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Introduction by the Organisers

By evaluating the history of category theory and related fields, the workshop aimed
at continuing and broadening a historical study initiated by the late Saunders Mac
Lane some 15 years ago in a short paper1. Most of the participants of the workshop
are historians of mathematics having contributed to the historiography of category
theory itself or one of its fields of application. But we hosted as well some leading
mathematicians concerned with the development of category-theoretic tools in the
various fields, in order to discuss, still in a line with Mac Lane’s contribution,
not only past but also recent, ongoing and possible future developments. The
workshop also opened towards the two other parallel mini-workshops by offering
a public lecture on the biography of category theorist Samuel Eilenberg2.

1Saunders Mac Lane, “The development and prospects for category theory”, in: The European
Colloquium of Category Theory Tours, 1994, vol. 4 (2-3) of Appl. Categ. Structures, 1996,
pp.129-136, MR97e:18001.

2No abstract of this talk is contained in the present report; see Ralf Krömer, “Ein Mathe-
matikerleben im 20. Jahrhundert. Zum 10. Todestag von Samuel Eilenberg”, in: Mitteilungen
der deutschen Mathematiker-Vereinigung 16 (2008), 160-167.
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The contributions of a purely historical kind covered (in a approximately chrono-
logical order which is not the order of the abstracts below) the following subject
matters: the emergence of the concept of groupoid and its relation to the develop-
ment of category theory; the roots of category theory in conceptual developments
beyond the original works of Eilenberg and Mac Lane, especially the work of Steen-
rod and Ehresmann on the topology of fiber spaces; the role of category theory
in homotopy theory (Kan, Quillen) and the theory of simplicial sets; biographical
studies concerning Eilenberg and Mac Lane; the role and the influence of Ehres-
mann and his school; the reception of category theory in Germany; a study of the
development of Grothendieck’s theory of motives.

Presentations of ongoing developments both on the research level and the ex-
pository level included applications of category theory in Analysis (as initiated by
Sato), some developments in categorical logic suggested by Mac Lane’s comments
on Carnap’s work, a new presentation of Grothendieck’s algebraic geometry in-
tended to convince non-experts of its utility and simplicity, a collection of case
studies about the role of category theory in contemporary mathematics from a
philosophical point of view, and last but not least a new proposal for a logical
foundation of category theory by Pierre Cartier. The basic ideas of Cartier’s pro-
posal can be traced back to the beginnings of his Bourbaki membership in the
early fifties and corresponding discussions of the foundations of category theory,
partly visible in the online collections of the Bourbaki archives.
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Abstracts

On Charles Ehresmann’s work: influences and interactions.

Pierre Ageron

Charles Ehresmann (1905–1979) was a reputable French mathematician whose
constant aim was to work out a general theory of mathematical structures. In
1957, he realized that category theory provided him with the algebraic framework
he sought. He pursued his research in a climate generally ranging from indifference
to hostility. Our goal while doing the historical research presented at the Oberwol-
fach meeting and sumed up in the following lines was to trace back to its source
Ehresmann’s very original mathematical thought as well as to assess the level of
interaction between his work and that of other category theorists. A much more
detailed version is planned to appear in a special issue of Philosophia scientiæ.

As for influences, the first track we attempted to follow was that of his rela-
tionship with two young philosophers of mathematics, Jean Cavaillès and Albert
Lautman. Both of them were actually close friends of Ehresmann’s since their
first meeting at École normale supérieure; let us recall that both of them joined
Résistance and were eventually shot by the Nazis. Unfortunately very few sources
exist to document the intellectual exchanges they had with Ehresmann : no corre-
spondance survived and we must rely on only ten scattered and disconnected bits
of information in printed sources, like memories of Suzanne Lautman, Gabrielle
Cavaillès-Ferrières or Jean Dieudonné. The most substantial evidence is the report
of a discussion at Société française de philosophie in February 1939 where both
Cavaillès and Lautman were invited (reproduced in [3]). Lautman exposed his view
of mathematics as organized and unified by a number of general abstract dialectic
questions (see also [4]). Ehresmann’s question and Lautman’s answer clearly indi-
cate that they had often discussed the matter together and that they essentially
shared the same view. In 1941, Ehresmann also wrote reports on the thesises of
Cavaillès and agreed with the pragmatic and optimistic view of foundations ex-
pressed there. It may be worth noting that Ehresmann was also close in 1943–1944
to another, younger philosopher of mathematics, namely Jean-Toussaint Desanti.

A second very interesting track to follow is that of the Bourbaki group, of
which Ehresmann was an active member from its beginnings in 1935 until 1950.
The availability of Bourbaki’s archive for this period makes it possible to trace
back in detail his participation in the activities of the group. One important mo-
ment is the so-called Congrès de l’Escorial in September 1936 during which the
notions of structure and isomorphism were adopted. The somewhat contradictory
report of the meeting clearly reveals that two opposed attitudes came up against
each other : most members of the group considered these notions as being of es-
sentially methodological character while other, notably Ehresmann, were willing
to make them very precise in hope for developing a new mathematical theory in its
own right. More precisely, three key ideas appear in the report : a general mathe-
matical method of construction of structure on sets, the process of transportation
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of structure from a set to another one through a biunivocal correspondence, the
notion of localization of structure when the base set is topologized. It is very
striking that these three ideas are exactly the avenues through which is organized
the huge body of general theory of structures later developped by Ehresmann in
the language of category theory. The first and the second of these ideas appeared
in print in Bourbaki’s Fascicule de Résultats on set theory dated 1938. As for
the third idea, local structures, strongly advocated by Ehresmann, it was decided
during the Clermont meeting in 1942 to incorporate it into the book of general
topology. But this was never undertaken. Although Ehresmann grow apart from
the group in the late forties to research and started publishing about structures
and local structures on its own in 1952, many signs indicate that he kept nostalgic
about the enterprise he had participated in before the war. The preface of his
book Catégories et structures [2] reproduces without any change three sentences

borrowed from the Mode d’emploi of Bourbaki’s Éléments de mathématique, as if
this book were, or should have been, some additional chapter of the treatise.

Let us now come to interactions. An repeatedly hold assertion is that Ehres-
mann kept very isolated from other category theorists. There is certainly a sense
in which this is true, but that notion of scientific isolation requires to be made
much more precise. One basic approach to assess the level of isolation of a scientist
is to carry out a quantitative and qualitative study of the citations appearing in
his works. We studied all of Ehresmann’s papers and books between 1957 and
1972 (reproduced in [1]). It turns out that Ehresmann did mention an important
number of category theorists (besides himself, his students and close collabora-
tors). Some of them are from the USA (Mac Lane, Isbell, Kan, Freyd, Lawvere),
some are from France (notably Grothendieck, quite often), and a perhaps surpris-
ingly great number are from the rest of Europe. Two types of citations should be
distinguished here: some are mere pointers to some definition or some basic re-
sult, other consist in careful comparisons of Ehresmann’s own results or approach
to some question to those of other authors: the notion of set-theoretic universe
(Grothendieck), the notion of adjoint functor (Kan), the criteria for existence of
an adjoint functor (Freyd, Lawere), constructions of structures on categories or on
objects of categories (Eckmann–Hilton, Grothendieck), results on completions of
categories under a given kind of limits (Trnková, Tsalenko ).

Ehresmann had a significative influence on mathematicians from many Euro-
pean countries, especially from the Eastern Bloc – an aspect that can nowadays
easily be overlooked. Let us mention only three names. Paul Dedecker from Liège
(Belgium) mainly worked on calculus of variations and on non-abelian cohomol-
ogy. But he was also influenced by Ehresmann and published in two directions
suggested by him : the notion of universe and the theory of local structures. Maria

Hasse from Dresden (East Germany) collaborated with Ehresmann around 1960
on free groupoids and categories. In 1966, she coauthored with Lothar Michler the
very first German language book on category theory [6]: this book and notably
its last two chapters are strongly influenced by Ehresmann’s thought. Vladimir

Topencharov from Sofia (Bulgaria) was invited in Dijon (France) from 1965 to
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1967 and coorganized with Ehresmann a meeting on categorical algebra. From
that time until the late eighties, he developed with his students Deko Dekov and
Ya Arnaudov a theory of n-ary categories and neocategories in the spirit of Ehres-
mann (the basic example is given by n-ary relations).

Contrary to what is sometimes held, Eilenberg-Mac Lane’s category theory is
not in itself a theory of structures and was certainly not able to replace Bourbaki’s
much criticized theory of structures at the time the latter eventually appeared in
final form in 1957. But category theory was a very convenient framework in which
another, much more efficient theory of structures could be rebuilt. This is ex-
actly what Ehresmann accomplished, while remaining faithful to the main ideas
stemming from his early discussions with Lautman, Chevalley and others. The
first sentence of his 1957 paper Gattungen von lokalen Strukturen says it all :
”In dieser Arbeit wird der allgemeine Begriff einer Gattung von mathematischen
Strukturen entwickelt, ausgehend von den Begriffen ’Kategorie’ und ’Funktor’, die
von Eilenberg–Mac Lane eingefűhrt worden sind. Dies fűhrt besonders zu einer
Theorie der Gattungen von lokalen Strukturen.” In our opinion, characteriza-
tions of Ehresmann as being a category theorist (or as a differential geometer who
eventually turned to category theory) misses the point, scientifically and sociologi-
cally: he cannot be characterized better than being during all of its life a structure

theorist.

References

[1] Ch. Ehresmann, Œuvres complètes et commentées, Amiens, 7 volumes, 1980–1983.
[2] Ch. Ehresmann, Catégories et structures, Paris, Dunod, 1965.
[3] J. Cavaillès, Œuvres complètes de philosophie des sciences, Paris, Hermann, 1994.
[4] J. Lautman, Les mathématiques, les idées et le réel physique, Paris, Vrin, 2006.
[5] P. Ageron, Autour d’Ehresmann : Bourbaki, Cavaillès, Lautman, Cahiers de topologie et

de géométrie différentielle catégoriques, XLVI (2005), 165–166.
[6] M. Hasse und L. Michler, Theorie der Kategorien, Berlin, VEB Deutscher Verlag der Wis-

senschaften, 1966.

Saunders Mac Lane, Rudolf Carnap and Modern Logic

Steve Awodey

In 1938, Saunders Mac Lane was a young logician, recently returned from Hilbert’s
Göttingen with a thesis in proof theory. For the American Mathematical Society,
he reviewed the newly published Logical Syntax of Language, Rudolf Carnap’s
Hauptwerk and the most important logical treatise of it’s day, in which Carnap
presented the latest logical results, along with his new philosophy of logical empiri-
cism, all unified into a single doctrine consistent with Gödel’s recent completeness
and incompleteness results.

In the review, Mac Lane called attention to a subtle defect in the definition
of logical concepts, which were required for the central concept of logical truth
or analyticity. Gödel had already repaired an unpublished version of the latter
definition once, and now Mac Lane had once again undermined it. The flaw was
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irreparable, as W.V.O. Quine later emphasized. Carnap would spend the next 10
years investigating alternatives and stressing the importance of the problem.

Meanwhile, Mac Lane turned to other pursuits in algebra and topology, in-
venting category theory and maintaining only secondary interest in developments
in logic. His engagement was renewed in the 1970s, however, by the work of
F.W. Lawvere in applying category theory to logic and the invention of topos
theory. Ironically, these tools now provide a solution to Carnap’s problem of the
characterization of logical concepts.

Specifically, in 1966, Alfred Tarski, following an idea that first arose in dis-
cussions with Carnap and Quine in the the 1940s, proposed a characterization of
logical notions in the spirit of the Erlangen School, as those operations that are
invariant under all automorphisms of the domain of individuals. Carnap had ob-
served that all logical notions are invariant in an unpublished work of 1928, which
was known to Tarski. Taking invariance as the characteristic property of logical
definability has been considered since Tarski’s proposal, and shown to lead to dif-
ficulties related to varying the domain of individuals. Recent work in topos theory
solves these difficulties by considering continuous variation across domains, in ad-
dition to invariance at each domain. It can now be shown that the logical concepts
are exactly those that are both continuous and invariant. The consequences for
Carnap’s program of Logical Syntax remain to be investigated.

The role of category theory in contemporary mathematics

Jessica Carter

This talk speculates on the role that category plays in contemporary mathematics.
It is noted that category theory (CT) is an integrated part of certain branches of
mathematics such as algebraic geometry, whereas other areas seem not to use CT at
all. The rationale for not using CT could be that CT “conceals things - if one needs
to use concepts from CT, it means that we have not yet understood it properly”.
Another reason that were given to me recently, was that CT, even though it grew
from mathematical practice and in the beginning was very useful, today category
theorists have removed themselves from the other practices of mathematics, doing
category theory for its own sake. Therefore some mathematicians have lost sight
of the purpose of CT.

The above considerations give rise to a number of questions that were posed in
the talk:

(1) Is it true that category theory is not widely used today?
(2) If so, why is this? Has it something to do with i) kinds of questions posed,

ii) training of mathematicians or iii) likes/dislikes of methods?
(3) Is it possible to single out branches that do use category theory and

branches that do not?
(4) Which kinds of problems is category theory used for?

These questions involve social, philosophical, as well as mathematical consid-
erations. The talk did not try to answer them all, but focused on the following
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question: What is it that category theory acheives? Should CT be applied every-
where in mathematics, or are there questions/methods where it is not natural to
use CT?

The aim of the talk were not to provide answers to all of these questions,
but mainly to stimulate discussion on the general theme — the role of category
theory in contemporary mathematics. The talk did attempt to give partial answers
by contrasting different areas of mathematics where CT is used in certain sub-
branches but not in others.

One example from algebraic topology concerned the construction of a Mayer-
Vietoris sequence in a setting where this sequence is not exact. Here CT is used in
order to construct a certain category in which the sequence becomes exact. In this
case it can be stated that CT is used when one wish to do something that is not
possible in the regular setting. Generally, one identifies the conditions necessary
to make it possible to do what one wants, and constructs/finds a category that
accomodates these conditions, together with a functor between the categories. This
description also applies to work by R. Nest and R. Meyer applying the techniques
of homological algebra to the theory of C∗-algebra’s. In this case one needs to
work in an Abelian category. The studied categories are not Abelian, but they are
triangulated categories, and functors between them acertain that it is possible to
do homological algebra.

One might comment that this strategy is not unique to the use of CT. For
example, when axiomatizing in mathematics, one looks for necessary fundamental
principles leading to the theories one wishes to formalize. However, in this respect
CT is much more flexible, making it possible to change properties of morphisms
that is not possible in a traditional set theoretic setting.

A contrast to these methods seems to be the desire to simplify proofs, using as
“simple” concepts as possible. This is expressed, in the following remark: “Many
results on eigenvalue distributions for Gaussian random matrices are obtained by
complicated combinatorial methods, and the purpose of this paper is to give more
easily accessible proofs, by analytic methods, for those results on random matrices,
which are of most interest to people working in operator algebra theory and free
probability theory” (Haagerup and Thorbjørnsen, 2003).

However, it is not clear what the notion of ’simple’ involves. For Grothendieck, a
purpose of mathematics would be to obtain a clarification of the involved concepts
so that proofs are not necessary. The proofs would fall out of the conceptual
framework. (Krömer 2007, p. 190). So in one sense they would be simple. But
they will only be simple when one has grasped the conceptual framework, which
may require some work.

References

[1] U. Haagerup S. Thorbjørnsen, Random matrices with complex Gaussian entries, Exposi-
tiones Math. 21 (2003),293–337.

[2] R. Krömer, Tool and Object. A History and Philosophy of Category Theory, Basel:
Birkhäuser Verlag (2007).
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Living in a contradictory world: categories vs. sets?

Pierre Cartier

In the present time, the ambition to offer global foundations for mathematics,
free of ambiguities and contradictions, covering the whole spectrum of the math-
ematical activities, has been challenged by known flaws induced by the use and
abuse of “big” categories. Unless we are ready to abandon a large part of fruitful
trends in mathematical research, we have to face head on the reality (or night-
mare) of contradictory mathematics. I’m suggesting a possible escape by using a
theory of types to formalize the proofs of category theory.

The ghost of contradiction

In their pioneering paper on “Natural transformations”, Eilenberg and Mac
Lane stressed the importance of a new kind of constructions, now known as func-

tors. So far the known constructions in geometry would associate two classes
element by element, for instance a circle in a plane and its center. Examples com-
ing from topology were of a different kind associating globally to a space another
space (like the loop space) or algebraic invariants (like homotopy or homology
groups). Also the question was raised of the naturalness of some transformations,
like the identification of a finite dimensional vector space with its dual (not nat-
ural) or its bidual (natural). The insistence on transformations leads to a style
of proof, which is “without points”. Again, in his axiomatic description of the
homology groups of a group (or Lie algebra) as given in the 1950 Cartan Seminar,
Eilenberg considers a “construction” which to a group G associates the homology
groups Hi(G; Z) for instance. But he is not explicit about how to express such a
construction in the accepted paradigm of set theory. In Cartan-Eilenberg book,
there is also a description “without points” of the direct sum of two modules. So,
in the minds of the founding fathers of category theory, this theory was a kind of

superstructure on the existing mathematics, more at the level of metamathematics.

In his epoch-making Tohoku paper, Grothendieck reversed this trend. Inspired
by the work of Cartan and his collaborators on sheaves and their cohomology,
Grothendieck introduced head on infinitary methods in category theory. His pur-
pose was to use direct limits to define the stalks of sheaves in a categorical way,
since one knew already many examples of sheaves in a category, like sheaves of
groups, of rings, etc. . . Also one of the greatest discoveries of Grothendieck in this
paper is the existence of injective objects in a reasonable category (satisfying axiom
AB 5∗). Going back from this abstract level, one can freely use injective sheaves,
thereby greatly simplifying the general theory of sheaves.

In so doing, Grothendieck was combining two lines of thought: the rather meta-
mathematical (hence finitary) methods of Eilenberg and Mac Lane, with the infini-
tary methods of Bourbaki Topology and Algebra focusing on infinite limits (direct
or inverse) and universal problems. This mariage was extraordinarily fruitful for
mathematics, but a price had to be paid. Categorical reasoning was “proofs with-
out points” but the new methods required to consider the actual (not potential)
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totalities of all spaces, or all continuous transformations between spaces. Immedi-
ately, the old ghosts of the set-theoretic paradoxes resurfaced, like the Burali-Forti
antinomy of the set of all sets, or the Richard antinomy bearing on definable ob-
jects. A natural development led to fundamental notions, like limit of a functor,
representable functor and Yoneda lemma, adjoint pair of functors. But the log-
ical disease remained, leading for instance to a questionable proof of the general
existence of an adjoint functor.

If category theory can easily be formulated within a framework of first-order
logic (and this led to Lawvere formulation of set theory in this spirit), and if
set theory received a proper axiomatization as the Zermelo-Frenkel system, the
combination of both proved explosive. Some cures were attempted, like the use of
universes by Grothendieck and Gabriel-Demazure. But this is highly artificial, like
all methods using a universal domain, and brings us to the difficult (and irrelevant)
problems of large cardinals in set theory.

At the moment, the situation is not unlike the one prevailing in the 18th century
in the infinitesimal calculus. Everyone knew that the existence of infinitesimal
quantities was questionable and that its use leads easily to contradictions. Today,
we know about the dangerous spots, where not to swim, and try to stay away
while continuing our exploration.

A possible exorcizing of ghosts

I would like to suggest a possible way out of this impasse. It seems to me
that the initial sin is the prevalent view about the underlying ontology of math-
ematics. From a technical point of view, the Hilbert proposal of encoding every
mathematical object as a set has been extremely successful. After the successful
arithmetization of analysis, representing (in various ways: Dedekind cuts,. . .) a
real number as a collection (or set) of integers, or pairs of integers, . . ., all kinds
of mathematical constructions yielded to the set theoretic paradigm. But in the
accepted way of thought, a set is defined only after all of its elements have been
created and put under control. So, speaking of the set of cats (integers) means
that you could call the roll of all the cats (integers). So when we speak of the
category of groups, all imaginable groups should be present. This is the point of
view of actual infinities in an extensional sense. The undecidability of continuum
hypothesis represents for me an unescapable blemish of this “realistic” point of
view about infinity.

The new approach should be based on a comprehension scheme. That is, a
set is described by the characteristic property of its elements: the set of cats is
defined by the property of being a cat, described as accurately as possible, without
any claim about the totality of existing cats. This is a standard practice in typed
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languages in computer science. Typically, a programme begins by instructions like

x : real

n : integer

t : boolean

. . . . . . . . .

declaring variables of various types (or sorts). Such a language embodies rules to
create new types out of old types, for instance the type

integer → real

is the type of sequences of real numbers. Usually, there is also available an ab-

straction principle, in the form of a λ-operation

λx · t

to describe a function associating to x the value t (described by a formula con-
taining x). So the framework is a typed λ-calculus.

There have been recent advances in theoretical computer science, in the form
of various proof assistants (HOL Light, Mizar, Coq, Isabelle,. . .). They are able to
create completely formalized proofs of “real” mathematics, like the prime number
theorem, and check and guarantee their correctness.

I’m raising the challenge to translate the usual proofs of category theory within
such a system. What should be required is the existence of types like cat (= cat-
egories), func (= functors),. . . So a standard sentence like: “Let C be a category”
should be encoded by a declaration like:

C : cat .

There is no need to think of the totality of all possible categories. Of course, a
type like set would embody the category of sets.

Of course, the implicit strategy is the one of Russell when he invented type
theory to cure the diseases of set theory, like the set of all sets. . . I would also like
to mention that the inner logic of a topos looks very similar, so we could perhaps
formalize large segments of category theory within a syntactically defined universal

topos.

Designing Mixed Structures

Renaud Chorlay

The aim of the talk was to shed light on some background elements of the
prehistory / early history of category theory (CT). Algebraic topology (and some
purely algebraic problems it raises) is rightly held to make up the immediate
theoretical context of Eilenberg and MacLane’s epoch-making paper on natural
equivalence. However, we claim that some insight can be gained by a slight change
of perspective.
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We presented some snapshots from the history of what we call the structural
moment in geometric theories (1930-1953). In this period, the now standard struc-
tures of manifold, fibre-bundle and sheaf were first introduced; they were then
stabilised in a first network of standard problems, tools, and theorems. The rela-
tionship with the history of CT proper is twofold:

(1) when studying the prehistory of CT, it is customary to investigate the
following aspects: (a) the “association” of structures of apparently different na-
tures (e.g., in algebraic topology, groups associated to topological spaces) (b) the
emphasis on maps and not only on objects (c) the need to characterise “natural”
isomorphisms among all possible isomorphisms. We endeavoured to show, through
examples, that these three elements played a part in the structural moment in geo-
metric theories; a part which, as far as (a) is concerned, differs significantly from
the one it plays in algebraic topology stricto sensu: these geometric structures are
intrinsically structures of a mixed nature, the very fabric of which weaves together
topological and algebraic threads.

(2) As far as the early history of CT is concerned, two contexts are usually
put to the fore, namely algebraic topology, then homological algebra. We contend
that the design of mixed structures is just as important a context. A quick look
at H. Cartan’s, A. Grothendieck’s or C. Ehresmann’s work amply supports this
contention.

The aim of these two talks was by no means to the give a comprehensive view
of the early history of fibre-bundles and sheaves, but rather to focus on a small
list of relevant examples.

1. Scenes from the early history of fibre-bundles. We first analysed N. Steenrod’s
1942 paper on Topological Methods for the Construction of Tensor Functions [11],
in which the standard tensor bundles associated to a differential manifolds are
constructed, and the topological obstruction to the existence of continuous sec-
tions (with value in important subbundles) is captured in a new cohomological
setting (cohomology with local coefficients). The first part of this paper can be
presented as an instance of Gestalt switch: the very same formulae which, until
then, characterised tensor magnitudes as bona fide intrinsic magnitudes are now
read as transition maps defining a new manifold over the base manifold; in this
new context, tensors can be seen as maps (in the set theoretic-sense, with the
new tensor-manifold as codomain) and not only as intrinsic “magnitudes”. In this
paper, Steenrod also stresses the need to distinguish between mere isomorphism
(all fibres are isomorphic indeed, hence so are their homotopy groups) and natural
isomorphism (along which these homotopy groups should be identified in order
to build a single coefficient group for the cohomology). The need for a cohomol-
ogy with local coefficients stems from the non-naturalness of some isomorphisms
induced by paths on the base space.

To put this 1942 paper into perspective, we pointed to two background elements.
First, it is to be noted that in his paper Steenrod relies on a paradigmatic

presentation, i.e. that of a generic example. All the other cases can be treated
in the same fashion. We call this the “just as well” presentation; a more fancy
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description could rely on J. Cavaillès’ notion of paradigm [4]. We showed that
this “just as well” epistemic style is also that of Whitney’s work on fibre-bundles
(compare [15] with [16]). This style is also that of Veblen and Whithead in their
axioms for geometric structures on manifolds: once the notion of pseudo-group of
Cr-maps has been introduced, richer structures can be considered if one restricts
to a sub-pseudo-group [12].

Second, we presented some elements which shed light on Steenrod’s idea of
isomorphism induced by paths on a base space. In 1932, a general and abstract
presentation can already be found in the last chapter of Veblen and Whitehead’s
monograph, in which spaces are “attached” to every points of a manifold, and
isomorphisms are associated in a “functorial” way to pairs of points on that man-
ifold. This presentation is actually a direct generalisation of Elie Cartan’s theory
of generalised spaces, in which a group of infinitesimal transformations is first as-
sociated to each point of a manifold, along with a connection; the local and global
structures are then captured in the structure of the holonomy group [1].

We eventually contrasted Steenrod’s 1942 paper with Ehresmann and Feldbau’s
1941-1943 papers on fibre-bundles. In these papers, the emphasis is laid on the
natural and dynamic network of fibre-bundles associated to a manifold. In partic-
ular, purely algebraic notions such as those of group acting on a space, or group
of automorphisms of an Abelian group, induce natural fibre-bundle constructions.
For instance, the various tensor-bundles on a differential manifold are no longer
treated as an amorphous list of similar structures, but as bundles which are natu-
rally associated to the principal fibre-bundle associated to the tangent bundle, via
the linear representations of the generic group of that principal bundle [8]. The
functorial flavour of this viewpoint need not be emphasised.

2. Scenes from the early history of sheaf theory. When the early history of sheaf
cohomology is presented, it is customary to start from Leray’s introduction of
the word “faisceau” (sheaf) in his generalisation of Steenrod’s cohomology with
local coefficients. We claim that another context is just as important, that of Henri
Cartan’s work in the theory of analytic function of several complex variables. This
work can also be seen as a case of mixed structure design.

In his 1940-1944 papers (which can be seen as two parts of a single paper), H.
Cartan created a new theoretical context for classical problems, namely the two
Cousin problems [2] , [3]. The second problem is the following: assume that on
some analytic space, holomorphic functions are given on an open covering, such
that, in the intersections, the quotients are non-singular and nowhere vanishing
(Cousin data); is there a globally defined holomorphic function whose quotients
with the given functions are holomorphic and nowhere vanishing ? Or, to put
it more geometrically, is any subvariety of complex codimension one (locally de-
fined by the vanishing of some holomorphic function element) the zero-locus of a
globally defined holomorphic function. Relying on recent work by Oka, Cartan
(1) reformulates the problem algebraically in terms of ideals in the rings of holo-
morphic functions at every point of the analytic space (2) generalises the problem
in any codimension (i.e. for non-principal ideals). This new structures serves as
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setting for a new research program, which Cartan calls “théorie globale des idéaux
et modules de fonctions holomorphes”.

In the 1945-1951 period, Cartan’s mathematical interests shift towards topology,
in particular sheaf cohomology. Some progress is made in the “théorie globale des
idéaux”, namely in the local theory: coherence results are proved for the most
important “ideals” and “modules”. It has to be stressed that, in this period, the
second Cousin problem was again reformulated, this time by André Weil, in terms
of principle analytic bundle. Weil’s 1948 lectures on fibre-bundles in algebraic
geometry are fundamental in this respect [14].

Until 1952, the two following research programs didn’t interact: (1) that on
the global theory of ideals of analytic functions, (2) that on sheaf cohomology.
In (1), no morphisms were taken into account; there was no talk of sub-objects
or quotient objects: sheaves of relations were not seen as kernels, Cousin data
were not seen as defining elements in a quotient sheaf. The merger of the two
research lines occurred in the spring of 1952, as is documented in the Serre-Cartan
correspondence [10]: Cousin data were now seen as elements of a quotient sheaf;
the Cousin problem was now seen as an instance of the general problem that sheaf
cohomology tackles (the non-right exactness of the global section functor). The
merger of the two research line, and the resulting theory of cohomology of analytic
sheaves, are central background elements for the later development of sheaf theory
in algebraic geometry. Though many conceptual and technical elements came from
the sheaf cohomology research line (sheaves, section functor, short and long exact
sequences), the “global theory of ideals of analytic functions” research line also
brought two fundamental elements: coherence, and the notion of change of base
ring associated to a change of base set.
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Université Denis Diderot, Paris, 2007.

[6] C. Ehresmann, Feldbau J., 1941. Sur les propriétés d’homotopie des espaces fibrés, CRAS
212 (1941), p.945-948.

[7] C. Ehresmann, Espaces fibrés associés, CRAS 213 (1941), p.762-764.
[8] C. Ehresmann, Sur les espaces fibrés associés à une variété différentiable, CRAS 216 (1943),
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Groupoid: the development of a structural notion between group and

category

Ralf Krömer

The groupoid concept has been developed in the 1920s by Heinrich Brandt [2]
as an explicit generalization of the group concept. It has been suggested that
the category concept has been developed anagolously as a generalization of the
groupoid concept: “der Brandtsche Gruppoidbegriff [. . . ] führte schließlich zum
Begriff einer Kategorie im Sinne von Eilenberg-Mac Lane” [16]; [the groupoid
concept is a] “Keimzelle der Theorie der Kategorien” [14]. Ronald Brown said he
“has heard it remarked that Brandt’s axioms for groupoids influenced Eilenberg
and Mac Lane in their definition of a category” [5]. I argued in the talk, however,
that:

• there is no evidence that there was any direct influence of Brandt’s work
on the joint work by Eilenberg and MacLane, even if it can’t be excluded
that MacLane through his own work on group extensions preceding his
first joint paper with Eilenberg [11] knew the work by Brandt or by some
of his followers;

• it is more probable that Eilenberg and Mac Lane were directly inspired
by the concept of “pseudogroup of transformations” introduced by Veblen
and Whitehead;

• it was Charles Ehresmann who, presumably inspired by his initial collabo-
ration in the Bourbaki project, merged for the first time the conceptions by
Veblen and Whitehead on the one hand and by Brandt on the other hand,
and who later made the first use of the connection between groupoids and
categories;

• the notion of fundamental groupoid in algebraic topology played no central
role in the interaction of category theory and algebraic topology up to the
early 1960s.

Brandt’s original motivation to introduce the concept came from his work on the
composition of quaternary quadratic forms (generalizing the composition of binary
quadratic forms studied by Gauss in Disquisitiones arithmeticæ but yielding only
a partial operation in the case of quaternary forms; [1]). Consequently, Brandt
restricted his attention to finite (or countable) and transitive groupoids. He discov-
ered a second fruitful application of his concept in the theory of ideals of algebras
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[3]; this idea was taken up by Deuring [7]. Bourbaki decided to include the pos-
sibility of partial operations (and a corresponding exercise) at least into the first
edition of Algèbre; I suggest that they were influenced by the work of Deuring and
others (this is also my interpretation of a corresponding handwritten passage in
La Tribu n◦5).

Composition of paths in a topological space without fixed base point yields the
fundamental groupoid. This was explicitly noted by Reidemeister (who called it
“Wegegruppoid” and gave explicit reference to Brandt [18]). However, Reidemeis-
ter made no use of the concept in his work on knot theory [19]. In a later book on
knot theory [6], the fundamental groupoid is only introduced as an intermediate
step in the construction of the fundamental group (the complementary space of
a knot in R3 is always pathwise connected), and the concepts of category theory
are consequently classified as nothing more than a convenient language. However,
soon afterwards, Ronald Brown stresses the possibility to find deeper results in
the calculation of fundamental groups with the help of what he calls the algebra
of groupoids [4], [15].

The fundamental groupoid appears also in other contexts: Steenrod [20] implic-
itly defines a local system of groups for a space as a functor from the fundamental
groupoid of the space to the category of groups but does neither speak of funda-
mental groupoid nor of category or functor, of course. The Bourbaki draft n◦103,
written by Eilenberg and André Weil presumably in the second half of 1948, takes
up the definition contained in the exercise in Algèbre to define the concept of funda-
mental groupoid in the context of fibre spaces. Eilenberg and Steenrod [13] suggest
that the concept of fundamental groupoid may play a role in the axiomatization
of homotopy theory; this was achieved later by [17].

On the other hand, Veblen and Whitehead, when introducing the concept of
pseudogroup of transformations [21], made strong use of this concept from the
outset. It served important purposes in their setting, namely generalizing Klein’s
Erlangen program to a conception of space suitable for the then new physical
theory of relativity. I argue that the ideas of generalizing groups of transformations
and the Erlangen program to partially defined operations have directly influenced
Eilenberg and Mac Lane. But Ehresmann was more interested in local structure
than Eilenberg and Mac Lane were, and happened to know not only pseudogroups
but Brandt groupoids as well; thus he connected the two concepts [8] and then
made the final step to stress the fact that a groupoid is in particular a category
(and actually a type of category quite important for his purpose) [9].
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Some Threads between Homotopy Theory and Category Theory:

axiomatizing homotopy theories

Jean-Pierre Marquis

In their book Foundations of Algebraic Topology, Eilenberg and Steenrod imme-
diately saw that their axioms for homology theories were adequate for homotopy
theories except for the excision axiom. They made a proposal in their book that
turned out to be inadequate. Two mathematicians quickly proposed similar al-
ternatives. The first published proposal was made by Kuranishi in 1954 [1] and
followed quickly by Milnor in 1956 [2]. Their proposals were essentially similar,
replacing the excision axiom by a fibering axiom, namely a condition on homotopy
groups of fibers of fiber spaces introduced by Serre earlier. Both prove that any
two homotopy theories satisfying their axioms are (naturally) isomorphic. Also in
1956, Hu [3] gave a clear exposition of Milnor’s approach. But Hu’s also comments
on the differences between homology theories and homotopy theories. As was well
known, Eilenberg and Steenrod axiomatized homology theories so that the whole
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field would rest on clear conceptual grounds. Their language was that of func-
tors and natural transformations. Their work marked a definitive progress in as
much as from then on one knew what were the essential properties of an homol-
ogy theory. The remaining parts dealt with specific ways of computing homology
groups, a non-trivial task. The situation with homotopy theory was radically dif-
ferent: it cannot be said that the field of homotopy theory was in a conceptually
confused state before the axiomatic treatment provided by Kuranishi and Milnor.
Furthermore, to prove that two homology theories were naturally isomorphic over
a certain category of topological spaces was certainly an interesting mathematical
result whereas the uniqueness of homotopy theories could not have been consid-
ered as being exciting by any means. Hu claims that an axiomatic approach was
seen to be desirable since 1) it would lead to a simplification of various proofs
of basic properties of homotopy groups and 2) it would yield to new important
results. With hindsight, one can doubt whether these axiomatization delivered the
expected fruits.

However, at the same time, Daniel Kan had started to look at homotopy the-
ory from an abstract point of view, an approach that used categories in different
manner than the ones above. [4, 5, 6, 7]. In particular, Kan was able to develop ho-
motopy theory for complete semi-simplicial (c.s.s.) complexes, now simply called
’simplicial sets’. Then in 1958 [8], Kan proposed his own axiomatization of homo-
topy groups, but over simplicial sets, and proved, like his predecessors, that any
two homotopy theories satisfying his axioms were (naturally) isomorphic. How-
ever, his abstract approach opened up new avenues, in particular a purely algebraic
approach to homotopy theory and the possibility of applying homotopical methods
in algebraic contexts.

The latter idea was taken up by Dan Quillen in the mid-sixties [9, 10] and he
proposed an entirely novel axiomatization of homotopy theory, based this time on
categorical structure and not properties of functors. These axioms define what
are now called (Quillen) model categories. In this case, one can legitimately claim
that the axiomatization yielded conceptual grounds for homotopy theory as well
as new interesting results. Furthermore, and this was certainly not expected, it
various fundamental notions of homotopy theory, e.g. cylinders and path spaces,
could be defined by purely categorical means, thus in an entirely abstract fashion.
Fiinally, as the recent book by Dwyer, Hirschhorn, Kan and Smith shows [11], the
conceptual foundations of the field are still being clarified and simplified.
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From a Geometrical Point of View: invariance in mathematics and its

foundations

Jean-Pierre Marquis

In their paper General theory of natural equivalences published in 1945 and in
which they introduced categories, Eilenberg and Mac Lane made an explicit refer-
ence to Klein’s Erlangen program, claiming that category theory could be seen as
a generalization of the latter. In my book [1], I explore this claim and show that al-
though Eilenberg and Mac Lane did not originally exploit the connection between
category theory and Klein’s program fruitfully, the claim can still be made today
when one looks at the development of category theory and categorical logic from
a geometrical perspective. More specifically, the claim should now be that Klein’s
program was, in hindsight, a very specific case of the categorical approach applied
to elementary geometry. Eilenberg and Mac Lane could not articulate this point
of view in a general fashion since they did have at their disposal the fundamental
concept of category theory, namely that of adjoint functors. Once this concept was
revealed by Kan in 1958 [2], Bill Lawvere showed how basic concepts of logic and
the foundations of mathematics could be seen as naturally arising from elementary

functors as adjoints. It is therefore possible to articulate the position that basic
concepts of mathematics are invariants in a specific sense.
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How Grothendieck simplified Algebraic Geometry

Colin McLarty

We present two ways that Grothendieck gave quicker, more direct access to central
intuitions in algebraic geometry. He simplified the basic definitions of algebraic
geometry merely by insisting that the simpler version (which had been outlined
in theory as early as Emmy Noether in the 1920s) was worth pursuing. He in-
sisted in practice. He pursued it. He simplified cohomology by generalizing a
theme which had been implicit as far back as Riemann and Poincaré and which
all experts by 1950 used in special cases. He justified the sweeping generalization
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by unprecedented theorems of categorical algebra on injectives and the universal
character of derived functors. This seemed gratuitous to some since its only known
use at the time was to prove a much more concrete theorem of topology which has
a far shorter more concrete proof. But neither that topological theorem nor its
proof were noticed before Grothendieck. The generality quickly became central to
number theory and this simple, unifying approach today seems entirely natural.

We will violate a standard historical procedure that makes the past look sim-
pler than the present. Historians of mathematics usually start with a simplified
background to their topic, give a few concrete examples, and build up to the
complexities and abstractions of the later work. So it looks like a drive towards
abstraction keeps making mathematics more complicated. A typical mathemati-
cal history of Fermat’s Last Theorem will state the theorem, of course, pulling it
out of context as if it had always been prominent in its own right, then sketch a
modernized version of Fermat’s own proof for n = 4 or Euler’s proof for n = 3.
It will mention the Germain-Kummer proof for regular prime exponents with no
details at all. After giving some complications concerning prime factorization in
commutative rings it alludes to imposing theorems on elliptic curves and modular
forms. The history is very different, though, if you take all the stages at the same
level of detail.

For one thing, the common history ignores major difficulties in Fermat’s and
Euler’s work which we know baffled other mathematicians at the time, which most
modern experts decline to attempt to clarify, and which none have clarified in a
way that wins any consensus. Here I pose a principle that some historians may
reject: I claim that every comprehensible proof is thereby simpler than any incom-
prehensible proof. Incomprehensibility is the maximum possible complication.

For another thing, complications rarely in fact arise from the abstract methods.
Abstractions are designed to work smoothly. You have a lot of freedom to design
general definitions. Reality intrudes when you apply the methods to concrete
problems. Then the complications come in. The algebraic number theory and
commutative algebra used to prove FLT were created for use in Galois theory as
well, and by 1900 had been set to work in class field theory, so they cover a huge
array of arithmetic and geometry. Just to give the most ancient examples, they
solve new Diophantine equations and provide the first ever complete solution to
the problem of compass and straightedge construction of regular polygons. Those
subjects are far more unified today than they were a hundred a fifty years ago,
because of the new methods, but they still require complicated arguments which
today appear as complications in the theoretical apparatus.

Grothendieck’s simplified algebraic geometry can express essentially all of the
earlier approaches to algebraic geometry in quite natural ways. So his apparatus
encompasses all the complexities that earlier approaches do. But the complexities
are pushed out of the basic definitions and appear as special cases to be invoked
only as needed.

The advantage to our procedure of beginning with the complexities of earlier
algebraic geometry is that it brings out the real motivation of the work. It is
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well known that Grothendieck aimed to prove the Weil conjectures in number
theory. But the point was not that anyone including Weil especially wanted to
know those particular facts about polynomials over finite fields. Rather, those
conjectures are—as Weil meant them to be—the highest point to date of an effort
to unify topology with algebraic geometry that goes back at least to the 1850s,
before topology even existed as a subject. At the same time these conjectures are
the culmination to date of a project going back to Kronecker and Dedekind in the
late 19th century to unify number theory with complex algebraic function theory.

Category theory and Analysis: history and prospects

Pierre Schapira

We shall give here a few examples of problems of Analysis in which homological
algebra, sheaf theory, derived categories and even stacks play an essential role.

1. Introduction. Systems of linear equations over a ring A may be interpreted as
A-modules of finite presentation. Solving such equations in another A-module S

leads naturally to the study of the groups Extj

A
(M, S), or better, to the object

RHomA(M, S) in the derived category. Hence, homological algebra can be viewed
as a sophisticated, but nevertheless natural, generalization of linear algebra.

For example, the study of systems of linear partial differential equations (LPDE)
is the study of modules over the ring of differential operators (a ring which is
not commutative, and one has to distinguish between left and right modules).
Moreover, even when studying solutions of such a system on a real manifold M ,
the phenomenas which occur are related to the geometry of the characteristic
variety in the cotangent bundle T ∗X of a complexification X of the real manifold
M , and when working in complex manifolds, sheaves are necessary. To summarize,
given a real analytic manifold M , one chooses a complexification X of M and a
system of LPDE on X is nothing but the data of a (say left) coherent (i.e., locally
of finite presentation) DX -module M, where DX is the sheaf of C-algebras of
holomorphic differential operators. Then the “space” of holomorphic solutions
of the system M is interpreted as the object RHom

DX
(M,OX) of the derived

category of sheaves on X . When studying other spaces of solutions, one is lead to
replace OX with sheaves of generalized functions, such as for example the sheaf
BM :=RHom

CX
(D′CM ,OX) of Sato’s hyperfunctions, and “constructible sheaves”

naturally appear. But the analysts prefer distributions to hyperfunctions, and if
traditionnaly distributions are constructed with the tools of functional analysis,
we shall show that it is possible to constructed them “functorially” by mimicking
Sato’s construction’s of hyperfuntcions, after replacing the usual topology of the
manifold M with a suitable “subanalytic” Grothendieck topology.

At this stage, sheaf theory, derived categories and Grothendieck topologies have
shown their efficiency/necessity in Analysis. But new objects, such as stacks,
also play an important role. Indeed, similarly as sheaf theory naturally appears
when studying holomorphic functions on complex manifolds, stacks are necessary
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when studying deformation quantization of complex symplectic (or more generally,
Poisson) manifolds.

Note that when dealing with functions, we only have the notion of equality and
when glueing a family of functions {fi}i∈I defined on an open covering {Ui}i∈I of a
space X , we have to check that fi|Uij

= fj|Uij
where Uij :=Ui∩Uj . If one replaces

the functions fi with sheaves Fi, we need isomorphisms fji : Fi|Uij
≃ Fj |Uij

and
the fji’s should satisfy a “cocycle condition” fkj ◦fji = fki on Uijk :=Ui∩Uj ∩Uk.
When dealing with stacks, we are lead to consider intersections 4 by 4:

• sets/equalities/functions/intersections 2 by 2,
• categories/isomorphisms/sheaves/intersections 3 by 3,
• 2-categories/equivalences/stacks/intersections 4 by 4.

It may be interesting to notice that when glueing objects, a familiar activity for
a mathematician, the status of equality, made precise through n-category theory,
plays an essential role.

2. Hyperfunctions, generalized functions.

3. Systems of linear PDE.

4. Distributions and the subanalytic site.

5. Functions, sheaves, stacks.
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[9] M. Sato, Theory of hyperfunctions, I & II Journ. Fac. Sci. Univ. Tokyo, 8 139–193 487–436

(1959–1960).

[10] M. Sato, T. Kawai, and M. Kashiwara, Microfunctions and pseudo-differential equations, in
Komatsu (ed.), Hyperfunctions and pseudo-differential equations, Proceedings Katata 1971,
Lecture Notes in Math. Springer-Verlag 287 pp. 265–529 (1973).

[11] P. Schapira, Mikio Sato, a visionary of mathematics, Notices of the AMS, 54 Vol 2, (2007).
[12] , Catégories et recollement,

http://www.math.jussieu.fr/˜schapira/articlesdiv/



486 Oberwolfach Report 08

Grothendieck’s Motives

Norbert Schappacher

This talk, which was neither truly mathematical nor based on a thorough study
of the historical documents, presented a swift survey of Alexandre Grothendieck’s
ideas about motives as they can be gathered from his correspondence with Jean-
Pierre Serre [2] and from various remarks in Grothendieck’s text Récoltes et

Sémailles, which one can then compare to early would-be implementations in the
mathematical literature, like Neantro Saavedra Rivano’s thesis [6]. The later fate
of Grothendieck’s ideas, as for example at the hands of Pierre Deligne (motives
for absolute Hodge cycles) and Vladimir Voevodsky was only touched upon, and
then only in the discussion after the lecture.

Grothendieck’s original yoga and the resulting procedure to define a category
of motives and its associated “motivic Galois group” (which generalises both the
absolute Galois group of a field of characteristic zero and the family of Serre’s
groups Sm introduced in [7]) can be studied in the existing literature, so there
is no need here to sketch this part of the talk. We refer for instance to the
remarkably concise overview of the basic constructions in section 0 of Deligne’s
[1]—even though this was originally not meant to be read independently— and
for various further perspectives, to the two heavy volumes [3].

The talk particularly emphasized the idea of Tannakian duality, and Pierre
Cartier from the audience added remarks from memory about the early evolution
of this idea. This Tannakian formalism renders the whole category of motives (as
Grothendieck envisaged it), together with a suitable fibre functor, equivalent to
the category of all finite dimensional linear representations of the corresponding
(pro-algebraic Q) group, together with the forgetful functor which associates to
every representation its underlying vector space. A motive over Q, e.g., any object
of the category in question, is thus read as a representation of the motivic Galois
group of Q (never mind that this group, at least as a whole, is still woefully out
of reach). This dominating role of the group (scheme) may remind one of Felix
Klein’s Erlangen programme, and that is apparently what occured to me when I
talked about this to Ralf Krömer a few years ago; see [4, p. 188]. Looking more
closely, and bearing in mind the quite general analogy of category theory with
Klein’s Erlangen programme as envisaged already by Eilenberg and MacLane and
as explored in terms of the notion of supervenience in [5], it might seem more
suitable to describe the result of Tannakian duality in the case at hand as a lin-
earization of the notion of motive, and in particular of the geometry of subvarieties
that went into carving a piece out of a projective variety in the first place, and pos-
sibly of the arithmetic that went into twisting that piece into the motive at hand.
(It will then depend on individual taste whether one likes the suggestion that what
happens here with motives may be analogous to other instances of “linearization”
in pure and applied mathematics.) But however one chooses to describe the en-
coding of motives as representations, and whichever relation of supervenience one
is led to diagnose, motives tend to present an inherent ambiguity, between objects
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of algebraic geometry on the one hand, and of a sort of arithmetic linear algebra
on the other.
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representations, and L-functions (A. Borel, W. Casselman, eds.). Proc. Symp. Pure Math.
vol. 33, part II; Providence, Rhode Island: American Mathematical Society 1979, pp. 313–
346.

[2] Pierre Colmez, Jean-Pierre Serre (eds.), Correspondance Grothendieck - Serre. Documents
Mathmatiques vol. 2. Paris: Socit mathmatique de France 2001.

[3] Uwe Jannsen, Steven Kleiman, Jean-Pierre Serre (eds.), Motives. Proc. Symp. Pure Math.
vol. 55, parts I & II; Providence, Rhode Island: American Mathematical Society 1994.
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How category came to Germany

Klaus Volkert

Remark: Looking at the history of category theory, it becomes quite clear that
at least three fields were important to it: algebraic topology, homological algebra
and algebraic geometry. In my contribution I will deal the first field only. This
is due to my restricted competence and should not be interpreted as a statement
on the relevance of the cited fields. In particular, it is not denied that algebraic
geometry played a mature role in the history of category theory.

From my point of view, the reception of category theory in Germany after the
Second World War is interesting because it shows some features of a “modern-
ization” process. This term is not to be taken here in his precise meaning as the
name of a historical period; it only describes a deep change in the structure of a
field including a new orientation of as a consequence of the feeling that “one has to
take account of the developments that had taken place”, or, in other worlds, that
it was necessary to “update” the mathematics at the disposal. Further on, this
process is also interesting because one may study it in order to get information of
the processes of exchange and transition. If you like so, you may compare it with
Darwin’s arrival on the Galapagos islands: during the War, German mathematics
was almost completely isolated from the developments outside the zone occupied
by the German armies and the majority of German mathematicians were occu-
pied by research for military projects. German topology remained basically on its
pre-war level.
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If we look at the situation of topology — and with this term we mean almost
exclusively algebraic topology (a term coined by P. Alexandroff in 1932, replacing
the term of combinatorial topology) — around 1935, we may state two facts:

(1) There was an international community of topologists working in many coun-
tries including an important community in German speaking countries. Here
is a list (certainly not complete): Germany: Dehn (Francfort); Reidemeister,
Franz, Goeritz (Marburg); Seifert, Threlfall, Hantzsche, Wendt, Nowacki (Dres-
den); Kneser, Furch (Greifswald); van der Waerden (Leipzig); Künneth (Erlangen);
Hausdorff (Bonn); Ehrhard Schmidt (Berlin), Feigl (Breslau); Austria: Menger,
Hahn, Mayer (Vienna); Vietoris (Innsbruck); Switzerland: Hopf, Eckmann (Zürich).
Note that some of the younger topologists as Goeritz, Hantzsche and Nowacki died
during the war.

(2) The central interest of the topologists of that period still was to classify
topological spaces, in particular three-manifolds. Cf. the following citation of
Seifert and Threlfall: “Das Hauptproblem der Topologie besteht darin, zu entschei-
den, ob zwei vorgelegte Figuren homöomorph sind und womöglich alle Klassen
nichthomöomorpher Figuren aufzuzählen” (Seifert-Threlfall 1934, 1 and 4). The
paradigm of a solved problem was the classification of closed surfaces worked out
at the end of the 19th and the beginning of the 20th century (with a gap filled only
by the work of Rad in 1926). Concerning this principal orientation, the changes
taking place around 1930 were not very important. These changes had to do with
the introduction of the homology groups (replacing the elder Betti numbers and
torsion coefficients) and the intensive use of algebraic techniques, in particular of
group theory. They did not yet affect the principal goal.

To illustrate the changes, which took place between 1935 and 1952, we may
compare the tables of content of two textbooks: Topologie written by Seifert and
Threlfall (published in 1934) and Foundations of Algebraic Topology by Eilenberg
and Steenrod – dating from 1952:

Seifert-Threlfall 1934: Eilenberg-Steenrod 1952:

1. Anschauungsmaterial Axioms and general theorems
2. Simplizialer Komplex Simplicial complexes
3. Homologiegruppen Homology theory of simplicial complexes
4. Simpliziale Approximation Categories and functors
5. Eigenschaften im Punkte Chain complexes
6. Flächentopologie Formal homology theory of simplicial

complexes
7. Fundamentalgruppe The singular homology theory

8. Überlagerungskomplexe Systems of groups and their limits
9. Dreidimensionale Mannigfaltigkeiten The Čech homology
10. n-dimensionale Mannigfaltigkeiten Special features of the Cech theory
11. Stetige Abbildungen Applications to euclidean spaces
12. Hilfssätze aus der Gruppentheorie
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The principal aim of the book by Eilenberg and Steenrod is characterized by
its authors as follows: “The principal contribution of this book is an axiomatic
approach to the part of algebraic topology called homology theory. It is the oldest
and most extensively developed portion of algebraic topology, and may be regarded
as the main body of the subject. The present axiomatization is the first given.”
(Eilenberg/Steenrod 1952, iv)

In Seifert-Threlfall there are no diagrams but 132 geometric figures, whereas in
Eilenberg-Steenrod there is no figure of that type at all, but hundreds of diagrams.

It gets quite clear that the interest has changed: what has once been introduced
as a method (homology theory) is now the focus of research. The properties of
homology theories are investigated. They are no more exclusively applied to the
central problem of classification. Clearly category theory is a nice tool in order to
do that new type of research, the axiomatization given by Eilenberg-Steenrod is
based on it.

After 1935 not much work was done in Germany in algebraic topology. This was
due to at least two causes: first, some of the leading topologists left Germany (like
Dehn) or were persecuted (as Hausdorff) or got in politically motivated difficulties
(like Reidemeister); second, after the beginning of the war many mathematicians
worked in military projects (like Seifert, Threlfall, Hantzsche, Franz). In connec-
tion with this, their research interests changed (e. g. Seifert started work on
differential equations, Franz entered questions of cryptology). The poor state of
German research in topology during the war is showed clearly by the well known
FIAT-Reviews.

Concerning the reception of category theory in Germany after 1945, two ques-
tions seem to be interesting:

First, what reasons were given to the relevance of category theory? This is
revealing because category theory didn’t grow out of the work done in Germany
before — it was imported from the outside, so to say.

Second, which were the sources of acquaintance for German mathematicians
of category theory? Where can we find traces of this knowledge? To begin with
the second question, there were two early textbooks containing information on
category theory: Eilenberg-Steenrod’s Foundations of Algebraic Topology (1952)
and Cartan-Eilenberg’s Homological Algebra (1956 but written in 1953). Besides
articles, in particular the original article written by Eilenberg-MacLane (1945)
travels and stays may have been an important source of knowledge. Here is a
list (once again certainly not complete): Seifert (Princeton [Morse]), Reidemeister
(Princeton), Eckmann (Princeton, Illinois), Hirzebruch (Princeton), Dold (New
York [Eilenberg], Strasbourg [Thom]), Puppe (Princeton).

The lecture given by Grothendieck at the “Sommerschule” in Bonn in 1958 was
an event and a good promotion for category theory, too. The “Sommerschule”
tried with great success to unite people from different fields as topology, algebraic
geometry and function theory. A similar role played perhaps the Heidelberg-
Strasbourg-Seminars. So, the idea to use category theory as a unifying language
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was obvious. Another feature to be taken into account is perhaps the re-emigration
of some German mathematicians like R. Baer (1956) or E. Artin (1958).

Concerning the answer to the first question, one may have a look at Ger-
man mathematical journals. They started to appear once again around 1950.
In the Mathematische Annalen we find in volume 122 (1950/51) an article by
Burger (Francfort) which mentions Eilenberg-MacLane, in volume 135 (1958)

Bauer (Francfort) wrote “Über Fortsetzung von Homologiestrukturen” relating
to Eilenberg-Steenrod, in volume 140 (1960) MacLane wrote on Künnth’s formula
and in volume 141 (1960) we find Eckmann-Hilton “Operators and categories in
Homotopy Theory”. The situation in the “Mathematische Zeitschrift” is interest-
ing. Though we find here a lot of articles written by young topologists like Dold
and Puppe, we don’t meet the first references to category theory but around 1960.
The Crelle-Journal published in 1960 its “Krull-Festschrift” with several articles
by French mathematicians (like Samuel, Dieudonné, Dubreil). It should be noticed
that Grothendieck was one of the editors of this journal since 1962.

The situation with textbooks is similar. There are lecture notes of a course
in topology given by D. Puppe at Bonn in the winter term 59/60, in which he
gave some information on category theory. The first textbooks devoted to cate-
gory theory were written by Hasse and Michler and by Brinkmann and D. Puppe
(1966). In the same year Dold published his “halbexakte Homotopiefunktoren”.
In 1969 Pareigis published his textbook on category theory, in 1970 Schubert’s
textbook followed. Concerning textbooks the Germans were not much behind the
international scene. Here we may mention Freyd’s “Abelian categories” (1963) and
Ehresmann who wrote his textbook on “Catégories et structures” in 1965, followed
by Mitchell “Theory of categories” in the same year and Mac Lane’s “Categories
for the working mathematician” in 1971 — with a German translation in 1972. So
we may state, that in the 1960s the German mathematicians were well placed in the
international context. Let me just mention that in 1972 Preuß published his “all-
gemeine Topologie”, a textbook in which category theory is used in set theoretical
topology, a program worked out in the school of P. Grotemeyer (Berlin, later on
at Bielefeld). The reasons given for the need of category theory are typically that
category theory is a convenient language for the needs of algebraic topology. “Der
Begriff des Funktors dient der Vereinfachung der Terminologie. Der Abschnitt 1.0
kann zunächst überschlagen werden.” (Puppe 1959/60, p. 9) MacLane himself
cites four applications of category theory: “They [categories and functors] have
proved useful in the formulation of axiomatic homology, in the cohomology of a
sheaf over a topological space (Godement, 1958), in differential geometry (Ehres-
mann, 1958), and in algebraic geometry (Grothendieck-Dieudonné 1960)” (Mac
Lane 1963, 34).

Let me finish with two remarks: First, it is interesting to note that neither
Hopf nor Reidemeister nor Seifert ever used category theory. So we may see the
phenomenon of generations at work here. It is well known that this played a
certain role in the history of German mathematics after the Second World War
(the most obvious example is the planned foundation of a Max Planck Institute



Mini-Workshop: Category Theory and Related Fields 491

for mathematics in the 1950s and the role of people like Siegel and Courant in
it). The second remark is quite general: there is a lot of work to be done on the
history of mathematics after the Second World War, in particular in Germany.
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