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Introduction by the Organisers

This conference was the last of six in the series of topology conferences in Ober-
wolfach organized by Cameron Gordon and Bob Oliver, joined for the first time
by Thomas Schick as successor of Wolfgang Lück, who was organizer for an even
longer time. Unfortunately, Lück could not attend the conference for medical
reasons.

There were about 45 participants in the meeting, working in many different
areas of algebraic and geometric topology.

The 19 talks of the conference covered a wide range of areas such as 3-manifolds
and knot theory, geometric group theory, algebraicK- and L-theory, and homotopy
theory. One of the goals of the conference is to foster interaction between such
different areas and the passage of methods from one to the other.

The following is a summary of some of the highlights.
Karen Vogtmann reported on joint work with Martin Bridson, showing that

the automorphism group of a free group on n letters cannot act non-trivially on
a Euclidean space of dimension n − 1, or on any acyclic homology manifold of
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dimension n− 1. This uses some delicate refinements of classical Smith theory. In
a related direction, Tadeusz Januszkiewicz presented the construction of finitely
generated groups with the property that the action on an arbitrary finite dimen-
sional acyclic space always has a fixed point. This construction involves simplices
of groups used together with Smith theory and a limit theorem from hyperbolic
group theory. In other talks on geometric group theory, Roman Sauer described
new results in Mostow rigidity, stating roughly that hyperbolic lattices can only
be lattices in the corresponding SO(n, 1); and Clara Löh proved non-vanishing for
simplicial volume of certain non-compact locally symmetric spaces.

Simon’s conjecture in knot theory asserts that a knot group (i.e., the fundamen-
tal group of the complement of a knotted S1 in S3) admits surjective homomor-
phisms onto only finitely many other knot groups. Alan Reid talked about joint
work with Michel Boileau, Steve Boyer, and Shicheng Wang, showing that this is
true for all 2-bridge knots. The proof involves a skillful use of newly discovered
properties of the SL(2,C) character variety of knot groups due to Kronheimer and
Mrowka. In another talk on 3-dimensional topology, Jessica Purcell addressed hy-
perbolic structures, more precisely the conjecture that if C is a compression body
with a single 1-handle attached to a torus cross an interval, then the core of the
1-handle is isotopic to a geodesic in any geometrically finite hyperbolic structure
on C. Insight into this problem was also gained via computer aided simulation
and visualization.

As one application of homotopy theory, Ib Madsen presented an integral refine-
ment of the Riemann-Roch theorem for curves (with suitable twist bundles). This
work was based on precise calculations of the homotopy effect of associated maps
on the classifying space level.

Another application of homotopy theory was described by Carles Broto. He
presented a purely algebraic result about the p-subgroup structure in finite groups
of Lie type, one which was reduced to a statement about their classifying spaces
and then proved using the homotopy theory of p-local finite groups. No algebraic
proof of this result is available up to now.

Kuhn’s realization problem in unstable homotopy theory asks which abstract
graded rings over the field Fp, with a compatible action of the Steenrod algebra,
are isomorphic to mod p cohomology rings of spaces. Kuhn gives precise conditions
which he conjectures to be necessary and sufficient, and his conjecture had already
been proven when p = 2. In Gerald Gaudens’ talk, an important special case of
the conjecture was proved for odd primes.

Other talks addressed a new homological approach (via so-called blob homology)
to topological quantum field theory, the failure of a possible generalization of the
Madsen-Weiss theorem to higher dimensions (shown using calculations of family
indices), the rigidity of the curve complex of a surface and the construction of
exotic smooth structures on 4-manifolds via suitable surgery methods.

The famous Oberwolfach atmosphere made this meeting another wonderful suc-
cess, and all thanks go to the institute for creating this atmosphere and making
the conference possible.
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Abstracts

Mostow rigidity for locally compact targets and a rigidity theorem for
hyperbolic lattices

Roman Sauer

(joint work with Uri Bader, Alex Furman)

Let Γ be a lattice in the isometry group G = Isom(Hn) of the hyperbolic n-space,
where n ≥ 3. Our goal is to find all locally compact groups (besides G) that
contain Γ as a lattice.

The analogous question for lattices in semisimple Lie groups of higher rank and
for cocompact lattices in Lie groups of arbitrary rank was answered in [1]. Furman
uses Margulis-Zimmer superrigidity and quasi-isometry rigidity results for that.

It remained to clarify the situation for non-uniform lattice embeddings of hy-
perbolic lattices. We have the following (partial) answer to the initial question:

Theorem. Let Γ be a lattice in G = Isom(Hn), n ≥ 3. Assume Γ embeds as a
lattice in some locally compact second countable group H, so that Γ < H is an
integrable lattice. Then H has one the following forms:

• Direct product G×K or G0 ×K, where K is a compact group;
• Semi-direct product Γ′ ⋉K, where K is a compact group and Γ′ is a lattice

in G containing Γ: Γ < Γ′ < G.

Moreover, up to conjugation, one may assume that the projection to the first factor
maps Γ < H to its image in G, G0, or Γ′ respectively.

Next we explain the notion of integrability.

Definition. Let Λ be a finitely generated lattice in a second countable, locally
compact group H . For a choice of a word-metric on Λ let l(λ) ∈ N, for λ ∈ Λ,
denote the length of λ. For a Λ-fundamental domain F in H let αF : H × F → Λ
denote the cocycle given by the condition α(h, x)xh ∈ F . We say that Λ is
integrable if there is Λ-fundamental domain F ⊂ H such that

∫

F

l
(
α(g, x)

)
dµHaar(x) <∞

holds for all g ∈ G.

Note that all cocompact lattices are integrable. Furthermore, all lattices in G
as above or in any simple Lie groups of higher rank [3] are integrable.

We reduce the theorem above – following the method in [1] – to a (more general
than needed for that) measure equivalence rigidity theorem for hyperbolic lattices.
We recall the notion of measure equivalence that gained intense attention in recent
years by the work of Gaboriau, Furman, Monod, Popa, Shalom and others.

Definition. We say that two countable groups Γ,Λ are measure equivalent if there
is a standard measure space (Ω, µ) (called a measure coupling) such that both
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actions commute, are µ-preserving, and possess fundamental domains of finite
measure.

If Λ and Γ are finitely generated one can impose an analogous integrability
condition on fundamental domains of their measure coupling as in the case of
lattices. If a measure coupling Ω has integrable fundamental domains we say that
Ω is an ℓ1-measure coupling.

Theorem. Let G = Isom(Hn), n ≥ 3, let Γ < G a lattice, and let Λ be some
finitely generated group ℓ1-measure equivalent to Γ. Then there exists a short
exact sequence 1→ Λ0 → Λ→ Λ̄→ 1, where Λ0 is finite and Λ̄ is a lattice in G.

Moreover, if (Ω, µ) is an ergodic ℓ1-ME coupling of Γ and Λ, then there exists
a measurable map Φ : Ω→ G satisfying

Φ(γω) = γ Φ(ω), Φ(λω) = Φ(ω)ρ(λ)−1

and Φ∗µ is either the Haar measure on G0, or the Haar measure on G, or the
counting measure on a lattice Γ′ containing Γ and a conjugate of Λ̄ as finite index
subgroups.

In the last case one may assume that Γ and Λ̄ are actually contained in a
possibly larger lattice Γ′ upon adjusting ρ and Φ by a fixed g0 ∈ G.

For lattices in semisimple Lie groups of higher rank one has measure equivalence
rigidity without imposing an integrability condition [2]. The problem is that we
do not have an analog of Margulis-Zimmer superrigidity. For the proof we prove a
certain orbit equivalence rigidity theorem that cocyclifies Mostow rigidity rather
than superrigidity.

The methods involve bounded cohomology and geometric group theory.
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Why there cannot be a three-dimensional Madsen-Weiss theorem

Johannes Ebert

Let M be any oriented closed smooth n-manifold, let BM := BDiff+(M) and let
p : EM → BM be the universal oriented M -bundle. Let MTSO(n) := Th(−Ln)
be the Madsen-Tillmann spectrum, i.e., the Thom spectrum of the inverse −Ln
of the universal n-dimensional oriented vector bundle Ln → B SO(n). There
is a map αM : BM → Ω∞ MTSO(n), the Madsen-Tillmann map [4]. The impor-
tance of this construction is that all cohomology classes of BM (alias characteristic
classes of smooth M -bundles) which are derived from the vertical tangent bun-
dle π : TvEM → EM are induced from classes on Ω∞ MTSO(n) via the map αM .
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To be more precise, let us compute the rational cohomology of the unit compo-
nent Ω∞

0 MTSO(n). There is the Thom isomorphism

τ : H∗
(
B SO(n)

)
∼= H∗−n

(
MTSO(n)

)

and the isomorphism

s : ΛH∗
>0

(
MTSO(n); Q

)
∼= H∗

(
Ω∞

0 MTSO(n); Q
)
,

where Λ is the functor which associates to a graded Q-vector space the free-graded
commutative algebra generated by it. On the other hand

H∗
(
B SO(2m+ 1); Q

)
= Q[p1, . . . , pm], and

H∗
(
B SO(2m)

)
= Q[p1, . . . , pm, χ]/(χ2 − pm).

Given any c ∈ H∗(B SO(n)), then

p!

(
c(TvEM )

)
= α∗

Msτ(c).

Another source of characteristic classes of smooth fiber bundles, this time with
values in the topological K-theory of the base space, is the index of natural dif-
ferential elliptic operators. In this talk, we consider only self-adjoint operators.
The case of general operators is parallel (and better known). Let D be a family
of self-adjoint elliptic differential operators on the universal bundle EM → BM .
By [2], these data have an index ind(D) ∈ K1(BM ). On the other hand, the
Atiyah-Singer family index theorem holds and yields

ind(D) = (p ◦ π)!(smbD)sa,

where (smbD)sa ∈ K1(Th(TvEM )) is the self-adjoint symbol class of D [1], and
where (p ◦ π)! : K1(Th(TvEM )) → K1(BM ) is the umkehr map in K-theory,
which is defined as the composition of the Thom isomorphism K1(Th(TvEM )) ∼=
K1(Th(−TvEM )) and the map K1(Th(−TvEM ))→ K1(BM ) induced by Pontrja-
gin-Thom collapse.

If the operatorD is natural then there exists an element σD ∈ K
1(Th(Ln)) such

that σD maps to (smbD)sa under the map Th(TvEM )→ Th(Ln) which comes from
the classifying map for the vertical tangent bundle. In this case

(1) ind(D) = α∗
M th−1 σD,

where th : K1(MTSO(n))→ K1(Th(Ln)) is the Thom isomorphism.
Now letM be a 2m+1-dimensional closed oriented manifold. The even signature

operator [1] D :
⊕

p≥0A
2p(M)→

⊕
p≥0A

2p(M) is defined to be

Dφ = im+1(−1)p+1(∗d− d∗)φ

whenever φ ∈ A2p(M). It is a self-adjoint, elliptic differential operator, and it
is natural. Furthermore, it is related to the Laplace-Beltrami operator on forms
by D2 = ∆. Moreover

(2) ker(D) = ker(∆) =
⊕

p≥0

H2p(M ; C)
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by the Hodge theorem. Now choose a fiberwise smooth metric on the vertical
tangent bundle of the universal M -bundle. The even signature operators on the
fibers define a family of self-adjoint elliptic differential operators and hence we
have an index ind(D) ∈ K1(BM ). Here is our main result.

Theorem 1. [3] For any odd-dimensional closed oriented manifold M , the family
index of the even signature operator ind(D) ∈ K1(BM ) is trivial.

The proof is purely analytic (it uses spectral theory, Kuiper’s theorem on the
contractibility of the unitary group of a Hilbert space and, crucially, the constancy
of the dimension of the kernel, which follows from equation 2.

Because the proof of the vanishing of the index is purely analytical, the Atiyah-
Singer index theorem 1 allows us to draw topological conclusions. Apply the Chern
character to equation 1. A routine calculation of characteristic classes shows that
ch(α∗

M th−1 σD) = α∗
MsτL, where σD ∈ K1(Th(Ln)) is the universal symbol for

the even signature operator and L ∈ H4∗(B SO(2m + 1); Q) is the Hirzebruch
L-class. Therefore Theorem 1 implies:

Theorem 2. [3] For any closed oriented 2m+1-manifold M , the Madsen-Tillmann
map αM : BM → Ω∞

0 MTSO(2m+ 1) annihilates

sτL ∈ H4∗−2m−1(Ω∞
0 MTSO(2m+ 1); Q).

If m = 1, then the k-th component Lk generates H4k(B SO(3); Q). Therefore,
the map BM3 → Ω∞

0 MTSO(3) induces the zero map in rational cohomology.
This is in sharp contrast to the 2-dimensional case, where Madsen and Weiss [5]
showed that BM → Ω∞

0 MTSO(2) induces an isomorphism in integral homology in
degrees ∗ < g/2−1, whenever M is a connected closed oriented surface of genus g.
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On Simon’s conjecture for knots

Alan W. Reid

(joint work with Michel Boileau, Steve Boyer, Shicheng Wang)

1. Introduction

Let K ⊂ S3 be a non-trivial knot. Simon’s Conjecture (see [5, Problem 1.12(D)])
asserts the following:

Conjecture 1.1. π1(S
3 \K) surjects only finitely many distinct knot groups.

Although this conjecture dates back to the 1970’s, and has received considerable
attention recently (see [1], [2], [3], [7], [8], and [9] to name a few), little by way
of general results appears to be known. Conjecture 1.1 is easily seen to hold
for torus knots using elementary Alexander polynomial considerations. In [1] the
conjecture is established under the assumption that the epimorphisms are non-
degenerate in the sense that a preferred longitude of K is sent to a non-trivial
peripheral element under the epimorphism. In particular this holds in the case
when the homomorphism is induced by mapping of non-zero degree.

This talk presented some recent progress on Conjecture 1.1, the main result of
which is the following, and is the first general result for a large class of hyperbolic
knots.

Theorem 1.2. Conjecture 1.1 holds for all 2-bridge knots.

Theorem 1.2 will be proved as a consequence of a technical theorem which
gives strong control on certain epimorphisms with domain a small knot group.
Recall that a knot K ⊂ S3 is called small if S3 \K contains no closed embedded
essential surface (that 2-bridge knots are small is proved in [4]). Before stating
this theorem, we introduce the following definition that seems useful in organizing
control of epimorphisms between knot groups.

Definition 1.3. Let K be a knot. We will say K has Property L if for any non-
trivial knot K ′ and epimomorphism φ : π1(S

3 \K)→ π1(S
3 \K ′), the kernel kerφ

does not contain a longitude of K.

Control of the image of the longitude has featured in other work related to
epimorphisms between knot groups; for example Property Q∗ of Simon. The
motivation for this definition is:

Theorem 1.4. Let K be a small knot and assume K has Property L. Then Con-
jecture 1.1 holds for K.

Simple Alexander polynomial considerations show that any knot group surjects
onto only finitely many torus knot groups, so it is when the target is hyperbolic
or satellite that the assumption of Property L is interesting.

Although it is easy to construct hyperbolic knots that do not have Property L
(see [3]) our proof shows that 2-bridge knots do have Property L, and so Theo-
rem 1.2 will follow from Theorem 1.4.
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2. Sketch of the proof of Theorem 1.4 and 1.2

2.1. The proof of Theorem 1.4 proceeds as follows. Assume that K is a small
hyperbolic knot and assume that there exist infinitely many distinct knots Ki and
epimorphisms

φi : π1(S
3 \K)→ π1(S

3 \Ki).

Let λ be a preferred longitude for K. As discussed, it suffices to deal with
the cases when Ki are hyperbolic or satellite knots. The next lemma shows that
Property L excludes the satellite knot case.

Lemma. Let K ⊂ S3 be a small hyperbolic knot and let K ′ be a satellite knot.
Assume that φ : π1(S

3 \K)→ π1(S
3 \K ′) is an epimorphism. Then φ(λ) = 1.

The proof is completed using [8].

2.2. We now sketch the proof of Theorem 1.2; i.e., we need to show that a 2-bridge
hyperbolic knot has Property L. Thus assume that K is a hyperbolic 2-bridge knot
and φ : π1(S

3 \K)→ π1(S
3 \K ′) an epimorphism with φ(λ) = 1 (we continue to

use the notation above).
The main algebraic tool that organizes the proof is the character variety. In

particular we make use of the following result of Kronheimer and Mrowka [6].

Theorem 2.1. Let K be a non-trivial knot and X(K) its SL(2,C)-character va-
riety. Then, X(K) contains a curve of characters of irreducible representations.

The relevance of this is seen in the following. Suppose that G and H are
finitely generated groups and φ : G → H is an epimorphism. Then this defines
a map at the level of character varieties φ∗ : X(H) → X(G) by φ∗(χρ) = χρ◦φ.
This map is algebraic, Zariski closed and φ∗ injects X(H) →֒ X(G). Thus an
epimorphism φ : π1(S

3\K)→ π1(S
3\K ′), together with [6] provides “interesting”

components in X(K).
In particular, in our setting, Theorem 2.1 provides a curve of characters C of

irreducible representations of π1(S
3 \K ′), which inject in X(K) under φ∗. This

provides a curve component D = φ∗(C) ⊂ X(K), and the proof is completed by
showing that every irreducible componentX ⊂ X(K) which contains the character
of an irreducible representation, contains the character of a so called p-rep. This
discussion, together with the work of Riley can be shown to yield a contradiction.
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Infinite groups with fixed point properties

Tadeusz Januszkiewicz

(joint work with G. Arzhantseva, M.R. Bridson, I.J. Leary, A. Minasyan,

J. Świa̧tkowski)

For p a prime, one says that a space is mod-p acyclic if it has the same mod-p Čech
cohomology as a point. Let Xac be the class of all Hausdorff spaces X of finite cov-
ering dimension such that there is a prime p for which X is mod-p acyclic. LetMac

denote the subclass of smooth manifolds in Xac. Note that the class Xac contains
all finite dimensional contractible spaces and all finite dimensional contractible
CW-complexes.

Theorem 1. There is an infinite finitely generated group Q that cannot act without
a global fixed point on any X ∈ Xac. If X ∈ Xac is mod-p acyclic, then so is the
fixed point set for any action of Q on X. For any countable group C, the group Q
can be chosen to have either the additional properties (i), (ii) and (iii) or (i), (ii)
and (iii)′ described below:

(i) Q is simple;
(ii) Q has Kazhdan’s property (T);
(iii) Q contains an isomorphic copy of C;
(iii)′ Q is periodic.

Since a countable group can contain only countably many finitely generated
subgroups, it follows from property (iii) that there are continuously many (i.e., 2ℵ0)
non-isomorphic groups Q with the fixed point property described in Theorem 1.

No non-trivial finite group has a fixed point property as strong as the one in
Theorem 1. Any finite group not of prime power order acts without a global
fixed point on some finite dimensional contractible simplicial complex. Smith
theory tells us that the fixed point set for any action of a finite p-group on a
finite dimensional mod-p acyclic space is itself mod-p acyclic, but it is easy to
construct an action of a non-trivial finite p-group on a 2-dimensional mod-q acyclic
space without a global fixed point if q is any prime other than p. Since the
fixed point property of Theorem 1 passes to quotients, it follows that none of
the groups Q can admit a non-trivial finite quotient. This further restricts the
ways in which Q can act on acyclic spaces. For example, if X ∈ Xac is a locally
finite simplicial complex and Q is acting simplicially, then the action of Q on the
successive star neighbourhoods stn+1 := st(stn(x)) of a fixed point x ∈ X must
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be trivial, because stn is Q-invariant and there is no non-trivial map from Q to
the finite group Aut(stn). Since X =

⋃
n stn, we deduce:

Corollary 1. The groups Q from Theorem 1 admit no non-trivial simplicial action
on any locally-finite simplicial complex X ∈ Xac.

The ideas behind the corollary can be developed further, For example we have.

Corollary 2. A group Q from the claim of Theorem 1 admits no non-trivial
isometric action on any proper metric space X ∈ Xac.

Using similar arguments we can also rule out non-trivial real analytic actions of
the groups Q (from Theorem 1) on any acyclic manifold M . However, a stronger
result concerning triviality of actions on manifolds can be obtained more directly:

Proposition 2. A simple group G that contains, for each n > 0 and each prime p,
a copy of (Zp)

n admits no non-trivial action by diffeomorphisms on any X ∈ Mac.
The group Q in Theorem 1 may be chosen to have this property.

Finite p-groups have global fixed points whenever they act on compact Haus-
dorff spaces that are mod-p acyclic, but the groups Q do not have this property.
Indeed, if Q is infinite and has property (T) then it will be non-amenable, hence
the natural action of Q on the space of finitely-additive probability measures on Q
will not have a global fixed point, and this space is compact, contractible, and
Hausdorff.

We know of no finitely presented group enjoying the fixed point property de-
scribed in Theorem 1. However, using techniques quite different from those used
to construct the groups Q, we shall exhibit finitely presented groups that cannot
act on a range of spaces. In particular we construct groups of the following type.

Theorem 3. There exist finitely presented infinite groups P that have no non-
trivial action by diffeomorphisms on any smooth manifold X ∈ Mac.

Certain of the Higman-Thompson groups can also serve in the role of P .
Theorem 1 answers a question of P. H. Kropholler, who asked whether there

exists a countably infinite group G for which every finite-dimensional contractible
G-CW-complex has a global fixed point. This question is motivated by Kropholler’s
study of the closure operator H for classes of groups, and by the class HF obtained
by applying this operator to the class F of all finite groups [3].

Our strategy for proving Theorems 1 and 3 is very general. First, we express
our class of spaces as a countable union X = ∪n∈NXn. For instance, if all spaces
in X are finite-dimensional, then Xn may be taken to consist of all n-dimensional
spaces in X . Secondly, we construct finitely generated groups Gn that have the
required properties for actions on any X ∈ Xn. Finally, we apply the templates
described below to produce the required groups.

Template FP: ruling out fixed-point-free actions. If there is a sequence of finitely
generated non-elementary relatively hyperbolic groups Gn such that Gn cannot act
without a fixed point on any X ∈ Xn, then there is an infinite finitely generated
group that cannot act without a fixed-point on any X ∈ X .
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Template NAfp: finitely presented groups that cannot act. Let (Gn; ξn,j) (n ∈
N, j = 1, . . . , J) be a recursive system of non-trivial groups and monomorphisms
ξn,j : Gn → Gn+1. Suppose that each Gn+1 is generated by

⋃
j ξn,j(Gn) and that

for every m ∈ N there exists n ∈ N such that Gn cannot act non-trivially on
any X ∈ Xm. Then there exists an infinite finitely presented group that cannot
act non-trivially on any X ∈ X .

The engine that drives the first template is the existence of common quotients
established in Theorem 4 below. The proof of this theorem is based on a result of
Arzhantseva, Minasyan and Osin [1], obtained using small cancellation theory over
relatively hyperbolic groups: any two finitely generated non-elementary relatively
hyperbolic groups G1, G2 have a common non-elementary relatively hyperbolic
quotient H .

Theorem 4. Let {Gn}n∈N be a countable collection of finitely generated non-ele-
mentary relatively hyperbolic groups. Then there exists an infinite finitely gener-
ated group Q that is a quotient of Gn for every n ∈ N.

Moreover, if C is an arbitrary countable group, then such a group Q can be
made to satisfy the following conditions

(i) Q is a simple group;
(ii) Q has Kazhdan’s property (T);
(iii) Q contains an isomorphic copy of C.

If the Gn are non-elementary word hyperbolic groups, then claim (iii) above can
be replaced by

(iii)′ Q is periodic.

This result immediately implies the validity of the template FP. Indeed, if Gn
are the hypothesized groups of template FP, the preceding theorem furnishes us
with a group Q that, for each n ∈ N, is a quotient of Gn and hence cannot act
without a fixed point on any X ∈ Xn. Now let Gn be the hypothesized groups of
template NAfp. They are not assumed to be relatively hyperbolic. We consider
groups An := Gn ∗Gn ∗Gn, which also cannot act non-trivially on any X ∈ Xn.
The group An is non-elementary and relatively hyperbolic as a free product of
three non-trivial groups. Therefore, Theorem 4 can be applied to the sequence of
groupsAn, providing a groupQ which, as a quotient of An, cannot act non-trivially
on any X ∈ Xn for any n ∈ N.

Following the above strategy to prove Theorem 1, we first represent Xac as a
countable union Xac = ∪n,pXn,p, where, for each prime number p, the class Xn,p
consists of all mod-p acyclic spaces of dimension n. Then we construct the groups
required by template FP, proving the following result.

Theorem 5. For each n ∈ N and every prime p, there exists a non-elementary
word hyperbolic group Gn,p such that any action of Gn,p by homeomorphisms on
any space X ∈ Xn,p has the property that the global fixed point set is mod-p acyclic
(and in particular non-empty).
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The mod-p acyclicity of the fixed point for the action of Gn,p on the space X
is a consequence of the following (n, p)-generation property: there is a generating
set S of Gn,p of cardinality n + 2 such that any proper subset of S generates a
finite p-subgroup.

For certain small values of the parameters examples of non-elementary word
hyperbolic groups with the (n, p)-generation property were already known (e.g.,
when n = 1 and p = 2 they arise as reflection groups of the hyperbolic plane
with a triangle as a fundamental domain). Our construction works for arbitrary n
and p. For large n it provides the first examples of non-elementary word hyperbolic
groups possessing the (n, p)-generation property.

We construct the groups Gn,p as fundamental groups of certain simplices of
groups all of whose local groups are finite p-groups. We use ideas related to sim-

plicial non-positive curvature, developed by Januszkiewicz and Świa̧tkowski in [2],
to show that these groups are non-elementary word hyperbolic. The required fixed
point property is obtained using Smith theory and a homological version of Helly’s
theorem.

Partially supported by NSF grants DMS-0706259.
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Simplicial volume of non-compact manifolds

Clara Löh

(joint work with Roman Sauer)

A degree theorem is a statement of the following type: For all proper, continuous
maps f : N → M between Riemannian manifolds of a particular type with finite
volume, the degree of f can be bounded in terms of the volume:

|deg f | ≤ constdimM ·
volN

volM
.

Gromov successfully applied the following strategy to obtain such degree theo-
rems for negatively curved manifolds [2]: Find a topological replacement v of the
Riemannian volume such that

(1) For all proper, continuous maps f : N →M one has |deg f | ·v(M) ≤ v(N).
(2) For all suitable domain manifolds N one has v(N) ≤ constdimN · volN .
(3) For all suitable target manifolds M one has v(M) ≥ constdimM · volM .
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An example of an adequate topological replacement of the Riemannian volume
in this sense is the (Lipschitz) simplicial volume: The simplicial volume of an
oriented, connected n-manifold M is defined as

‖M‖ := inf
{
‖c‖1

∣∣ c is a locally finite R-fundamental cycle of M
}
,

where ‖ · ‖1 is the ℓ1-norm on the locally finite R-chain complex with respect to
the basis consisting of all singular simplices.

Based on the methods developed by Besson, Courtois, and Gallot, degree theo-
rems for (most) locally symmetric spaces of non-compact type with finite volume
were obtained by Connell and Farb [1].

Generalising Gromov’s non-vanishing results to the simplicial volume of closed
locally symmetric spaces of non-compact type, Lafont and Schmidt derived corre-
sponding degree theorems in the closed case [3].

Simplicial volumes of non-compact manifolds

We study the question to what extent the result of Lafont and Schmidt can be
extended to the non-compact case. Our main results in this direction are:

(1) Based on a vanishing result of Gromov [2] we show that the simplicial
volume of open locally symmetric spaces of non-compact type of Q-rank
at least 3 is zero [4] – in particular, the simplicial volume does not lead to
a degree theorem for such targets.

(2) On the other hand, we consider the Lipschitz simplicial volume

‖M‖Lip := inf
{
‖c‖1

∣∣ c is a locally finite R-fundamental cycle

of M with Lip(c) <∞
}

of oriented, connected Riemannian manifolds M .
In contrast to the ordinary simplicial volume, the Lipschitz simplicial

volume does satisfy a proportionality principle for non-positively curved
manifolds with finite volume [4]:

Theorem (Proportionality principle). Let M and N be oriented, con-
nected, Riemannian manifolds of non-positive sectional curvature with fi-
nite volume whose Riemannian universal coverings are isometric. Then

‖M‖Lip

volM
=
‖N‖Lip

volN
.

In particular, using the result of Lafont and Schmidt, it follows that the
Lipschitz simplicial volume of locally symmetric spaces of non-compact
type with finite volume is non-zero (and finite).

A degree theorem for locally symmetric spaces of finite volume

Notice that the Lipschitz simplicial volume satisfies a degree estimate for proper,
Lipschitz maps and that it can – by the work of Gromov – be bounded from
above in terms of the Riemannian volume. Hence, we obtain the following degree
theorem [4], complementing the result of Connell and Farb:
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Theorem (Degree theorem). For every n ∈ N there is a constant Cn > 0 with
the following property: Let f : N →M be a proper Lipschitz map between oriented
connected Riemannian n-manifolds of finite volume with the following properties:

(1) The domain manifold N satisfies |secN | ≤ 1.
(2) The target manifold M is a locally symmetric space of non-compact type

with the standard metric (or more generally, a product of locally symmetric
spaces of non-compact type and manifolds with uniformly pinched negative
sectional curvature).

Then

|deg f | ≤ Cn ·
volN

volM
.

Open problems

The results stated above give a complete picture of the simplicial volume of locally
symmetric spaces of non-compact type, except for the case of Q-rank 1 or 2.

By investigating the metric structure on the Borel-Serre compactification, we
showed that Hilbert modular varieties (which are examples of locally symmetric
spaces of non-compact type of Q-rank 1) have non-zero simplicial volume [5];
indeed, their simplicial volume coincides with the Lipschitz simplicial volume.
However, the general Q-rank 1 case is still open:

Question. Is the simplicial volume of locally symmetric spaces of non-compact
type with finite volume non-zero provided that the Q-rank is equal to 1?

On the other hand, our vanishing result only applies if the Q-rank is at least 3.

Question. Does the simplicial volume of locally symmetric spaces of non-compact
type with finite volume vanish if the Q-rank is equal to 2?
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[5] C. Löh, R. Sauer, Simplicial volume of Hilbert modular varieties, arXiv:0706.3904 (2007),

to appear in Comment. Math. Helv.



Topologie 2435

The geometry of unknotting tunnels

Jessica Purcell

(joint work with Marc Lackenby)

1. Background

Let M be a 3–manifold with torus boundary components, and let τ be an arc in M
with endpoints on ∂M . If M \ N(τ) is a handlebody, then M is called a tunnel
number one manifold, and τ is called an unknotting tunnel for M . Throughout,
we will assume that M admits a hyperbolic structure.

In a paper published in 1995 [1], Colin Adams showed that if a tunnel number
one manifold M has two torus boundary components, and the tunnel τ stretches
between them, then arc τ is isotopic to a geodesic in the hyperbolic structure
on M . Moreover, the length of τ is bounded above outside of a maximal horoball
neighborhood of the boundary cusps of M . He then asked the following questions.

(1) Is an unknotting tunnel in a hyperbolic tunnel number one manifold always
isotopic to a geodesic?

(2) Does an unknotting tunnel always have bounded length?

Since the paper was published, the questions have drawn interest, but seem to
be difficult. There have not been many results in answering them. The following
results are relevant. Adams and Reid found all the unknotting tunnels in 2–bridge
links, and showed these were geodesic [2]. Sakuma and Weeks found that the
unknotting tunnels in 2–bridge knots were isotopic to edges of a triangulation
of these knot complements [7]. The triangulations they studied were shown to
be geometrically canonical by Akiyoshi, Sakuma, Wada, and Yamashita [3], and
hence geodesic and “short”. Thus for 2–bridge knots and links, unknotting tunnels
are known to be geodesic and known to be short. Sakuma and Weeks conjectured
that unknotting tunnels were always isotopic to edges of the canonical polyhedral
decomposition. This was shown to be false by Heath and Song [6]. However,
Adams’ two original questions above have remained unanswered.

2. Compression bodies

With Lackenby, we investigate these questions from a new direction. Instead of
considering a tunnel number one manifold directly, we consider its pieces. When
the handlebody is removed from such a manifold, we are left with a compression
body C with ∂+C a genus 2 surface, and ∂−C a torus. The arc τ becomes an arc
which runs through the compressible handle of the compression body.

We consider geometrically finite hyperbolic structures on C. The compression
body C admits a family of such structures, parameterized by the conformal struc-
tures on its genus 2 boundary component. The tool we use to investigate such
structures is that of Ford domains.
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We have been able to show that the arc τ is isotopic to a geodesic for many
large families of geometrically finite hyperbolic structures on a compression body.
We conjecture the following.

Conjecture 2.1. The arc τ is isotopic to a geodesic for any geometrically finite
hyperbolic structure on the compression body C.

3. Lengths of tunnels

We have been able to show the following.

Proposition 3.1. There exist geometrically finite structures on C for which the
arc τ is arbitrarily long.

Proposition 3.1 may not be very surprising. Perhaps more surprising is the fact
that we can use this proposition to settle once and for all Colin Adams’ second
question above. In fact, we prove:

Theorem 3.2. There exist tunnel number one manifolds with arbitrarily long
unknotting tunnel.

We prove Theorem 3.2 by showing that a sequence of geometrically finite struc-
tures on C with long tunnel converges to a geometrically infinite structure on C
with long tunnel. We then find a “maximal cusp” geometrically close to this
geometrically infinite structure, using a theorem of Canary–Culler–Hersonsky–
Shalen [5]. To the maximal cusp, we glue a maximal cusp structure on a genus 2
handlebody. The result is a hyperbolic structure on a tunnel number one manifold
with three extra curves drilled out on the Heegaard surface. Fill in these curves
by Dehn filling along a long slope, and the result is the manifold claimed in the
theorem.
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Actions of automorphism groups of free groups on homology spheres
and acyclic manifolds

Karen Vogtmann

(joint work with Martin R. Bridson)

This is a report on joint work with Martin Bridson [3].
The group Aut(Fn) of automorphisms of a finitely-generated free group is not

isomorphic to an irreducible lattice in a semisimple Lie group, and is not even com-
mensurable with such a lattice; this follows from deep results of Margulis. Never-
theless, it is possible to show that Aut(Fn) resembles a lattice in many ways. In
particular, Aut(Fn) has rigidity properties reminiscent of Margulis super-rigidity,
which severely restrict the possible homomorphisms from Aut(Fn) to various types
of groups. In this work we study homomorphisms from Aut(Fn) to groups of
homeomorphisms of homology spheres and acyclic manifolds.

More precisely, for n ≥ 3 let SAut(Fn) denote the unique subgroup of index two
in the automorphism group of a free group. The standard linear action of SL(n,Z)
on Rn induces non-trivial actions of SAut(Fn) on Rn and on Sn−1, but we prove
that any action of SAut(Fn) by homeomorphisms on an acyclic manifold or sphere
of smaller dimension must be completely trivial, fixing every point. For actions
on the circle, this follows from our earlier paper [4].

For linear actions, elementary results in the representation theory of finite
groups can be combined with an understanding of the torsion in SAut(Fn) to prove
the results; the real challenge lies with non-linear actions. The proof is an induc-
tion which combines an analysis of normalizers of finite subgroups of SAut(Fn)
with an understanding of the fixed point sets of prime-order automorphisms. In
the talk I outlined this proof, assuming that the action is linear (in which case it
is trivial to understand the fixed point sets). Along the way, I pointed out exactly
where we encounter difficulties when the action is not linear.

Understanding the fixed point sets of prime-order elements creates a problem in
the topological setting because these fixed point sets are not in general manifolds,
but only homology manifolds over Zp. Such homology manifolds can be quite
badly behaved; they are not necessarily smooth, not even manifolds, not even
integral homology manifolds, and not even ENR’s or ANR’s. These are well-known
difficulties encountered in the theory of transformation groups and much effort has
gone into circumventing them. They are overcome using (local and global) Smith
theory done in terms of Borel-Moore homology and sheaf cohomology, as developed
in [2] and [1].

We derive the facts we need using techniques from Smith theory, and apply
them to obtain the following theorems.

Theorem. If n ≥ 3 and d < n − 1, then any action of SAut(Fn) by homeomor-
phisms on a generalized d-sphere over Z2 is trivial, and hence Aut(Fn) can act
only via the determinant map.
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Theorem. If n ≥ 3 and d < n, then any action of SAut(Fn) by homeomorphisms
on a d-dimensional Z2-acyclic homology manifold over Z2 is trivial, and hence
Aut(Fn) can act only via the determinant map.

As special cases we obtain the desired minimality result for the standard linear
action of SAut(Fn) on Rn and Sn−1.

Corollary. If n ≥ 3, then SAut(Fn) cannot act non-trivially by homeomorphisms
on any contractible manifold of dimension less than n, or on any sphere of dimen-
sion less than n− 1.

We also note that these theorems have as immediate corollaries the analogous
statements for SL(n,Z) and GL(n,Z). For actions of SL(n,Z) on spheres, this
result was announced in [7]. However the result depended on [6] and there was a
flaw in the arguments of that paper.

Corollary. If n ≥ 3 and d < n, then SL(n,Z) cannot act non-trivially by home-
omorphisms on any generalized (d − 1)-sphere over Z2, or on any d-dimensional
homology manifold over Z2 that is Z2-acyclic. Hence GL(n,Z) can act on such
spaces only via the determinant map.

For p = 3 there is a subgroup T ⊂ SAut(F2m) isomorphic to (Z3)
m that in-

tersects every proper normal subgroup of SAut(F2m) trivially. This provides a
stronger degree of rigidity than is offered by the 2-torsion in SAut(Fn) and con-
sequently one can deduce the following theorems from Smith theory more readily
than is possible in the case of Z2.

Theorem. If n > 3 is even and d < n − 1, then any action of SAut(Fn) by
homeomorphisms on a generalized d-sphere over Z3 is trivial.

Theorem. If n > 3 is even and d < n, then any action of SAut(Fn) by homeo-
morphisms on a d-dimensional Z3-acyclic homology manifold over Z3 is trivial.

We are unsure what happens for primes other than 2 and 3.
We expect that our results concerning SL(n,Z) should be true for other lattices

in SL(n,R), but our techniques do not apply because we make essential use of the
torsion in SL(n,Z). What happens for subgroups of finite index in SAut(Fn) is
less clear: there are subgroups of finite index in SAut(Fn) that map non-trivially
to SL(n− 1,R) and hence act non-trivially on Rn−1, but we do not know whether
such subgroups can act non-trivially on contractible manifolds of dimension less
than n− 1.

Our results concerning torsion in Aut(Fn), can be combined with the application
of Smith theory in [5] to imply the following result.

Theorem. For every compact d-dimensional homology manifold over Zp, the sum
of whose mod p Betti numbers is B, there exists an integer ν(d,B), depending only
on d and B, so that Aut(Fn) cannot act non-trivially by homeomorphisms on M
if n > ν(d,B).
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Blob Homology

Kevin Walker

(joint work with Scott Morrison)

We define a chain complex B∗(M,C) (the “blob complex”) associated to an n-cat-
egory C and an n-manifold M . For n = 1, the complex B∗(S1, C) is quasi-
isomorphic to the Hochschild complex of the 1-category C. So in some sense
blob homology is a generalization of Hochschild homology to n-categories. The
degree zero homology of B∗(M,C) is isomorphic to the dual of the Hilbert space
associated to M by the TQFT corresponding to C. So in another sense the blob
complex is the derived category version of a TQFT.

This is work in progress, so various details remain to be filled in.
We hope to apply blob homology to tight contact structures on 3-manifolds

(n = 3) and the extension of Khovanov homology to general 4-manifolds (n = 4).
In both of these examples, exact triangles play an important role, and the derived
category aspect of the blob complex allows this exactness to persist to a greater
degree than it otherwise would.
B0(M,C) is defined to be finite linear combinations of C-pictures on M . (A

C-picture on M can be thought of as a pasting diagram for n-morphisms of C
in the shape of M together with a choice of homeomorphism from this diagram
to M .) There is an evaluation map from B0(B

n, C) (C-pictures on the n-ball Bn)
to the n-morphisms of C. Let U be the kernel of this map. Elements of U are called
null fields. B1(M,C) is defined to be finite linear combinations of triples (B, u, r)
(called 1-blob diagrams), where B ⊂ M is an embedded ball (or “blob”), u ∈ U
is a null field on B, and r is a C-picture on M \ B. Define the boundary map
∂ : B1(M,C) → B0(M,C) by sending (B, u, r) to u • r, the gluing of u and r.
B1(M,C) can be thought of as the space of relations we would naturally want to
impose on B0(M,C), and so H0(B∗(M,C)) is isomorphic to the generalized skein
module (dual of TQFT Hilbert space) one would associate to M and C.
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Bk(M,C) is defined to be finite linear combinations of k-blob diagrams. A
k-blob diagram consists of k blobs (balls) B0, . . . , Bk−1 in M . Each pair Bi and
Bj is required to be either disjoint or nested. Each innermost blob Bi is equipped
with a null field ui ∈ U . There is also a C-picture r on the complement of the
innermost blobs. The boundary map ∂ : Bk(M,C)→ Bk−1(M,C) is defined to be
the alternating sum of forgetting the i-th blob.

If M has boundary we always impose a boundary condition consisting of an
n−1-morphism picture on ∂M . In this note we will suppress the boundary condi-
tion from the notation.

The blob complex has the following properties:

• Functoriality. The blob complex is functorial with respect to diffeomor-
phisms. That is, fixing C, the association

M 7→ B∗(M,C)

is a functor from n-manifolds and diffeomorphisms between them to chain
complexes and isomorphisms between them.
• Contractibility for Bn. The blob complex of the n-ball, B∗(Bn, C), is

quasi-isomorphic to the 1-step complex consisting of n-morphisms of C.
(The domain and range of the n-morphisms correspond to the bound-
ary conditions on Bn. Both are suppressed from the notation.) Thus
B∗(Bn, C) can be thought of as a free resolution of C.
• Disjoint union. There is a natural isomorphism

B∗(M1 ⊔M2, C) ∼= B∗(M1, C)⊗ B∗(M2, C).

• Gluing. Let M1 and M2 be n-manifolds, with Y a codimension-0 sub-
manifold of ∂M1 and −Y a codimension-0 submanifold of ∂M2. Then
there is a chain map

glY : B∗(M1)⊗ B∗(M2)→ B∗(M1 ∪Y M2).

• Relation with Hochschild homology. When C is a 1-category, then
B∗(S1, C) is quasi-isomorphic to the Hochschild complex Hoch∗(C).
• Relation with TQFTs and skein modules. H0(B∗(M,C)) is isomor-

phic to AC(M), the dual Hilbert space of the n+1-dimensional TQFT
based on C.
• Evaluation map. There is an ‘evaluation’ chain map

evM : C∗(Diff(M))⊗ B∗(M)→ B∗(M).

(Here C∗(Diff(M)) is the singular chain complex of the space of diffeomor-
phisms of M , fixed on ∂M .)

Restricted to C0(Diff(M)) this is just the action of diffeomorphisms
described above. Further, for any codimension-1 submanifold Y ⊂ M
dividing M into M1 ∪Y M2, the following diagram (using the gluing maps
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described above) commutes.

C∗(Diff(M))⊗ B∗(M)
evM // B∗(M)

C∗(Diff(M1))⊗ C∗(Diff(M2))⊗ B∗(M1)⊗ B∗(M2)

evM1 ⊗ evM2

33

glDiff
Y ⊗ glY

OO

B∗(M1)⊗ B∗(M2)

glY

OO

In fact, up to homotopy the evaluation maps are uniquely characterized
by these two properties.
• A∞ categories for n−1-manifolds. For Y an n−1-manifold, the blob

complex B∗(Y × I, C) has the structure of an A∞ category. The multipli-
cation (m2) is given my stacking copies of the cylinder Y ×I together. The
higher mi’s are obtained by applying the evaluation map to i−2-dimen-
sional families of diffeomorphisms in Diff(I) ⊂ Diff(Y × I). Furthermore,
B∗(M,C) affords a representation of the A∞ category B∗(∂M × I, C).
• Gluing formula. Let Y ⊂ M divide M into manifolds M1 and M2. Let
A(Y ) be the A∞ category B∗(Y × I, C). Then B∗(M1, C) affords a right
representation of A(Y ), B∗(M2, C) affords a left representation of A(Y ),
and B∗(M,C) is homotopy equivalent to B∗(M1, C)⊗A(Y ) B∗(M2, C).

An integral Riemann-Roch theorem for surface bundles

Ib Madsen

1. Statement of results

Let π : E → B be an oriented surface bundle with closed fibers of genus g, and
equipped with a fiberwise metric. Let H(E) be the associated Hodge bundle with
fibers H1(Eb; R). It becomes a g-dimensional complex vector bundle with the
complex structure induced from the Hodge star operator, so it is classified by a
map from B to BU(g). The element

n! chn ∈ H
2n

(
BU(g); Z

)

defines a characteristic class of the Hodge bundle and we set

sn(E) := n! chn
(
H(E)

)
∈ H2n(B; Z).

They are torsion classes for even n by [4], but not for odd n where we shall compare
them with the standard Miller-Morita-Mumford classes

κn(E) := π∗
(
c1(T

∗E)n+1
)
∈ H2n(B; Z).

The Grothendieck Riemann-Roch theorem, or the family index theorem of
Atiyah and Singer, yields the relation [3, 9]

(1) s2n−1(E) = (−1)n−1(Bn/2n)κ2n−1(E) in H∗(B; Q),
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where the Bernoulli numbers are defined by the power series

z

ez − 1
+
z

2
= 1 +

∞∑

n=1

(−1)n−1Bn/(2n)!z2n.

Clearing denominators in (1), T. Akita made the following conjecture in [1]:

Conjecture (Akita). In H∗(B; Z),

Denom(B/2n)s2n−1(E) = (−1)n−1 Num(Bn/2n)κ2n−1(E).

The conjecture was verified in [2] for some special values of n, but it turns out
to be incorrect in general. A counterexample is given below (for n = p, an odd
prime), but there are many other counterexamples and the conjecture is incorrect
even in H∗(B; Fp).

On the positive side however, one can replace the standard classes κn(E) by
another set of integral characteristic classes which I shall denote κ̄n(E). In rational
cohomology they differ from κn(E) only by a sign:

κ̄n(E) = (−1)nκn(E) in H∗(B; Q),

and moreover, Akita’s conjecture becomes correct when we substitute the κn
classes with κ̄n.

Theorem 1.1. (1) In H4n−2(B; Z),

2 Denom(Bn/2n)s2n−1(E) = 2(−1)nNum(Bn/2n)κ̄2n−1(E).

(2) In cohomology with p-local coefficients, the difference κn(E)−(−1)nκ̄n(E)
is a torsion class of order p for all primes p.

Remark. The extra factor 2 is unfortunate, and could possibly be removed with a
more detailed consideration.

The classes κ̄n(E) are not as simple to define as the standard classes κn(E). I
owe the following description to Johannes Ebert. Given an oriented surface bundle
(with compact fiber), and equipped with a fiberwise Riemannian metric, one has
the fiberwise ∂̄-operator

∂̄ : C∞(E; C)→ C∞(E;T 0,1
π E).

The target consists of sections in the conjugate dual of the fiberwise tangent bun-
dle, i.e.,

T 0,1
π E = HomC

(
T πE,C

)
.

The index bundle of ∂̄ is C − H(E). More generally, one may twist ∂̄ with a
complex vector bundle W on E to get

∂̄W : C∞(E;W )→ C∞(E;T 0,1
π E ⊗W ).

The classes κ̄(E) are then given by

(2) κ̄n(E) = n! chn(index ∂̄W ) ∈ H2n(B,Z)
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where W = T πE − C and index(∂̄W ) is the (analytic) index bundle over B. (Its
class in K(B) is independent of choice of connection on W when W is not holo-
morphic.)

Surface bundles with connected fibers of genus g are classified by BDiff(Fg) ≃
BΓg, where Γg is the mapping class group. The proof of Theorem 1.1 depends
on the homological description of the stable mapping class group in terms of the
cobordism space Ω∞ MT(2) = Ω∞CP∞

−1 from [8]. In particular the Madsen-Weiss
theorem is needed for the counter example to Akita’s conjecture.

An oriented surface bundle π : E → B induces a “classifying map”

αE : B → Ω∞ MT(2)

and the classes κn(E), κ̄n(E) and sn(E) are pull-backs of universal classes κn, κ̄n
and sn in the integral cohomology of Ω∞ MT(2). The analysis of the relationship
between these universal classes uses infinite loop space theory and the theory of
homology operations associated with this theory.

2. Remarks about proofs

Let E ⊂ B × R2n+2 be an embedded, oriented surface bundle and π : E → B the
projection. Its normal bundle is classified by

NπE
t̂ //

��

L⊥
n

��

E
t // CPn ,

and induces the map on Thom spaces (one point compactifications)

t̂ : Th(NπE)→ Th(L⊥
n ).

Let cE : B+ ∧ S2n+2 → Th(NπE) be the Pontryagin-Thom collapse map, and

ω : Th(L⊥
n )→ Th(Ln ⊕ L

⊥
n ) = CPn+ ∧ S

2n+2

the inclusion along the zero section of Ln. The map cE above together with the
Thom isomorphism induces push-forward maps in K-theory and cohomology

π∗ : K(E)→ K(B), π∗ : H∗(E; Z)→ H∗−2(B; Z).

The fiberwise index theorem [3] implies that the K-theory element of the index
bundle is given by

index(∂̄W ) = π∗[W ] ∈ K(B).

The classes (1), (2) are then alternatively given by

s2n−1(E) = −n! chn
(
π∗(1)

)
,

κ̄2n−1(E) = n! chn
(
π∗(T

πE − 1)
)
.
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In terms of the classifying diagram,

π∗(1) = Φ−1
B c∗E t̂

∗(λL⊥
n
),

π∗(T
πE − 1) = Φ−1

B c∗E t̂
∗ω∗ΦCPn(L̄n),

where ΦX : K(X) → K̃(X+ ∧ S2n+2) is the Thom isomorphism for the trivial
bundle on X , λ⊥L the K-theory Thom class, and cE the collapse map.

Let p be a prime and k an integer prime to p. The “cannibalistic” characteristic
class

̺k − 1: K̃(X)→ 1 + K̃(X)⊗ Z(p)

∼=
−−→ K̃(X)⊗ Z(p)

is classified by a map BU → BU(p). We let rk be its double loop. Following [7],
there is a diagram

Ω∞ MT(2)
ω //

λ−L

��

Q(CP∞
+ )

Q(L̄)
// Q(Z×BU)

Q(rk)

��

vvmmmmmmmmmm

B

αE

ddJJJJJJJJJ

π∗(1)

zzuuuuuuuuu

// Z×BU
rk

wwooooooooo

Z×BU
kψk−id

// (Z×BU)(p) Q
(
(Z×BU)(p)

)Eoo

The first part of Theorem 1.1 follows by evaluating this diagram on cohomol-
ogy, or more precisely by evaluating the two ways around on the primitive gen-
erator s2n−1 = (2n − 1)! ch2n−1 of H4n−2(BU(p); Z). The diagram homotopy
commutes, except for the square

Q(BU)
Q(rk)

//

E

��

Q(BU(p))

E(p)

��

BU
rk

// BU(p) .

But this diagram induces a commutative diagram in cohomology when applied to
the primitive part of H∗(BU(p); Z). This uses the Artin-Hasse logarithm [10].

Akita’s conjecture is false: κp−1 6= κ̄p−1 in H∗
(
Ω∞ MT(2); Fp

)
, and [8] shows

that κp−1(E) 6= κ̄p−1(E) for surface bundles of large fiber genus.
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The stable rank of symmetry of Sn1 × . . . × Snk

Bernhard Hanke

Transformation group theory investigates symmetries of topological spaces. An
important aspect of this program is to define and study invariants that distinguish
spaces admitting lots of symmetries from less symmetric ones.

We concentrate on one of these invariants, the so called p-rank

rkp(X) := max{r | (Z/p)r acts freely on X} ,

defined for any topological space X and any prime number p . Here all groups are
acting topologically. We recall the following fact from classical Smith theory.

Theorem. Let X = Sn be the n-dimensional sphere. Then

rkp(X) =






1 for odd n ,

1 for even n and p = 2 ,

0 for even n and p > 2 .

In view of this theorem it is natural to look for a corresponding result, if X is
not just a single sphere, but a product of spheres,

X = Sn1 × Sn2 × · · · × Snk .

The following statement appears at several places in the literature either in the
form of a question [2, Question 7.2], [13, Problem 809] or as a conjecture [1,
Conjecture 2.1], [3, Conjecture 3.1.4].

Conjecture. If (Z/p)r acts freely on X, then r ≤ k.

Actually, if p is odd, it is reasonable to conjecture that r is bounded above by
the number ko of odd dimensional spheres in X . The conjecture in this sharper
form for odd p has been verified in the following cases:

• k ≤ 2, see Heller [12]; k ≤ 3, p = 2, see Carlsson [8].
• n1 = · · · = nk and in addition

– the induced action on integral homology is trivial, see Carlsson [7], or
– the induced action on integral homology is unrestricted, but if p = 2,

then ni 6= 3, 7, see Adem-Browder [2] (for p 6= 2 or ni 6= 1, 3, 7), and
Yalçın [17] (for p = 2 and ni = 1).
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• assume n1 ≤ n2 ≤ · · · ≤ nk. Then n1 ≥ 2 and for all 1 ≤ i ≤ k − 1
either ni = ni+1 or 2ni ≤ ni+1. Furthermore, the induced (Z/p)r-action
on π∗(X) is trivial and p > 3 dimX , see Sörensen [15].

The following theorem is our main result. It settles a stable form of the above
conjecture.

Main Theorem. If p > 3 dimX, then rkp(X) = ko.

This theorem implies the following estimate for the toral rank ofX which follows
from [11, Theorem T].

Theorem. If (S1)r acts freely on X, then r ≤ ko.

The proof is based on rational homotopy theory applied to the Borel space X(S1)r .
However, even for very large primes our main theorem cannot be deduced from

this result by some sort of limiting process: Browder [5] constructed free actions
of (Z/p)r on (Sm)k for each odd m ≥ 3 and r ≥ 4, k ≥ r, p > km/2 which are
exotic in the sense that they cannot be extended to (S1)r-actions.

Because the rational homotopy type of B(Z/p)r is trivial, it is obvious that
rational homotopy theory cannot be applied in a reasonable way to study the
Borel space X(Z/p)r . But tame homotopy theory seems a promising approach.
This theory was invented by Dwyer [10] and is manufactured along Quillen’s ra-
tional homotopy theory [14], but without immediately losing p-torsion information
for all primes p. One of the first observations in tame homotopy theory may be
phrased as follows: If X is an (r − 1)-connected space (r ≥ 1) and πr+k(X) is a
Z[p−1 | 2p− 3 ≤ k]-module for every k ≥ 1, then the complexity of the Postnikov
invariants of X should be comparable to that of a rational space due to the van-
ishing of the relevant higher reduced Steenrod power operations in the Postnikov
pieces of X .

Nevertheless, in the original setup, Dwyer’s theory could only be formulated
for r > 2, see [10, 1.5].

To any space X one can associate the Sullivan-de Rham algebra [6, 16], a com-
mutative graded differential algebra over Q modeled on de Rham differential forms,
which calculates the rational cohomology ofX . This construction widens the scope
of rational homotopy theory from simply connected to nilpotent spaces. A dis-
tinctive feature of this approach is the construction of a minimal model for any
space X out of the Sullivan-de Rham algebra. The minimal model still calculates
the rational cohomology of the underlying space, but in addition its associated
vector space of indecomposables can be identified with the dual of π∗(X)⊗Q, if X
is nilpotent, H∗(X ; Q) is finite dimensional in each degree and π1(X) is abelian.

For the above estimate of the toral rank of X one writes down a minimal model
of the Borel space X(S1)r and argues that if r > ko, then the cohomology of the
minimal model is nonzero in arbitrarily high degrees. But this contradicts the
fact that by the freeness of the action, X(S1)r is homotopy equivalent to the finite

dimensional space X/(S1)r. The analysis of the minimal model leading to these
conclusions is carried out in the fundamental paper [11].
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The generalization of the Sullivan-de Rham algebra to the tame setting is re-
alized in the work of Cenkl and Porter [9] and is achieved by considering com-
mutative graded differential algebras over Q which are equipped with filtrations
as a new structural ingredient. By definition, elements in filtration q are divisible
by any prime p ≤ q, but not necessarily by larger primes, and filtration degrees
are added when elements are multiplied. The construction of the Cenkl-Porter
complex is based on differential forms similar to the Sullivan-de Rham algebra.
The Cenkl-Porter equivalence theorem states that integration of forms yields a
cochain map of the Cenkl-Porter complex in filtration q to the singular cohomol-
ogy with Z[p−1 | p ≤ q]-coefficients which in cohomology induces isomorphisms
that moreover are compatible with the respective multiplicative structures.

It is now desirable to replace the Cenkl-Porter complex by a smaller filtered
commutative graded differential algebra which nicely reflects the homotopy type
of the underlying space in a similar manner as the minimal algebra in rational
homotopy theory. This uses a tame Hirsch lemma which is used to build the desired
small filtered cochain algebra along a Postnikov decomposition of the underlying
space. The correct formulation and the proof of a tame Hirsch lemma is a nontrivial
task, which was performed in the remarkable diploma thesis of Sörensen [15].

With this machinery in hand we construct small approximative commutative
Fp-cochain models of Borel spaces associated to (Z/p)r-spacesX (satisfying certain
additional assumptions). The principal idea is to use a simultaneous Postnikov
decomposition of the fibre and total space of the Borel fibration X →֒ X(Z/p)r →
B(Z/p)r. This might be of independent interest, especially when compared to the
minimal Hirsch-Brown model of a (Z/p)r-space (see [4] for a discussion) which is
in general neither graded commutative nor associative.

The cochain model resulting from this discussion is the starting point for our
proof of the main theorem. The argument is inspired by the paper [11], which pro-
vides techniques to simplify the analysis of free commutative graded differential
algebras over fields of characteristic zero. We emphasize that in the stated gener-
ality, the arguments in loc. cit. do not work over fields of prime characteristics.
Fortunately, it turns out that the Fp-cochain algebras appearing in our context
are special enough so that the proof can be completed.

We believe that our methods are not sufficient to establish the general form of
the above conjecture for small primes – this part of the conjecture remains open.
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Results on N. Kuhn’s realization conjectures

Gérald Gaudens

This is a report on the known results about certain conjectures due to N. Kuhn [3].
Let X be a topological space, and consider its singular cohomology groupsH∗X

with coefficients in F2. It is functorially in X an object of the category K of
unstable algebras [4]. An unstable algebra is the conjunction of:

• a graded commutative F2-algebra structure,
• a compatible module structure over the Steenrod algebra A2,
• extra conditions called the unstability conditions.

Let U denote the category of unstable modules over the Steenrod algebra, that is
the category obtained from K by neglecting the algebra structure.

Question. How do the objects of the form H∗X look like, as objects of U?

Nota bene. We could ask the same question with K instead of U . This question
turns out to be much more difficult.

A typical result of this kind is due to L. Schwartz [5] and was conjectured by
N. Kuhn:

Theorem. If H∗X is finitely generated as a module over the Steenrod algebra A2

(that is, as an object of U), then M is finite as an F2-vector space.

The analogous statement for cohomology with coefficients in Fp for any prime p
actually holds. This quite striking result can be reformulated in a different way.
Unstable modules that are finite dimensional coincide with those finitely generated
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modules that belong to U0, the full subcategory of locally finite modules. Recall
that an unstable moduleM is locally finite if for eachm ∈M , the submodule A2.m
is finite. The subcategory U0 is the first step in a natural filtration of the category U
by nice Abelian subcategories:

U0 ⊂ U1 ⊂ . . . ⊂ Un ⊂ Un+1 ⊂ . . .

As finitely generated unstable modules are in Un for some n, it is natural to
conjecture:

Strong realization conjecture (N. Kuhn). If H∗X is in Un for some n, then
it is in U0.

Nota bene. There are plenty of objects M ∈ U that do not belong to Un for
any n, typically, the cohomology of an Eilenberg-Mac Lane space K(Z/2Z, n).

This conjecture was proved by work of L. Schwartz [6], and Dehon-Gaudens [1].

Theorem. The strong realization conjecture holds.

The analogous conjecture for the cohomology with coefficients in Fp, where p
is an odd prime remains unsolved.

One can sharpen this conjecture. Reflecting the unstability conditions, there is
a natural decreasing Hausdorff filtration on any unstable module M :

M ⊃ Nil1M ⊃ Nil2M ⊃ . . . ⊃ NilsM ⊃ Nils+1M ⊃ . . .

The notation is due to the fact that the unstable module that is underlying to an
unstable algebraK belongs to Nil1 if and only if it is locally nilpotent as an algebra.
An unstable module belongs to Un if and only if every subquotient NilsM/Nils+1M
is in Un for any s.

Unbounded strong realization conjecture (N. Kuhn). If H∗X /∈ U0, then
there is an s such that NilsH

∗X/Nils+1H
∗X is not in Un for any n.

This conjecture implies immediately the strong realization conjecture.
Provided H∗X /∈ U0, and assuming the conjecture holds, we let S(H∗X) be the

smallest s such that NilsH
∗X/Nils+1H

∗X is in not Un for any n.
This conjecture has been proved for spaces whose cohomology do have any

Bockstein operators in high degrees [2]. In this case, the analogous result holds
for odd primes as well, and S(H∗X) is actually 0 or 1. One way to settle all above
conjectures at all primes, is to get a better understanding of what is actually going
on. A careful analysis of examples yields a conjectural upper bound on S(H∗X).

Consider for i ≥ 0 the Steenrod operation:

θi = Sq2i

Sq2i−1 · · · Sq2Sq1

Let N(H∗X) be the integer defined by:

• N(H∗X) = 0 if H>0X is not locally nilpotent,
• and otherwise N(H∗X) = min{i ≥ 1 | ν(θiα) > 2i+1−1+ν(α), α ∈ H∗X}

where ν(α) is the nilpotency index of α, i.e., the smallest s such that α ∈ NilsH
∗X .

We conjecture:
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Refined realization conjecture. The unbounded strong realization conjecture
holds, and if H∗X /∈ U0, then S(H∗X) ≤ N(H∗X).

This conjecture has been proved for N(H∗X) = 0, 1, 2. The case N(H∗X) = 1
is essentially the case of vanishing of Bocksteins over there. In fact this new
formulation is strong enough to summarize the known results on the realization
conjectures as those known low degree cases of the refined conjectures. Moreover,
this last conjecture would imply all the conjectures above.

The definition of N(H∗X) might seem quite technical, but is well motivated by
examples. Examples also suggest that the refined realization conjecture might be
accessible via a thorough study of the Bar filtration on spaces.
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The curve complex is rigid

Saul Schleimer

(joint work with Kasra Rafi)

We take S = Sg,b to be the connected, compact, orientable surface of genus g with
b boundary components. Define ξ(S) = 3g − 3 + b to be the complexity of S. A
simple closed curve α ⊂ S is essential and non-peripheral if α cannot be isotoped
into a collar about ∂S.

The complex of curves C(S), defined by Harvey [4], has as vertices the isotopy
classes of essential non-peripheral curves. The simplices span collections of vertices
having disjoint representatives. Harvey introduced C(S) as a combinatorial model
for the intersection pattern of the thin parts of Teichmüller space.

It is a foundational theorem of Ivanov [5, 7, 8] that, for S 6= S1,2, every simplicial
automorphism of C(S) is induced by an element of MCG(S), the mapping class
group. (When S = S1,2 the theorem holds for an index five subgroup.) Ivanov’s
theorem is the combinatorial version of Royden’s theorem [11]: every isometry of
Teichmüller space is induced by a mapping class element.

We prove a coarse-geometric version of these theorems.

Theorem 1. Suppose that ξ(S) ≥ 2. Then every quasi-isometry of C(S) is
bounded distance from a simplicial automorphism.



Topologie 2451

This, together with Ivanov’s theorem, shows that the quasi-isometry type of C(S)
is enough to recover the surface. In fact we have:

Theorem 2. If C(S) and C(Σ) are quasi-isometric then they are simplicially iso-
morphic. Hence either

• S is homeomorphic to Σ,
• {S,Σ} = {S0,6, S2},
• {S,Σ} = {S0,5, S1,2},
• {S,Σ} ⊂ {S0,4, S1, S1,1}, or
• {S,Σ} ⊂ {S0, S0,1, S0,3}.

To prove Theorem 1, we must investigate the coarse geometric properties of C(S).
These are somewhat mysterious as C(S) is not locally finite.

Theorem 3 (Masur-Minsky [9]). C(S) is Gromov hyperbolic.

Theorem 4 (Klarreich [6]). The Gromov boundary of C(S) is MCG(S)–equivar-
iantly homeomorphic to EL(S).

Here EL(S) is the space of ending laminations, obtained from PML(S) by
taking the subset of filling laminations and taking a quotient by forgetting the
measures. We define C(S) = C(S) ∪ EL(S). Little is known about the topology
of EL(S). However:

Theorem 5 (Gabai [2]). If ξ(S) ≥ 2 then EL(S) is connected.

Let B(z, r) ⊂ C(S) be the ball of radius r about z. Using Theorem 5 and
Gromov hyperbolicity we prove:

Proposition 6. The shell B(z, r + 4δ) \B(z, r − 1) is connected.

We remark that, due to the locally infinite nature of C(S), the shell intrinsically
has infinite diameter and highly complicated geometry.

Masur and Minsky [10] introduced the notion of subsurface projection

πX : C(S)→ C(X).

They define πX(α) by intersecting α with the subsurface X and surgering the
resulting arcs to obtain curves in X . If α ∩ X = ∅ then πX(α) is left undefined.

For α, β ∈ C(S) define

dX(α, β) = dX
(
πX(α), πX(β)

)
.

We say that α, β ∈ C(S) are K–cobounded if for all strict subsurfaces X ⊂ S we
have dX(α, β) ≤ K. Now, there is no reason that a quasi-isometry will preserve
the property of K–coboundedness for vertices in C(S). As usual, better behavior
is obtained at infinity.

Theorem 7. For all S,Σ, q, c there is a c′ so that if φ : C(S)→ C(Σ) is a q–quasi-
isometric embedding and k, ℓ ∈ EL(S) are c–cobounded then φ(k), φ(ℓ) are c′–co-
bounded.
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We now turn to another idea of Masur and Minsky: a marking of S is any col-
lection of filling curves. We say that a marking m ⊂ S is K–small if i(m,m) ≤ K.
We say that two markings m,n are K ′–near if i(m,n) ≤ K ′. Then there are
constants K,K ′ so that the marking graph M(S) is quasi-isometric to MCG(S).
Here vertices are K–small markings and edges are given by K ′–nearness. There
is a canonical map p : M(S) → C(S) defined by mapping a marking m to any
element a ∈ m. Without being too cautious about quantifiers we have:

Theorem 8. Suppose that ξ(S) ≥ 2. Suppose that φ : C(S) → C(Σ) is a quasi-
isometric embedding. Then there is an induced map Φ: M(S)→M(Σ) so that

M(S)
Φ //

p

��

M(Σ)

π

��

C(S)
φ

// C(Σ)

and this square commutes up to additive error. Furthermore, Φ is coarsely-Lip-
schitz.

We are now equipped to prove Theorem 1: suppose that f : C(S) → C(S) is
a quasi-isometry. Then, using Theorem 8 in both directions, we find a quasi-
isometry F : M(S) → M(S). We now apply a recent theorem of Behrstock,
Kleiner, Minsky, and Mosher [1]: the mapping class group equipped with the word
metric is itself rigid. (See also Hamenstaedt [3].) Thus F is close to the action of
some mapping class G ∈MCG(S). Pushing this down to the curve complex gives
a isometry g : C(S)→ C(S). Verifying that the given f and the induced g are close
completes the proof.
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Homotopy theory and fusion systems of finite groups of Lie type

Carles Broto

(joint work with Jesper Møller and Bob Oliver)

It is observed by group theorists that some finite groups of Lie type carry the same
p-local structure (see [4] for a discussion of p-local properties of finite groups). The
same phenomenon is observed if we look at mod p cohomology computations by
several people (cf. [9, 2]).

Our goal is to give a uniform explanation for all of these observations. We use
homotopy theoretic methods, and to our best knowledge no alternative proof is
known at the moment.

By p-local structure of a finite group we mean its p-fusion system, as defined
below.

Definition 1. Let G be a finite group. The p-fusion system of G is a cate-
gory Fp(G) with

• objects the p-subgroups P of G, and
• morphisms the group homomorphisms ϕ : P → Q induced by conjugation

by elements of G: HomFp(G)(P,Q) =
{
ϕ ∈ Hom(P,Q)

∣∣ ∃g ∈ G , ϕ = cg
}
.

together with a forgetful functor to the category of groups λG : Fp(G)→ Groups.

We will say that two finite groups, G and H , have the same p-fusion and will
write Fp(G) ≃ Fp(H) when there is an isotypical equivalence (T,w): T : Fp(G)→
Fp(H), an equivalence of categories, and w : λG → λH ◦ T , a natural isomor-
phism of functors. Equivalently, G and H have the same p-fusion if for given
Sylow p-subgroups SG ∈ Sylp(G) and SH ∈ Sylp(H), there is a fusion preserving
isomorphism SG → SH .

Now, we can state our main theorem. Here Z×
p stands for the multiplicative

group of p-adic units, and for q ∈ Z×
p , 〈q〉 is the closed subgroup generated by q.

Theorem 2 (B-Møller-Oliver). Fix a prime p, a connected reductive integral group
scheme G and prime powers q, q′, both prime to p. Then

(1) 〈q〉 = 〈q′〉 ≤ Z×
p =⇒ Fp(G(q)) ≃ Fp(G(q′)).

(2) for G of type An, Dn, E6 and the graph automorphism τ ,

〈q〉 = 〈q′〉 =⇒ Fp(
τG(q)) ≃ Fp(

τG(q′)).

(3) If Ψ−1 ∈ W (G) – the Weyl group of G contains an element which acts on

the maximal torus by inverting all elements –, then 〈−1, q〉 = 〈−1, q′〉 ≤ Z×
p

implies Fp(G(q)) ≃ Fp(G(q′)) (or Fp(τG(q)) ≃ Fp(τG(q′)) for G and τ as
in (2)).
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(4) For G of type An, Dn with odd n, or E6, and the graph automorphism τ
of order 2

〈−q〉 = 〈q′〉 =⇒ Fp(
τG(q)) ≃ Fp(G(q′)).

The same methods of proof apply to other cases that are known or can be
checked by more direct methods. This is the case, for a prime p and a prime
power q with q ≡ 1(p), of

(1) p 6= 3, Fp(G2(q)) ≃ Fp(3D4(q))
(2) p 6= 2, Fp(F4(q)) ≃ Fp(2E6(q)).

Now, we list the main facts that we use in the proof of Theorem 2.

p-completed classifying spaces. By p-completion of a space X we mean the Bous-
field-Kan p-completion X∧

p [1].

Theorem 3 ([6, 7, 8]). Let G and H be finite groups. The p-completed clas-
sifying spaces BG∧

p and BH∧
p are homotopy equivalent if and only if the fusion

systems Fp(G) and Fp(H) are isotypically equivalent.

The aim is to show by homotopy theoretic methods that some p-completed
classifying spaces are homotopy equivalent. Then, Theorem 2 implies that they
have isotypically equivalent p-fusion systems. This implication was proved by
Martino and Pridddy. The converse has been proved by Oliver, based on the
classification of finite simple groups.

Finite groups of Lie type. Results of Friedlander [3] relate the homotopy type of
p-completed classifying spaces of finite groups of Lie type to that of the corre-
sponding compact connected Lie groups. More precisely:

Theorem 4 ([3]). Let G be a connected reductive integral group scheme. Fix a
prime p and a prime power q with (q, p) = 1. There is a homotopy pull-back
diagram:

BτG(q)∧p //

��

BG(C)∧p

∆

��

BG(C)∧p
(1,Bτ◦Ψq)

// BG(C)∧p ×BG(C)∧p

Notice that BG(C)∧p is homotopy equivalent to BG∧
p , for G the corresponding

compact form of G(C). Here, Ψq is the Adams map characterized by its restriction
to the maximal torus: x 7−→ xq. We use results of Jackowsky-McClure-Oliver [5]
on self maps of classifying spaces of compact Lie groups.

Homotopy fixed points. For a space X and a self homotopy equivalence α of X ,
one defines the homotopy quotient Xhα as the mapping torus X × I/ ∼, (x, 0) ∼
(α(x), 1). It comes equipped with a projection to the circle pr : Xhα → S1 with
homotopy fibre X . The homotopy fixed points space is defined as the space of

sections of the projection Xhα ≃ Γ(Xhα
pr
→ S1).
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An alternative way to express Friedlander’s result is BτG(q)∧p ≃ (BG∧
p )hα for

α = Bτ ◦Ψq.
For an arbitrary space X , we give a topology to the group Out(X) of ho-

motopy classes of self–homotopy equivalences of X , by fixing a basis Out(X) ⊇
U1 ⊇ U2 ⊇ U3 ⊇ · · · ⊇ Uk ⊇ · · · of open neighborhoods of the identity with
Uk = self equivalences which induce the identity on H∗(X ; Z/pk). We define

Ĥi(X ; Zp) = lim
←−

Hi(X ; Z/pk) for all i and Ĥ∗(X ; Zp) =
⊕

i Ĥ
i(X ; Zp). It turns

out that Out(X) is Hausdorff if and only if it is detected on Ĥ∗(X ; Zp).

Theorem 5 (B-Møller-Oliver). Fix a prime p. Let X be a connected, p-complete
space such that

(1) H∗(X ; Fp) is noetherian.

(2) Out(X) is detected on Ĥ∗(X ; Zp).

If α, β are self homotopy equivalences of X such that 〈α〉 = 〈β〉 ≤ Out(X) , then

Xhα ≃ Xhβ .

p-completed classifying spaces of compact connected Lie groups. The previous the-
orem applies to X = BG∧

p , when G is a compact, connected Lie group:

(1) H∗(BG; Fp) is well known to be noetherian.
(2) By results of Jackowsky-McClure-Oliver [5] the group Out(BG∧

p ) is de-

tected on Ĥ∗(BG∧
p ,Zp).

Actually, Jackowsky-McClure-Oliver prove that self maps of BG∧
p are detected by

restriction to the p-completed maximal torus BT∧
p ≃ K(Znp , 2).

Self equivalences of the maximal torus correspond to matrices in GLn(Zp).

It follows that for q and q′ invertible in Zp, if 〈q〉 = 〈q′〉 ≤ Z×
p then 〈Ψq〉 =

〈Ψq′〉 ≤ Out(BG∧
p ), or in case Ψ−1 ∈ W (G), if 〈−1, q〉 = 〈−1, q′〉 ≤ Z×

p then

〈Ψq〉 = 〈Ψq′〉 ≤ Out(BG∧
p ). This combines with Theorems 3, 4, and 5 to give the

proof of the main theorem.
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Group cocycles and the ring of affiliated operators

Andreas Thom

(joint work with Jesse Peterson)

1. Introduction

The computations of ℓ2-homology have been algebraized through the seminal
work of W. Lück, which is summarized and explained in detail in his nice com-
pendium [7]. This extended abstract is a report about results obtained in [9].

Our first theorem gives an identification of dimensions of cohomology groups,
where the coefficients vary among the canonical choices LG, ℓ2G and UG.

Theorem 1.1. Let G be a countable discrete group. Then

β
(2)
k (G) = dimLGH

k(G,UG) = dimLGH
k(G, ℓ2G) = dimLGH

k(G,LG).

Moreover, if β
(2)
k (G) = 0 for some k, then Hk(G,UG) = 0.

2. Free subgroups

Throughout this section, we are assuming that G is a torsionfree discrete countable
group and most of the time also that it satisfies the following condition:

(⋆) Every non-trivial element of ZG acts without kernel on ℓ2G.

Condition (⋆) is known to hold for all right orderable groups and all residually
torsionfree elementary amenable groups. No counterexample is known.

Let G be a discrete group, we use the notation Ġ to denote the set G\{e}. The
main result here is the following theorem.

Theorem 2.1. Let G be a torsionfree discrete countable group. There exists a
family of subgroups {Gi | i ∈ I}, such that

(1) We can write G as the disjoint union:

G = {e} ∪
⋃

i∈I

Ġi.

(2) The groups Gi are mal-normal in G, for i ∈ I.
(3) If G satisfies condition (⋆), then Gi is free from Gj , for i 6= j.

(4) β
(2)
1 (Gi) = 0, for all i ∈ I.

Remark 2.2. It follows from Theorem 7.1 in [9], that the set I is infinite if the
first ℓ2-Betti number of G does not vanish.
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Corollary 2.3. Let G be a discrete countable group satisfying condition (⋆). As-
sume that the first ℓ2-Betti number does not vanish. Let F be a finite subset of G.
There exists g ∈ G, such that g is free from each element in F . In particular, G
contains a copy of F2.

The following result is a generalization of the main result of J. Wilson in [10]
for torsionfree groups which satisfy (⋆). For this, note that a group G with n

generators and m relations satisfies β
(2)
1 (G) ≥ n−m− 1.

Corollary 2.4 (Freiheitssatz). Let G be a torsionfree discrete countable group

which satisfies (⋆). Assume that a1, . . . , an ∈ G generate G and ⌈β
(2)
1 (G)⌉ ≥ k.

There exist k+ 1 elements ai0 , . . . , aik among the generators such that the natural
map

π : Fk+1 → 〈ai0 , . . . , aik〉 ⊂ G

is an isomorphism.

Corollary 2.5. Let G be a finitely generated torsionfree discrete countable group
which satisfies (⋆). Then

eS(G) ≥ 2⌈β
(2)
1 (G)⌉+ 1,

for any generating set S. Here, eS(G) denotes the exponential growth rate w.r.t.
the generating set S.

In particular, a torsionfree group satisfying condition (⋆) has uniform exponen-
tial growth if its first ℓ2-Betti number is positive.

3. Notions of normality

We now want to review some notions of normality of subgroups which are more
or less standard, and introduce some notation. A subgroup H ⊂ G is called:

(1) normal iff gHg−1 = H , for all g ∈ G,
(2) s-normal iff gHg−1 ∩H is infinite for all g ∈ G, and
(3) q-normal iff gHg−1 ∩H is infinite for elements g ∈ G, which generate G.

We say that a subgroup inclusionH ⊂ G satisfies one of the normality properties
from above weakly, iff there exists an ordinal number α, and an ascending α-chain
of subgroups, such that H0 = H , Hα = G, and Upβ<γHβ ⊂ Hγ has the required
normality property.

Example 3.1. The inclusions

GLn(Z) ⊂ GLn(Q), Z = 〈x〉 ⊂ 〈x, y | yxpy−1 = xq〉 = BSp,q

are inclusions of s-normal subgroups. The inclusion

F2 = 〈a, b2〉 ⊂ 〈a, b〉 = F2

is q-normal but not s-normal.
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3.1. ℓ2-invariants and normal subgroups. The two main results in this sub-
section are Theorem 3.2 and Theorem 3.6. We derive several corollaries about the
structure of groups G with β

(2)
1 (G) 6= 0.

Theorem 3.2. Let G be a countable discrete group and suppose H is an infinite

weakly q-normal subgroup. We have β
(2)
1 (H) ≥ β

(2)
1 (G).

Corollary 3.3. Let H ⊂ K ⊂ G be a chain of subgroups and assume that H ⊂ G
is weakly q-normal and [K : H ] <∞. Then

[K : H ] · β
(2)
1 (G) ≤ β

(2)
1 (H).

Corollary 3.4. Let G be a torsionfree discrete countable group and let H ⊂ G be

an infinite subgroup. If β
(2)
1 (H) < β

(2)
1 (G), then there exists a proper malnormal

subgroup K ⊂ G, such that H ⊂ K.

Corollary 3.5. Let G be a countable discrete group and let H ⊂ G be an infinite
weakly q-normal subgroup. Let K ⊂ G be a subgroup with H ⊂ K and assume

that β
(2)
1 (G) > n. Then, K is not generated by n or less elements.

The second main result in this section is the following.

Theorem 3.6. Let G be a countable discrete group and suppose H is an infinite

index, infinite weakly s-normal subgroup. If β
(2)
1 (H) <∞, then β

(2)
1 (G) = 0.

Corollary 3.7. Let G be a countable discrete group with β
(2)
1 (G) > 0. Suppose

that H ⊂ G is an infinite, finitely generated weakly s-normal subgroup. Then H
has to be of finite index.

Note that the result applies in case H contains an infinite normal subgroup.
Hence, this result is a generalization of the classical results by A. Karass and
D. Solitar [6], H. Griffiths [5], and B. Baumslag [1]. A weaker statement with
additional hypothesis was proved as Theorem 1(2) in [3].

Corollary 3.8 (Gaboriau). Let G be a group with an infinite normal subgroup of

infinite index, which is either finitely generated or amenable. Then β
(2)
1 (G) = 0.
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Exceptional Dehn Filling

Steven Boyer

(joint work with Marc Culler, Cameron Gordon, Peter Shalen, Xingru Zhang)

Many of the basic problems in 3-manifold topology can be analysed in terms of the
Dehn filling operation, that is, the attaching of a solid torus to a 3-manifold along
one of its torus boundary components. An important aspect of this operation is
that certain geometric and topological properties of the 3-manifold persist in its
Dehn fillings, at least generically. This talk reported on work which illustrates this
aspect.

In what follows, M will be a compact, connected, orientable, hyperbolic 3-mani-
fold whose boundary is a torus (a hyperbolic knot manifold). A slope on ∂M is
a ∂M -isotopy class of essential simple closed curves. Slopes can be visualized by
identifying them with ±-classes of primitive elements of H1(∂M) in the surgery
plane H1(∂M ; R). The distance ∆(r1, r2) between slopes r1, r2 is the absolute
value of the algebraic intersection number of their associated classes in H1(∂M).
Given two sets of slopes S1,S2, set ∆(S1,S2) = sup{∆(r, s) : r ∈ S1, s ∈ S2}
and ∆(S1) = ∆(S1,S1).

To each slope r on ∂M we associate the r-Dehn filling M(r) = (S1×D2)∪f M
of M where f : ∂(S1×D2)→ ∂M is any homeomorphism such that f({∗}×∂D2)
represents r. Set

E(M) = {r |M(r) is not hyperbolic}

and call the elements of E(M) exceptional slopes. It follows from Thurston’s hy-
perbolic Dehn surgery theorem (see [2, Appendix B]) that E(M) is finite, while
Perelman’s solution of the geometrisation conjecture (see [16, 17]) implies that
E(M) = {r | M(r) is either reducible, toroidal, or small-Seifert}. Here, a small-
Seifert manifold is an irreducible, atoroidal manifold which admits a Seifert struc-
ture with base orbifold of the form S2(a, b, c), where a, b, c ≥ 1. Over the last
thirty years, the following two problems have been the focus of intense research:

(A) Understand the structure of E(M).
(B) Describe the topology of M when |E(M)| ≥ 2.

See the survey [11] for instance. Two results which exemplify what can occur
when the situation described in problem (B) arises are Gordon’s theorem: if two
toroidal filling slopes are of mutual distance at least 6, then M is one of four
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specific manifolds M1,M2,M3,M4 [12], and Yi Ni’s theorem: if M is the exterior
of a knot in the 3-sphere which has a non-meridinal slope whose associated filling
yields a lens space, then M fibres over the circle. In the talk I concentrated on
problem (A). Here, one of the key conjectures is the following:

Conjecture (C.McA. Gordon). For any hyperbolic knot manifold M , we have
#E(M) ≤ 10 and ∆(E(M)) ≤ 8. Moreover, if M 6= M1,M2,M3,M4, then
#E(M) ≤ 7 and ∆(E(M)) ≤ 5.

It is shown in [5] that the conjecture holds if the first Betti number of M is
at least 2. (Note that it is at least 1.) Lackenby and Meyerhoff have recently
announced a proof that the first statement of the conjecture holds in general [14].
See §2 of this paper for a historical survey of results concerning upper bounds
for #E(M) and ∆(E(M)). Agol has shown that there are only finitely many
hyperbolic knot manifolds M with ∆(E(M)) > 5 [1], though there is no practical
fashion to determine this finite set.

The results which best illustrate the structure of E(M) are obtained by consid-
ering its subsets red (slopes whose fillings are reducible), tor (slopes whose fillings
are toroidal), and s-sfrt (slopes whose fillings are small-Seifert). The latter include
cyc, resp. fin, (slopes whose fillings have cyclic, resp. finite, fundamental groups),
and the atoroidal filling slopes in v-small (slopes whose fillings have fundamental
groups which contain no non-abelian free subgroup).

Sharp upper bounds on the distances ∆(red , red), ∆(red , cyc), ∆(red , tor),
∆(cyc, cyc), ∆(cyc,fin), ∆(fin ,fin) and ∆(tor , tor) are known (see, resp., [13],
[8], [18] and [19], [10], [7], [9], [12]). Moreover, the configuration of these slopes in
the surgery plane satisfies further constraints. For instance, there is a basis {α, β}
of H1(∂M) such that red ∪ fin is contained in ±{α, β, α+ β, 2α+ β, 3α+ β}.

The exceptional slopes whose position in E(M) is least understood are those
in s-sfrt . The following theorem concerns their relation to red . Recall that a
strict boundary slope is a slope r on ∂M for which there is an essential surface F ,
properly embedded in M , such that ∂F is non-empty of slope r and π1(F ) is not
normal in π1(M). For instance, if r ∈ red and M(r) 6∼= S1 × S2, P 3#P 3, then r is
a strict boundary slope.

Theorem. Let M be a hyperbolic knot manifold.

(1) [6] If M(r) is reducible and π1(M(s)) finite, then ∆(r, s) ≤ 1;
(2) [4] If M(r) is reducible and π1(M(s)) very small, then ∆(r, s) ≤ 2;
(3) [4] If r is a strict boundary slope, M(r) reducible, and M(s) small-Seifert,

then ∆(r, s) ≤ 4.

Parts (1) and (2) represent sharp upper bounds. The expected sharp bound in
part (3) is 2 [15], and though the method of [4] does not yield this, it should be
useful in showing that any putative knot manifold for which the bound fails is of
a special nature.

The proof of the theorem involves a variety of techniques. For part (1), PSL2(C)-
character variety methods are used in [4] to show if r ∈ red and s ∈ fin, ei-
ther ∆(r, s) ≤ 1 or ∆(r, s) = 2, H1(M) ∼= Z ⊕ Z/2,M(r) ∼= P 3#L(3, 1) and
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π1(M(s)) ∼= O∗ × Z/j, where O∗ is the binary octahedral group. In [6], they
are used to show that when ∆(r, s) = 2, M contains a properly embedded,
4-punctured, essential 2-sphere which splits it into two genus 2 handlebodies.
Hence, there is an involution on M with quotient a 3-ball. The involution ex-
tends over M(r) with quotient branch set the connected sum of a trefoil and a
Hopf link, and over M(s) with quotient branch set a Montesinos link of type
(p2 ,

q
3 ,

r
2 ). On the other hand, since ∆(r, s) = 2, the branch sets differ by a crossing

change, which is shown to be impossible. Thus (1) holds.
Part (2) is proven using PSL2(C)-character variety methods, and in particular

the geometry of Culler-Shalen seminorms plays a key role. For part (3), a refined
version of the JSJ methods of [3] is used. We mentioned above that the latter
should show that any putative knot manifold for which the expected minimal
upper bound of 2 fails, is of a special nature. For instance, such manifolds should
admit interesting symmetries which would be helpful in ruling out these cases.
It seems likely that similar methods will yield good upper bounds for ∆(tor ,fin),
∆(tor , v-small), and ∆(red , s-sfrt), and this is the goal of a current research project
with Gordon and Zhang. For the remaining case ∆(s-sfrt , s-sfrt), new ideas appear
to be needed.
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β-Family congruences and the f-invariant

Gerd Laures

(joint work with Mark Behrens)

In [1], J.F. Adams studied the image of the J-homomorphism

J : πt(SO)→ πSt

by introducing a pair of invariants

d = dt : πSt → πtK,

e = et : ker(dt)→ Ext1,t+1
A (K∗,K∗),

where A is a certain abelian category of graded abelian groups with Adams oper-
ations. (Adams also studied analogs of d and e using real K-theory, to more fully
detect 2-primary phenomena.) In order to facilitate the study of the e-invariant,
Adams used the Chern character to provide a monomorphism

θS : Ext1,t+1
A (K∗,K∗) →֒ Q/Z.

Thus, the e-invariant may be regarded as taking values in Q/Z. Furthermore, he
showed that for t odd, and k = (t + 1)/2, the image of θS is the cyclic group of
order denom(Bk/2k), where Bk is the k-th Bernoulli number.

The d and e-invariants detect the 0 and 1-lines of the Adams-Novikov spectral
sequence (ANSS). In [8], I studied an invariant for T = TMF

f : ker(et)→ Ext2,t+2
T∗T

(T∗, T∗),

which detects the 2-line of the ANSS for πS∗ away from the primes 2 and 3.
I furthermore used H. Miller’s elliptic character to show that, if t is even and
k = (t+ 2)/2, there is a monomorphism

ι2 : Ext2,t+2
T∗T

(T∗, T∗) →֒ DQ/
(
DZ + (M0)Q + (Mk)Q

)
.

where D is Katz’s ring of divided congruences and Mk is the space of weight k
modular forms of level 1 meromorphic at the cusp. It is natural to ask for a
description of the image of the map ι2 in arithmetic terms.

Attempting to generalize the J fiber-sequence

J → KOp
ψℓ−1
−−−→ KOp

Mark Behrens introduced a ring spectrum Q(l) built from a length two TMFp-re-
solution. In [4], it was shown that for p ≥ 5, the elements βi/j,k ∈ (πS∗ )p of [11]
are detected in the Hurewicz image of Q(l). This gives rise to the association of
a modular form fi/j,k to each element βi/j,k. Furthermore, the forms fi/j,k are
characterized by certain arithmetic conditions.
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The purpose of this talk is to summarize the various aspects of the f -invariant
in terms of characteristic numbers of (U, fr)2-manifolds with corners and spectral
invariants and to relate the f -invariant to the work of Mark Behrens. It is proven
that βi/j,k is given by the formula

f(βi/j,k) =
fi/j,k

pkEjp−1

.

In particular, since the 2-line of the ANSS is generated by the elements βi/j,k,

the p-component of the image of the map ι2 is characterized by the arithmetic
conditions satisfied by the Behrens modular forms fi/j,k. The comparison between
the e-invariant and the f -invariant is summarized in the following table:

e-invariant f -invariant
source ker(d) ker(e)

target Ext1,∗K∗K
(K∗,K∗) ⊂ Q/Z Ext2,∗T∗T

(T∗, T∗) ⊂
DQ

DZ+(M0)Q+(M∗)Q

kernel 2nd-AN filtration 3rd-AN filtration
detects αi,j βi/j,k
character Chern character Miller character
char. numbers (U, fr)-manifolds (U, fr)2-manifolds
spectral inv. η-invariant parameterized version of η
image Bernoulli numbers Behrens modular forms

The right lower corner was the only missing slot until this work with Mark
Behrens. J. Hornbostel and N. Naumann [7] computed the f -invariant of the
elements βi/1,1 in terms of Katz’s Artin-Schreier generators of the ring of p-adic
modular forms. While their result is best suited to describe f -invariants of infinite
families, it is difficult to explicitly get one’s hands on their output or to characterize
the image algebraically. Direct computations with q-expansions are limited by the
computability of q-expansions of modular forms, hence are generally not well suited
for infinite families of computations. In low degrees, however, the new formula can
directly be used to compute with q-expansions. We demonstrate this by giving
some sample calculations of some f -invariants at the prime 5.
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Two-vector bundles

Christian Ausoni

(joint work with Bjørn Ian Dundas and John Rognes)

Two-vector bundles, as defined by Baas, Dundas and Rognes [6], are a 2-categorical
analogue of ordinary complex vector bundles. A two-vector bundle of rank n
over a space X can be thought of as a locally trivial bundle of categories with
fibre Vn, where V is the bimonoidal category of finite dimensional complex vector
spaces and isomorphisms. It can be defined by means of an open cover of X
by charts with specified trivialisations, gluing data which represents a weakly
invertible matrix of ordinary vector bundles on the intersection of two charts, and
coherence isomorphisms on the intersection of three charts [6, §2]. Equivalence
classes of two-vector bundles of rank n over a finite CW-complex X are in bijective
correspondence with homotopy classes of maps from X to |BGLn(V)| [5]. By
group-completing with respect to the direct sum of matrices we obtain the space

K(V) = ΩB
(∐

n

|BGLn(V)|
)

that represents virtual two-vector bundles. Gerbes with band U(1) coincide with
two-vector bundles of rank 1.

Very little is known about the geometry of two-vector bundles. However, by a
theorem of Baas, Dundas, Richter and Rognes [7], there is a weak equivalence

K(V) ≃ K(ku) ,

where K(ku) is the algebraic K-theory space of the connective complex K-theory
spectrum ku (viewed as a ring in a suitable sense). This permits us to study
the space K(V) by means of invariants of algebraic K-theory, like the Bökstedt
trace map to topological Hochschild homology, or the cyclotomic trace map to
topological cyclic homology. In joint work with Rognes [3, 1] we applied trace
methods to compute K(ku) with suitable finite p-primary coefficients for p ≥ 5.
We prove that the spectrum K(ku) is of chromatic complexity 2 in the sense of
stable homotopy theory. This means that two-vector bundles define a cohomology
theory that, from the view-point of stable homotopy theory, is a suitable candidate
for elliptic cohomology. In particular, it is a strictly finer invariant than topological
K-theory.
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The rational information carried by a two-vector bundle is fairly well under-
stood : it is contained in the associated dimension and determinant bundles. Let
π : ku→ Z be the unique ring-map that is a π0-isomorphism, and let

π : K(ku)→ K(Z)

be the induced map in algebraic K-theory. This map represents the forgetful map
that associates to a two-vector-bundle its dimension bundle, or decategorification.
There is also a rational determinant map [4]

detQ : K(ku)→ B SL1(ku)Q .

Up to homotopy, this is a rational retraction of the “inclusion of units” map

w : B SL1(ku)→ K(ku) .

Thus, any virtual two-vector bundle has an associated (rational) determinant bun-
dle. We proved in [4] that the maps π and detQ define a rational equivalence

K(ku)Q ≃ B SL1(ku)Q ×K(Z)Q .

The space of units SL1(ku) is equivalent as an infinite loop-space to the space BU⊗

representing virtual complex line bundles and their tensor product. By a result of
Borel [8], the space K(Z) is rationally equivalent to Z× SU/SO.

The map π : K(ku) → K(Z) is 3-connected, from which we deduce that
K1(ku) ∼= Z/2 and K2(ku) ∼= Z/2. We expect that in higher degrees, the in-
tegral homotopy groups of K(ku) will reflect the high complexity of K(Z) and
of some of the v2-periodic families in the stable homotopy groups of spheres [3,
§9]. This is illustrated in the following example. An obvious and meaningful in-
variant to detect higher dimensional classes in K∗(ku) would be a determinant
map det : K(ku) → B SL1(ku) that is an (integral) homotopy retraction of w.
However, as observed by Dundas and Rognes, such a map cannot possibly exist :
a first obstruction to its existence is an intriguing virtual two-vector bundle ς on
the sphere S3. In effect, we show in [2] that there is an isomorphism of Abelian
groups

K3(ku) ∼= Z⊕ Z/24 ,

where the torsion free summand is generated by ς, and the torsion subgroup is
generated by a class named ν (the image of the class with the same name in the
stable homotopy of S3). We prove that the U(1)-gerbe µ over S3 representing the
fundamental class in H3(S3; Z) ∼= Z (also known as Dirac’s magnetic monopole)
decomposes as

µ = 2ς − ν ∈ K3(ku)

when viewed as a virtual two-vector bundle of rank one. Therefore, the element ς
classifies a virtual two-vector bundle over S3 that, modulo torsion, is half the mag-
netic monopole. Its associated dimension bundle is a generator of K3(Z) ∼= Z/48.
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Wreath products and representations of p-local finite groups

Assaf Libman

(joint work with Natàlia Castellana)

A classical result which goes back to Eilenberg-MacLane states that H∗(G; Fp)
depends only on the non-trivial p-subgroups ofG and the homomorphisms between
them which are induced by conjugation by elements of G. This information is
contained in a small category known as the fusion system FS(G) whose objects
are the p-subgroups of a fixed Sylow p-subgroup S of G. Its morphisms are the
morphisms induced by conjugation in G.

Abstraction of this construction led Puig to consider saturated fusion systems
on a p-group S. A fusion system F on S is a small category whose objects are the
subgroups of S. The morphisms in F are group monomorphisms which contain
all the homomorphisms induced by conjugation in S. In addition every morphism
in F factors as an isomorphism in F followed by an inclusion. Two groups that
are isomorphic in F are called F -conjugate.

Definition 1. Let F be a fusion system on a p-group S. A subgroup P ≤ S is
fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′ ≤ S which are F -conjugate
to P . A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for
all P ′ ≤ S which are F -conjugate to P .

A fusion system F on S is saturated if:

(1) Each fully normalized subgroup P ≤ S is fully centralized and AutS(P ) ∈
Sylp(AutF (P )).

(2) For P ≤ S and ϕ ∈ F(P, S) set

Nϕ = {g ∈ NS(P )|ϕcgϕ
−1 ∈ AutS(ϕ(P ))}.

If ϕ(P ) is fully centralized then there is ϕ̄ ∈ F(Nϕ, S) such that ϕ̄|P = ϕ.
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The combinatorial model for BG∧
p was offered by Broto, Levi and Oliver in [2]

in the form of a linking system associated to a saturated fusion system. The idea
goes back to a work of Puig.

Definition 2. Let F be a fusion system on a p-group S. A subgroup P ≤ S is
F -centric if P and all its F -conjugates contain their S-centralizers.

Definition 3. Let F be a fusion system on a p-group S. A centric linking system
associated to F is a category L whose objects are the F -centric subgroups of S,

together with a functor π : L −→ Fc and monomorphisms P
δP−→ AutL(P ) for

each F -centric subgroup P ≤ S, which satisfy the following conditions:

(1) π is the identity on objects. For each pair of objects P,Q ∈ L, the action
of Z(P ) on L(P,Q) via precomposition and δP : P → AutL(P ) is free and

π induces a bijection L(P,Q)/Z(P )
∼=
−→ F(P,Q).

(2) If P ≤ S is F -centric then π(δP (g)) = cg ∈ AutF (P ) for all g ∈ P .
(3) For each f ∈ L(P,Q) and each g ∈ P , the following square commutes in L:

P
f

//

δP (g)

��

Q

δQ(π(f)(g))

��

P
f

// Q.

A p-local finite group (S,F ,L) consists of a saturated fusion systems F on S to-
gether with an associated linking system. The classifying space of (S,F ,L) is |L|∧p .

The homomorphism δS : S → AutL(S) induces an “inclusion” map Θ: BS → |L|∧p .

It turns out that p-local finite groups form a more general framework to study
p-local phenomena in finite groups. There are fruitful connections with Represen-
tation Theory.

Definition 4. Given a space X and a subgroup K ≤ Σn let X ≀ K denote the
homotopy orbits space of the action of K by permuting the factors of Xn; In
symbols (Xn)hK .

Theorem 5. Fix a p-local finite group (S,F ,L) where S 6= 1. Let K be a subgroup
of Σn and let S′ be a Sylow p-subgroup of S ≀K. Then there exists a p-local finite
group (S′,F ′,L′) which is equipped with a homotopy equivalence |L|≀K ≃ |L′| such
that the composite

BS′ B incl
−−−→ B(S ≀K) ≃ (BS) ≀K

Θ≀K
−−−→ |L| ≀K ≃ |L′|

is homotopic to the natural map BS′ Θ′

−→ |L′|. Moreover, (S′,F ′,L′) satisfying
these properties is unique up to an isomorphism of p-local finite groups.

The proof of this theorem uses the ideas in [1, Thorem 4.6]. We call the p-
local finite group (S′,F ′,L′) in the theorem above the wreath product of (S,F ,L)
with K and denote its fusion system and linking system by F ≀ K and L ≀ K
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respectively. Let ∆: |L| → |L| ≀K ≃ |L′| denote the diagonal inclusion followed
by the homotopy equivalence in Theorem 5.

Definition 6. Let F ,F ′ be saturated fusion systems on S, S′ respectively. A
homomorphism ϕ : S → S′ is called fusion preserving if for any morphism ψ ∈
F(P,Q) there exists some ψ′ ∈ F ′(ϕ(P ), ϕ(Q)) such that the following square
commutes

P
ψ

//

ϕ|P

��

Q

ϕ|Q

��

ϕ(P )
ψ′

// ϕ(Q)

It is a natural question to ask if Bϕ “extends” to a map between the classifying
spaces. This is known to be true stably. We have, however, the following result.

Theorem 7. Let (S,F ,L) and (S′,F ′,L′) be p-local finite groups and suppose that
ρ : S → S′ is a fusion preserving homomorphism. Then there exists some m ≥ 0
and a map f̃ : |L|∧p → |L

′ ≀Σpm |∧p such that the diagram below commutes up to

homotopy

BS
η◦Θ

//

Bρ

��

|L|∧p
f̃

$$JJJJ
JJJ

JJ
J

BS′
η◦Θ′

// |L′|∧p ∆∧

p

// |L′ ≀Σpm |∧p .

As a corollary we obtain a p-local version of Cayley’s theorem. Recall that a
map f : X → Y of topological spaces is called a homotopy monomorphism at p if
H∗(X ;Fp) is a finitely generated H∗(Y ; Fp)-module via f∗.

Theorem 8. Any p-local finite group (S,F ,L) admits a map f : |L| → (BΣpk )
∧

p

for some k which is a homotopy monomorphism at p.
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4-Manifolds BIG and small: Reverse engineering smooth 4-Manifolds

Ronald J. Stern

(joint work with Ronald A. Fintushel)

Recent work with Ronald A. Fintushel has suggested a classification scheme for
simply-connected smooth 4-manifolds. In its most ambitious form, our work sug-
gests that all simply-connected smooth 4-manifolds are obtained from

S4#kCP2#ℓCP2#s(S
2 × S2)#tK3

via a sequence of surgeries on null-homologous tori. Even more optimistic would
be that the Seiberg-Witten invariants distinguish these manifolds up to finite am-
biguity. As some evidence for this classification scheme, this talk discussed tech-
niques that go a long way towards proving that if the Seiberg-Witten invariants
of a simply-connected smooth 4-manifold X are non-trivial, then X has infinitely
many distinct smooth structures. An even more optimistic conjecture would be
that every simply-connected topological 4-manifold has either no or infinitely many
smooth structures.

This talk discussed a technique which we call reverse engineering that can be
used to construct infinite families of distinct smooth structures on many 4-mani-
folds. This is more fully discussed in [7]. Reverse engineering is a three step
process for constructing infinite families of distinct smooth structures on a given
simply connected 4-manifold. One starts with a model manifold which has non-
trivial Seiberg-Witten invariant and the same euler number and signature as the
simply connected manifold X that one is trying to construct, but with b1 > 0.
The second step is to find b1 essential tori that carry generators of H1 and to
surger each of these tori in order to kill H1 and, in favorable circumstances, to
kill π1. The third step is to compute Seiberg-Witten invariants. After each of
the first b1 − 1 surgeries one needs to preserve the fact that the Seiberg-Witten
invariant is nonzero. The fact that the next to last manifold in the string of
surgeries has non-trivial Seiberg-Witten invariant allows the use of the Morgan,
Mrowka, Szabó formula [10] to produce an infinite family as was done in [9].

In many instances this procedure can be successfully applied without any com-
putation, or even mention, of Seiberg-Witten invariants. If the model manifold
for X is symplectic and b1−1 of the tori are lagrangian so that a Luttinger surgery
will reduce b1, then there are infinitely many distinct smooth manifolds with the
same cohomology ring as X . If the resulting manifold is simply connected, then
one can often show that there are infinitely many distinct smooth structures on X .
Aside from finding interesting model manifolds, it seems that the most difficult
aspect to the reverse engineering procedure is the computation of fundamental
groups.

The conjecture that if the Seiberg-Witten invariants of a simply-connected
smooth 4-manifold X are non-trivial, then X has infinitely many distinct smooth
structures has been known to be true under the further hypothesis that X contains
an embedded torus with trivial normal bundle and simply-connected complement
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(cf. [8]). It is also known that CP2# kCP2 for k < 9 contains no such tori, so these
manifolds are a good testbed for reverse engineering.

Models for these manifolds are obtained as follows. One can easily check that
Xr#Σ2Xs is a model for CP2#(r + s+ 1) CP2, the fiber sum taken along a genus
two surface Σ2 embedded in Xr and Xs. Here

• Σ2 ⊂ X0 = T 2 × Σ2 representing (0, 1)
• Σ2 ⊂ X1 = T 2 × T 2#CP2 representing (2, 1)− 2e
• Σ2 ⊂ X2 = T 2 × T 2#2CP2 representing (1, 1)− e1 − e2
• Σ2 ⊂ X3 = S2 × T 2#3CP2 representing (1, 3)− 2e1 − e2 − e3
• Σ2 ⊂ X4 = S2 × T 2#4CP2 representing (1, 2)− e1 − e2 − e3 − e4
• Exception: X0#Σ2X0 = Σ2 × Σ2 is a model forS2 × S2

One can check that there are enough lagrangian tori to kill H1 in Xr#Σ2Xs.
The art is to find appropriate tori so that the result has π1 = 0.

The first successful implementations of this strategy for CP2#3CP2 (i.e., find
tori and show surgery on the model manifold results in π1 = 0) were obtained by
Baldridge-Kirk [5] and Akhmedov-Park [3]. The full implementation (i.e., infinite
families) for CP2#3CP2 was obtained by Fintushel-Park-Stern [7] using the 2-fold
symmetric product Sym2(Σ3) as model. Also, Akhmedov-Park [4] have a paper
under review to implement this strategy for CP2#2 CP2 (i.e., show surgery on the
model manifold results in π1 = 0). The full implementation (i.e., infinite families)
for CP2#kCP2, 4 ≤ k ≤ 9, can be obtained through a combination of papers by
Baldridge-Kirk [6], Akhmedov-Park [3], Akhmedov-Baykur-Baldridge-Kirk-Park
[1], and Ahkmedov-Baykur-Park [2].

Here are some possible next steps.

• Find a model for CP2; also obtain a topological construction of the Mum-
ford plane.
• What about S2 × S2; CP2# CP2; CP2#2CP2? (π1 issues)
• Are the fake CP2#kCP2 obtained by surgery on null-homologous tori in

the standard CP2#kCP2? (See [9] for first attempts.)
• Are two homeomorphic simply-connected smooth 4-manifolds related by

a sequence of logarithmic transforms on (null-homologous) tori?
• Are all 4- manifolds obtained from either ℓCP2#kCP2 or nE(2)#m (S2×
S2) via a sequence of surgeries on null-homologous tori?
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