°(E). On the
other hand, a psh function @ with at most logarithmic growth at infinity gets identified
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with the weightp of a non-negatively curved (singular) Hermitian metriclgmvhich will
thus be referred to aspsh weight
Our geometric setting is therefore seen to be a natural (aamd symmetric) extension
of so-calledweighted potential theorin the classical case. It also contains the case of
spherical polynomialsn the round spher@" c R,
Indeed, the space of spherical polynomials of total degreeastk is by definition
the image by restriction t&8" of the space of all polynomials di™*! of degree at most
k. It thus coincides with (the real points df{°(X, kL) with X being the smooth quadric
hypersurface

X2+ .. +X2=X3) cpm!

endowed with the very ample line bundle= O(1)|x. Here we takde := S" = X(R), and
the section cutting out the hyperplane at infinity again idiexs weights orL to certain
functions on the fine piece oiX.

In view of the above dictionary, one is naturally led to imtuce theequilibrium weight
of (E, ¢) as

(1.2) ¢e = sup{y psh weight ori, ¢ < ¢ onE},

whose upper semi-continuous regularizatiginis a psh weight orl. as soon a€ is
non-pluripolar, which will always be assumed.

The equilibrium measuref (E, ¢) is then defined as the Monge-Ampere measure of
¢ normalized to unit mass:

pe(E, ¢) := MTIMA (¢r).

This measure is concentrated Bnand we have = ¢ a.e. with respect to it.

This approach is least technical whiefis ample but the natural setting appears to be
the more general case oflag line bundle, which is the one considered in the present
paper, following our preceding work [3]. As is shown thetes Monge-Ampére measure
MA (y) of a psh weighty with minimal singularities, defined as the Beford-Taylogpto
power @d)" of the curvatureld®y on its bounded locus, is well-behaved. Its total mass
M is in particular an invariant of the big line bundle and in fact coincides with the
volumevol(L), characterized by

n
Ny = dimHO(kL) = voI(L)% + o(k).

The main goal of the present paper is to give a general @iteénvolving spaces of
global sections that ensures convergence of certain segsehprobability measures on
E towards the equilibrium measutgy(E, ¢).

2. FEKETE CONFIGURATIONS

Let (E, ¢) be a weighted subset as above Fékete configuratiors a finite subset of
points maximizing the determinant in the interpolationkgeon.
More precisely, leN := dimH°(L) and

P= (Xl, ey XN) € EN
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be a configuration of points in the given compact sulisefhenP is said to be a Fekete
configuration for E, ¢) iff it maximizes the determinant of the evaluation operator

eve : H(L) - &L,Ly
with respect to a given basss, ..., sy of H(L), that is the Vandermonde-type determinant
|det(s (X]))| g @)+ +6(xn)

This condition is independent of the choice of the basis (
If P=(Xg,...,xn) € XN is a configuration, then we let

1 N
Sp 1= N;(sxj.

Our first main result is an equidistribution result for Fekebnfigurations.

Theorem A. Let P, € EN« be a Fekete configuration foE(k¢). Then thePy equidis-
tribute towards the equilibrium measure, that is

Il'_rﬂo Op = Hed(E, )
in the weak topology of measures.

Theorem A first appeared in the first two named authors’ pnejp4i. It will be ob-
tained here as a consequence of a more general convergsult¢ Teeorem C below).

In the classical one-variable situation, this result islwabwn. In the several-variable
classical situation, this result has been conjectured didecome time, probably going
back to the pioneering work of Leja in the late 50's.

As explained above, the spherical polynomials situatiorresponds to the round
sphereS" embedded in its complexification, the complex quadric hypeace inP™,
This special case of Theorem A thus yields:

Corollary A. Let E c S" be a compact subset of the roumdphere, and for eadhlet
P« € EN be Fekete configuration of degrkdor E (also calledextremal fundamental
systemin this setting). The@p, converges to the equilibrium measy&g(E) of E.

This is a generalization of the recent result of Morza aneé@atCerda [8] on equidis-
tribution of Fekete points on the sphere, which correspaodke casee = S" whose
equilibrium measurgeq(S") is just the rotationally invariant probability measure®h

3. BERNSTEIN-M ARKOV MEASURES

Let again E, ¢) be a weighted subset, and Jebe a probability measure da. The
distorsion between the naturaf and L™ norms onH°(L) introduced above is locally
acounted for by theistorsion functiom(u, ¢), whose value ax € E is defined by

(3.1) P, #)(¥) = sup [S(¥)I3,
19l 2,)=1

the squared norm of the evaluation operator.at
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The functionp(u, ¢) is known as theChristgfel-Darboux functionin the orthogonal
polynomials literature. It sometimes also appears undenmedensity of states func-
tion, since theprobability measure

(3.2) Blu, 8) = N""p(u, $)u,
which will be referred to as thBergman measurecan be interpreted as a dimensional
density forHO(L).

Whenu is a smooth positive volume form oxand¢ is smooth and strictly psh, the
celebrated Bouche-Catlin-Tian-Zelditch theorem asseat®(u, k¢) admits a full asymp-
totic expansion in the space of smooth volume forms, With (dd°¢)" as the dominant
term.

As was shown by the first named author (in [1] for Bfecase and in [2] for the general
case), part of this result still holds when the positive atmve asumption og is dropped.
More specifically, the norm distorsion still satisfies

(3.3) supp(u, ke) = O(K")

X
and the Bergman measures still converge towards the equiiibmeasure:
(3.4) 1M B(u kp) = peq(X. )

now in the weak topology of measures.
Both of these results fail whelg, u and¢ are more general. Howevsub-exponential
growth of the distorsion betwedr?(u, kp) andL>(E, k¢) norms, that is

(3.5) supp(u, k¢) = O(€™) for all & > 0,
E

appears to be a much more robust condition. Following a aranérminology, the mea-
sureu will be said to beBernstein-Markovor (E, ¢) when (3.5) holds.

WhenE = X, anycontinuous measure is Bernstein-Markov fi&t ¢) by the mean-
value inequality.

Our second main result asserts that convergence of Bergraasures to equilibrium
as in (3.4) holds for arbitrary Bernstein-Markov measure.

Theorem B. Letu be a Bernstein-Markov measure f&, ¢). Then
l!moﬁ(ﬂ’ k¢) = :ueCI(E’ ¢)
in the weak topology of measures.

In the classical one-variable setting, this theorem waainbt, using completely dif-
ferent methods, by Bloom and Levenberg [7]. A slightly lesagyal version of Theorem
B (dealing only withstablyBernstein-Markov measures) was first obtained in the firdt an
third named author’s preprint [5]. Theorem B will here beahéd as a special case of
Theorem C below.
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4. DONALDSON’S L-FUNCTIONALS AND GENERAL CONVERGENCE CRITERION

We now state our third main result, which is a general coteansuring convergence of
Bergman measures to equilibrium in terms/functionals, first introduced by Donald-
son. This final result actually implies Theorem A and B ab@asgewell as a convergence
result for so-calle@ptimal measurefirst obtained in [6].

TheL? andL*® norms orH®(kL) introduced above are described geometrically by their
unit balls, that will be denoted respectively by

B> (u, ko) € B(E, k¢p) < HO(KL).

We fix a reference weighted subsEp(¢o), which should be taken to be the compact torus
endowed with the standard flat weight in the classi®atase. We can then normalize the
Haar measure vol oH°(kL) by

vol 8% (Ep, k¢o) = 1,
and we introduce the following slight variants of Donaldsafi-functional:

Ly, @) = 1 log vol B2(u, ke)

2k N¢
and 1
Ly(E, ) = KN log vol 8% (E, ko).
The main result of [3] can then be reformulated as
(4.1) lim L(E, ¢) = EeE. 9).
Here

Eeq(E, ¢) = E(dg)
denotes thenergy at equilibriunof (E, ¢) (with respect to o, ¢o)), with E(y) standing
for the Aubin-Yau energpf a psh weighty with minimal singularities, characterized as
the primitive of the Monge-Ampeére operator:
o B+ (L= 002) = 1 [ 2= vIMA(u2)
t=0, X
normalized by
E(pog,) = 0.
Note that we have actually divided the Aubin-Yau energy @®ered in [3] by the
harmless constanh& 1)M for convenience.
SinceLk(u, ¢) > Lk(E, ¢) for any probability measuneonE, (4.1) shows in particular

that the energgeq(E, ¢) at equilibrium is ara priori asymptotic lower bound fafi(-, ¢).
Our final result describes what happens for asymptoticaityrmzing sequences:

Theorem C. Let ux be a sequence of probability measuredosuch that
I!El}o ‘[-:k(/'lk’ ¢) = Seq(E’ ¢)
Then the associated Bergman measures satisfy

lIim Sl k) = peo(E, ¢)



2176 Oberwolfach Report 32008

in the weak topology of measures.

The condition bearing on the sequengg (n Theorem C is independent of the choice
of the reference weighted subs&p(¢p). In fact (4.1) shows that it can equivalently be
written as the condition

2
Vol B (ux, ko) ~ o(kNY).
vol B> (E, k¢)
which can be understood aswsgeak Bernstein-Markov conditioon the sequenceu),
relative to E, ¢).

The proof of Theorem C is closely related to the generabzratif Yuan’s equidistribu-
tion theorem for generic points of asymptotically minimeldh obtained in [3].

As a consequence of Theorem C, we also recover the main cé$6]t Following the
latter paper, we say that a measpris optimalfor (E, ¢) if it realizes the minimum of
L(-, ¢) over the sefPg of all probability measures oB. This is equivalent to requiring
that the norm distorsion sgp(-, ¢) achieves its minimum ovefg, to wit N, atu. As a
corollary to Theorem C, we get

Corollary C. If ug is an optimal measure foE(k¢), then

lim 1 = peq(E, 9).

REFERENCES

[1] R. Berman, Bergman kernels and weighted equilibrium measures @¥ preprint (2007)
arXiv:math0702357. To appear in Indiana Univ. Journ. of Math.

[2] R.BermanBergman kernels and equilibrium measures for line bundkes projective manifoldspreprint
(2007) arXiv:0710.4375.

[3] R. Berman, S. BoucksomCapacities and weighted volumes for line bundlggeprint (2008)
arXiv:0803.1950.

[4] R. Berman, S. BoucksomEquidistribution of Fekete points on complex manifplgseprint (2008)
arXiv:0807.0035.

[5] R. Berman, D. W. NystromConvergence of Bergman measures for high powers of a lindlguoreprint
(2008) arXiv:0805.2846.

[6] T. Bloom, L. Bos, N. Levenberg, S. Waldro@n the convergence of optimal measyingeprint (2008)
arXiv:0808.0762.

[7] T. Bloom, N. LevenbergStrong asymptotics for Chriggel functions of planar measurgsreprint (2007)
arXiv: 0709.2073.

[8] J. Marzo, J. Ortega-Cerdakquidistribution of the Fekete points on the sphepreprint (2008),
arXiv:0808.1202.



Komplexe Analysis 2177

Threefolds fibred by rational curves and the Nash conjecture
FaBr1z10 CATANESE
(joint work with Frédéric Mangolte)

1. INTRODUCTION

An established principle in complex algebraic geometry&é the Kodaira dimension
of a smooth complex projective variety of dimensionn strongly influences the topol-
ogy of the seW(C) of its complex points. This principle is clearly manifesteady in
dimension 1, and related to other points of view, as the umization theorem, and the
concept of curvature. This principle, although in a mor@clilt and complicated way,
still goes on to hold in higher dimensions. Indeed the pplecholds also in some way in
real algebraic geometry.

Assume in fact thatVv is a smooth real projective variety and consider the topplog
of the setW(R) of its real points. In dimension 1, the connected companhang just
diffeomorphic to the circl&!, and the so called Harnack inequality says that their number
mis bounded from above ly+ 1, g being the genus V.

In dimension 2, Comessatti proved in 1914 thaWliis a connected component of the
setW(R) of real points of a (geometrically) rational real surfafeandM is orientable,
thenM is not of hyperbolic type. This means that eitiris diffeomorphic to a sphere
S? (a quadric of elliptic type), or to a tor®" x S* (a quadric of parabolic type).

The theorem is sharp since in the non orientable case, evargmentable surface of
Euler numbere = 2 — b; (we consider here homology with déeients inZ/2) can be
obtained by blowing ujp; real points on the sphe&?.

Unaware of Comessatti’'s work, John Nash in 1952, while shgwhat every compact
differentiable manifold is dieomorphic to a connected componé&hof the setW(R) of
real points of a smooth real algebraic vari®¥y asked whether the same could be true if
one also require¥/ to be a rational variety.

As we saw, this is false by Comessatti’ theorem.

Comessatti’s result can today be easily understood an@thebetended to the case of
real algebraic surfaces with geometric gepys= 0. Its proof is based on the following
facts:

1) If M is orientable, its cohomology class is nontrivial and imsat for the involution
determined by complex conjugation

2) the Algebraic Index Theorem (proved by Severi in 1913pvshthat (since the
hyperplane class is anti-invariant and with positive sadfisection) on the invariant part
of the second cohomology groupf(C) the intersection form is semi-negative definite

3) complex conjugation yields an isomorphism of the reahmedibundle toM with its
real tangent bundle, hence the self intersectioMagquals 2- 2g, whereg is the genus
of M.

What happens of Nash'’s question in higher dimension ?

One may ask to which extent Kodaira dimension equaltoposes strong restrictions
on the topology of a connected componBinbf W(R). Or, ask the same question under
the more stringent condition théf be rationally connected.
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In an extremely interesting series of four papers JanosaKaled the recent progress
on the minimal model program for threefolds in order to usthard the topology of the
connected componentsc W(R) in the case wher@/ has Kodaira dimensioAco, espe-
cially in the case where the minimal model program yields micbundle fibration or a
del Pezzo fibration.

In joint work with Mangolte ( [1] [2] ) we answered in the pasé four questions
posed by Kollar in the paper [4, Theorem 1.1].

The situation is as follows: let: W — X be a real smooth projective threefold fi-
bred by rational curves. Suppose tNé{R) is orientable. Then, by [4, Theorem 1.1], a
connected componeM c W(R) is obtained from a Seifert fibored manifold or from
a connected sulV’ of lens spaces by taking connected sums with a finite numloér
copies ofP3(R) and a finite numbel of copies ofS! x S?, and one may assume that the
numbera + b be maximal, and this decomposition is unique by a theoremitsfdvi[5].

Consider the integers := k(N) andn; := ni(N), | = 1...k defined as follows (and
again well defined by Milnor’s theorem):

() if g: N’ — F is a Seifert fibrationk denotes the number of multiple fibresgf
and 2< n; < n, < --- < ng denote the respective multiplicities;

(i) if N’ is a connected sum of lens spackslenotes the number of lens spaces
andn; < n; < --- < ng N > 3, VI, the orders of the respective fundamental
groups (thus we have a decompositih= #rzl(L(nb q) forsome 1< q < n
relatively prime ton)).

Theorem 1. Let W — X be a real smooth projective threefold fibred by rationahag
over a geometrically rational surface X ( these assumptamsequivalent to: W ratio-
nally connected and fibred by rational curves). Suppose\W@) is orientable. Then,
for each connected componentd®\W(R), k(N) < 4and}} (1 - Wlm)) < 2. Furthermore,

if N’ is Seifert fibred over 5x St, then KN) = 0.

The above result should be viewed as an analogue of Comisstbegtbrem in dimen-
sion three, since it asserts that, if the base of the Seifedtfon is orientable, then it is
not an orbifold of hyperbolic type.

The proof of Theorem 1 goes by reducing the proof of the eséirfa the integers
n(N) to an inequality depending on the indices of certain siagpbints of a real com-
ponentM of the topological normalization ak(R) (obtained by replacing the singular
points of X(R) by its local branches).

Recall that a real surface singularity will be said tobéype A if itis real analytically
equivalent to

X+y—Z2"1=0,u>1;
andof type A if itis real analytically equivalent to

X—-y-Z21=0,u>1.

In the above mentioned process, the nuni{dl) can be made to correspond to the
number of real singular points dvt which are of typeA;, and globally separating when
w is odd; each numben(N) — 1 corresponds to the index of the singularityA; of M.

One of the main technical results of the second paper is tleniog.
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Main Theorem. Let X be a projective surface defined ower Suppose that X is ge-
ometrically rational with Du Val singularities. Then a coggted component M of the
topological normalizationX(R) contains at most 4 singular points af type A, which
are globally separating for; odd. Furthermore, their indices satisfy

1
2(1—M+1)32.
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Three dimensional terminal singularities, Riemann-Roch érmula and its
applications to birational geometry

JunGkAl ALFRED CHEN
(joint work with Meng Chen, Christopher Hacon)

Three dimensional terminal singularises are classifiedatige work od Reid and Mori.
Basically, they are isolated singularities, cyclic quotief compound DuVal singulari-
ties, usually denoted bgDV/u,. Each singularises can be deformed into a collection of
cyclic quotient singularities of typé(l, —-1,b). The collection of these cyclic quotient
singularities coming from the singulartiesXfis called thebaskewf X.

Miles Reid derived a Riemann-Roch form for threefolds wigimanical singularities,
by considering the contribution from singularities. Itriarout that there is a formula for
Euler characteristics depending on baskekod

We study the baskets and Riemann-Roch in a more systemaagal\We obtained a
method which allows us to solve for baskets with given Euteracteristic. This method
gives various application in birational geometry.

For example, iX is a minimal threefold of general type. Suppose iatKy) > 2 for
some 2< m < 12, then one can obtained a lower boundvari(X) by some geometric
method. Our method allows us to classified baskets w(ithKyx) < 2 forall 2< m < 12.
Combining all theses, we prove that:

Theorem 1. Let X be a threefold of general type. Then the following holds.
(I) P12 > 0, P24 > 1.
(i) Vol(X) > 1/2660.
(i) The pluricanonical magn, is birational for allm > 77.

Similar technique can be applied to we@k-ano threefolds as well.
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Theorem 2. Let X be a wealQ-Fano threefold. Then the following holds.

(i) P.e>0,P_ > 1forallk > 4.
(i) —K3 > 1/330. This bound is sharp.

Moreover, we consider basket &fas an invariant oX and then study its behavior
under some elementary birational map. Using this, we artalgive an &ective termi-
nation of flips.

A final remark is that we also derived some new inequalities/een Euler character-
istics. One can check out [1] for a brief introduction and324, 5] for more details.
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Towards finite generation without Minimal Models (work of V. Lazi€)
ALEss10 CorTI

The finite generation of the canonical ring of (nonsingytaojective) algebraic vari-
eties in characteristic 0 is now a theorem [1]. In this talkdgnse a new direct approach
to the proof, based on a sort of hyperplane section prinaipteinduction on dimension.

Let X be a nonsingular projective variety,a finitely generated semigroup abd A —
Div X an additive map to the space of (integral, say, or rationaiars onX. A divisorial
algebraon X is an algebra of the form

R(X, D) = @1eaH%(X, D(1))
A divisorial algebra isadjointif
D(4) = r(A)(K + A(2))

for some additive map: A — Q, andA: A — Div X such that the paifX, A(1)) is KIt.
The finite generation conjecture states that a divisorigiatalgebra is always finitely

generated; as | said, this is now a theorem.

Property P. Fix a general small ampl@-divisor A on X. Consider a snc divisoB =

>, Bi c X; denote byB the “box”{® = 3 bB; | 0 < b; < 1}. We say that propertly holds

if for every componen® of 8:

(1) 7’2 ={® e 8| G ¢ B(K+A+0)}is arational polyhedron. (Where, for a divisor
D, B(D) denotes the stable base locus.)
(i) ®€ Pﬁ(Q) if and only if the ‘Lelong number:’

.1
vglK + A+ Q| = rllm ﬁmuItG|K+A+ ®|=0.
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In the talk | explain some ideas in the proof the following swvhat tentative state-
ment:
Theorem (Lazi€). Assume Propert. Then, if finite generation holds in dimensina1,
then finite generation holds in dimension

The proof is a transparent induction on the dimension. (L&heay that this is work
in progress and the statement just given is still providipricbelieve that Property is
within reach of the analytic methods in nonvanishing thesegfor example the work of
Mihai Paun. Hence, these ideas constitute a new approachtedeneration not relying
on the detailed machinery of the minimal model program.
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The birational type of moduli spaces of curves with level stucture
GAVRIL FARKAS

The main aim of this work is to determine the birational typdveo moduli spaces of
curves with level two structure, the moduli spa_@of Prym curves and the moduli space
3; of even spin curves.

First we study the moduli stadk, classifying pairsC, ) where [C] € Mgy is a smooth
curve of genug andn € Pic’(C)[2] is a torsion point of order 2 giving rise to an étale
double cover oC. We denote byr : Ry — Mg the natural projection forgetting the point
of order 2 and by : Ry — Ay-1 the Prym map given by

P(C,n) := Ker{f, : Pi®(C) - Pid’(C)}°,
wheref : C — C is the étale double covering determined:pylt is known thatP is
generically injective fog > 7 (cf. [FS]), hence one can vieRy as a birational model for
the moduli stack of Prym varieties of dimensigr- 1. If R, denores the normalization
of the Deligne-Mumford moduli spac&l in the function field ofRy, then it is known
thatﬁg Is isomorphic to the coarse moduli stack of Beauville adinisslouble covers (cf.

[B]), and also to the stack of Prym curves in the sense of [B@&Ek isﬁg = MQ(BZZ). It

is known that the spac®, is unirational forg < 6 (cf. [D]). Verra has recently announced
a proof of the unirationality oR7. The main result (obtained jointly with K. Ludwig) is
the following:

Theorem 0.1. The moduli spacégl is of general type for alyy > 13, g # 15.

The strategy of the proof is similar to the one used by Harésumford for proving
that Mg is of general type for largg (cf. [HM]). One first computes the canonical class
Kﬁg in terms of the generators of PT_Q() and then shows thdttﬁg is effective forg > 13

by explicitly computing the class of a specififfective divisor orﬁg and comparing it to
Kﬁg. The divisors we construct are of two types, dpending on dref is even or odd.

We also show that fog > 4 any pluricanonical form oy ey automatically extends to
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any desingularization. This is a key ingredient in carryoug the program of computing
the Kodaira dimension oRy.

In the odd genus case we we get 2i + 1 and consider the vector bundlg defined
by the exact sequence

0— Q% — H%Kc)®Oc — Qc — 0.

(If other words Qc is the normal bundle & embedded in its Jacobian). It is well-known
that Qc is a semi-stable vector bundle of ragk- 1 onC of slopev(Qc) = 2 € Z, so it
makes sense to look at the theta divisors of its exterior ppwRecall that

@iq. = (¢ € PIE?HC) : h%(C,A'Qc ® &) > 1),
and the main result from [FMP] identifies this locus with th&etence varietf; — C;
Pic’(C).

Theorem 0.2. Forg + 2i + 1, the locusk; consisting of those point€£] ;] € Ry such
thatn € ©,iq., is an dfective divisor oriRy, 1. Its class oy, 1 is given by the formula
2(2i -2 2i+1 . .
P = i_( iI— L Lé{, — (higher boundary d|V|sor)s)
This proves our main result in the odd genus case. The d#/iserconsider for even
genus are of Koszul type in the sense of [F].

)-((Si + 1)1 - 1253 -

Theorem 0.3. Forg = 2i + 6, the locusD; of those C, ] € Ruiy6 such that the Koszul
cohomology groug; »(C, Kc + ) does not vanish (or equivalentlyz(Kc + n) fails the
Green-Lazarsfeld propertyN()), is a virtual divisor onRyi,¢. Its class O0MRyi.6 IS given
by the formula:

l(2i +2)(M

Sl L [ — 26836, — ).
2\ i |+3/1 9 = 3% )

In both Theorems 0.2 and 0.3, € Pic(ﬁg) denotes the Hodge class ant{6p) =
dg + 207 (that is ¢y is the ramification divisor ofr whereasy, is the complement of the

ramification divisor in the pull-back of the boundary divigg from Mg.). The boundary
divisorsoy anddy have clear modular description in terms of Prym curves aadgséme
holds for the higher boundary divisors.

We have similar results for moduli spaces of spin curves. Watmn the following
theorem cf. [F1]:

Theorem 0.4. The compact moduli spacf_}g of even spin curves of gengss of general
type forg > 8.
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Moduli spaces and Automorphic forms
VALERY GRITSENKO
(joint work with Klaus Hulek and Gregory Sankaran)

In my talk | give a review of our joint project (see [3]—[7]) ahe geometry of modular
varieties of orthogonal type. The basic example of sucletias isthe moduli spacéq
of polarisedK3 surfaces of degre2d.

Let L be an integral lattice of signature, (). The latticeL determines the hermitian
homogeneous domain of type IV

D) ={ZeP(L®C)|(Z,2) =0, (Z2) > 0}*

(* denotes a connected component)t(lQ is the subgroup of index 2 of the integral
orthogonal group fixingD(L). We define the stable integral orthogonal gr@*[c(L) =

{g € O*(L) | gla, = id} whereA_ = L"/L is the discriminant group. The main object to
study is a quasi-projective modular variety

F(L) = O*(L) \ D(L).

Examples 1) Let belyy = 2U & 2Eg(—-1)® < —2d > whereU is the hyperbolic plane.
ThenF (Lag) = F2q4 according to the global Torelli theorem for the polarisedsd8faces.

2) Let belyog = Log® < —2 >. Then¥ (L, 2q) is the periodic domain of the split-
polarised irreducible symplectic 4-folds deformatiop@uivalent to K& (see [6]). We
note that diny (L,24) = 20.

The programm on the K3 surfaces and their moduli spaces wamifated by A. Well
in 1956. In the next twenty years all questions were solverepixthe problem on the
birational type of the moduli spaces of polarised K3 suréac®ur main result is the
following.

Main Theorem (see [4], [6]). The moduli spac&>,y of K3 surfaces with a polarisation
of degree2d is of general type for any & 61 and for d = 46, 50, 54, 57, 58 and 60. If
d > 40and d# 41, 44, 45 or 47 then the Kodaira dimension &f,q is non-negative.

The moduli space of polarised deformati8?! manifolds with polarisation of degree
2d and split type is of general type ifxl 12.

We note that Mukai proved that the spagg is unirational ifd < 10 andd = 12, 17,
19 (see [8] and the references there).

The proof of the main theorem is based on the three generdaliplés.

Principle of high rank (see [4]).Let L be a lattice of signaturé, n) with n > 9. Then
there exists a toroidal compactificatioi(L) having only canonical singularities. There
are no fixed divisors in the boundary. The branch divisor®@f) — ¥ (L) are induced
by elements g O*(L) such thattg is a reflection with respect to a vector in L
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In fact, if 6 < rank() < 8 then non-canonical singularities are rather rare anetiser
a possibility to describe all of them for any fixéd

Automorphic principle (see [4]).Let L be an integral lattice of signatuf@, n), n > 9.
The modular variety= (L) is of general type if there exists a non-zero cusp (with zéro o
order one at infinity) form g € Sa(O*(L), x) of small weight a< n that vanishes along
the branch divisor of the projection: D(L) — F(L).

We note that the characterof O*(L) in the last principle is usually equal to determi-
nate. This is explained by the next theorem.

Theorem (see [7]).Let L be an even integral lattice containing at least two hippéc
planes, such thatank (L) > 6 andranks(L) > 5. Then

O*(L)/[O*(L), O*(L)] = Z/2Z.
For such L the orthogonal group* (L) has only one non-trivial charactefet

As a corollary we obtain that ift = 2U @ L is a lattice of signature (2) andF is a
modular form with character det or trivial character @(L), then the order of vanishing
of F along any boundary component©{L) is an integer.

The branch divisor of the projectian D(L) — ¥ (L) determines the main obstruction
for continuation of the pluri-canonicalftierential forms on a smooth compact model of
¥ (L). If the branch divisor would be smaller, then using the endgphic forms from [2]
we get a much better result than in the main theorem.

Theorem(see [4]).The moduli spac&F »q = éff(LZd)\Z)(LZd) of K3 surfaces of degree
2d with a spin structure is of general type id3.

For the orthogonal grou@* (L) the branch divisor is much larger and we use

Eg-principle. Let assume that there exists an embedding of a lattice M ievka uni-
modular lattice kg such that the number of roots irgBrthogonal to M is positive and is
smaller thanl2 + 2(rankM). Then the modular variet§ (2U & 2Eg(—1) ® M(-1)) is of
general type.

We did not formulate thé&g-principle in our papers but it was one of the basic point
of [4] and [6]. To make it a theorem we have to add some techomaditions on the
lattice M (a condition on the discriminant group and on the rankQfbut in principle
it works. The main technical tool in this part is the Borcrendodular formd;, of the
(singular) weight 12 with character det @(2U @ 3Eg(-1)) (see, e.g. [1]). In fact the
Es-principle gives us a cusp form of a small weight (smallentktize canonical weight)
with a big divisor containing the branch divisor of the maaiyprojection.

In order to apply theEg-principle to the cases of the moduli spaces of polarised K3
surfaces and the irreducible symplectic 4-folds we wanttovkfor which 21 > 0O there
exists a vector

| € Eg, 12 =2d, | is orthogonal to at least 2 and at most 12 roots
(the case of the polarised K3 surfaces) and

| € E7, 12 = 2d, | is orthogonal to at least 2 and at most 14 roots
(the case of the polarised symplectic 4-folds).
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Theorem (see [4], [6]).Such a vector | in Edoes exist if
4Ng, (2d) > 28Ng, (2d) + 63Np,(2d)
and such a vector | in E£does exist if
30Na,eD, (2d) + 16Na,(2d) < 5Np,(2d)

where N (2d) denotes the number of representation2aby the lattice L.

To calculate the numbe, (2d) for a lattice of odd rank we use a new variant of the
Siegel formula in terms of the Cohen—Zaglefunction (see [6]). As a corollary we
proved that the last inequalities are truedor 144 ord > 20 respectively. We obtain the
remaining vales ofl in the main theorem considering some special vectors.

We note that using the three principles given above we cavegiat many modular
varieties of dimension 1% n < 25 are of general type. For example we have a result
on the moduli spaces of dimension 21 of the O’Grady exceptioreducible symplectic
manifolds of dimension 10 with a polarisation.

In order to study modular varieties with dif(L) > 25 we can use the Mumford-
Hirzebruch proportionality principle together with autorphic results of [2]. The exact
formula for the Mumford—Hirzebruch volume (an analoguenef Euler—Poincare charac-
teristic) of any indefinite orthogonal group was found in [Bhis method works perfectly
for modular varieties of big dimensions.

Theorem (see [5]).Let L be an even unimodular lattice of signat@#en). Then# (L) is
of general type if = 42.

Analysing the results of [5] | can formulate the followingmgecture.

Conjecture. Let L be an even integral lattice of signaturergp
1) The modular variety (L) is of general type ifiis big enough.
2) This is true fom > 36.
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Intersection numbers of divisors onﬂTg
SAMUEL GRUSHEVSKY
(joint work with Cord Erdenberger, Klaus Hulek)

Abstract. In this talk we report on our joint work with Cord Erdenberged Klaus
Hulek on intersection numbers of divisors on toroidal coatifi@ations of the moduli
spaceAg of principally polarized complex abelian varieties. We quute all intersections
numbers of divisors for the first and second Voronoi comfiaations of A4, and for
arbitraryg compute those intersection numbers of the Hodge and boyddésor on the
first Voronoi compactification that are supported away friwa stratum which lies over
the closure ofAg_3 in the Satake compactification. The results of this work aesgnted
in papers [2, 3].

The moduli stackAg of g-dimensional complex principally polarized complex a@eli
varieties is the set of isomorphisms classes of pa#it®], whereA is ag-dimensional
complex abelian variety, an@ is a principal polarization oA, i.e. an ample line bundle
such thah®(A, ®) = 1. There in fact exists (as a stack) the universal famiiyXy — Ay,
with the fiber over p] € Aq being the ppaW itself. The Hodge vector bundle is the rank
g vector bundle oAy given byE := ”*(Q}vg/ﬂg)’ and we denotg; := ¢;(E) its Chern
classes.

The stack#y is one of the classical central objects in algebraic gegnagtd number
theory, and its geometric invariants are of obvious inter&milarly to the case of the
moduli space of curvesty, computing the entire homology and Chow rings is presum-
ably extremely hard, and one can instead study its tautcdbging: the subring of the
Chow ringCH*(Ay) generated by,;. In [4] van der Geer proves that the only relations in
the tautological ring ofAy aredg = 0 and

QL+ +.. . +2g)A -t +...+(-1)%g) =1 (%).

The stackAy is not compact, and a compactification needs to be considerete
intersection theory to make sense. From general theorylawe thatL := def is an
ample line bundle otAgy, and thus a dticiently high power of it defines an embedding of
Ay into a projective space. By definition the Satake-BainyBzmompactification?lgat )
Ay is the closure of the image of this embedding; as aBgt = Ay L Ag 1 ... U A

In the 1970s the toroidal compactificatior, of Ay were constructed. Any such
compactification admits a contractian A; — A3, and we denotg; := n~ YA the
boundary strata. The Hodge bundiextends to a vector bundle over a.ﬁT;g and it was
also shown in [4] that the only relation in tautological s'ugrofCH&(?_lg) is (x) above.
However, this subring captures very little information ah@ly and, similarly to the case
of Wg it is natural to try to determine the subring(bf—i*(?_lg) generated by the classes
Ai andg;.

This ring may of course depend on the choice of a toroidal @mtification. Two
common choices of toroidal compactifications are the skeddirst and second Voronoi
compactifications, denotﬁg andﬂg. Alexeev [1] showed that there exists a universal
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family Xg — A3 However,glimrk Picy(A3) = oo (see [8]: for exampl& := B4 C A is

a divisor) and thu€ H*(ﬂg) is likely very complicated. On the other hand, the boundary
D c ﬂg is an irreducible divisor, and thus I@i(c?lg) = QL @ QD for g > 1; moreover
codirrlﬂgﬁi = i. Shepherd-Barron [9] showed thﬂg is the canonical model faAy for
g > 12, and thus also a natural compactification to study.

The Chow rings and intersection theory gty and A,, and compactifications are
known classically. The Chow ring and the intersection thedtAf = ﬂg was computed
by van der Geer in [5]. The resulting intersection numberiviors are

LS L°D | L*D? | L3D® | L?D* | LD® D6
1 1 203 | 4103 |
181440 0 0 720 0 T 240 | T 144

The explicit solution to the Schottky problem in genus 4 iswn: M, C A4 is given
by the Schottky modular form, and the class of its closuréljFlnandﬂf1 Is computed by
Harris and Hulek [7]. Using this, we computed the intersectiumbers ot#}, using the

known intersection theory oM.

Theorem (Erdenberger, Grushevsky, Hulek, [2]))he intersection numbers of divisors
on A} are

L |L°D|L8D?| L'D3| L°D*| L°D®| L*D®| LD’ |L2D8| LD® D10

1 1 1759 1636249| 101449217
907200 0 0 0 T 3780 0 0 ~ 1680 0 1080 1440

We also determined the intersection theory of divisorsAgn a toroidal computation is
used to comput&*°, from which all the other numbers can be obtained.

The many zero intersection numbers in the tables above Faveatly led us to make
the following

Conjecture (Erdenberger, Grushevsky, Hulek, [3]).)The intersection number
(L“D@‘“Mg is zero unless = &%) for some 0< k < g.

To approach this conjecture, we first recall thas a pullback of a line bundle Qﬂg""t

under the blowdown map : A; — AF*, and thus for dimension reason$ 341 =
0 € CH*(B;). We now start computing the intersection numbergiftarge.

The top self-intersection number bfcan be computed by the Hirzebruch-Mumford
proportionality principle. For ang > @ we see that" = 0 € CH*(B1), and thus the
intersection numbe(rL“Dm>ﬂ5 = (L"(DIp)™p = 0; so we get the firgy — 1 zeroes for the
conjecture (this is essentially already present in [5]).

Next, for@ >n> &2@‘2’ the corresponding power &fis zero onB,. Since it is
known thatD|p = -20 + L, where® is the universal theta divisor oXig-1 = 81 \ 52, we
can compute

(L"D™ze = (L"D™ g5, = (L"(DIp)™ Mg,
=(L"(-20 + )™ Yk, , = (L"7.((-20 + L)™ D)), ,.
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In [4] van der Geer uses an argument essentially due to Muhttoishow that these
pushforwards are zero fon > g, so that(L@‘kDg”‘)ﬂg =0fork=1...g- 2, while

the only non-zero pushforward gives

9(g-1) 9(g-1)

(L7 DY = (-2 Mg - DKL Z Dy,

To deal with the intersection numbe(ﬂst’kD?’g‘?"k)ﬂg, forl<k<g-2we
first note that they are supported away frgg The fiber of the mam over someB €
Ag—2 can be identified with the universal family of semiabeliamietes overB, and
thus the intersection theory techniques for the Poincar&le developed in [6] can be
applied to determine the pushforward of the relevant powetke theta divisor for that
case. To finish the computation of this intersection numbee needs to understand
the combinatorics of the intersections of the boundary camepts of the level cover of
ﬂg, and to apply the singular version of the Grothendieck-RiemRoch formula for the
pushforward mag, \ 3 — Ag-1 L Ag-2, Which has singular fibers. The result is the
following

Theorem (Erdenberger, Grushevsky, Hulek, [3]Jhe conjecture above holds far >
W = dimAy_3. Moreover, explicit formulas are given in [3] for the nonrae
numbers in this range: the non-trivial one( 2 D29‘1>5q5, and the formula for it

involves a finite hypergeometric sum.
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Minimal Model Program and Semi-Orthogonal Decompositionsof Derived
Categories

Y uiro KAWAMATA

Bondal and Orlov found a close parallelism between the djpermin the minimal model
program (Mori fiber spaces, divisorial contractions andsjlipnd the semi-orthogonal
decompostions of bounded derived categories of cohereatvel ([1]). But, although
the MMP works for singular and logarithmic varieties, theided categories behave
nicely only for smooth varieties. The reason is that thevéericategoryD?(Coh(X))
for a smooth projective varitX satisfies the following 3 nice properties: (1) it is of finite
type, (2) it has a Serre functor, (3) it is saturated.

If the variety has a singularity, then the derived categerymo more of finite type.
The Serre duality holds only betwe®¥(Coh(X)) and the subcategory Pexi of per-
fect complexes. The latter is of finite type, but is not saeaa The question is to find
something betweeBP(Coh(X)) and PerfK) for a singular varietyX which satisfies the
above 3 properties, like the intersection homology whieb between the homology and
the cohomology.

If the variety has only quotient singularities, then theoassted Deligne-Mumdord
stack has a nice derived category. By using this “crepaniugien”, one can prove that
the derived category corresponding to a projec@véactrorial toric variety is generated
by an exceptional collection consisting of sheaves ([3]).

As a variant of this result, we can prove the following:

Theorem 1. Let f : X — Y be a birational morphism between project®efactrorial
toric varieties. LetX andY be smooth Deligne-Mumford stacks associateX tandY
respectively. Assume that an inequalitiKy > Kx holds. Then there exists an excep-
tional collection inDP(Coh(¥)) such that its semi-orthogonal complement is equivalent
to D°(Coh(X)).

The assumption is satisfied for example by minimal resahstiand maximal resolu-
tions of singularities fol.

Next we consider a terminal singularity in dimension 3 whghon-toric. Namely we
consider a varietyX having an odd Pagoda singularity defined by an equationz> +
w1, By blowing-up at points times, we obtain a resolutioh: Y — X. There aren
exceptional divisors, where the first 1 divisorsEs, .. ., E,_; are minimal ruled surfaces
of degree 2 oveP!, and the last on&, is a singular quadric cone. Correspondingly, we
have an exceptional collection of lengitin D®(Coh(Y)). Let D be its semi-orthogonal
complement. We claim th&D is a desired “categorical crepant resolution” ([5]):

Theorem 2. The categoryD is a minimal saturated subcategory®¥(Coh(Y)) which
containsf*Perf(X). The right orthogonal subcategof{Perf(X)* is generated by objects
Ci1,...,Cn Such that the firsh — 1 objectscy, .. ., C,-1 are 2-spherical objects, and the last
onec, satisfies Horf(cy, c,) = k[t]/t3 as graded rings, where dég& 1. The objects

¢; define autoequivalences @1, called twistings, which leavé*Perf(X) invariant. The
Serre functoSy, satisfiesSy(c;) = ¢;[2] for all i.
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We note that the objects, ..., c,_1 are 2-spherical instead of 3-sperical. The object
c, is similar to aP? object ([2]) except that the degree of the genertaisrl instead of 2.
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The structure of surfaces and threefolds mapping to the modiistack of canonically
polarized varieties

SreraN KEBEKUS
(joint work with Sandor J. Kovacs)

Let Y° be a quasi-projective manifold that admits a morphismy° — 9t to the moduli
stack of canonically polarized varieties. Generalizing ¢lassical Shafarevich hyperbol-
icity conjecture [6], Viehweg conjectured in [7] thdt is necessarily of log general type
if u is generically finite. Equivalently, if° : X° — Y° is a smooth family of canonically
polarized varieties, theM® is of log general type if the variation df° is maximal, i.e.,
Var(f°) = dimY°. We refer to [4] for the relevant notions, for detailed refeces, and for
a brief history of the problem, but see also [5].

Viehweg'’s conjecture was confirmed for 2-dimensional nadgY® in [4] using ex-
plicit surface geometry. In this talk, we employ recent asten theorems for logarithmic
forms to study families over threefolds. If divfi < 3, we establish a strong relationship
between the moduli mgp and the logarithmic minimal model program6t: in all rel-
evant cases, any logarithmic minimal model program nechssarminates with a fiber
space whose fibration factors the moduli map. This allows psdve a much refined ver-
sion of Viehweg’s conjecture for families over surfaces timdefolds, and give a positive
answer to the conjecture even for families of varieties witlly semi-ample canonical
bundle. IfY° is a surface we recover the results of [4] in a more sophisticenanner.
In fact, going far beyond those results we give a completergioc description of the
moduli map in those cases when the variation cannot be maxima

The proof of our main result is rather conceptual and inddpatof the argumentation
of [4] which essentially relied on combinatorial argumefds curve arrangements on
surfaces and on Keel-McKernan'’s solution to the Miyanisinjecture in dimension 2,
[3]. Many of the techniques introduced here generalize welligher dimensions, most
others at least conjecturally.

We work over the field of complex numbers.
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Main results. The main results are summarized in the following theorenishutescribe
the geometry of families over threefolds.

Theorem 1 (Viehweg conjecture for families over threefoldd)et f° : X° — Y° be a
smooth projective family of varieties with semi-ample cacal bundle, over a quasi-
projective manifold Y of dimensiordimY® < 3. If f° has maximal variation, then°¥is
of log general type. In other words,

Var(f?) = dimY° = «(Y°) = dimY®.
O

For families ofcanonicallypolarized varieties, we can say much more. The following
much stronger theorem gives an explicit geometric explanatf Theorem 1.

Theorem 2 (Relationship between the moduli map and the MMBgt f° : X° — Y°
be a smooth projective family of canonically polarized eéds, over a quasi-projective
manifold ¥ of dimensiordimY® < 3. Let Y be a smooth compactification 6fstch that
D := Y\ Y°is a divisor with simple normal crossings.

Then any run of the minimal model program of the p@irD) will terminate in a
Kodaira or Mori fiber space whose fibration factors the moadaiip birationally. O

Remark3. If «(Y°) = 0 in the setup of Theorem 2, then any run of the minimal model
program will terminate in a Kodaira fiber space that maps tomgls point. Since this
map to a point factors the moduli map birationally, Theoreas&erts that the family®

is necessarily isotrivial ik(Y°) = O.

Remark4. Neither the compactificatiof nor the minimal model program discussed in
Theorem 2 is unique. When running the minimal model prograng often needs to
choose the extremal ray that is to be contracted.

In the setup of Theorem 2, K(Y°) > 0, then the minimal model program terminates
in a Kodaira fiber space whose base has dimengigt). The following refined version
of Viehweg’s conjecture is therefore an immediate corgliErTheorem 2.

Corollary 5 (Refined Viehweg conjecture for families over threefolds[4]). Let f° :
X° — Y° be a smooth projective family of canonically polarized e#&s, over a quasi-
projective manifold Y of dimensiordimY® < 3. Then either

1) x(Y°) = —oc0andVar(f°) < dimY®, or
i) «(Y°) > 0andVar(f°®) < «(Y°). O

As a further application of Theorem 2, we describe the farfiily X° — Y° explicitly
if the base manifold/° is a surface and the variation is not maximal.

Outline of the proof. The proofof Theorems 1 and 2 relies heavily on the minimalehod
program, on results of Viehweg and Zuo concerning the excgt®f pluri-forms on the
base of a family, and on extension theorems fdiiedential forms. For convenience, we
summarize these results first.
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Theorem 6 (Existence of pluri-dierentials on the base of a family, [8]ket f° : X° —
Y° be a smooth projective family of canonically polarized e#igs, over a quasi-projective
manifold ¥°. Let Y be a smooth compactification ¢f&tch that D:= Y \ Y° is a divisor
with simple normal crossings.

Then there exists a numberaN and an invertible subsheaf

o/ < Sym" QY (log D)
such thaw(<?) > Var(f°). O

Theorem 7 (Extension theorem for log canonical pairs, [2Det Z be a normal variety
of dimension n and c Z a reduced divisor such that the p&#, A) is log canonical. Let
n . Z — Z be alog resolution, and set

Arc := largest reduced divisor contained i (A U centers of log canonicily
If p e {n,n-1,1}, then the sheaf*Qg(Iog Arc) is reflexive. O

One corollary of Theorem 7 is the following generalizatidribee well-known Bogo-
molov-Sommese vanishing theorem for snc pairs, cf. [1].

Theorem 8 (Bogomolov-Sommese vanishing for log canonical threef@ldd surfaces,
[2]). Let Z be a normal variety of dimensidimZ < 3and letA c Z be a reduced divisor
such that the pai(Z, A) is log canonical. Leter C Q[Zp] (logA) be a reflexive subsheaf of
rank one. Ife/ is Q-Cartier, thenk(<?) < p. O

In order to prove Theorem 2, we use the existence of the si@afprove that the tan-
gent sheaf of a minimal modeY(, D,) of the pair {f, D) is unstable in all relevant cases.
The sheaf of reflexive ﬁ’erentialsﬂ)%](log D,) is also unstable, with maximally destabi-

lizing subsheafs, of rankp < dimY. We obtain a subsheaf d&tc QE}Z’] (logD,) which,
by Theorem 8, must have small Kodaira-litaka dimension.ngyshatY, is minimal, a
detailed and rather involved analysis of possible casessdhe result.
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Convex bodies associated to linear series
RoBERT L AZARSFELD
(joint work with Mircea Mustata)

Let X be a smooth projective variety, and Btbe a big divisor onX. Inspired by a
construction introduced in passing by Okounkov [6], [7]e tClassical setting of ample
divisors, we associate tb a convex bodyA(D) c RY. We use these to recover and
extend many facts about the asymptotic properties of lisedes. We give here a quick
invitation to this work, borrowed from the Introduction ][
Okounkov’s construction depends on the choice of a fixed flaglovarieties:

Yo : X=Yo2VY12Y22...2 Yg1 2 Yg = {pt},
whereY; is a smooth irreducible subvariety of codimension X. This flag determines
in a natural way a valuation-like function
*®) v=vy, =v.p : (HA(X 0x(D)) - {0}) — 2% , s> w(s) = (vi(9),...,va(9)).
on the non-zero sections of any big divigdr For example, wheX = P9 andY, is a flag
of linear spaces;y, is essentially the lexicographic valuation on polynomisisite

V(D) = Im((H(X,0x(D)) - {0}) — Z%)
for the set of valuation vectors of non-zero section®gfD). It is not hard to check that
#v(D) = h°(X Ox(D)).

Then finally set

A(D) = Ay,(D) = closed convex hfll_| & - v(mD)).

m>1
ThusA(D) is a convex body ilRY = Z4®R, which we call theDkounkov bodgf D (with
respect to the fixed flay.).
As one might suspect, the standard Euclidean volum&D) in RY is related to the
rate of growth of the groups®(X, Ox(mD)). In fact, Okounkov’s arguments in [§3] —
which are based on results of Khovanskii — go through witlobiainge to prove

Theorem A. If D is any big divisor on X, then
Volgd(A(D)) = d—ll -volx(D).

The quantity on the right is theolumeof D, defined as the limit
ho(X, Ox(mD))
md/d!
In the classical case, whdd is ample, vok(D) = fcl(Ox(D))d is just the top self-

intersection number dD. In general, the volume is an interesting and delicate iawar
of a big divisor, which has lately been the focus of consibkravork.

VOIx (D) =gef lImM
m—oo
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One of our main results involves the variation of these ®dgefunctions oD. It is
not hard to check thak(D) depends only on the numerical equivalence clas®,adnd
that A(pD) = p - A(D) for every positive integep. It follows that there is a naturally
defined Okounkov body(£) ¢ RY associated to every rational numerical equivalence
class¢ € N'(X)q, and as before vai(A(£)) = - volx(£). We prove:

Theorem B. There exists a closed convex cone
A(X) € RYx NY(X)r
characterized by the property that in the diagram

A(X) RY x NY(X)r

N

N*(X)r,
the fibreA(X); € RY x {¢} = RY of A(X) over any big clasg € N(X)q is A(¢).

The image ofA(X) in N1(X)r is the so-called pseuddfective con&Eft(X) of X, i.e. the
closure of the cone spanned by dlleetive divisors: its interior is the big cone B of
X. Thus the theorem yields a natural definitiom\§f)  RY for any big clasg € N*(X)g,
viz. A(€) = A(X),.

Theorem B renders transparent several basic propertidseofdlume function vgl
established by the first authorin [5, 2.2C, 11.4.A], and petelently by Boucksom [1] in
the analytic setting. First, since the volumes of the fi&x@3 = A(X); vary continuously
for £ in the interior of pg(A(X)) € N1(X)r, one deduces that the volume of a big class is
computed by a continuous function

voly : Big(X) — R.

MoreoverA(é) + A(¢') € A& + &) for any two big classes, & € NY(X)r, and so the
Brunn-Minkowski theorem yields the log-concavity relatio

Vol (€ + &)Y > volx (&)Y + voly (&)Y

for any two such classes.

The Okounkov construction also reveals some interestictg &bout the volume func-
tion that had not been known previously. For instanceklet X be a very ample divisor
on X that is general in its linear series, and choose the¥lag such a way tha¥; = E.
Now construct the Okounkov body(¢) € RY of any big clasg € Big(X), and consider
the mapping

pr; s A(¢) — R

obtained via the projectioRY —s R onto the first factor, so that pis “projection onto
thev,-axis.” Writee e N*(X) for the class of, and givert > 0 such that — teis big, set

A=t = P € RTY, A@)us = prii([t ) € RY
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We prove that
A(f)vlzt =upto translationA(f - te)

VOlre-1(A(€)v=t) = (d——ll)l - Volxe(€ — te).

Here voke denotes the restricted volume function frofto E studied in [3]: wherD is
integral, voke(D) measures the rate of growth of the subspacés%E, Og(mD)) con-
sisting of sections that come frok Since one can compute thdedimensional volume
of A(¢) by integrating thed — 1)-dimensional volumes of its slices, one finds:

Corollary C. Leta> 0be any real number such that- ae € Big(X). Then

0
VOlx (&) — volx(é —ae) = d-f volye(¢ + te) dt.

Consequently, the function+ volx (¢ + te) is diferentiable at t= 0, and
d
at (Volx (& +t€))li=o = d - volxe(é).

This leads to the fact that wpls C* on Big(X). Corollary C was one of the starting points
of the interesting work [2] of Boucksom—Favre—Jonsson, Whund a nice formula for
the derivative of val in any direction, and used it to answer some questions o§igeis
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Singularities of the moduli space of spin curves and Prym cures
KATHARINA LUDWIG
(joint work with Gavril Farkas)

Both moduli spaces considered, the moduli sgggef spin curves and the moduli space
Ry of Prym curves, parametrise paifS, () of a smooth curv& of genusg and a line
bundleL onC. In the case of spin curves, the line bundle is a square rabeafanonical
bundlewc, in the case of Prym curves, it is a non-trivial square rodheftrivial bundle
Oc. There are natural forgetful morphisms: %3 — Mg, x € {S R}, sending the
isomorphism clas<], L] to [C].
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Since the Kodaira dimension af; is, by definition, that of a smooth projective model
*g, ONe needs a compactificatiag > x4 and a desingularisationy — *4. A geometri-
cally meaningful compactificatio8y of Sq over the Deligne-Mumford compactification
Mg was given by M. Cornalba [3] in terms of line bundles on soezhfjuasistable curves.
E. Ballico, C. Casagrande and C. Fontanari [1] construateahalogous compactification
ﬁg of Ry and proved that it is isomorphic to the compactification \dangsible covers
by A. Beauville [2]. The compactifications are coarse modphkces for the following
objects.

Definition 1. A spin resp. Prym curve of gengs> 2 is a triple X, L, b), whereX is a
guasistable curve of gengsi.e. there exists a stable cureand a blow ugg : X - C
of C at a setN c singC of nodes,L € Pic(X) \ {Ox} is of degreeg — 1 resp. 0 and
b: L% — B wc resp.b : L¥2 — O is a homomorphism such that for every exceptional
component of g we havelL,g = Og(1) andb is non-zero at the generic point of every
non-exceptional component &t

An automorphism of X, L, b) is a pair ¢, y) whereo € Aut X andy : o*L — L is an
isomorphism compatible with the homomorphisorendo*b.

The moduli spacesy are normal and have quotient singularities. Locally at apoi
[X,L,b] € %4 the moduli space is isomorphic to the quotient of the versdbmina-
tion spac@f’g‘3 of (X, L, b) by the linear action of the automorphism group A4t(, b).
Studying the automorphisms acting as quasireflectiondhaeng 1 as an eigenvalue of

multiplicity 3g — 4, gives the following characterisations of the smooth $ocu

Proposition 2 ([4, 6]). Letg=> 4.

[X,L,b] € ﬁg iIs smooth if and only iAut(X, L, b) is generated by elliptic tail invo-
lutions, i.e. automorphisms such that there exists an uadsle component Cof X of
genusl meeting the rest of the curve in exactly one node suchothgthe involution on
C; fixing the node and the identity o6\ C;.

[X,L,b] € Sq is smooth if and only if the image of the natural homomorphism
Aut(X,L,b) — AutC is generated by elliptic tail involutions and a certain grax(X)
is tree-like, i.e. removing all loops &f(X) gives a tree. Her&(X) has a vertex for ev-
ery connected component of the partial normalisation of Naand an edge for every
exceptional component E of the blowgip

Quotienting out the subgroup of AX(L, b) generated by quasireflections gives a de-
scription of the quotient singularity aX[L, b] asCﬁg_3/K whereK contains no quasire-
flections, hence the Reid—Shepherd-Barron—Tai crites@pplicable. A careful study of

the occuring quotients gives the following
Proposition 3 ([4, 6]). Let g > 4. [X,L,b] € x4 is a non-canonical singularity if and
only if X has an elliptic tail G of j-invariantO such that k¢, = O, .

With this detailed local information we can prove the follagy global result.
Theorem 4 ([4, 6]). For g > 4 every pluricanonical formw on the smooth locus
extends holomorphically to a desingularisatieg, i.e.

HOGeg o MK ) = HO(xg, MKy, ).
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Remark 5. This implies that the Kodaira dimension§ can be computed on the moduli
spacexkq itself without refering to a smooth mode},. See the article of G. Farkas in this
report for the results on the Kodaira dimensions.

idea of proof. Let w be any pluricanonical form o ° and [X, L, b] € %g. If [X, L, b] is
a canonical singularity, the form extends locally to a desingularisation. X,[L, b] is a
general non-canonical singularity, the stable ma@zibhs two irreducible componer@s
andC, meeting in one nodé&;, is a general smooth curve of germs 1, C; is an elliptic
curve with j-invariant 0 and.,c, = Oc,. Deforming the elliptic tailC; gives a projective
curve inxg through [X, L, b]. We prove that there exists an open neighbourt®odi this
curve such thaw extends holomorphically to a desingularisatiorSofThe basic idea is
to contract a divisor containing the singularity to a codmusien two locus in a smooth
variety Sp, where the form naturally extends.

Now let [X, L, b] be any non-canonical singularity. For every elliptic @iilj-invariant
0 such that the restriction df is trivial consider a deformation to the general gpnym
curve having this elliptic tail. The corresponding pointkg is a general non-canonical
singularity. The above considerations then give an opesefulif a neighbourhood of
[X, L, b] fulfilling the conditions of a generalised Reid—ShephBatron—Tai criterion by
Harris and Mumford [5] which implies thai lifts to a desingularisation. O
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Non-algebraic hyperkahler manifolds
Kent Ocuiso
(joint work with Frédéric Campana, Thomas Peternell)

Let X be a compact Kahler manifold. Then, by the Moishezon daterX is projective
if and only if it is algebraic in the sense thatX) = dim X. Herea(X) is the algebraic
dimension ofX, i.e., the transcendental degree of the meromorphic fomdield of X.
Also, by the famous criterion of Kodair¥,is projective ifH?(X, Ox) = 0, or equivalently,
by the Hodge symmetry, if°(X, Q3) = 0.

A hyperkahler manifold is in some sense the simplest classamifolds which danot
satisfyHO(X, Q%) = O:
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Definition. A simply connected compact Kahler manifold is called a hmmmphic irre-
ducible symplectic manifold or a hyperkahler manifoldXiadmits an everywhere non-
degenerate holomorphig-form ox such that H(X, Q%) = Cox. (Hence of an even
dimension, sagn, andA"ox is a 2n—form without zeroes.)

By the famous Bogomolov decomposition theorem [Be83], hiy@leler manifolds,
Calabi-Yau manifolds of dimension 3 and complex tori form three important building
blocks among all compact Kahler manifolds of vanishing f#kern class. Among these
three, Calabi-Yau manifolds are always projective, ands#tef algebraic dimensions of
complex tori of dimensiom(> 2) is{a € Z|0 < a < nj.

By Fujiki [Fu83], both projective and non-projective hygahler manifolds are in fact
dense in the Kuranishi space Bt We are then interested in hyperkahler manifolds,
particularly with their algebraic dimensiom%X) < 2n and their algebraic reductions
f . X --> B, which are unique up to bimeromorphic modificatiorBfUe75]. These two
are the most fundamental invariants in the classificatiamoofalgebraic manifolds.

Before discussing hyperkahler case, we recall the caserfaices. Let be a compact
smooth surface. Then, the intersection form (cup productyhe Néron-Severi group
NS(S) is of signature either (D, p(S)—1) in which case we say thB&tS(S) is hyperbolic,
(0,1, 0(S)-1) (NS(S) is parabolic), or (00, p(S)) (NS(S) is elliptic). According to these
three casesy(S) = 2, 1, 0. Moreover, i(S) = 1, then we have a holomorphic algebraic
reductionf : S — C whose general fiber is an elliptic curve [BHPV04].

For a hyperkahler manifol¥, we have the Beauville-Bogomolov-Fujiki's form
ax 1 HA(X, Z) x H3(X,Z2) -» Z .

This is a bilinear symmetric form of signature, (8b,(X) — 3) [Be83] (see also [Bo75],
[Fu87]). In many aspects, the Beauville-Bogomolov-Ftgikorm plays a very similar
role to the interesection form on a surface. For instancediices a symmetric bilin-
ear form on the Néron-Severi grolyS(X), and the signature is either,@ o(X) — 1)
(hyperbolic), (01, o(X) — 1) (parabolic), or (00, p(X)) (elliptic).

Example. (1) LetS be a K3 surface. The@l", the Hilbert scheme af points onS, is a
hyperkahler manifold of dimensiom2This is due to Fujiki [Fu83] and Beauville [Be83].
We havea(SI") = 0, n, 2n according toa(S) = 0, 1, 2. In addition, whea(S) = 1, the
algebraic reduction map — P! induces a natural surjective morphisfl — P".
This is the algebraic reduction 8" and it is also Lagrangian.

(2) Let T be a 2-dimensional complex torus. The generalized Kummearifold
Kn(T) is also a hyperkahler manifold of dimension [Be83]. One can also check that
a(Kn(T)) = 0,n, 2naccording ta(T) = 0, 1, 2. In addition, when(T) = 1, the algebraic
reduction magf : T — E induces a natural morphis8f*1T — S™1E, which is com-
patible withS™'T — T, S™'E — E (natural addition maps), and From this, one
obtains a surjective morphiskn(T) — P". This morphism is nothing but the algebraic
reduction ofK,(T) and it is again Lagrangian.

In much deeper level, we have the following fundamental:
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Theorem (Huybrechts [Hu99]). A hyperkahler manifold X is projective if and only if
NS(X) is hyperbolic.

Theorem (Matsushita [Ma99]). Let f : X — B be a surjective holomorphic map from
a hyperkahler manifold X to a normal projecive variety Bhwiit< dim B < dim X. Then

f is necesarily Lagraingian, that iglim B = dim X/2 andox|F = 0 for a general fiber
of f.

Motivated by these, we formulated the following:

Conjecture ([COPO08]). Let X be a hyperkahler manifold of dimensiam Then its alge-

braic dimension takes only the valugs, 2n. Moreover, if §X) = n, then the algebraic
reduction has a holomorphic model:fX — B with B a normal projective variety of
dimension n (in particular, f is Lagrangian).

In this conjecture, we also expected tidti S(X) is parabolic, then éX) = dim X/2.
However, we have no answer for this stronger assertion ¢xoeijhe examples discussed
above.

At the workshop, | have reported the following answer towthedconjecture, obtained
in our joint work, with some idea of proof:

Theorem ([COPO08]).(1) If dim X = 4, then the conjecture above is true.

(2) Let X be a non-algebraic hyperkahler manifold of dimengdonThen0 < a(X) <
2n. More precisely we have:

(i) If NS(X) is elliptic, then &X) = 0.

(ii) If NS(X) is parabolic, therD < a(X) < n = dim X/2.

(i) Assume that any compact Kahler manifold Ydoh Y < 2n — 1, of algebraic
dimension &Y) = 0 and of Kodaira dimensior(Y) = 0 and with gfective canonical
divisor Ky, has a minimal model with numerically trivial canonical @ier. Then the
conjecture above is true.
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Relative critical exponents and non-vanishing
Miuar PAun

The main goal of our talk was to give a general outline of trapof the following result
see [3].

Theorem 0.1. Let X be a smooth projective manifold, and let B beRadivisor such
that:

(i) The pair(X, B)is KklIt, and B is big ;
(i) The adjoint bundle K + B is pseudogective.

Then there exist anfectiveR-divisor 2?‘:1 vI[Y;] numerically equivalent with X+ B.
O

Firstly, we would like to mention that the above result gatizes the classical “non-
vanishing” theorems of V. Shokurov and Y. Kawamata.

Secondly, the above result is not new : it was established .bgiRar, P. Cascini,
C. Hacon and J. McKernan as a by-product of their fundamevagk [1], by using the
minimal model program and characterigti¢techniques.

One important aspect of our proofis that is Cpdree ; moreover we avoid thexplicit
use of the minimal model program algorithm. A theorem simita0.1 was established
by Y.-T. Siu in [5], pages 31-46. Even if the hypothesis in $tstement are much more
restrictive than above, a substantial part of the argunfeois his work are used here.
Most of the subtle points in our arguments are equally olzg#evn the algebraic geome-
try proof mentioned above, as it was kindly explained to ud.ivicKernan and S. Druel;
it would be very interesting to have a precise comparisowéen the two approaches.

O

We comment here few aspects of the proof. If the dimensidfyof B is equal to zero,
then the theorem 0.1 is a consequence of a result due to Nyhlalea(generalized by S.
Boucksom). If this is not the case, we use the numericalipdgibf Ky + B, together with
(a version of) the usual log-canonical threshold, in ordedéntify a hypersurfacg (the
minimal centey of some modification oK such that by restriction t8 we reproduce the
same context as in 0.1, except that the dimension drops.pEniof our proof could be
seen as a generalization of the classical arguments uskd kujita conjecture literature
(see [5], [6] and the references therein).

During the restriction to the minimal center process, weéwge in an essential manner
the regularization techniques of J.-P. Demailly (see [3]Hlijophantine approximation ar-
gument is also involved, to reduce to the case where the geicrobjects we are dealing
with are rational (see also [1]). Finally, we use the extem$echniques of Y.-T. Siu ([4])
and C. Hacon-J. McKernan adapted to the present situatio@.nfain technical point in
our proof is anad hocversion of the invariance of plurigenera : this is the pareveithe
difference between the classical approach (Shokurov, Kawamadad our arguments is
quite important.
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Hyperbolicity of geometric orbifolds
ErwaN Rousseau

F. Campana has introduced in [1] orbifold structures, ngrpalrs (X/A) with X a com-
plex manifold and a divisoA = Y ;(1— %)Zi where thez; are distinct irreducible divisors
andm € N U {o0}, as a new frame for the classification of compact Kahler fo#is.
These structures appeared naturally for fibratibnsX — Y. Indeed the multiple fibres
of f lead to the definition of the orbifold base df(Y/A(f)) where

1
A(f) = 2(1— m(f,D))D

DcY

m(f, D) being the multiplicity of the fiber of above the generic point @. A new class
of varieties was then introduced, tepecial varietiesas the varieties which do not admit
fibrations of general type i.e with an orbifold base of gehgn@e. Campana [1] proves
the existence for every complex algebraic manifdldf a fibrationcy : X — C(X), the
core of X, such that its general fibers are special and i§ not specialcy is of general
type.

These geometric orbifolds should be considered as true gimnobjects as one can
define for them dferential forms, fundamental groups, Kobayashi pseudiaiie...
Here we study the hyperbolic aspects of these objects. Aniitapt conjecture of Cam-
pana [1] is thatX is special if and only if the Kobayashi pseudo-distadgevanishes
identically onX x X. This is known only for curves, projective surfaces not ol
type and rationally connected manifolds.

This conjecture then implies thdk should be the pull-back bgy of the Kobayashi
pseudo-distancg&, of the orbifold base of the core.

The study of the hyperbolic aspects of one-dimensionaf@ds has been done in
[3]. In this work we study hyperbolicity of higher dimensalrorbifolds following the
philosophy of Campana that one should study these objentralzing the tools we use
for manifolds without orbifold structures or logarithmicamifolds.

First, we define the classical and non-classical Kobayagbetolicity for orbifolds.
Then we illustrate these notions in the case of orbifold ear¥We compute explicitly the
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orbifold Kobyashi pseudo-distance for
(X/4) = (D/(1 - 3)(0}),0 < N € N U eo),

whereD is the unit disk. This answers a question of Campana and Wireken (see
[3]) and enables us to recover as a corollary the equivalehdassical and non-classical
hyperbolicity for orbifold curves. Finally, we show thatighis not the case in higher
dimension giving an example of an orbifold surface whichlassically hyperbolic but
not hyperbolic.

Then, we define and use orbifold jetigirentials. The main applications are algebraic
degeneracy statements for entire curves with ramificah@ituations where no Second
Main Theorem is known from value distribution theory. Nay&le prove

Theorem 1. Let (X/A) be a smooth projective orbifold surface of general type wher
A has the following decomposition into irreducible compdseA = Y, (1 - %)Ci.
Suppose thatig= g(Ci) > 2, h°(Ci, Oc,(C;)) # 0 for all i and that the logarithmic Chern
classes ofX, [A]) verify

n
(0.1) o - -

i=1

(20 -2+ ) CC) >0,

j#i

3|+

then there exists a proper subvarietycy X such that every entire curve fC — X
which is an orbifold morphism, i.e ramified ovey With multiplicity at least m verifies
f(C)cy.

This result can be seen as an orbifold version of results @@Miian [5] (see also [6]
and [4] for the logarithmic case) on the Green{fiths-Lang conjecture which can be
generalized to the orbifold setting

Conjecture 2. Let (X/A) be a smooth projective orbifold of general type. Then there
exists a proper subvariety ¥ X such that every orbifold morphism :fC — (X/A)
verifies {C) C Y.

The methods used also enable us to generalize a result of &agnd Paun on
weakly-special manifolds [2].
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Moduli spaces of holomorphic bundles over non-khlerian surfaces and
applications

ANDREI TELEMAN

1. Moduli spaces of stable and polystable bundleset X be a compact complex-
dimensional manifold. A Hermitian metrgcon X is called Gauduchon if its Kahler form
wy satisfiesaa(wg‘l) = 0 [6]. In every conformal class of Hermitian metrics Xrthere
exists a Gauduchon metric (which is unique up to constamdifaicn > 2), so there is no
obstruction to the existence of Gauduchon metrics. A Gauoluenetric onX defines a
degree map dgg Pic(X) — R, given by deg(£) := fx ci(L, h) A wg‘l, whereci(L, h)
denotes the first Chern form of the Chern connection of anyrtiten metric onL (a rep-
resentative of its first Chern class in Bott-Chern cohomyjogor an arbitrary coherent
sheaff one puts as usually dgi) := deg,(det(F)), ug(F) := deg,(detF))/rk(¥) (de-
fined for non-trivial torsion-free sheaves) and introduitesstability and semi-stability
condition in the usual way, by requiring the same inequeaiéis in the classical Mumford-
Takemoto theory for bundles on projective manifolds. Sany, a bundleS on X is called
polystable if it is either stable, or isomorphic to a diregtrsof stable bundles of same
slope.

Consider now &* rankr-bundleE over the Gauduchon manifolX(g), and fix a
holomorphic structureD on the determinant line bundle := A"(E). We denote by
MG (E), MZ(E), M%St(E) the moduli sets of equivalence classes of simple (respdyti
stable, polystable) holomorphic structuressowhich induceD on D. MZ,(E) has a natu-
ral structure of (in general non-Hausédfinite dimensional complex space, aM%(E)
is a (in generafl-dependent) Hausdfdiopen subset of this space, hence it inherits a natu-
ral Hausdoft complex space structure [8]. In order to put a natural togplm the larger
moduli setME)St(E) in the non-Kahlerian framework one needs the Kobayastuhith
correspondence [4], [2], [9], [8]. Suppose for simpliaity: 2. We fix a Hermitian metric
h on E and denote by the Chern connection of the patD(detf)). The Kobayashi-
Hitchin correspondence yields a bijectigtaSP(E) = MES(E) which mapsMASP(E)*
onto M%(E). Here MASP(E) stands for the moduli space of projectively anti-selfdual
Hermitian connectioné on E which inducea on D, and M4SP(E)* denotes the open
subspace of irreducible such connections. The restrighdi®(E)* — MS\(E) is a real
analytic isomorphism [8]. In this way we get a natural Haustmpology onM%St(E)
(induced from the topology oMASP(E)) with respect to WhiCh’\/(%(E) Is open. Note
however that, in general, on non-Kahlerian manifolds, ¢cbeplex space structure of
MG3(E) cannot be extended I'MS)St(E). This shows that in the non-Kahlerian framework
there cannot exist a coherent way to define moduli spacesenfu+alence classes of
semistable bundles within the complex geometric cateddoyeover, the local structure
of Mg)st(E) around a split polystable bundle cannot be described withptex geomet-
ric methods; one has to study the Kuranishi local model ofctbreesponding reducible
instanton with gauge-theoretical techniques [5], [156][1

Forn = 2 the isomorphismM4SP(E) — M%St(E) plays a crucial role in Donaldson
theory: it was used by Donaldson as a tool to compute ingtantduli spaces with com-
plex geometric methods [4], [5]. Unfortunately, on nonedigaic surfaces, describing
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the complex geometric term/(gft(E) becomes very dicult because the appearance of
non-filtrable bundles. These bundles are stable with ré$peny Gauduchon metric, but
there exists no method to classify them.

Class VIl surfaces.The Enriques-Kodaira classification of complex surfacasoisyet
complete. The main obstacle is the Kodaira class VII. Acewytb the modern terminol-
ogy a class VIl surface is a compact complex surfddevingb;(X) = 1, kod(X) = —oo.
The subclas¥/ 11%2=0 of class VII surfaces witl, = 0 is completely classified: such a
surface is biholomorphic either to a Hopf surface or to arutnsurface [1], [10], [14]. It
remains to classify the clas4d If;fiio of minimal class VII surfaces with, > 0, which is a
difficult, long-standing problem. The standard conjectureseaning this classification

are.

C1. Any surface X Vllrkr’fizo has by rational curves

C2. Any surface X Vllgfizo contains a cycle of rational curves

By the fundamental result of Dloussky-Oeljeklaus-Tomad8y surfaceX e Vllgffo
with b, rational curves is biholomorphic to a Kato surface (i.e. Hame with global
spherical shell). Kato surfaces are well understood [74],[4o0 (if true) C1 would solve
the classification problem for class VII surfaces compietel

On the other hand, by a fundamental result of Nakamura [11fnesv that any sur-
faceX e VI Ir?fizo containing a cycle of rational curves is a degeneration cparhmeter
family of blown-up primary Hopf surfaces; therefore (if éuthe weaker conjecture C2
would solve the classification problem for class VIl surlacg to deformation equiva-
lence. Therefore, the main problem in understanding eyassgﬁ;" surfaces is to prove
the existence of (giciently many) rational curvesn these surfaces.

The classV11%2>0 is interesting from a dierential topological point of view: the in-
tersection formoy : H2(X,Z)/Torsx H?(X,Z)/Tors — Z of such a surface is negative
definite, so by Donaldson’s first theorem, it is standard &/ee. there exists a basis
(e1, ..., &) of H%(X,Z)/Tors satisfyinggx(e, j) = —di; (with b := by(X)). Taking into
account that1(X)? = —b and thatk := —c1(X) is a characteristic class, we see that, re-
placing some of the, by their opposite if necessary, one can assumekika}’ e, and a
basis with this property is unique up to order.

Existence of curvesin [15], [16] we showed that one can use a combination of cempl
geometric and gauge theoretical techniques to make progrése classification of class
VIl surfaces, namely to prove existence of curves.

Theorem: C1 is true for Xe VI Igf;l and Qs true for Xe Vllfffiﬁz.
by>0 , . : : _
Let X € VII 2"". The fundamental object coming up in the proof is the modadice

M= M@’?t(E), whereE is a diferentiable rank 2 bundle witty(E) = 0 and detE) = K
(the underlyingC*® bundle ofK). Any filtrable bundle& with c,(E) = 0, det§) ~ K is
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an extension o ® £~! by £, where£ is a line bundle witfrc (L) = ¢ = Y &, fora
subsetl c {1,...b}. M is always compact, and it islz-dimensional complex space in
the complement of the reductions (split polystable burd@imceH(X) ~ C, we obtain
a non-trivial extension 6-> K — A — O — 0. The bundleA is stable if deg(K) < 0
(which can be assured by choosmguitably) andX contained no cycle. LeV c M be
the union of connected components containing split pobfsthundles. The proof starts
with the questionDoesA belong toN? If yes, one can prove thatmust contain a cycle.
If not, the connected componevitof ‘A in M is a smooth, compactfold contained in
M§§.(E) consisting generically of non-filtrable points. Rwyr € {1, 2} the appearance of
such a component in the moduli space leads to a contradi¢tmrinstance, fob, = 1,Y
would be a Riemann surface, and the contradiction comestfreriact thaty is algebraic,
whereasa(X) = 0.
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Generalized Kahler-Einstein metrics
HaimMe Tsun

In 2006, | proved that the normalized limit of the dynamicgdtem of Bergman kernels
constructed in [TO] is nothing but the canonical Kahlendtein current on a smooth pro-
jective variety of general type ([T1]). The importance aktdiscovery is that this implies
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the plurisubharmonicity of the logarithm of the relativaoaical Kahler-Einstein volume
form on a projective family of varieties of general type (JJy the result of Berndtsson
on the variation of Bergman kernels ([B, T1]).

Since the dynamical systems had already been constructemhhyofor varieties of
general type, but also for varieties with pseufdileeitve canonical divisors, | expected a
similar theory also in this case. However | could not find itéoyear. But once | looked
at the canonical bundle formula in [F-M, p.183, Theorem 5l2inmediately realized
that the corresponding metric satisfies libg-versionof the Kahler-Einstein equation on
the base of the litaka fibration with the boundary term confingh the curvature of the
Hodge metric of the Hodg®@ line bundle.

Let X be a smooth projective variety with nonnegative Kodairaatision and leff :

X —--- =Y be the litaka fibration associated with the complete lingatesn|my! K| for
some sHiciently large positive integemny. By taking a suitable modifications, we may
assume the followings:

(i) Y is smooth and is a morphism.
(i) f.0Ox(mo!Kx,v)* is a line bundle orY, wherexx denotes the double dual.

We define theQ line bundleL (independent ofry) onY by L := %f*()x(mo!Kx/y)**.
L carries a natural singular hermitian metric (the Hodge ety (independent o)
defined by

2 mo!
h™ (o, 0) = ( fx kw) (0,07 € mylLy).
y
Leta be positive integer such th&iOx(aKyx,y) # 0. Then we see that
HO(X, Ox(maKy)) = H(Y, Oy(maKy + L))

holds for everym > 0 and Kod¥) = dimY holds, where Kod) denotes the Kodaira
dimension ofX. Hence we see thaty + L is big. LetA be a very ample line bundle
on Y such that for every pseudfiective singular hermitian line bundlé-,(hg) on'Y,
Ov(Ky + A+ F)® I(hg) is globally generated. Ldtx be aC* hermitian metric oA with
strictly positive curvature. We shall construct a sequeridgergman kernel§K,} and a
seqguence of singular hermitian metr{bg}n>1 as follows. First we set

K(Y, Ky + A, hA), if a> 1,
Kl =
K(Y, Ky+L+rTb!(Ky+L),h|_'hA), if a= 1,

where for a singular hermitian line bundlg, bg) K(Y, Ky + F, hg) denotes (the diagonal
part of) the Bergman kernel ¢°(Y, Oy(Ky + F) ® 7(hg)) with respect to the?-inner
product:

(0,0") = (V—_l)”szhF oA,

wheren denotes dinY. Then we seh; := (K1)™t. We continue this process. Suppose
that we have constructet, and the singular hermitian mettig, on| T ja(Ky + L) + (m—
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| 31a)Ky, where for a real numbe, | 1] denotes the largest integer less than or equal to
A. Then we define

K(Y, (m+ 1)Ky + |2t jal + A hy)  if m+ 1% 0 moda,
Km+1 =
K, (m+ 1)Ky +L) + Aht®hy) if m+1=0 moda

andhm:1 := (Kme1) L. Thus inductively we construct the sequeng®gms1 and{Km}ms1.
This inductive construction is essentially the same ongimaied by the author in [TO].
The following theorem asserts that the above dynamicaksystields the canonical
Kahler current orY.

Theorem 1. ([T2]) Let X be a smooth projective variety of nonnegative Koddiraen-
sion and let f: X — Y be the litaka fibration as above. Leg esnd{hn}n>1 be as above
and let n denot&@limY. Then k := liminfy.. Y(M)" - hy, is a well defined singular
hermitian metric on k + L such that

() he is an AZD of K + L, i.e., V-10y_ is a closed positive current on Y and
HO(Y, O(am(Ky + L) ® 7(h2M) ~ HO (Y, O(am(Ky + L))) holds for every ng 1.

(i) We setwy = V-10p_. Then there exists a nonempty Zariski open subset U
such thatwy|U is a C* Kahler form on U and it satisfies the equation:

—RiC,, + V=10, = wy.

(iii) We define the volume fornugl, on X by gican := f*(Zw - h{1). Then dic, is
an AZD of k.

O

ducan is unique and independent Afandhpa. ducan IS said to behe canonical measure
on X. And wx := —Ricducan is said to bethe canonical semipositive current onX.
These are birationally invariant. We note that,, as constructed independently by Song
and Tian ([S-T]) in diferent context.

Theorem 2. ([T2]) Let f: X — S be a projective family such thatX are smooth and
f has connected fibers. Suppose th&lsimK,s) # 0 for some m> 0. Then there exists
a singular hermitian metric f on Kx,v such that

(i) wx/s = V=10, is semipositive on X.
(ii) For a general smooth fiber X= f~1(s), hx[Xs is an AZD of K and hXs is
the canonical measure ongX

O

Theorems 1 and 2 generalize the results in [T1], whéreY andL is trivial.

Theorem 2 strengthen the semipositivity of the direct imaigelative multicanonical
bundles due to Kawamata ([K]). Also we may prove a similaotieen for a projective
family of KLT pairs. | would like to propose the following cgetture:

Conjecture 3. Let f : X — Y be an algebraic fiber space, i.e., Xare smooth pro-
jective and f is surjective with connected fibers. Then esgficiently large m>> 1,
f.Ox(mKy,y) is globally generated outside of the discriminant locus gf;f



2208 Oberwolfach Report 32008

| have proved the following partial answer to Conjecture 3.

Theorem 3. Let f : X — Y be an algebraic fiber space. ThejOk(mKy,y) is almost

globally generated as m tends to infinity outside of the disicant locus D of f, in the
sense that for there exists a nonempty Zariski open subsdtYJ such that for every
ye U,

limsupQ(amy) = 1

m—oo

holds, where a is a positive integer such thadsf(aKx,y) # 0 and

rank ImagéHO(Y, f*Ox(amKy,y)) — f.Ox(@amKy,v) ® Cy}
rank f.Ox(amKy,v) '

Qlamy) :=

O

The proof uses Theorem 2. In fas/f—_lGhK in Theorem 2 defines a (singular) Monge-
Ampere foliation on the total spa¢ewhich descends to a Monge-Ampere foliationYan
Then we see that the leaf of the Monge-Ampere foliationegponds to the fiber of the
moduli map to the moduli space of pairs of the bases of thévelataka fibration and the
Hodge line bundles with the Hodge metrics. Then the desegetians can be constructed
by the pull back of the sections on the moduli space. We caargéne the above results
to the case of KLT pairs without anyferts. Theorem 4 implies the inequality : Kot)(>
Kod(Y) + Kod(X/Y), where Kod¥/Y) denotes the Kodaira dimension of a general fiber
of f : X—Y.
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Fake projective planes and arithmetic fake compact hermitan symmetric spaces
Sar-KEe YEUNG

The main theme of the talk is to present a joint project of G&pasad and the author
on classification and construction of fake projective ptaaed their higher dimensional
analogues.

A fake projective plane is a smooth complex surface whichthassame Betti num-
bers asPé but which is not biholomorphic t(Pé It is special in the sense that it has
the smallest Euler number among smooth surfaces of gerypel Furthermore, a fake
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projective plane turns out to be a quotient of the complexihaib by a torsion-free dis-
crete subgroup dPU(2, 1). Hence it is a Shimura surface and carries rich geometric and
arithmetic structures.

The first example of fake projective plane was constructetbynford [6], utilizing
p-adic uniformization. Two more examples were later founddlyda and Kato in [2],
utilizing related methods. More recently, Keum constrdadake projective plane with
an order 7 automorphism in [3], starting with Ishida’s as&éyon Mumford’s example.
The main purpose of the project of Gopal Prasad and mysedfetassify and construct
examples of fake projective planes, as well as their higheedsional analogues in arith-
metic fake compact hermitian symmetric spaces.

As mentioned above, a fake projective plavieis uniformized by the complex ball
(complex hyperbolic space of complex dimension 2), a camsecge of Bogomolov-
Miyaoka-Yau Inequality and results of Aubin and Yau on coexgVlonge-Ampere equa-
tion. Hence we may writé! = IT\PU(2, 1)/P(U (2) x U (1)), with IT a cocompact torsion-
free subgroup oPU(2,1). It is proved independently in the work of Klingler [4] and
myself [11] thatll is an arithmetic lattice ifPU(2, 1). Both of the approaches rely on
analysis related to harmonic maps into Bruhat-Tits buddiassociated tbl. As arith-
metic lattices have been classified and are listed in [13,dlassification problem is
reduced to classification of arithmetic lattices with rieséd topological invariants. This
is the approach taken by Prasad and the author in [8].

Crucial to the results of [8] is the volume formula of Prasadb]. Equipped with the
volume formula, we set out to list all arithmetic lattidesf PU(2, 1) with Euler number
x([) < 3. This is done with the help of various techniques in analytimber theory,
which allow us to derive a reasonably sharp bound on theidigtants of the defining
number fields. Once we are reduced to a small list of example®ither construct ex-
amples with the help of Bruhat-Tits theory and number themrgliminate by conditions
imposed on the values of associated Dedekind zetalLafghctions. Here is the main
result of [8].

Theorem 1. (a) There are twenty-six non-empty classes of fake proggilanes.
(b) There can at most be five more classes of fake projectweep] corresponding to very
specific number fields.

We remark that according to a conjecture of Rogawski, theoeilsl not be any fake
projective planes of the type listed in (b). In fact, Cargyti and steger [1] have been
able to eliminate three of the five classes in (b) as possdnédidates for fake projective
planes. For each of the twenty-six non-empty classes imf@)jave constructed at least
one example. Very recently, Cartwright and Steger [1] seded in listing all examples
in 23 classes above.

Theorem 2. (Cartwright-Steger) There are precisely forty-five fak®jpctive planes
among twenty-three classes in Theorem 1(a).

A potential application of the research of [8] and [1] is thia¢y provide a list of
projective algebraic surfaces equipped with a finite nonalrautomorphism group and
small Chern numbers that may be useful in constructing nesvasting surfaces to chart
geography of surfaces of general type. In fact, quite a fewheflist of examples in
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(a) have non-trivial finite group actions whose quotientggise to interesting algebraic
surfaces after resolving singularities. In particulahas been verified by Cartwright and
Steger that such resolutions include examples of simplyected surfaces of general
type with K2 = 3, q = 0 = pg, surfaces which have been sought after by algebraic
geometers. This is parallel to a completelffelient recent construction of examples due
to H. Park, J. Park and D. Shin [7].

As a generalization of the notion of fake projective plamesamplex dimension two,
Prasad and the author study arithmetic fake compact hamsiymmetric spaces in [9],
[10]. LetG be a connected semi-simple real algebraic group of adjgiet tLetX be the
symmetric space dB(R) andX, be the compact dual of. We shall say that the quotient
X/I1 of X by a cocompact torsion-free arithmetic subgrauf G(R) is an arithmetic
fake X, if its Betti numbers are same as thatgf X/II is an irreducible arithmetic fake
Xy if, further,IT is irreducible (i.e., no subgroup of of finite index is a direct product of
two infinite normal subgroups). The main results of [9], [40& the followings.

Theorem 3. (a) There exists no arithmetic fake projective space of dsim dfferent
from2 and4.

(b) There are at least four classes of arithmetic fake prioyecspaces in dimensich

(c) There are at least four distinct arithmetic fa®e, 5 and at least five irreducible arith-
metic fake B x P2

Theorem 4. There is no arithmetic fake Hermitian symmetric space oé tgpC,, D,
with n> 4, Eg or E;.

We may define a fake compact hermitian symmetric space to béhéeKmanifold
which has the same Betti numbers as a hermtian symmetrie sp@ompact type of the
same dimension. A natural geometric problem is to decidewalfake compact hermtian
symmetric space is an arithmetic fake compact hermitiamsgiric space. The two no-
tions are the same for fake projective planes, but the pnoidanuch more complicated
and essentially open in higher dimensions. In particutas not true for fake projec-
tive spaces of odd dimension, where there are the examplegpefquadrics. Hence the
problem is interesting for fake projective spaces only ieresiimensions. The following
resultin [12] is a positive result in this direction.

Theorem 5. A fake projective four space has to be an arithmetic fakegutoye four
space if any of the following conditions is satisfied.

(i) cf(M) # 225

(i) H4(M, Z) modulo torsion is generated yu 6, whered is a generator of B(M, Z)
modulo torsion, or

(i) The cycle corresponding to the canonical line bundlg i not a generator of the
Neron-Severi group.

It will be interesting to clarify the situations in other ess
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Rigidity and envelopes of holomorphy in group actions
XI1ANG-YU ZHOU

We discuss the rigidity property for automorphism groupsgwériant domains in Stein
manifolds which are homogenous under the complex redukcté/groups.

Let D cc (C*)" be a Reinhardt domain. The automorphism gréug(D) of D ob-
viously contains the n-dimensional torus group Are there additional positive dimen-
sional symmetries? In one dimensional case, it's well-kmolat for the annulus, the
automorphism group is judt < Z,. For higher dimensional case, there are many works
about this problem for the rigidity property &ut(D), the answer says th&ut(D) is
compact and the identity componehtt(D), of Aut(D) is exactly T'. This result was
established in several papers bffelient methods, see [2], [1], [5], [7].

Let K be a connected compact Lie group dnébe a closed subgroup &f, K- and
Lc be (universal) complexifications &f andL, thenX = K/L is a compact homogenous
space anX¢ = K¢ /Lc is a complexification oX which is a Stein manifold. There is a
natural holomorphic action df- on X¢ given by the left translation. LdD c Xc be a
K-invariant domain. Throughout this report, a domain meat@eected open set.

In [13], Zhou proved the following result.

Theorem ([13]). LeD cc K¢/Lc be aK-invariant domain, theAut(D) is compact.

Under more assumption that(L) is a symmetric pair, the result is due to Fels and
Geatti [4].
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We present our new results based on [11]. Without loss of igditye we may assume
that K acts dfectively onX = K/L. In this setting, for aK-invariant domainD, it's
easy to see thaAut(D) obviously containk. We may ask if there are not additional
positive dimensional symmetries. It should be noted thativt the case for general
homogeneous spa¢g'L. However, our results show that for some homogeneous spaces
including symmetric spaces it's the case.

Theorem. LeD be an orbit connecteld-invariant domain inXc = K¢ /Lc. Let W be
a connected compact subgroupAaft(D) containingK, thenW can be naturally realized
as a subgroup of the isometry grolgn(X, g) of (X @), whereX = K/L andg is some
K-invariant Riemannian metric oX.

As an immediate corollary, we have the following: I&t () be a symmetric paiK be
semisimple, thehso(X, g) = K for anyK-invariant Riemannian metric aX. LetD be a
relatively compacK-invariant domain inXc. ThenAut(D), = K.

The above corollary can be extended to the isotropy irrddeitiomogeneous spaces.
A homogeneous spa¢€/L is said to be isotropy irreducible if the adjoint represéota
of L is irreducible on the vector space kwhere k and | are Lie algebras KfandL; to
be strongly isotropy irreducible if the adjoint represdiotaof the identity componeriiy
of L is irreducible on the vector space k These spaces are classified, and the isometry
groups of the spaces are explicitly given and just equ#d for effective action oK ex-
cept a couple of cases, see [10, 9]. Consequently weAaiB), = K for these spaces.

In the proof, a result of Zhou’s about the univalence of theedpe of holomorphy of
invariant domains plays a key role.

Theorem ([12]). LetM be a Stein manifoldKc holomorphically act oiM. LetD c M
be aK-invariant orbit connected domain. Then the envelope dbimalrphyE(D) of D is
schlicht and orbit convex if and only if the envelope of hotmphy E(Kc - D) of K¢ - D
is schlicht. Furthermore, in this cadg(K¢ - D) = K¢ - E(D).

This result unifies and extends many known results. In pddicwe have the follow-
ing theorem which is essentially used in the proof.

Theorem ([12]). LeK be a connected compact Lie group dnde a closed subgroup
of K. If L is connected, then arg-invariant domainD in Xz = K¢ /Lc has schlicht
envelope of holomorphy.
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