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Introduction by the Organisers

The Ricciflow, introduced by Richard Hamilton [Ha1], is a geometric evolution
equation which deforms the metric on a Riemannian manifold smoothly in the
direction of its Ricci curvature. More precisely, the evolution equation for the
family of metrics (gij) on a manifold M is given by

(0.1)
∂

∂t
gij = −2Rij,

where Rij denotes the Ricci tensor corresponding to the metric. Written in suit-
able local coordinates this equation has the form of a nonlinear heat type equation
for the metric symbols. Because of this one might naively expect that the equation
will try to evolve the geometry on M to one which looks the same at every point
on the manifold, a homogeneous geometry. This intuition is correct in dimension
two, where the Ricciflow can be used [Ha2], [Ch] to conformally deform any metric
on a closed surface to one of constant curvature, which provides a new proof of
the famous uniformization theorem.
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In higher dimensions, however, the geometry will in general become singular in
finite time, i.e. the norm of some of the sectional curvatures will tend to infinity at
certain points on the manifold. In three dimensions, if the initial metric has posi-
tive Ricci curvature and M is closed and simply connected, Hamilton [Ha1] showed
that, after suitable rescaling of the evolving metric, such as to keep the volume of
the manifold constant, the metric tends smoothly to the metric on the standard S3.

Soon after that, Hamilton [Ha3] set up a programme which had the aim of set-
tling Thurston’s geometrization conjecture using Ricciflow. This conjecture asks
whether any closed 3-manifold can be decomposed along 2-spheres and incompress-
ible tori in such a way that after capping of the 2-sphere boundaries by 3-balls,
the resulting finitely many geodesically complete pieces would each admit one out
of a list of eight homogeneous geometries formulated by Thurston [Th]. In partic-
ular, this would prove the famous Poincaré conjecture, that any simply connected
orientable closed 3-manifold had to be topologically equivalent to S3.

Hamilton himself, but also many others, completed many of the crucial steps in
this programme (see [CLN]) but several severe technical difficulties remained un-
settled for at least one decade. In 2002, Perelman [P1] - [P3] introduced a number
of completely novel ideas and techniques that eventually led to the resolution of
the geometrization and hence also the Poincaré conjecture.
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Application of the Hamilton-Perelman theory of Ricci flow, Asian J. of Math, 10 (2006),
169-492

[Ha1] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom. 17, no. 2
(1982), 255-306

[Ha2] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, Amer. Math. Soc., Prov-
idence RI, 1988

[Ha3] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential
Geometry, Vol II, Cambridge MA (1995) 7-136

[KL] B. Kleiner, J. Lott, Notes on Perelman̈ı¿ 1

2
s papers, arxiv:math/0605667v2

[MT] J.W. Morgan, Gang Tian, Ricciflow and the Poincaré conjecture, arxiv:math/0607607v2
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Abstracts

Topology of canonical manifolds

Thomas Schick

The talk’s aim is the introduction and investigation of canonical neighborhoods
in Riemannian 3-manifolds. Such a canonical neighborhood either is an ǫ-neck,
diffeomorphic to S2× (−ǫ−1, ǫ−1), or a neck with a cap (making the neighborhood
diffeomorphic to B3 or to RP 3\{pt}). The metric of the ǫ-neck or ǫ-cap is assumed
to be ǫ-close to the standard metric (after rescaling). We classify all manifolds such
that each point has a canonical ǫ-neighborhood (provided ǫ << 1). We also derive
useful geometric properties of these neighborhoods (again for ǫ << 1). These
investigations are relevant as the canonical neighborhoods occur as scaling limits
of Ricci flow near the development of singularities. The talk closely follows the
discussion in the appendix of [1].
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Derivation of evolution equations

Adrian Hammerschmidt

The Ricci Flow is given by the equation

∂

∂t
g(t) = −2 Ricg(t),(0.1)

and in local coordinates

∂

∂t
gij = −2Rij.(0.2)

Therefore everything which depends on the metric also depends on time and thus
flows by an evolution equation. This lecture mainly derives the evolution equations
under Ricci Flow for the Riemannian curvature tensor, curvature operator, and
scalar curvature.
The lecture follows Hamilton’s sign convention; that is

R(X, Y )Z = ∇Y ∇XZ −∇X∇Y Z −∇[X,Y ]Z.(0.3)

Lemma 1. The variation of the Christoffel symbols is given by the equation

∂

∂t
Γ k

ij = −gkl(∇iRjl + ∇jRil −∇lRij).(0.4)

The variation of inverse metric is given by

∂

∂t
gij = 2gikgjlRkl.(0.5)
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The variation of the Riemannian curvature tensor is given by

∂

∂t
R l

ijk = glm(∇i∇jRkm + ∇i∇kRjm −∇i∇mRjk

−∇j∇iRkm −∇j∇kRim + ∇j∇mRik),(0.6)

∂

∂t
Rijkl = ∇i∇kRjl + ∇j∇lRik −∇i∇lRjk

−∇j∇kRil − R q
ijk Rql + R q

ijl Rqk.(0.7)

The scalar curvature evolves under Ricci Flow according to the equation

∂

∂t
scal = ∆ scal+2 |Ric|2 .(0.8)

The volume element evolves under Ricci Flow according to

∂

∂t
dµ = − scal dµ.(0.9)

Remark 2. The equation (0.8) can be used to derive the following evolution in-
equality:

∂

∂t
scal ≥ ∆scal+2

scal2

n
(0.10)

Let’s try to rewrite the evolution equation of (0.4) in a simpler form, namely a
diffusion-reaction equation.

Lemma 3. The evolution equation of the Riemannian curvature tensor (0.4) can
be rewritten in the form

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl − Bijlk + Bikjl − Biljk)

− (Rq
i Rqjkl + Rq

jRiqkl + Rq
kRijql + Rq

l Rijkq),(0.11)

where Bijkl = grtgsuRirjsRktlu.

Remark 4. Note that there are the following symmetries:

Bijkl = Bklij = Bjilk(0.12)

Next we try to loose the tail in (0.11). This can be done by using Uhlenbeck’s
trick. The idea is to move an orthonormal frame in such a way, that it stays
orthonormal.
So, think of an abstract vector bundle that is isomorphic via ϕ0 to TM . Then
define a metric h0 = ϕ∗

0g0. This gives a bundle isometry.
Now, let ϕ(t) be a solution of

∂

∂t
ϕ = Ric ◦ϕ,

ϕ(0) = ϕ0.(0.13)

This yields immediately the following:

Corollary 5. ϕ(t) stays an isometry and h(t) := ϕ(t)∗g(t) = h0 = const.
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Now define a connection

∇̂ := ϕ∗∇ : Γ(TM) × Γ(V ) → Γ(V ) by(0.14)

∇̂Xξ = (ϕ∗∇X)(ξ) = ϕ−1(∇X(ϕ(ξ))).(0.15)

Next pull back the Riemannian curvature tensor. Let {ea} denote a basis of V
and ϕ(ea) = ϕk

a
∂

∂xk
. We thus have

Rabcd := (ϕ∗Rm)(ea, eb, ec, ed) = ϕi
aϕj

bϕ
k
cϕl

dRijkl .(0.16)

Theorem 6. Let g(t) be a solution of Ricci Flow and ϕ(t) a solution of (0.13).
Then we have

∂

∂t
Rabcd = ∆̂Rabcd + 2(Babcd − Babdc + Bacbd − Badbc),(0.17)

where

∆̂ := trg(∇̂ ◦ ∇̂) = gij(∇̂)i(∇̂)j and

Babcd := heghfhRaebfRcgdh.

The curvature operator is well defined by

R : Λ2TM → Λ2TM,

〈R(X ∧ Y ), Z ∧ W 〉 := R(X, Y, Z, W ).(0.18)

Thus we can define the square of the curvature operator and also the Lie Algebra
square. It can be shown that

R2 = Bijkl − Bijlk

R# = Bikjl − Biljk ,

and therefore we obtain the evolution equation

∂

∂t
R = ∆R + R2 + R#.(0.19)

In dimension three we obtain the associated ODE

∂

∂t





λ 0 0
0 µ 0
0 0 ν



 =





λ2 + µν 0 0
0 µ2 + λν 0
0 0 ν2 + λµ



 .(0.20)
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The maximum principle

Christian Bär

Throughout this talk M denotes a compact manifold without boundary and T > 0.

1. Scalar maximum principle

Fix a function F : R × [0, T ) → R satisfying a local Lipschitz condition. Let L be
a differential operator acting on sufficiently regular functions u : M × [0, T ) → R

by

Lu =
∂u

∂t
−

∑

ij

aij(x, t)∂i∂ju −
∑

i

ξi(x, t)∂iu − F (u, t),

where (aij) is positive semidefinite. E.g. we can have (aij) = (gij), the inverse of
a time dependent Riemannian metric on M and

Lu =
∂u

∂t
− ∆u −∇Xu − F (u, t),

where X(x, t) is a time dependent vector field on M .

Theorem 1. Let u : M × [0, T ) → R be a C2-function satisfying

Lu ≥ 0 and u(·, 0) ≥ c ∈ R.

Let v : [0, T ) → R be the solution to the ODE dv
dt = F (v, t) with initial condition

v(0) = c. Then

u(x, t) ≥ v(t) for all (x, t) ∈ M × [0, T ).

Let us apply this to Ricci flow; i.e., let ∂g
∂t = −2 Ricg(t). From the previous talk

we know that scalar curvature satisfies

∂R

∂t
= ∆R + 2|Ric |2 ≥ ∆R +

2

n
R2.

Applying theorem 1 with F (x, t) = 2
nx2 we get

(1.1) R(x, t) ≥ nρ0

n − 2ρ0t
,

where ρ0 = minx∈M R(x, 0). Several remarks on this estimate:

• If the initial metric g(0) is Einstein, then g(t) = (1 − 2ρ0

n t)g(0) and we
have equality in (1.1).

• If R(·, 0) ≥ 0 on M , then R ≥ 0 on M × [0, T ).
• If ρ0 > 0, then we must have t < n

2ρ0
; i.e.,

T ≤ n

2ρ0
< ∞.

• Letting ρ0 → −∞ in (1.1) we get the estimate

R(x, t) > − n

2t
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without any assumption on the scalar curvature of the initial metric. The
longer Ricci flow extends to the past, the less negative scalar curvature
can be.

• In particular, if g(t) is an ancient solution, then R ≥ 0.

See [1, Ch. 2.3] for the material of this section.

2. Maximum principle for symmetric 2-tensors

If α and β are symmetric 2-tensors (bilinear forms) on a Euclidean vector space,
then we write α < (≤)β iff β − α is positive (semi) definite.

Let g(t) be a smooth 1-parameter family of Riemannian metrics on M , let X
be a time-dependent vector field on M . Let F : Sym2(TM) ×M Sym2(TM) →
Sym2(TM) be a fiber preserving map which is locally Lipschitz. Here Sym2(TM)
denotes the bundle of time-dependent symmetric 2-tensors on TM over M× [0, T ).
Assume that F satisfies the null-eigenvector assumption, i.e., if α(x, t) ≥ 0 and if
α(x, t)(V, ·) = 0, then

F (α(x, t), g(x, t))(V, V ) ≥ 0,

V ∈ TxM .

Theorem 2. If α is a smooth 1-parameter family of symmetric 2-tensors such
that

∂α

∂t
≥ ∆g(t)α + ∇X(t)α + F (α, g),

and if α(·, 0) ≥ 0 on M , then α ≥ 0 on M × [0, T ).

In dimension 3 this can be applied to α = Ric and shows that nonnegativity of
Ricci curvature persists under Ricci flow. Using α = 1

2Rg − Ric one can see that
nonnegativity of sectional curvature persists in dimension 3.

See [1, Ch. 3.2] for the material of this section.

3. Maximum principle for sections in vector bundles

Let V → M be a vector bundle with a time-independent Riemannian metric and a
smooth 1-parameter family of metric connections ∇(t). We denote the associated
Laplacians by ∆(t). Let K ⊂ V be such that

• Kx := K ∩ VX is closed and convex for each x ∈ M .
• K is invariant under parallel transport with respect to each ∇(t).

Let X be a time-dependent vector field on M . Let F : V × [0, T ) → V be a fiber
preserving local Lipschitz map.

Theorem 3. Suppose that any solution U : [0, T ) → Vx of the ODE

dU

dt
= Fx(U, t) with U(0) ∈ Kx

exists and satisfies U(t) ∈ Kx for all t ∈ [0, T ) and all x ∈ M . Then any C2-
solution u(x, t) of the PDE

∂u

∂t
= ∆(t)u + ∇(t)

X(t)u + F (u, t)
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with u(x, 0) ∈ Kx for all x ∈ M satisfies u(x, t) ∈ Kx for all (x, t) ∈ M × [0, T ).

See [2, 3]. There are various versions of this theorem. E. g. one can allow K to
vary with time.
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Curvature estimates preserved under Ricci flow

Christian Becker

In this talk, we discuss several curvature estimates that are preserved or even
improved during the evolution of the metric under the Ricci flow. All the results
presented here appear as applications of the maximum principle for sections in
vector bundles, as presented in the previous talk.

The vector bundle in question is the symmetric tensor product of 2-forms E :=
Λ2M ⊗sym Λ2M . The Riemannian curvature operator Rm may be considered
likewise as a section of E or (using the induced metric on Λ2M) as an operator
Rm : Λ2M → Λ2M .

As an application of the maximum principle for sections in E, we need to discuss
the ODE system

(0.1)
d

dt
A = A2 + A#

fibrewise in E, i.e. for symmetric N × N matrices A ∈ Ex, x ∈ M , N = n(n−1)
2 .

The maximum principle then says the following: Let K ⊂ E be a closed and
fibrewise convex set preserved under parallel transport with respect to a smooth
family ∇(t) of metric connections on E. Suppose that the ODE system (0.1) has
the property that any of its solutions A with A(0) ∈ K exists on [0, T ) and satisfies
A(t) ∈ K for all t ∈ [0, T ). Then if g(t) solves the Ricci flow equation on [0, T ),
and if Rm(0) ∈ K, then Rm(t) ∈ K for all t ∈ [0, T ).

1. Static curvature estimates

Throughout this section, let (M3, g(t)) be a solution to the Ricci flow equation
on [0, T ). We denote by λ1(Rm) ≤ λ2(Rm) ≤ λ3(Rm) the eigenvalues of the
Riemannian curvature operator Rm.

Note that in dimension n = 3, we have N = 3, and for a diagonal matrix

A =





λ1 0 0
0 λ2 0
0 0 λ3



 ,
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the right hand side of the ODE system (0.1) reads

A2 + A# =





λ2
1 + λ2λ3 0 0

0 λ2
2 + λ1λ3 0

0 0 λ2
3 + λ1λ2



 .

Hence if A(0) is a diagonal matrix, then A(t) stays diagonal under the ODE system
(0.1). Also the ordering of the eigenvalues is preserved by the ODE system (0.1).

The following examples of closed, fibrewise convex sets K yield curvature esti-
mates preserved by the Ricci flow. Note that since all those sets are defined in
terms of conditions on the eigenvalues of Rm, they are preserved by the parallel
transport with respect to the metric connections ∇(t).

• For C0 ∈ R, set K := {A |λ1(A)+λ2(A)+λ3(A) ≥ C0}. Since the function
A 7→ λ1(A) + λ2(A) + λ3(A) is linear, the sets Kx, x ∈ M , are convex.
Clearly, K is preserved by the ODE system (0.1). Hence a lower bound
R ≥ C for the scalar curvature is preserved under the Ricci flow.

• For C0 ≥ 0, the set K := {A |λ1(A) ≥ C0} is closed and fibrewise con-
vex, since λ1(A) := min|v|=1(Av, v) is a concave function. The relevant
equation of the system (0.1) is

dλ1

dt
= λ2

1 + λ2λ3 ≥ 0 ,

which implies that K is preserved by the solutions of (0.1). Hence a non-
negative lower bound for the Riemannian curvature operator is preserved
under the Ricci flow.

• The set K := {A |λ1(A)+λ2(A) ≥ 0} is fibrewise convex, since the function

A 7→ (λ1(A) + λ2(A)) = min
v1⊥v2

|v1|=|v2|=1

(
(Av1, v1) + (Av2, v2)

)

is concave. Further,

d

dt
(λ1 + λ2) = λ2

1 + λ2
2 + (λ1 + λ2)

︸ ︷︷ ︸

≥0

·λ3 ≥ 0 ,

so that K is preserved under the ODE system (0.1). Hence the nonnega-
tivity of the Ricci curvature is preserved under the Ricci flow.

• For C ≥ 1
2 , set K := {A |λ3(A) ≤ C · (λ1(A) + λ2(A))}. For any x ∈ M ,

Kx is convex, since A 7→ (λ1 + λ2)(A) is a concave function, whereas
A 7→ λ3(A) = max|v|=1(Av, v) is a convex function. Using C ≥ 1

2 , one

computes, that d
dt(λ3−C ·(λ1+λ2)) ≤ 0 at points, where λ3 = C ·(λ1+λ2).

Thus the condition λ3 ≤ C · (λ1 + λ1) is preserved by the ODE system
(0.1).
Since M is compact, we can find a C ≥ 1

2 such that

λ3(Rm) ≤ C · (λ1(Rm) + λ2(Rm))
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holds for the initial metric g(0), so that Rm(0) ∈ K. Hence Rm(t) ∈ K
for t ∈ [0, T ). Thus the Ricci pinching Ric ≥ 1

C λ3(Rm) · g ≥ 1
6C ·RÂ · g is

preserved under the Ricci flow.
By analyzing points (x0, t0), where (λ1 + λ2)(Rm) is negative, one can
conclude from a similar reasoning, that if Rm(g(t0)) ∈ K, then Ricg(t0) ≥
0, unless g(t0) has negative constant sectional curvature, see [1], p. 134.

• Using a more complicated set K, one can also conclude, that Ricci pinch-
ings improve under the Ricci flow, see [1], p. 134f.

2. The dynamic curvature estimate of Hamilton and Ivey

As another application of the maximum principle, we discuss an estimate due
to R. Hamilton and T. Ivey independently. The proof uses a refined version of the
maximum principle, where the set K is allowed to vary with time. As before, the
sets K(t)x are required to be convex, and the set {(v, t) ∈ E × [0, T ) | v ∈ K(t)} is
required to be closed. The reasoning is the same as in the case of a ”static”estimate
above: Supposed, the ODE system (0.1) preserves the set K, if Rm(0) ∈ K, then
Rm(t) ∈ K for all t ∈ [0, T ).

The Hamilton-Ivey theorem now states the following: Let (M3, g(t)) be a solu-
tion to the Ricci flow on [0, T ). If λ1(x, 0) ≥ −1 for all x ∈ M , then at any point
(x, t) ∈ M × [0, T ) with λ1(x, t) < 0, we have

R ≥ |λ1| · (log |λ1| + log(1 + t) − 3) ,

or especially R ≥ |λ1| · (log |λ1| − 3).
From the last estimate we conclude that large negative eigenvalues inherit even

larger positive eigenvalues: if λ1 < e−C+3 ≪ 0, with C ≫ 0, then R > C|λ1|.
As a consequence of the first estimate, even the sectional curvature tends to-

wards nonnegative under the Ricci flow. For instance, using this estimate, ancient
solutions with bounded curvature can be seen to have nonnegative sectional cur-
vature.
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Shi’s local estimates

Glen Wheeler

The talk is concerned with some of the analytic results and techniques that are
fundamental to the study of the qualitative behavior of solutions of the Ricci flow,
later used in singularity analysis.

In particular we focus on derivatives estimates, useful for proving long time
existence of solutions and obtaining local control of solutions.

The following result is due to W.-X. Shi:
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Proposition 1 ([1]). (Local derivative of curvature estimates). For any α, K, r,
n and m ∈ N, there exists C depending only on α, K, r, n and m such that if Mn

is a manifold, p ∈ M , and g(t), t ∈ [0, T0], 0 < T0 < α
K , is a solution to the Ricci

flow on an open neighborhood U of p containing Bg(0)(p, r) as a compact subset,
and if

|Rm(x, t)| ≤ K for all x ∈ U and t ∈ [0, T0],

then

|∇mRm(y, t)| ≤ C(α, K, r, n, m)

tm/2

for all y ∈ Bg(0)(p, r/2) and t ∈ (0, T0].

The talk will detail Hamilton’s proof of Shi’s first derivative estimate, in a
slightly better version than the main theorem stated above:

Proposition 2 ([1]). (Interior first derivative estimates) curvatures). There exists
a constant C(n) depending only on n such that if Mn is an n-manifold, p ∈ M ,
and g(t), t ∈ [0, τ ], is a solution to the Ricci flow on an open neighborhood U of p
containing Bg(0)(p, r) as a compact subset, and if

|Rm(x, t)| ≤ K for all x ∈ U and t ∈ [0, τ ],

then

|∇mRm(y, t)| ≤ C(n)K(
1

r2
+

1

τ
+ K)1/2.

For the proof we follow details of [1] and rely on applying a barrier argument
to a quantity containing the first derivative, which has good evolution equation.
The main ideas of the proof can be enclosed into 4 steps.

The first of these is based on a simple note about the very estimate we want to
obtain. The fact that constant K appears in the right hand side of the estimate
allows us to assume without loss of generality in the proof that τ ∈ (0, 1/K] and

r ∈ (0, 1/
√

K].
The next step is finding the good first derivative quantity and derive its evolu-

tion equation:

G :=
c(n)

K4
(16K2 + |Rm|2)|∇Rm|2

∂G

∂t
≤ ∆G − G2 + K2

The following step is more technical and consists of construction of the barrier
function. This can be done by using the existence of a good cutoff function with
bounded first and second derivative on a manifold with bounded curvature, which
is our case.

The last step links the estimates of the quantity defined in the second step with
those of the first and second derivative of the cutoff function. We prove that as
long as our good quantity G is dominated by a certain comparison function, the
derivatives of the cutoff function satisfy also good bounds. But on the other hand
these are easily obtained from the bounded curvature hypothesis.
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Compactness results for the Ricci flow

Simon Blatt

Before one can perform surgery, it is crucial to understand what singularities of
the Ricci flow look like. This is done performing a blowup analysis of such a
singularity, that is one rescales the Ricci flow in order to get sequence of flows
subconverging to a limit Ricci flow and then analyzes this limit flow.

To be more precise, let us consider a smooth Ricci flow (M, g(t)), t ∈ [0, T )
that becomes singular at time T , which means that the curvature tensor does not
stay bounded. Then one can choose points xt such that the norm of the curvature
attains nearly its maximum in xt and let Qt be this maximum. For a sequence
ti → T one then considers the rescaled based Ricci flows

(M, Qti
g(Q−1

ti
(t − ti), xti

)

on the time interval [−Qti
ti, 0].

In this talk, we first make precise in what sense these flows shall converge by
introducing the notion of geometric limit of based Ricci flows. After that, we
present the Hamilton compactness theorem for Ricci flows, which says that the
κ-non collapsing condition and a uniform bound of the curvature tensor on balls
imply compactness. In fact, one can show that the sequence above satisfies both
conditions. But while the estimates for the curvature tensor follow quite easily
from maximum principles, it is one of the big breakthroughs of Perelman to show
that these are κ non-collapsing.

To prove the compactness theorem, we first show a version of it for general man-
ifolds under the assumption that not only the curvature tensor itself but also the
covariant derivatives of any order of the curvature tensor are uniformly bounded.
In the case of Ricci flows, Shi’s derivative estimates imply such bounds which
proves the original theorem.

In the situation sketched above, Hamilton’s compactness theorem shows that
the sequence of rescaled Ricci flows converge geometrically to a Ricci flow. Any
such limit is called blowup limit and it is an ancient solution. Using the Hamilton-
Ivey estimate and the fact that Qti

→ ∞, one can show that any such blowup
limit is a manifold of nonnegative section curvature which is a first step towards
characterizing all possible limits.
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Perelman’s l-distance

Valentina Vulcanov

This talk is a preparation of the necessary tools for proving the non-collapsing
results. The L-length defined by Perelman is the analog of an energy path, but
defined in a Riemannian manifold context. The length is used to define the l
reduced distance and later on, the reduced volume. So far the properties of the
l-length have two applications in the proof of the Poincaré conjecture. Associated
with the notion of reduced volume, they are used to prove non-collapsing results
and also to study the κ- solutions.

The first step is introducing the reduced distance by means of the L-length
defined by Perelman, [2].

Consider a backward solution of the Ricci flow (M, g(τ)):

∂

∂τ
gij(τ) = 2Ricij(g(τ)),

where τ = T − t (T is the final time). Let γ : [τ1, τ2]→M be a curve on the
manifold parametrized by backward time.

Definition 1 ([2]). The L-length of a curve γ is

L(γ) :=

∫ τ2

τ1

√
τ (R(γ(τ)) + |γ̇(τ)|2)dτ ,

where R(γ(τ)) is the scalar curvature at the point γ(τ).

Considering a variation of the curve γ, γ̃(s, τ), s ∈ (−ǫ, +ǫ), t ∈ [τ1, τ2] we can

define the tangential and variational vector fields by X = ∂γ̃
∂τ and Y = ∂γ̃

∂s .
The first properties obtained are the (Euler-Lagrange) equations of L-geodesics:

Proposition 1 ([2]). There holds

∇XX − 1

2
∇R + 2Ric(X, ·) +

1

2τ
X = 0.

The proof comes easily from the first variation formula for the L-length.

Let τ1 = 0 and τ2 = τ we consider furthermore variations of curves on M ,
connecting points p, q ∈ M with fixed starting point p and moving end point
q = q(τ ).

Definition 2 ([2]). Denote by L(q, τ ) the L-length of the L- shortest curve γ(τ),
0 ≤ τ ≤ τ connecting p and q.

The reduced length is defined as l(q, τ) = L(q,τ)
2
√

τ
.
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From the definition one can see that properties of the reduced distance can
be easily obtained if we have the corresponding ones for the L-length. We are
concentrating the last mentioned ones in two main propositions:

Proposition 2 ([2]). There holds

Lτ (q, τ) = 2
√

τR(q) − 1

τ
K − 1

2τ
L(q, τ ),

|∇L|2(q, τ ) = −4τR(q) +
2√
τ

L(q, τ) − 4√
τ

K.

where K = K(γ, τ) =
∫ τ

0 τ
3
2 H(X(τ))dτ and H(X) is the trace of the expression

appearing in Hamilton’s Harnack inequality, [4].

Proposition 3 ([2]). There holds

∆L ≤ n√
τ
− 2

√
τR − 1

τ

∫ τ

0

H(X)dτ.

For the proof of the last one we have followed the detailed steps of [1, 3]. One
starts by computing the second variation and then the Hessian of the L-length.
We define the L-Jacobi fields along L-geodesics and prove that they are minimizers
of Hessian of the L-length. Then making a special choice of orthonormal basis for
Tγ(τ)M we obtain the result.

Using the above properties of the L-length we can also obtain the reduced
length l(q, τ) properties, which will be used in the following to prove monotonicity
of reduced volume and non-collapsing results:

Proposition 4 ([2]). One has

lτ − ∆l + |∇l|2 − R +
n

2τ
≥ 0

2∆l − |∇l|2 + R +
l − n

τ
≤ 0

min
τ

l(·, τ) ≤ n

2

d

dτ
|τ=τ |Ỹ |2 ≤ 1

τ
− 1√

τ

∫ τ

0

√
τH(X, Ỹ )dτ ,

where Ỹ is any L- Jacobi field along γ(τ).

References

[1] Bruce Kleiner, John Lott. Notes on Pereman’s papers.
http://arxiv.org/abs/math.DG/0605667

[2] Grisha Perelman. The entropy formula for the Ricci flow and its geometric application.
arxiv.org/abs/math.DG/0211159

[3] John Morgan, Gang Tian. Ricci flow and the Poincaré conjecture.
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Monotonicity of reduced volume; local non-collapsing

Valentina Vulcanov

The talk is divided in two parts. In the first one we give the definition of the
reduced volume and by means of reduced length we prove it to be non-increasing
in backwards time.

Definition 1 ([2]). The reduced volume of a backwards Ricci flow solution (M, g(τ))
is defined as

Ṽ (τ) =

∫

M

τ− n
2 e−l(q,τ)dq.

Proposition 1 ([2]). Ṽ (τ) is non-increasing in τ (non-decreasing in t).

The proof comes from writing the reduced volume in terms of the exponential
map as (details in [3]):

Ṽ (τ) =

∫

TpM

τ− n
2 e−l(Lexpτ (v),τ)J (v, τ)ℵτ (v)dv

where J (v, τ) = det d(Lexpτ (v)) and ℵτ (v) is a cut off function related to the
L-cut locus of point p ∈ M .
The tangential injectivity domain and the Jacobian will have the following prop-
erties:

ΩTp(τ2) ⊂ ΩTp(τ1), ∀ τ1 ≤ τ2

d

dτ
|τ=τ lnJ (v, τ) ≤ n

2τ
− 1

2
τ− 3

2 K(v, τ )

Here, K(v, τ) is the analog in the tangential space of the one defined in the previ-
ous talk.

The next part concentrates on the local non-collapsing theorem. We start by
defining what it means for a solution to be κ-collapsed:

Definition 2 ([2]). A solution to the Ricci flow (gij)t = −2Rij is said to be
κ-collapsed at (x0, t0) on scale r > 0 if |Rm|(x, t) ≤ 1

r2 for all (x, t) satisfying

distt0(x, x0) < r and t0 − r2 ≤ t ≤ t0, and the volume of the metric ball B(x0, r
2)

at time t0 is less than κrn.

Our goal is to prove the local non-collapsing theorem.

Theorem 1 ([2]). For any A > 0 there exists κ = κ(A), κ > 0 with the following
property : if gij(t) is a smooth solution to the Ricci flow on the time interval 0 ≤
t ≤ r0

2, which has |Rm|(x, t) ≤ 1
r0

2 for all (x, t) satisfying distt0(x, x0) < r0, and

the volume of the metric ball B(x0, r
2) at time 0 is at least A−1r0

n, then gij(t) can
not be κ-collapsed an the scales less than r0 at points (x, r0

2) with distr0
2(x, x0) <

Ar0.
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As an outline, the proof is based on the separation of the region around the
problem point in two parts: one with bounded geometry obtained from the as-
sumptions of the theorem and one in which we use the properties of the reduced
distance l in the backwards time, previously proved. Following details of [1] we
use the Bishop-Gromov inequality to prove that there exists a lower bound for the
volume of the geodesic ball at time t from the one at initial time 0. This along
with a uniform sectional curvature bound will give us the bounded geometry on
the first time region, thus a lower bound on the reduced volume of that region.

For the second part of the argument an effective upper bound on the minimum
of the reduced distance will give a lower bound on the reduced volume of the
region. This can be computed by using the properties of the L-length and reduced
distance l, obtained in the previous talk, localized around the problem point using
a ingeniously chosen radial function,depending on the reduced distance l for which
we apply a maximum principle. This gives us again a lower bound of the reduced
volume also on the second region.

Putting the two bounds together we will get a lower bound of the reduced
volume in a region where we have assumed, by contradicting the theorem, that
the solution is κ-collapsed at scales less than r0. This contradict the definition of
κ-collapsed and finishes the proof.
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Properties of κ-solutions

Oliver C. Schnürer

A Ricci flow (M, g(t)) is κ-non-collapsed if

|Rm| ≤ r−2 in Br(p, t) × (t − r2, t] =⇒ Vol(Br(p, t)) ≥ κrn.

A κ-solution is defined as a κ-non-collapsed ancient solution. Examples are S2,
Sn/Γ, S2 × R. We focus on two or three dimensions, n ≤ 3. κ-solutions can
be rescaled so that they converge to gradient shrinking solitons. Their asymptotic

volume lim
r→∞

Vol(Br(p,t),g(t))
rn is zero. This implies bounds on the scalar curvature R.

In two dimensions, κ-solutions are essentially only shrinking round spheres. We es-
tablish a compactness theorem for κ-solutions which implies bounds for |∇R|/R3/2

and | d
dtR|/R2. Locally κ-solutions look like ε-necks, (C, ε)-caps, C-components or

are almost round.
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These results are due to G. Perelman [2, 3] and can be found in the book [1] by
J. Morgan and G. Tian.
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Bounded curvature at bounded distance

Mario Listing

We know by Hamilton’s work that the curvature of a Ricci flow (M3, g(t)), with
t ∈ [0, T ) and M closed, is pinched towards positive for all t ∈ [0, T ) if it is pinched
towards positive at the initial time t = 0. If the curvature is pinched towards
positive, there is a decreasing function φ : R → (0,∞) which tends to zero at
infinity and satisfies

(0.1) Rm(x, t) ≥ −φ(R(x, t)) · R(x, t)

for all (x, t) where Rm(., t) ∈ End(Λ2TM) is the Riemannian curvature operator
and R(., t) is the scalar curvature of g(t). Perelman proved in [P1, Chp. 12] that
for any Ricci flow (M3, g(t)), with t ∈ [0, T ) and M closed, there is some r > 0
in such a way that if (M, g(t)) satisfies (0.1) and is κ noncollapsed on scales < r,
then each point (x0, t0) ∈ M × [1, T ) of scalar curvature

(0.2) Q := R(x0, t0) ≥
1

r2

has a small neighborhood which is, after scaling by Q, ǫ–close to the corresponding
subset of some ancient κ–solution. In particular, each point (x0, t0) satisfying (0.2)
has a canonical neighborhood. Moreover, the scalar curvature R(x, t0) in this small
neighborhood stays bounded by C · R(x0, t0) for all x with dist(x, x0) < A where
C = C(A) > 0.

Suppose (M3, g(t)), t ∈ [0, T ) is a Ricci flow where M is closed, connected, ori-
ented and the solution becomes singular for t → T which means that the curvature
does not stay bounded for t → T . Let the Ricci flow be κ–noncollapsed on scales
< r and assume inequality (0.1). Then each point (x, t) with R(x, t) ≥ r−2 has a
canonical neighborhood: an ǫ–neck, an ǫ–cap or a closed manifold of positive cur-
vature. In the latter case the Ricci flow becomes extinct at T , hence it remains to
consider the ǫ–necks and ǫ–caps. Let Ω ⊂ M be the set where the curvature stays
bounded for t → T , then Ω is open by curvature estimates for ancient κ–solutions.
If Ω is empty, the Ricci flow becomes extinct at T and

M ∈ {S3, RP3, S2 × S1, RP3♯RP3}
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up to diffeomorphism. Thus, it remains to consider the case Ω 6= ∅. Due to
derivative estimates by Shi, the limit g = limt→T g(t) defines a smooth metric on
Ω. Choose ρ < r and let Ωρ ⊂ Ω be the set of points x ∈ Ω where R(x) ≤ ρ−2.
Then Ωρ is compact and each point y ∈ Ω \ Ωρ is the center of an ǫ–neck or an
ǫ–cap. Considering the bounderies of these ǫ–necks and ǫ–caps we conclude that
each ǫ–neck of (Ω, g) is contained in one of the following subsets of Ω:

(1) An ǫ–tube (curvature stays bounded) with boundary components in Ωρ

(2) An ǫ–cap with boundary in Ωρ

(3) An ǫ–horn (curvature goes to infinity at one end) with boundary in Ωρ

(4) A capped ǫ–horn
(5) A double ǫ–horn (curvature goes to infinity at both ends)

Since the volume of the subsets (1),(2),(3) is bounded from below, there are only
finitely many components of Ω which contain points of Ωρ. Since each point of
M \ Ω is shortly before T the center of an ǫ–neck or an ǫ–cap, we obtain the
topology of M knowing Ω as follows. Let Ωj , j = 1 . . .N , be the components of Ω

with Ωj ∩ Ωρ 6= ∅ and define Ωj to be the one point compactification of Ωj . Then

M is the connected sum of Ωj , j = 1 . . .N , a finite number of S2 ×S1 and a finite

number of RP3. In particular, if M is simply connected, Ωj is simply connected

for all j and M is the connected sum of Ωj , j = 1 . . .N .
In order to do a suitable Ricci flow with surgery, we have to understand the

geometry at the ends of Ωj . That is why Perelman proved in [P2, Lemma 4.3]
the existence of strong δ–necks sufficiently deep in ǫ–horns: Suppose that we have
a solution of the Ricci flow with surgery defined on [0, T ), T < +∞, normalized
initial condition, a finite number of surgery times and satisfying the canonical
neighborhood assumption as well as inequality (0.1). Then there is some h =
h(δ, T ) with 0 < h < δρ such that for each point x with

h(x)−2 := R(x) ≥ 1

h2

in an ǫ–horn of (Ω, g) with boundary in Ωρ, the neighborhood

BT (x, h(x)/δ) = {y ∈ Ω|distT (y, x) < h(x)/δ}
is the T –slice of the strong δ–neck

P (x, T, h(x)/δ,−h(x)2) = BT (x, h(x)/δ) × [T − h(x)2, T ]

which means that P (x, T, h(x)/δ,−h(x)2) is after scaling by h(x)−2, δ–close to the
corresponding subset of the evolving standard neck.
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The standard solution

Reto Müller

We define a standard initial metric to be a complete and rotationally symmetric
metric g0 on R3 with nonnegative sectional curvature at every point, constant
sectional curvature 1

4 near the origin p = 0 and satisfying the condition that there
is a compact ball B = Bg0

(p, A0) such that g0|R3\B is isometric to the half-cylinder

(S2, h) × (R+, ds2), where h is the round metric on S2 with scalar curvature 1.
A partial standard Ricci flow is a solution (R3, g(t))0≤t<T of the Ricci flow

starting from a standard initial metric g(0) = g0 and satisfying the property that
its curvature is locally bounded in time. Such a partial standard Ricci flow is a
standard Ricci flow if T is maximal in the sense that there is no extension of the
flow past time T which still has curvature locally bounded in time.

In a first step, we prove (via an explicit construction) that there exists a standard
initial metric. We then fix once and for all this (or any other) standard initial
metric g0 and prove the following theorem for the corresponding standard Ricci
flow.

Theorem 1. There exists a standard Ricci flow for some positive amount of time.
Let (R3, g(t))0≤t<T be a standard Ricci flow. Then

• Uniqueness: If (R3, g′(t))0≤t<T ′ is a standard Ricci flow, then T ′ = T and
g′(t) = g(t) for all t ∈ [0, T ).

• Time interval: T = 1.
• Rotational symmetry: For all t ∈ [0, 1), the metric g(t) is invariant under

the SO(3)-action on R
3.

• Positive curvature: For all t ∈ (0, 1), the metric g(t) is compete of strictly
positive curvature.

• Asymptotics at infinity: For all t0 < 1 and ε > 0, there is a compact
subset X ⊂ R3 such that all x in the complement of X have a neighborhood
U ∋ x with g(t)|U being ε-close in C [1/ε] to (S2 × (−ε−1, ε−1), h(t)⊕ ds2),
∀t ∈ [0, t0], where h(t) is the round metric on S2 with scalar curvature

1
1−t .

• Curvature bound: There is C > 0 such that for all (x, t) in the standard
solution there holds R(x, t) ≥ C

1−t .

• Non-collapsing: There is r > 0 and κ > 0 such that (R3, g(t)) is κ-non-
collapsed on scales less than r for all t ∈ [0, 1).

• Canonical neighborhoods: For all ε > 0 there exists a constant C = C(ε)
such that for all (x, t) in the standard solution one of the following holds
(1) (x, t) is contained in the core of a (C, ε)-cap.
(2) (x, t) is the center of an evolving ε-neck with initial time-slice t = 0

and this time-slice is disjoint from the surgery cap Bg0
(p, A0 + 4).

(3) (x, t) is the center of an evolving ε-neck defined for rescaled backwards
time at least 1 + ε.

Here, we give some remarks about the proof. A complete proof can be obtained
by combining Theorem 12.5, Proposition 12.31 and Theorem 12.32 of [3].
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Gluing together two copies of Bg0
(p, R), R ≥ A0 + 1, at their boundaries yields

smooth manifolds (SR, gR, p) which converge geometrically to (R3, g0, p) as R →
∞. Since all these manifolds are compact and have the same curvature bounds,
existence of a standard solution follows as a geometric limit of the Ricci flows
starting from (SR, gR, p). Here we used the compactness for Ricci flows from
[2]. This argument also implies completeness of the standard solution. Similarly,
letting yk → ∞, we obtain (S2, h) × (R, ds2) as the geometric limit of (R3, g0, yk)
and the claimed asymptotics at infinity follow. Now, positive curvature follows
easily by localizing the standard result in dimension three.

One can obtain uniqueness form [1]. This immediately implies rotational sym-
metry, too. On the other hand, rotational symmetry also follows from the fact
that Killing fields are stationary under the flow and stay Killing fields. With this
symmetry, one can then reduce the equation to a one-dimensional problem for
which uniqueness is obtained from a slightly modified version of DeTurck’s trick
for compact manifolds. This gives a much simpler proof than the general one in
[1].

Non-collapsing of the standard solution is a direct application of the general
non-collapsing result, cf. [4], section 8. All the remaining results (T = 1, curva-
ture bounds, and the canonical neighborhoods statement) can then be proven by
contradiction via a blow-up argument. Indeed, if one of the statements fails to
hold, one finds a sequence of points for which the blow-up limit is a κ-solution.
Using the fact that κ-solutions have canonical neighborhoods and asymptotically
vanishing volume, we then obtain the desired contradictions.
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Surgery

Sebastian Goette

This talk explains how surgery in the Ricci flow is actually done. In particular, we
describe the new Riemannian metric after surgery. For this purpose, we stop the
Ricci flow at the first singular time. From Listing’s talk we know that the manifold
decomposes into a regular and a singular part, and that the end of the regular part
consists of ǫ-horns. Inside an ǫ-horn, one finds a δ-neck for a constant δ that will
be fixed later. An algorithm to find a δ-neck at the right spot will be given in
Böhm’s talk. We can now cut the δ-neck through its center, throw away the piece
pointing toward the end, and replace it by a cap. On the cap, we construct a
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metric that interpolates between the original metric of the δ-neck and a properly
rescaled initial metric for the standard solution from Müller’s talk.

We have learned in previous talks that the Ricci flow“improves”the local geom-
etry. In particular, there is the Hamilton-Ivey pinching towards positive curvature
that depends on a time parameter t, see Becker’s talk. To prove finite extinction
of the Ricci flow in the case of the Poincaré conjecture we also need a control on
the growth of the metric under the flow, see Hanisch’s talk. When constructing
the surgery metric, we will take care of the following.

(1) If the original metric on the regular part of M was pinched towards positive
curvature with parameter t, then the same holds for the surgery metric.

(2) The surgery metrics have positive sectional curvature near the tip and
is δ′-close to the initial metric for the standard solution.

(3) There is a distance decreasing map from the original δ-neck to the surgery
cap that is the identity on the remaining half of the original δ-neck.

This ensures that the estimates mentioned above persist after surgery. Thus, one
can perform surgery in a similar way at the next singular time. Moreover, one
can prove that singular times do not accumulate and that the Ricci flow becomes
extinct after finite time in the case of a finite fundamental group.

Our talk closely follows chapter 13 in the book [1] by Morgan and Tian, with
a focus on curvature computations and the careful choice of several parameters
involved in the construction.
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Canonical neighborhood theorem

Miles Simon

In this talk we explain the strong canonical neighbourhood theorem of Perel-
man, and some of the content of the proof thereof. We also explain how this
helps us to show that surgery times do not accumulate. We follow closely the
paper of Morgan/Tian. The statement of the canonical neighbourhood theorem
of Perelman is:

Proposition: Suppose that for some i ≥ 0 we have surgery parameters δ0 ≥
δ1 ≥ . . . δi > 0, ǫ = r0 ≥ r1 ≥ . . . ≥ ri > 0 and κ0 ≥ κ1 ≥ . . . κi > 0. For
any ri+1 ≤ ri let δ(ri+1) > 0 be the constant in Proposition 16.1 associated to
these three sequences and to ri+1. Then there are positive constants ri+1 ≤ ri

and δi+1 ≤ δ(ri+1) such that the following holds. Suppose (M, G) is a Ricci Flow
with surgery defined for 0 ≤ t < T for some T ∈ (Ti, Ti+1] with surgery control
parameter δ̄(t). Suppose that the restriction of the Ricci Flow with surgery to
t−1([0, Ti)) satisfies assumptions (1)-(7) and also the five properties given in the
hypothesis of Theorem 15.9 with respect to the given sequences. Suppose also that
δ̄(t) ≤ δi+1 for all t ∈ [Ti−1, T ]. Then (M, G) satisfies the strong (C, ǫ) - canonical
nbhd. assumption with parameter ri+1.
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The proof is by contradiction. One important reoccurring theme in the proof
is to examine neighborhoods. (in space time) of points (p, t) which DO satisfy
the strong canonical nbhd. assumption, but for which all points at later times do
not. This leads in most cases (by simple continuity arguments) to a contradiction,
and leaves us with the case that (p0, t0) is the centre of a strong evolving neck.
Then there are two possibilities (after scaling appropriately in time and space
and shifting so that t0 = 0): either this strong evolving neck lives backwards in
time for a time interval [−1, 0] (instead of just (−1, 0]) (in which case we obtain
a contradiction again) or it does not. If we can’t then we see that a point on the
neck is coming out of surgery region which occurs at time −1. This also leads to
a contradiction by comparing with the standard solution and kappa solutions in
the set up of the theorem.

Ricci flow with surgery

Christian Böhm

In this talk we defined Ricci flow with surgery following chapter 15 of [MT],
which in itself is a detailed exposition of Perelman’s work.

Before going into details we will sketch Ricci flow with surgery and show how to
deduce topological consequences. For an initial metric g0 on a compact, connected
3-manifold M3

0 one runs the Ricci flow and assumes that after finite time a sin-
gularity occurs. This will for instance be the case for M3

0 with finite fundamental
group. If at this first singular time at all points of M3

0 the scalar curvature tends
to +∞ the diffeomorphism type of M3

0 can be determined, since any point in M3
0

with large scalar curvature has a canonical neighborhood. If by contrast, at the
first singular time there are points where the scalar curvature remains bounded
one can remove from M3

0 the high energy regions of the scalar curvature in a
controlled manner; one can perform surgery along finitely many S2’s and glue in
3-balls to obtain a possible different manifold M3

1 . Since again every point in the
disappearing region has a canonical neighborhood, the topology of this region can
be determined. As a consequence, M3

0 is the connected sum of the connected com-
ponents of M3

1 and known compact 3-manifolds. Also, the surgery process can be
geometrically described very well. On the manifold M3

1 one obtains a new initial
metric g1 which can be thought of as an extension of the singular limit metric
of the Ricci flow on M3

0 at the first singular time. Now one iterates this process
until after a finite number of surgeries the above described first case occurs. Going
backwards in time the topology of the initial manifold can be reconstructed. For
instance, if M3

0 is simply connected, then M3
0 must be diffeomorphic to S3.

Now let us explain in greater detail how Ricci flow with surgery has been defined
by Perelman. First of all universal constants C, ǫ > 0 have to be chosen which are
related to several structure results, for instance:

(1) For ǫ′ small enough a complete positively curved 3-manifold does not con-
tain ǫ′-necks of arbitrarily small scale (Prop. 2.19 [MT]).

(2) Structure results on κ-solutions (Thm. 9.93, Cor. 9.94 [MT]).
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(3) Results on the standard solution (Lemma 12.3, Thm. 13.32 [MT]).
(4) Classification of connected complete Riemannian manifolds for which every

point is either contained in the core of a (C′, ǫ′)-cap or in the center of an
ǫ′-neck (Prop. A.25 [MT]).

Secondly, one considers a family (M3
t , g(t))t∈[0,∞) of compact Riemannian 3-mani-

folds containing no embedded RP 2 with trivial normal bundle. The manifold M3
t

may be disconnected and one even allows M3
t = ∅. The initial manifold (M3

0 , g(0))
is assumed to have normalized initial conditions, that is M3

0 is connected, the norm
of the Riemann curvature tensor Rmg(0) is bounded from the above by one and

the volume of unit balls in (M3, g(0)) is bounded from the below by one half of
the volume of the unit ball in flat R3.

For notational reasons one sets T0 := 0. There might be (possibly infin-
itely many) singular, non-accumulating times 0 < T1 < T2 < · · · , such that
(M3

t , g(t))t∈[Ti,Ti+1) is a maximal Ricci flow for i ≥ 0. In particular, for t∈ [Ti, Ti+1)

the manifolds M3
t are diffeomorphic and it holds

lim
tրTi+1

max
x∈M3

t

scalx(g(t)) = +∞.

One says that the Ricci flow goes extinct at time t = T if

lim
tրT

min
x∈M3

t

scalx(g(t)) = +∞.

In this case one sets M3
t = ∅ for t ≥ T .

Next, we have to explain how the topology and the geometry of the Riemannian
metric (M3

Ti
, g(Ti)) is defined using the limiting behavior of (M3

t , g(t)) for t ր Ti.

To this end, for i ≥ 1 let us set ΩTi
:= {x ∈ M3

Ti−1
: limtրTi

(scalx(g(t)) < ∞}.
Then ΩTi

is open and the metrics g(t)|ΩTi
converge uniformly for t ր Ti to a

limit metric ḡ(Ti)|ΩTi
in the C∞-topology on every compact subset of ΩTi

. The

scalar curvature of the limit metric ḡ(Ti)|ΩTi
is a proper function bounded below.

Now it is possible to describe the ends of those connected components of ΩTi
,

which admit points of bounded scalar curvature. This upper bound is given by an
explicit parameter depending on the canonical neighborhood parameter r and the
surgery control parameter δ, both parameters to be defined below. Notice that all
surgery parameters will depend on time. One can show that there are only finitely
many such ends each one containing a strong δ(Ti)-neck. On these necks surgery
is performed in a very precise manner:

On the topological level one cuts along an S2 in the neck, removes the outer
region of the neck and glues in a 3-ball. When going back in time, the disappearing
region consists of points with large scalar curvature, which have a strong (C, ǫ)-
canonical neighborhood for all t < Ti with |Ti− t| sufficiently small. To ensure this
one must know that the strong (C, ǫ)-canonical neighborhood assumption (CN)
with parameter r is satisfied; that is, if scalx(g(t)) ≥ 1

r(t)2 , then x has a strong

(C, ǫ)-canonical neighborhood. By the above mentioned result (4) the topology of
the disappearing region is known.
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On a geometrical level the geometry of these necks is also very well understood.
The above mentioned S2’s are central 2-spheres of strong δ(Ti)-necks. On the
attached 3-balls one can therefore glue in a standard solution to the Ricci flow in
a geometrically very controlled way. Using this one defines the new initial metric
g(Ti). The gluing process can be performed in such a way that the Hamilton-Ivey
estimates still hold after having performed surgery; that is the pinching towards
positive assumption (PTP) if fulfilled.

In order to prove that Ricci flow with surgery exists - for instance to rule out
accumulating surgery times - one has to introduce one further parameter, called
the non collapsing parameter κ. One says that (M3

t , g(t))t∈[0,∞) satisfies the non-

collapsing condition (NC), if for any x ∈ M3
t , which does not lie in a connected

component of M3
t with positive sectional curvature, the following holds: If for

some s ≤ ǫ the backward parabolic neighborhood P (x, t, s,− 1
s2 ) exists and if on

this parabolic neighborhood the norm of the Riemann curvature tensor is bounded

from above by 1
s2 , then Vol(B

g(t)
s (x)) ≥ κ(t) · s3.

The key problem in showing the existence of Ricci flow with surgery is to prove
that surgery control parameters r, δ and κ exist, such that for any normalized
initial metric (M3

0 , g(0)) a Ricci flow with surgery can be defined, which also
satisfies the assumptions (PTP), (CN) and (NC).
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Finite extinction time for simply connected 3-manifolds

Florian Hanisch

The aim of this talk was to present the finite time extinction result for the Ricci
flow on certain 3-manifolds, following the work of Colding and Minicozzi (see [1],
[2]). A Ricci flow with surgery is said to be extinct at finite time, if the time slices
Mt are empty for all sufficiently large t. For Ricci flow without surgery, this is
proven for closed, orientable 3-manifolds M satisfying π3(M) 6= 0. Colding and
Minicozzi consider sweepouts β of M ; that is, continuous maps ϕ : S2× [0, 1] → M
such that (s 7→ ϕ(·, s)) ∈ C0([0, 1], C0(M) ∩ W 1,2(M)) and ϕ(S2, 0), ϕ(S2, 1) are
points. If Eg(f) and Ag(f) denote the energy and the area of a map f : S2 → M
with respect to some (possibly time-dependent) Riemannian metric g on M , the
energy/area width associated to any homotopy class [β] of sweepouts of M is given
by

WE([β], g) = inf
ϕ∈[β]

max
s∈[0,1]

E(ϕ(·, s)) WA([β], g) = inf
ϕ∈[β]

max
s∈[0,1]

A(ϕ(·, s)).

It may be shown (see [2], proposition 1.5) that here, both concepts yield the
same value, WA = WE =: W . More importantly , in case [β] is induced by a
nontrivial element in π3(M), Jost has proven ([4], p.125) that W ([β], g) > 0. Under
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this assumption, Colding and Minicozzi established the following estimate for the
width W (g(t)) = W ([β], g(t)) on a closed, orientable 3-manifold M equipped with
a solution g(t) of Ricci flow without surgery:

d

dt
W (g(t)) := lim sup

hց0

W (g(t + h)) − W (g(t))

h
≤ −4π +

3

4(t + C)
W (g(t))(0.1)

This estimate may be used to prove finite time extinction by integrating it on some
interval [0, T ] to obtain

W (g(T ))(T + C)−
3
4 ≤ W (g(0))C− 3

4 − 16π
[

(T + C)
1
4 − C

1
4

]

Since the left hand side is non-negative, this yields a contradiction if T can be
arbitrary large.

It was pointed out by Burkhard Wilking that additional assumptions are needed
to obtain finite time extinction for Ricci flow with surgery, because the connected
sum of S1 × S2 with a hyperbolic 3-manifold provides an example that does not
become extinct in finite time but satisfies all other assumptions. To be able to ap-
ply (0.1) to the restarted flow after surgery, it is in fact necessary that the surgery
procedure is distance-decreasing (see [5] 15.12) and that each component of the
modified manifold satisfies the condition π3(Mk) 6= 0. This is in particular true if
M is assumed to be prime (which is not a restriction with regard to the proof of
the Poincaré conjecture). In that case, it is sufficient to suppose in addition, that
M is non-aspherical or simply connected, since this already implies π3(M) 6= 0
(see [1] if M is non-aspherical, a similar argument works in the simply connected
case). Thus, the Ricci flow with surgery on a prime 3-manifold becomes extinct in
finite time if it is non-aspherical or simply connected.

The strategy for the proof of (0.1) given by Colding and Minicozzi is as follows:
The width W ([β], g) of a nontrivial class [β] may be approximated by the area
of certain ”good” sweepouts, which are closed to a collection of minimal spheres
with respect to the varifold distance (see below). Thus, the problem is reduced to
estimate the area of minimal spheres in (M, g(t)) for a Ricci flow solution g(t).

To introduce the varifold distance, denote by Gr2M the Grassmannian of 2-planes
(without orientation) which may be identified with their unit normals ±ν. Any
immersed surface ϕ : Σ # M gives rise to a 2-varifold on M , that is, a Radon
measure on Gr2M , by virtue of the following functional on C0(Gr2M, R):

h 7→
∫

Σ

h(dϕ(TσΣ))Jϕ

Here, Jϕ denotes the Jacobian of ϕ. Choosing a countable, dense subset {hk} of
{f ∈ C0(Gr2M, R)| |f |, Lip(f) ≤ 1}, the metric on the set of such 2-varifolds on
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M may be defined by

dV (ϕ1, ϕ2) :=
∑

k

2−k

∣
∣
∣
∣

∫

Σ1

hk ◦ dϕ1Jϕ1
−

∫

Σ2

hk ◦ dϕ2Jϕ2

∣
∣
∣
∣

The topology induced by dV is the usual topology of convergence of Radon mea-
sures and hence independent of the choice of {hk}. In particular, by choosing
h1 = 1 and h2 = Ric/‖Ric‖C1 respectively, dV (ϕ1, ϕ2) < ǫ implies

|Ag(ϕ1) − Ag(ϕ2)| ≤ CdV (ϕ1, ϕ2)(0.2)
∣
∣
∣
∣

∫

Σ1

(R − Ric(ν, ν)) −
∫

Σ2

(R − Ric(ν, ν))

∣
∣
∣
∣
≤ CdV (ϕ1, ϕ2)‖Ric‖C1Ag(ϕ1)

for some constant C, since Ric(dϕ(TσΣ)) = R(ϕ(σ)) − Ric(νσ, νσ).

The following approximation result holds: For any sweepout β, inducing a non-
trivial class [β] ∈ π3(M), there exist an approximating sequence {γj} ⊂ [β] satis-
fying

(a) lim
j→∞

max
s∈[0,1]

E(γj(s)) = W ([β], g)

(b) For all ǫ > 0, there exist J ∈ N, δ > 0 satisfying:
If j > J and Ag(γj(s)) > W (g) − δ, there are branched minimal maps
ui : S2 → M (i = 1, . . . , N), which approximate γj :

dV (γj(s), {ui}) < ǫ

See [2], theorem 1.14 and chapter 2 for a proof. Jost (see [4], 4.2.1) has shown a
similar statement using bubble instead of varifold convergence.

If A
(min)
g(t) denotes the area of a possibly branched (minimal) immersion S2

# M

and g(t) is a Ricci flow on M , the variation of area g(t) may be explicitly computed
(see [3]):

d

dt
Ag(t) = −

∫

S2

(R − Ric(ν, ν))
d

dt
Amin

g(t) = −
∫

S2

KS2 − 1

2

∫

S2

(|II|2 + R)(0.3)

On the right hand side, II denotes the second fundamental form; this equation
follows from the left one using the Gauss formula and the additional assumption,
that the immersion is minimal. Applying the Gauss-Bonnet theorem for branched
immersions (with branching orders bi) and the previous estimates yields

d

dt
Ag(t) ≤ −

∫

S2

KS2 − 1

2

∫

S2

R = −4π − 2π
∑

i

bi −
1

2

∫

S2

R(0.4)

≤ −4π − Ag(t)min
M

R

The change of Ag(t)(γj) may be estimated taking into account the approximation
by spheres, and equations (0.3), (0.2) and (0.4):
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d

dt

∣
∣
∣
∣
τ

Ag(t)(γj(s, τ)) ≤ −4πk − 1

2
Ag(τ)({uj})min

M
R(τ) + C′ǫ

Using the curvature estimate R(τ) ≥ −3/2(τ + C) obtained from maximum prin-
ciple (where C is some constant) and (0.2) yields

d

dt

∣
∣
∣
∣
τ

Ag(t)(γj(s, τ)) ≤ −4π +
3

4(τ + C)
max

s0

Ag(τ)(γj(s0, τ)) + C′ǫ

The term max
s0

Ag(τ)(γj(s0, τ)) converges to W (g(τ)) by property (a) of the

approximating sequence {γj} and WE = WA. Taylor expansion of the preceeding
inequality may then be used to show

W (g(τ + h)) − W (g(τ))

h
≤ −4π + C′ǫ +

3

4(τ + C)
W (g(τ)) + C′h

which implies (0.1), by taking the limits ǫ, h ց 0.
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Proof of the Poincaré conjecture

Klaus Ecker

We discuss some of the history of the Ricci flow, notably Hamilton’s work,
by presenting various (by now almost explicit) ways singularities can form. We
give examples of collapsing solutions and show how Perelman’s ingenious non-k-
collapsing result rules these out as “blow-ups” of closed solutions on finite time
intervals. We furthermore give an intuitive explanation of the behavior for t → ∞
and geometrization.

Reporter: Brian Smith
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Institut für Mathematik
Universität Potsdam
Am Neuen Palais 10
14469 Potsdam



2654 Oberwolfach Report 46/2008

Malte Röer
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