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Abstract. Error is unavoidable in prediction. And it is quite common, of-
ten sizable, and usually consequential. In a clinical context, especially when
dealing with a terminal illness, error in prediction of residual life means that
patients and families are misinformed about their illness, that they may
take foolish actions as a result, and that they may be given inappropriate
or needlesly painful treatments or denied appropriate ones. In meteorology,
error in prediction of storm paths or extreme events can have devastating
consequences. In finance and economics, major policy decisions are taken on
the basis of predictions and forecasts. Rational approaches to reduce and
assess error in prediction are presented. Ideas are introduced how to relate
these statistical strategies with clinical and medical concepts in particular
and how to integrate ideas from apparently different areas.
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Introduction by the Organisers

There is a recent resurgence of interest and activity in probability forecasting,
which encompasses a wide range of sciences [1]. As far as medicine is concerned,
this has been motivated in part by the more routine availability of individual–level
genetic information and consequent potential for improved prognosis, diagnosis,
and individualized therapy [2]. Further motivation has arisen from dramatic in-
creases in power of the computationally intensive statistical methods needed to
determine predictive probability distributions.



218 Oberwolfach Report 06/2010

The goal of a good probabilistic prediction is to maximize the sharpness of the
predictive distributions subject to calibration [3]. Calibration refers to the sta-
tistical consistency between the probabilistic forecasts and the observations, and
is a joint property of the predictive distributions and the events that material-
ize. Sharpness refers to the concentration of the predictive distributions, and is
a property of the forecasts only: The sharper the distributional forecast, the less
the uncertainty, and the sharper, the better, subject to calibration. A number of
alternative prediction accuracy measures have been suggested, for example skill
scores [4] and the notion of predictiveness [5].

The workshop studied recent developments of tools to quantify the quality of a
prediction strategy. These tools have additional impact on guidance in a wealth
of applied statistical problems for count data [6], multivariate continuous data [7]
and survival data [8]. They range from the evaluation of probabilistic forecasts to
model criticism, model comparison and model choice.

Predictive distributions arise naturally in Bayesian modelling approaches. There-
fore, the workshop looked at their state–of–the–art and explored interaction be-
tween Bayesian ideas and alternative approaches.

The intersection of genomics and medicine has the potential to yield a new set
of molecular tools that can be used to individualize and optimize therapy as well as
prognosis [9]. Specific prediction problems in individualized medicine are related
to individual prognosis. Sharpness of individual prognosis is hampered by the
intrinsic large uncertainty of point processes which are so far the methodological
backbone of the predictive models. Biomarkers and their relevance for diagnosis,
prognosis and clinical patient management pose new challenges on the development
of statistical methods for joint models [10, 11, 12]. High–dimensional data from
genetic screens are a further aspect to be integrated into the theoretical basis of
prediction models for individualized medicine [13, 14].

The workshop also offered contributions in prediction strategies applied in the
atmospheric sciences, economics, and finance. Their relevance for the solution of
the problems to be handled in individualized predictive medicine was discussed.

The general aspects discussed during the workshop were producing and as-
sessing probabilistic forecasts. Probabilistic forecasts arise natural in a Bayesian
framework, taking automatically parameter uncertainty into account. A number
of alternative likelihood–based approaches also exist [15]. Technically, probabilis-
tic forecasts are often based on a random sample from the predictive distribution,
due to the non–accessibility of the predictive distribution in a closed form. For ex-
ample, in meteorology so–called ensemble forecasts are often used. These technical
problems increase for multivariate forecasts where a closed form of the predictive
distribution is rarely available. The selection of useful criteria for the assessment
of the quality of probabilistic forecasts is of paramount importance. Proper scor-
ing rules, for example the logarithmic or the Brier score, are accepted tools that
address both calibration and sharpness of a prediction. The mathematical theory
of proper scoring rules is related to the theory of convex functions, to information
measures, and entropy functions [16, 3].
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Further complications arise in the selection of the validation set in order to
quantify the quality of a predictive model. Cross–validation is at the one end of the
spectrum, while truly external validation sets are at the other extreme. As shown
by Stone [17], the cross–validated logarithmic score is asymptotically equivalent
to Akaike’s information criterion (AIC), commonly used for model selection [18].
On the other hand, the Bayesian information criterion (BIC) can be viewed as
an approximation to the log marginal likelihood, the sum of the one-step-ahead
logarithmic scores [19, 20].

The specific aspects for individualized predictive medicine considered individual
prognosis for event times, joint modelling of biomarkers and event time data, high–
dimensional data for predictive models, as well as global assessment of strategies
in predictive medicine, clinical studies, and meta–analysis.

Individual prognosis for event times : Prediction of time–to–event is particularly
challenging yet fundamentally important, especially in medicine when there is a
need to predict residual lifetime following diagnosis of a potentially terminal dis-
ease [8]. Complications include censoring of available data and heteroscedasticity.
A variety of measures of predictive accuracy have been suggested e.g. [21, 22, 23]
but none has been uniformly accepted. Furthermore, the availability of high di-
mensional genetic information has brought two unsolved challenges: how best
to measure the additional value of genetic information over perhaps simpler to
measure characteristics and how to deal with the well-known p ≫ n problem for
predictive purposes as opposed to estimation and model selection. Dealing with
high–dimensional covariate data for non–linear models is beginning to attract at-
tention but numerous problems remain [24]. The usefulness of genetic information
for individual level prediction was a core feature of the workshop.

Joint modelling of biomarkers and event time data: Biomarkers — measures of
biological health — can be used as measures of disease progression and as prior
surrogates for long term events. Examples are CD4 cell counts or other blood
markers for HIV/AIDS e.g. [25] or reduction in telomere length as a measure of
aging [26]. Methods of the joint analysis of the evolution of longitudinal biomarkers
and time–to–event data are being developed [27, 28] but what is not yet clear is how
best to exploit biomarker trajectories — not just current values — for predictive
purposes. A comprehensive Bayesian approach for individual prediction based on
longitudinal biomarker measurements is a promising theoretical approach [10].

High–dimensional data for predictive models : There is a series of studies which
demonstrate the clinical value of prognostic models based on data measured by
high–throughput biotechnologies. These models are in general derived by applying
black–box model free algorithms which do not incorporate subject matter knowl-
edge on the disease of interest [13]. The common feature of these algorithms is a
mechanism of regularization which helps to handle the high–dimensionality of the
measurements used to derive the prognosis [14]. Research on theoretical grounds
of these regularization techniques is of high interest for mathematical statistics
with eminent implication for practical applications. Besides using data to predict
there is also usually an aims of obtaining information about the underlying data
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generation mechanism. The first successes in establishing clinically valuable gene
signatures are not matched by an elucidation of the disease processes which pro-
duce the data. Theoretical guidance and appropriate statistical tools are needed
to build the bridge between a gene signature and the functional aspects of the
disease under consideration [29].

Global assessment of strategies in predictive medicine, clinical studies, and
meta–analysis : The availability of gene signatures which predict specific risks
or the response on therapeutic substances is the building stone of individualized
medicine. They need a thorough assessment of their clinical relevance. The math-
ematical and statistical foundations of new design ideas for clinical trials have to
be developed and implemented in biometrical practice [2]. Furthermore, there is
a lack of mathematical and statistical tools for combining knowledge over a large
literature on the relationship between specific biomarkers and response on specific
substances. First examples of these meta–analyses are being published and started
the discussion on methodological development [30].
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Abstracts

When is a risk prediction model useful in the individual?

Martin Schumacher

In many areas of epidemiology and clinical medicine, risk prediction models are
used to individually predict the risk of the occurrence or the course of a particular
disease, respectively. Popular examples are the Gail model for the development of
breast cancer or the Framingham risk score for dying on cardiovascular disease.
Mathematically, a risk prediction model is a rule that yields a predicted probability
of the event of interest in a certain time period given the covariate information
of an individual available at the time of prediction. It is common practice that
from a significant effect of a risk factor and/or a good calibration of the model it is
assumed that it also has good predictive ability. This, however, is generally not the
case. In order to judge the predictive ability, an unbiased estimation of measures
of prediction error is necessary that satisfy several requirements, e.g. consider
time in an adequate way and allow a comparison with suitable benchmark values.
In some examples from epidemiology and clinical medicine, it is shown that the
predictive ability of most current risk prediction models is poor or at least modest
and can only marginally be improved by adding genomic markers. Finally, some
requirements are derived that make a good prediction model also useful in the
individual. For achieving this ultimate goal, further steps towards improvement of
current risk prediction models, the evaluation of suitable criteria and identification
of appropriate study designs have to be taken.
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The value of adding SNP data to a model for breast cancer risk for

public health decisions

Mitchell H. Gail

This work compares the National Cancer Institute’s ’Breast Cancer Risk Assess-
ment Tool’ (BCRAT), a model that predicts breast cancer risk with standard
epidemiologic predictors such as family history, with a model that also includes
7 single nucleotide polymorphisms(SNPs) that are associated with breast can-
cer (BCRAT+7). I described the assumptions for specifying the joint risk from
the SNPs and the factors in BCRAT and the corresponding distribution of risks
in the population, F . Using this distribution, I showed that adding SNPs im-
proved the discriminatory accuracy, measured as the area under an ROC–type
curve, from 0.607 for BCRAT to 0.632 for BCRAT+7. To determine whether this
small increase in discriminatory accuracy translates into improvements in public
health decisions, I used the distribution F to compute expected losses in three
applications: (1) deciding whether to take tamoxifen to prevent breast cancer;
(2) deciding whether or not to recommend mammographic screening; and (3) al-
locating resources for screening mammography under cost constraints. For the
first application, BCRAT+7 reduced expected deaths in a population of women
aged 50–59 years by 0.1%, compared to BCRAT. For the second application, the
improvement in expected losses from using BCRAT+7 was 0.8%, compared to
BCRAT. In the third application, I assumed that there was only enough money
to give mammograms to half the population and that risk assessment cost 2%
as much as a mammogram. The proportions of deaths prevented, compared to
giving all women mammograms, were: 0.500 if the mammograms were allocated
at random; 0.632 if women are first ranked according to their BCRAT risk and
then mammograms are given to those at highest risk, until the money runs out;
and 0.667 if this procedure is followed with BCRAT+7 instead. The procedure
based on BCRAT+7 is thus 5.5% better than that based on BCRAT, but this
calculation ignored the fact that SNP measurements are currently too expensive,
compared to mammography, for this risk based strategy. Based on these calcu-
lations, I concluded that SNPs do not add enough information for public health
decisions to warrant their use outside the research setting.

References

[1] M.H. Gail, Discriminatory accuracy from single–nucleotide polymorphisms in models to
predict breast cancer risk, Journal of the National Cancer Institute 100 (2008), 1037–1041.

[2] M.H. Gail, Value of adding single–nucleotide polymorphism genotypes to a breast cancer
risk model, Journal of the National Cancer Institute 101 (2009), 959–963.



Statistical Issues in Prediction 229

Two criteria for evaluating risk prediction models

Ruth M. Pfeiffer

We propose and study two criteria to assess the usefulness of a risk model that
predicts risk of disease incidence for screening and prevention, or the usefulness
of prognostic models for management following disease diagnosis. The first crite-
rion, the proportion of cases followed, PCF (q), is the proportion of individuals
who will develop disease who are included in the proportion q of individuals in
the population at highest risk as determined by the model. The second new com-
plementary criterion, is the proportion needed to follow–up, PNF (p), namely the
proportion of the general population at highest risk as determined by the model
that one needs to follow in order that a proportion p of those destined to be-
come cases will be followed. Letting F denote the distribution of risk in the
population, for a well calibrated model the distribution of risk, R, in the cases
is given by G(r) = P (R ≤ r|Y = 1) = 1

µ

∫ r

0
tdF (t), where µ denotes the mean

risk in the population. Denote the (1 − q)th population quantile by ξ1−q, then

PCF (q) = 1−G(ξ1−q) = 1−G◦F−1(1− q) = 1− 1

µ

∫ ξ1−q

0
tdF (t). The proportion

needed to follow–up is PNF (p) = 1−F ◦G−1(1−p). We show the relationship of
those two criteria to the Lorenz curve and its inverse, and present distribution the-
ory for estimates of PCF and PNF. We develop new methods, based on influence
functions, for inference for a single risk model, and also for comparing the PCFs
and PNFs of two risk models, both of which were evaluated in the same validation
data. We assess our methods using simulated data, and we compute PCF and
PNF for data from a validation study for a model that predicts the absolute risk
of colorectal cancer.
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Predictive models in prostate cancer

Jeremy M. Taylor

We consider joint longitudinal–survival models for describing the pattern of PSA
values and the recurrence of prostate cancer for patients treated with radiation
therapy for prostate cancer. A non–linear random effects is used for the longitu-
dinal PSA data, and a time dependent proportional hazards model is used for the
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recurrence of prostate cancer. The models are fit using Bayesian MCMC meth-
ods. The models are used for individual prediction of prostate cancer recurrence for
patients who have a series of PSA values and wish to predict future disease progres-
sion. The predictions are implemented on a website, https://psacalc.sph.umich.edu/
The models are validated by building them on pooled datasets of over 2000 pa-
tients, and tested on two external datasets. The model validates well on one
dataset, but not so well on the other. A complication with the validation is that
the censoring is dependent.

Development and validation of a dynamic predictive tool derived from

the joint modelling of longitudinal marker and time–to–event

Cecile Proust-Lima

(joint work with Jeremy M.G. Taylor)

Joint models for longitudinal and time–to–event data offer a natural framework
to describe the risk of a clinical event according to the repeated measures of a
biomarker. Based on these models, dynamic prognostic tools can be built that
may be updated each time a new biomarker data is collected. In Prostate Can-
cer study, such tool would be of great interest since the biomarker PSA, which is
routinely and repeatedly measured on patients treated by a radiation therapy, has
been shown to be highly associated with Prostate Cancer recurrence. However,
for now, prognostic models for recurrence of Prostate Cancer only use information
collected at diagnosis. Indeed, the development of dynamic prognostic tools has
been limited by the numerical complexity induced by the joint models estimation.
In this talk, we propose a dynamic prognostic tool derived from a joint latent class
model [3] that avoids the numerical complexity due to the shared random–effects in
standard joint modelling. We show how to compute such dynamic prognostic tool
and provide 95% confidence bands using an approximation of the posterior distri-
bution of the predicted probability of event. The main problem when developing
a prognostic tool, either dynamic or static, remains in its validation on external
data and its comparison with other prognostic tools. In survival analysis, predic-
tive accuracy measures were proposed to evaluate the predictive performances of
prognostic tools [1, 4] and were extended to evaluate dynamic tools that can be
updated during the follow–up [2, 5]. In the present work, we use some of these
measures to validate the dynamic prognostic tool we proposed and compare its
predictive performances with those of proportional hazard models that include
either only baseline covariates or baseline covariates and the level of PSA at the
point of prediction. The latter prognostic tool is derived from a landmarking anal-
ysis that directly fits the predictive model for the individuals still at risk at the
landmark point. From maximum likelihood estimates of these models obtained on
a large cohort of patients treated after the diagnosis of a localized prostate cancer,
we evaluate the predictive ability of the derived prognostic tools on 2 independent
cohorts. We show that the dynamic prognostic tool based on the joint model
reduces the error of prediction (whatever the specification of its estimator and
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especially in the way it handles the censored data). This underlines the relevance
of the dynamic prognostic tool in this context, and shows especially that the entire
trajectory of PSA is of interest when predicting the risk of recurrence of Prostate
cancer. The use of the dynamic prognostic tool is also illustrated at the individual
level.
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Development and evaluation of empirical models for prediction

Tianxi Cai

Clinical trials or studies of biomarkers incremental value focus primarily on esti-
mating average effects. However, a treatment reported to be effective may not be
beneficial to all patiens. Markers shown as potentially useful for improving the
prediction of clinical outcomes may not be equally useful to the entire popula-
tion. Traditional approaches to evaluating treatment benefit and added value of
new markers fit regression models and assess the significance of the corresponding
coefficient. Such methods while useful for hypothesis testing, may have limited
ability to quantify the importance of new treatment or markers due to restrictive
model assumptions. In this talk I discuss various approaches to quantifying treat-
ment/marker benefit over subpopulations indexed by predictive covariates. We
propose robust procedures for evaluating treatment/marker benefit over subpopu-
lations via two–step procedures where we employ statistical models to approximate
how such benefits may change over covariate labels and subsequently use a non–
parametric procedure to obtain consistent model free approach to estimate the
subgroup specific benefit. Simultaneous confidence interval procedures were pro-
posed as tools for identifying subgroups that may or may not benefit from the new
treatment/marker.
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Quantifying the uncertainty of individual risk predictions

Thomas Gerds

The performance of risk prediction models can be estimated and compared using
bootrap–crossvalidation. In praxis, this often yields similar performances of several
modelling strategies. However, one of the rival strategies will eventually perform
best — on the population average. For patient individual predictions it may be of
interest to know if different models have different prediction variability. Confidence
levels can be obtained at patient individual characteristics, from the same bootrap–
crossvalidation procedure which was used to assess prediction performance. The
ideas are illustrated with examples in fertility and stroke prediction.

Disease progression models: assessing their relevance for

individualized medicine

Jörg Rahnenführer

Human tumors are often associated with typical genetic events. The identification
of characteristic pathogenic routes in such tumors can improve the prediction of
survival times and help choosing optimal therapies. We have developed models for
estimating pathways of chromosomal alteration from cross–sectional data. Such
models can be validated both statistically and biologically. The model further
allows the introduction of a genetic progression score (GPS) that quantifies uni-
variately the progression status of a disease. The clinical relevance was shown for
various tumor entities. We present a simulation study that examines model sta-
bility and the necessary sample size for recovering the true relationship between
genetic progression and survival.

Testing the prediction error difference between predictors

Mark Van de Wiel

We develop an inference framework for the difference in errors between two pre-
diction procedures. These two procedures may differ in any aspect and possible
utilize different sets of covariates. We apply training and testing on the same data
set which is accommodated by sample splitting. For each split, both procedures
predict the response for the same samples, which results in peaked residuals to
which a signed–rank test is applied. Multiple splits result in multiple p–values.
The median p–value and the mean inverse Normal one are proposed as summary
test statistics, for which we prove bounds on the type I error rate. Simulation
studies confirm the conservative nature of these bounds. Moreover, the multi–
split approach has superior power w.r.t. the single split approach. Our inference
framework is applied to genomic–survival data sets to study two issues: compare
lasso and ridge regression; and decide upon use of both methylation and gene ex-
pression markers as the latter only. In the latter case, significance was established,
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which should support the use of the more expensive prediction method that uses
both marker types.

Model dependence of statistical predictions

John Copas

Most statistical methods assume that the date are randomly sampled from some
fixed model. In practice, however, there is uncertainty in the model as well as in
the data. Before using a model, it is standard practice to check its goodness of
fit to the data. We may forget that for any given set of data there will be many
other models which also fit the data just as well. Our interest is to see whether
such models all give the same inference (model rebustness) or a wide variety of
inferences (model dependence).

We develop a simple theory to illustrate these points, based on confidence inter-
vals for a specific parameter of interest. We study the union of confidence intervals
from all models which would be accepted by goodness–of–fit test G, and then min-
imize the length of this union interval by optimizing over G. The resulting interval
is similar to the non–parametric confidence interval based on the data alone, but
with the variance parameter doubled. This surprisingly simple result raises ques-
tions about whether statisticians should adopt a ’worse case’ or a ’concensus’ view
of model uncertainity, and whether models must necessarily invoke assumptions
which go beyond the information in the data.

Semiparametric mixed models with Dirichlet process mixture and

P–spline priors

Ludwig Fahrmeir

Longitudinal data often require a combination of flexible trends and individual–
specific effects. We propose a fully Bayesian MCMC approach, using (Bayesian)
P–splines for modelling nonlinear trends, while a Dirichlet process mixture specifi-
cation allows for an adaptive amount of deviation from normality of random effects.
We investigate properties through a simulation study and present an application
to childhood obesity.

Nonparametric predicitve inference via Bayesian additive regression

trees

Edward I. George

(joint work with Hugh Chipman, Robert McCulloch)

Consider the canonical regression setup where one has data on y, a variable of
interest, and x1, . . . , xp, p potential predictor variables. For the general purpose of
discovering the form of f(x1, . . . , xp) ≡ E(Y | x1, . . . , xp) and making predictive
inference about a future y, we develop a Bayesian ’sum–of–trees’ model where each
tree is constrained by a regularization prior to be a weak learner, and fitting and
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inference are accomplished via an iterative Bayesian backfitting MCMC algorithm
that generates samples from a posterior. Effectively, BART is a nonparametric
Bayesian regression approach which uses dimensionally adaptive random basis
elements. Motivated by ensemble methods in general, and boosting algorithms in
particular, BART is defined by a statistical model: a prior and a likelihood. This
approach enables full posterior inference including point and interval estimates
of the unknown regression function as well as the marginal expects of potential
predictors. By keeping track of predictor inclusion frequencies, BART can also be
used for model free variable selection. BART’s many features are illustrated with
a bake–off against competing methods on 42 different data sets, with a simulation
experiment and on a drug discovery classification problem.

Modelling interactions with continuous covariates

Willi Sauerbrei

(joint work with Patrick Royston)

In regression models continuous predictors are often either categorized or linear-
ity is assumed. However, both approaches can have major disadvantages and
modelling non–linear functions may improve the fit. The multivariable fractional
polynomial (MFP) approach determines simultaneously a suitable functional form
and deletes uninfluential variables [2, 3]. Extensions of MFP have been developed
to investigate for interactions of continuous covariates with treatment (or more
generally with a categorical variable, MFPI) and for two continuous covariates
(MFPIgen). Both strategies allow to adjust for other covariates when investigat-
ing for interactions. After an introduction to MFP the two interaction approaches
will be illustrated in two large studies analyzed with the Cox–model and respec-
tively the logistic model.
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Evaluating point forecasts

Tilmann Gneiting

Typically, point forecasting methods are compared and assessed by means of an
error measure or scoring function, such as the absolute error or squared error.
The individual scores are then averaged over forecast cases, to result in a sum-
mary measure of the predictive performance. I demonstrate that this common
practice can lead to grossly misguided influences, unless the scoring function and
the forecasting task are carefully matched.

Effective point forecasting requires that the scoring function be specified ex
ante, so that the forecaster can employ the Bayes predictor, or that the forecaster
receives a directive in the form of a statistical functional, for which the scoring
function is consistent, in the sense that the expected score is minimized by following
the directive. Expectations, ratios of expectations, quantiles and expectiles allow
for an explicit characterization of the respective consistent scoring functions, which
can be understood as a Choquet representation.

Motivating ridge regression

Jelle Goeman

We consider the problem of shrinkage. Ridge regression, a well–known shrinkge
method, is often motivated by a bias–variance trade–off argument. By a toy
example we show that the same bias–variance trade–off argument can be used to
motivate other methods that do not, like ridge regression, shrink towards zero,
but towards any other value. To complement this motivation, we propose an
alternative argument that bounds the norm of the regression coefficients on the
basis of an argument using the marginal distribution of the response Y and the
predictor variables X.

Measures of prediction error for survival data with longitudinal

covariates

Erika Graf

(joint work with Rotraut Schoop)

Prognostic models play an important role in medical research. They can be useful
to establish a link between a patient’s characteristics and patient’s future survival,
and also for example for risk classification or therapy assignment. It is well known
that point predictions of survival endpoints are hardly of any ’real use’, due to the
inherent variability of human survival. However, probabilistic prediction of sur-
vival chances may still be valuable, and their prediction error should be assessed.
To develop an adequate measure of predictive error in a survival context with lon-
gitudinal covariates, these issues should be taken into account. i) Misspecification
should be picked up, ii) the chronological order in which information (covariates
and survival) arises should be accounted for and iii) scoring should be dealt with
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appropriately. Estimation of the Brier Score with an inverse probability of cen-
soring weighting has the three desired properties and is therefore recommended
as a measure of prediction error. Simulation studies show that the estimator is
centered around the true parameter with reasonable variability, depending on the
percentage of censored observation.

Score regression: detect miscalibration of normal probability forecasts

Kaspar Rufibach

(joint work with Leonhard Held and Fadoua Balabdaoui)

Typically, calibration of probabilistic forecasts is assessed via looking at probability
integral transformation (PIT). We propose a new approach based on scoring rules.
Specifically, for a normal predictive distribution one can compute the expectation
of the Log– and Continuous ranked probability Score and set up a linear regression
model based on the relationship between the expected scores and the predictive
standard deviation. We illustrate the new and some further approaches in two case
studies and show that score regression on either score substantially outperform
existing methods, in particular PIT, in terms of power to detect miscalibration.

Predictive model selection in linear mixed–effects models

Julia Braun

(joint work with Leonhard Held)

Considering predictions for longitudinal data, there are two possible aims: either
predictions for future timepoints of an individual that is already included in the
data set or the prediction of a whole trajectory of a new individual can be desired.
Performing choice of linear mixed–effects models with serial correlation is a chal-
lenging task in both of these situations. Apart from the selection of covariates, also
the choice of the random effects and the residual correlation structure should be
possible. The application of classical model choice criteria such as AIC or BIC is
not obvious, and many versions do exist. We propose a predictive cross–validation
approach to model choice which makes use of the logarithmic and the continuous
ranked probability score [3, 2]. In contrast to full cross–validation, the model has
to be fitted only once, which enables fast computations, especially for large data
sets [4]. The proposed methodology is applied to search for the best model to
predict HIV progression based on CD4+ count data obtained from the Swiss HIV
Cohort Study (SHCS).
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On the prognostic value of survival models with application to gene

expression signatures

Thomas Hielscher

(joint work with Manuela Zucknick, W. Werft, Axel Benner)

As part of the validation of any statistical model, it is good statistical practice
to quantify the prediction accuracy and amount of prognostic information repre-
sented by the model; this includes gene expression signatures derived from high–
dimensional microarray data. Several approaches exist for right–censored survival
data measuring the gain in prognostic information compared to established clinical
parameters or biomarkers in terms of explained variation or explained randomness.
They are either model–based or use estimates of prediction accuracy. As these
measures differ in their underlying mechanisms, they vary in their interpretation,
assumptions and properties, in particular in how they deal with the presence of
censoring. It remains unclear, under which conditions and to which extent they are
comparable. We present a comparison of several common measures and illustrate
their behaviour in high-dimensional situations in simulation examples as well as
in an application to a real gene expression microarray data set.

Geostatistical model averaging

Will Kleiber

We introduce new methodology to produce calibrated and sharp predictive distri-
butions for temperature based on an ensemble of forecasts. The method extends
the Bayesian model Averaging approach of Raftery et al. (2005) to allow for lo-
cally varying statistical parameters. We view the bias correction and predictive
variance as spectral Gaussian processes. In an example for 48 hour ahead tem-
perature forecasts, the method produces locally calibrated predictive distributors
which are significantly sharper than a global parameter approach.
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Using data of clinical trials to explore individualized therapies in

patients with colorectal cancer

Rüdiger P. Laubender

Responder analysis is a statistical concept often required by physicians. It is used
for modelling individual response to drug treatment in fields like pharmacogenetics,
pharmacogenomics, individualized therapies and oncology. However, individual
response to treatment cannot be established from data generated by an experiment
using a parallel–group design. In such a design we observe for a patient only one of
the potential outcomes, either Y1 (outcome under active treatment) or Y0 (outcome
under control treatment or placebo), but not both simultaneously. Hence, we
cannot observe the individual treatment effect for any patient.

This fact is known in the field of causality based on counterfactuals as the
’Fundamental Problem of Causalitiy’ [1]. To solve this problem, Holland provides
two ’solutions’: Two scientific solutions and two statistical solutions. Essentially,
the problem is to identify the joint distribution of the potential outcomes Y1 and
Y0 from two marginal distributions, each for Y1 and Y0 obtained from a parallel–
group design. One of Holland’s statistical solutions is the assumption of constant
treatment effect for all patients. This assumption can be relaxed by conditioning
on prognostically important covariates and covariate–by–patient interactions in
order to approximate individual treatment effects. An example for this is given
developed within the framework of linear models [2, 3].

It is planned to use data from three oncologic trials to explore the limitations of
identifying individual treatment effects. Further, the methodology for identifying
the joint distribution of treatment outcomes from two marginal distributions will
be extended to the framework of logistic regression and regressions for survival
data.
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Predictive assessment of Bayesian hierarchical models

Daniel Sabanes-Bove

(joint work with Leonhard Held, Ludwig Fahrmeir)

Bayesian hierarchical models are increasingly used in many applications. In par-
allel, the desire to check the predictive capabilities of these models grows. How-
ever, classic Bayesian tools for model selection, as the marginal likelihood of the
models, are often unavailable analytically, and the models have to be estimated
with MCMC methodology. This also renders leave–one–out cross–validation of
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the models infeasible for realistically sized data sets. In this talk we therefore
propose approximate cross–validation sampling schemes based on work by Mar-
shall and Spiegelhalter [2], for two model classes: conjugate change point models
are applied to time series, while general linear mixed models are used to analyze
longitudinal data. The quality of the models’ predictions for the left–out data is
assessed with calibration checks and proper scoring rules. In several case studies
we experienced that the approximate cross–validation results are typically close
to the exact cross–validation results, and are much better suited for predictive
model assessment than analogous posterior–predictive results, which can only be
used for goodness–of–fit checks. One case–study on the Nile discharge data [1] is
presented in the talk, and an application with childhood obesity data [3] where
the exact leave–one–out scheme is infeasible demonstrates the practical use of the
approximate method.
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Independence screening for high–dimensional prognostic Cox models

Manuela Zucknick

(joint work with Thomas Hielscher, Axel Benner)

In clinical applications of high–throughput technologies for generating genomic
data, one aim is the development of prognostic models for patient survival. In
this context, two — possibly competing — objectives exist. While a model should
be as useful as possible for survival prognosis, it should also be small, i.e. only
contain a small set of genomic variables relevant for prognosis to enable biological
interpretation.

Sparse penalised likelihood methods are well suited for this task. As examples
of this class of models, we chose to study the lasso and SCAD, because of their
known asymptotic properties of model consistency and in the case of SCAD —
under certain assumptions — also asymptotic unbiasedness. While this so–called
oracle property makes SCAD an attractive penalty choice in certain — very sparse
— data settings, it does require an initial screening step to reduce the number of
potential predictors to a number smaller than the sample size. In the context
of linear models, Fan and Lv [1] proposed to use simple marginal statistics for
screening, proving the sure screening property in the case of independent data.

We investigated in simulation studies, how well the sure screening property
holds, if this unrealistic assumption of independence is violated. We compared
several adaptations of Fan and Lv’s method to the setting of Cox models, since
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we are interested in modelling patient survival. Because the ultimate aim is to
fit models with good prognostic value, we also studied the effect of the screening
methods on the prognostic value of the final models, as measured by the probability
to reject the global null hypothesis that all regression coefficients are zero under
various alternatives.
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Competing risks and time–dependent covariates

Per K. Andersen

(joint work with Giuliana Cortese)

In survival analysis, hazard regression models enable inclusion of time–dependent
covariates. However, when including internal/endogeneous covariates, the one–to–
one correspondance between hazard function and cumulative survival probability
is lost. This problem persists in models for competing risks. In this paper we
explore some methods by which cumulative incidences in competing risks models
may be estimated in the presence of an internal time–dependent covariate. One
method is based on an extension of the competing risks multi–state model while
the other builds on van Houwelingen’s ’landmark’ approach [1]. Data from a bone
marrrow transplantation study are used to illustrate the techniques.
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Choice of prognosis estimators based on Kullback–Leibler risk

Daniel Commenges

A general approach to statistical inference can be based on Kullback–Leibler risk.
A model (g) is a family of distributions (gβ)β∈B. The maximum likelihood esti-
mator minimizes an estimator of the Kullback–Leibler risk. The maximum like-
lihood estimator converges toward the distribution gβ0 which has the minimum
Kullback–Leibler risk in (g). We can define the expected Kullback–Leibler risk

for it: EKL(gβ̂n). Akraike criterion is an estimator of this risk, up to a constant.
A normalized difference of Akaike criterions estimates the difference of EKL be-
tween two models and an an asymptotic distribution can be given. In regression
problems two cases can be distinguished. In the standard case Akaike criterion
can be used because it can be considered as applying to a ’reduced model’, which
is a joint model in which the marginal distribution of the explanatory variable is
known.
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In complex prognosis models where a latent process is assumed to link the
marker values and the event to be predicted, a corrected version of Akaike criterion
must be developed. An adapted cross–validation criterion can also be proposed.
Both criterions are asymptotically equivalent.

A Measure of Explained Variation for Survival Models

Janez Stare

Coefficient of determination, usually denoted as R2, is a popular measure of the
overall performance of a linear regression model. It is based on the fact that a
measure of variation, sum of squared distances from the mean in this case, can
be decomposed into the explained and unexplained part. R2 is then simply a
ratio of the explained part and the total variation, thereby giving us an intuitively
attractive measure of the proportion of explained variation. It is then natural
that similar measures are sought for other models. Unfortunately, the simple
decomposition doesn’t work in nonlinear models. A search for some measure of
explained variation, or something similar, in survival analysis has been going on
for almost 30 years. First intuitive attempts were followed by papers trying to
fix the statistically non–desirable properties, dependency on censoring being the
most obvious.

In this work we present a new approach, based on ranks, in which our goal is
to have a measure which can handle time dependent effects and covariates, while
having all the necessary statistical properties. At each event time, we calculate
the differences between the predicted rank of a failed subject under the null and
the fitted model, and under the null and the perfect model. These differences
are then summed up over all event times, and the first sum is the divided by
the second, giving our measure. The contributions to the sum are appropriately
weighted to make the measure independent of censoring. We can give the measure
the explained variation interpretation in the sense that variation is any measure of
the degree to which a distribution is not degenerate. We provide the population
value and a variance estimator. A side effect of our approach is that the measure
contains the popular C index as a special case when there is no time dependency.
We are reluctant to call our measure a generalization of the concordance index, as
concordance doesn’t make much sense in the presence of time dependent covariates
and/or effects.

Obtaining probabilistic forecasts from an ensemble of point forecast

Thordis L. Thorarinsdottir

Ensembles of point forecasts appear in many different applications: ensembles
of dynamical weather prediction models have been developed, in which multiple
estimates of the current state of the atmosphere are used to generate a collection of
deterministic forecasts; in economics, large surveys are regularily conducted, where
experts or non–experts give their past estimates for future values of a large number
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of economic variables. However, such ensemble systems are often uncalibrated
and biased. We propose a novel way of statistically post–processing ensemble
forecasts by using heteroskedastic regression which allows for censoring and/or
asymmetry in the resulting predictive distribution. The results show a substantial
imporovement in the predictive performance over the unprocessed ensembles.

A new strategy for meta–analysis of continuous covariates in

observational studies

Patrick Royston

While meta–analyses of data from randomized controlled trials is well–established
and familiar to statisticians and many health professionals, meta–analysis of dose–
response relationships in observational studies is much less developed. We present
a suggestion for meta–analysing the influence of a continuous covariate in an epi-
demiological or prognostic setting. We model the effect of the covariate using
fractional polynomical functions in each study, and combine estimated functions
using pointwise weighted averaging. Confounders, which may differ across studies,
are modelled per study and their linear predictors are used to adjust for confound-
ing in each study. Fixed or random–effects models can be used. We apply the
methods, as a motivating example, to registry data from the US SEER database
for breast cancer patients, showing how the prognostic influence of number of
positive lymph nodes and of age can be usefully summarised across registries.

Study designs for evaluating putative predictive markers

Patrick Bossuyt

We argue that prediction models should be evaluated from a conceptualist per-
spective, not an essentialist one. We discussed study designs and metrics to do so.
The key issue is to look at predictive markers and models on treatment selection
indicators.

Developing valid prediction models: a proposal for a framework with 7

steps

Ewout W. Steyerberg

Prediction models are increasingly developed in many medical fields, including
cancer, cardiovascular disease, and many others. Methodological reviews have
consistently shown many shortcomings in currently published models.

A number of requirements need to be fulfilled to develop a valid model. First,
predictors need to be available that have a strong relationship with the outcome.
Only then subjects with and without the outcome can be discerned. Next, an
adequate sample size needs to be available. Third, a sensible modelling strategy
needs to be followed that systematically considers a number of steps, such as deal-
ing with missing predictor values, transformation of continuous variables, selection
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of predictors and model specification, concern for overoptimistic estimation of ef-
fects, validation, and presentation of the final model. Ideally, a developed model
is subsequently externally validated in another setting to assess its generalisabil-
ity, and eventually tested for clinical impact. This final application may require
simplification of a model to a simple decision rule.

I propose a framework including 7 logically distinct steps for prognostic mod-
elling, and illustrate these steps in a case study of patients with an acute myocar-
dial infarction. The framework may not only be useful for model development,
but also to critique developed models, to guide reporting of models, and to define
issues to be addressed in protocols for prediction models.
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Dynamic prediction of cure

Hans C. van Houwelingen

Cure models for survival data divide the patients in two groups: those who are
cured by the treatment and will not die from the disease and those who are not
cured and might die from the disease. Since the latter might not die within the
follow–up period, it is impossible to estimate the fraction cured unless very strong
assumptions are made on the shape of the survival function. The paper proposes
an operational definition of cure related to the probability of dying within a fixed
window of w = 5 or 10 years. Patients are declared to be cured if that probability
is small enough. It is shown how the probability of dying within w years can
be assessed dynamically during the follow–up using the landmark methodology of
Van Houwelingen [1].
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Predicting survival from genomic data

Ornulf Borgan

Six methods for building survival prediction models from clinical covariates and
gene expression measurements were discussed. The methods, all based on Cox’s
regression model, were variable selection, unsupervised and supervised principal
components regression and partial least squares regression, ridge regression, and
the lasso. For all methods it was described how one may combine classical clini-
cal covariates with genomic data in a clinico–genomic prediction model using both
types of covariates, but applying dimension reduction only to the high–dimensional
genomic variables. The performance of the methods were compared using three
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data sets, and the comparison showed that ridge regression had the best perfor-
mance and univariate selection had the poorest performance among the six meth-
ods [3]. These conclusions were not dependent on which one of three commonly
used criteria that was applied to assess the prediction performance of the models
[2]. Finally it was pointed out that simulation studies are of limited use when
comparing the performance of methods for building survival prediction models,
and that studies of real data sets are to be preferred [1].
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Genetic interactions

Wolfgang Huber

Individuals within a population vary across many phenotypes. For instance, hu-
mans vary with respect to their susceptibility to different diseases, cancers vary
with respect to their response to drugs. There are both genetic and environmen-
tal contributions to this variation. Typically, the resulting phenotypes are com-
plex, combinatorial functions of the genetic and environmental variables. Broadly
speaking, the aim of my research is to dissect these different sources of varia-
tion. Specifically, I describe an experiment that systematically explores pairwise
interactions of gene perturbations by RNA interference on the growth rate and
cell cycle in Drosophila cell lines. These data pose some interesting challenges to
statistical analysis and modelling. They provide unprecedented insights on the
modular architecture of cellular processes, and allow to place individual genes on
a functional map.

Signaling, drugs, and cancer

Rainer Spang

Tumours arise from dysfunctional cellular communication. Normal cells grow when
receiving growth signals. Tumour cells grow without these signals. They prolif-
erate although they should not. They receive signals of cell death but do not
respond to them properly. They can escape immune responses by sending out sig-
nals that modulate the immune system. In summary, a tumour can only survive
as a tumour, if it perturbs the molecular communication in cells and between cells.

The molecular survival mechanisms in turn are Achilles heals of tumours, mak-
ing them targets for cancer treatment. An obstacle is that different tumours
activate different survival pathways. While the survival mechanism of somebody’s
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breast cancer might be similar to that of someone else’s colon tumour, different
tumours of the same entity can use completely different survival strategies. How
can we find the molecular weaknesses of an individual tumour?

Genomic high through put data allows us to monitor the molecular makeup of
tumours. Survival mechanisms leave their traces in this data forming characteristic
patterns. I described some novel statistical approaches to associate patterns in
high dimensional genomic data with molecular mechanisms of tumour survival.
Moreover, I discussed a network inference method that can be used to model the
flow of information in cells bases on the nested structure of intervention effects.

Technological advances in genomics and their impact for personalized

medicine

Julien Gagneur

I will review technological developments of the last 5 years in genomics and molec-
ular biology with potential impact on personalized medicine. Four technologies
appear to become likely major players. High–throughput sequencing gives access
to individual genotypes as well as dynamic molecular states of the cell such as
transcription or chromatin modifications. Synthetic biology will enable directed
explorations of genetic variations. Microfluidics extends by several orders of mag-
nitudes the amount of samples handled in a single experiment. Finally, the gener-
ation of induced pluripotent stem cells will give flexible access to patient–specific
cells of any type.

Genetic diversity of pathogen populations within patients

Niko Beerenwinkel

Many human diseases are the result of evolving pathogens, including cancer cells in
a tumor and infectious parasites, such as bacteria and viruses. Treatment of these
constantly changing ensembles of individuals is complicated by evolutionary escape
from the selective pressure of drugs and immune responses. We present statisti-
cal and computational tools for estimating the diversity of a pathogen population
from next–generation DNA sequencing data. We employ a infinite–dimensional
probabilistic clustering method based on the Dirichlet process mixture in order to
separate technical sequencing errors from true biological variation and to recon-
struct the haplotype structure of the population.
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High–dimensional Cox models: the choice of penalty as part of the

model building process

Axel Benner

(joint work with Manuela Zucknick, Thomas Hielscher, Carina Ittrich, Ulrich
Mansmann)

The Cox proportional hazards regression model is the most popular approach to
model covariate information for survival times. In this context, the development of
high–dimensional models where the number of covariates is much larger than the
number of observations (p >> n) is an ongoing challenge. A practicable approach
is to use ridge penalized Cox regression in such situations. Beside focussing on
finding the best prediction rule, one is often interested in determining a subset of
covariates that are the most important ones for prognosis. This could be a gene
set in the biostatistical analysis of microarray data. Covariate selection can then,
for example, be done by L1–penalized Cox regression using the lasso.

Several approaches beyond the lasso, that incorporate covariate selection, have
been developed in recent years. This includes modifications of the lasso as well as
non–convex variants like SCAD. The purpose of our paper is to implement them
practically into the model building process when analyzing high–dimensional data
with the Cox proportional hazards model.

To evaluate penalized regression models beyond the lasso we included SCAD
variants and the adaptive lasso. We compare them with ’standard’ applications
like ridge regression, the lasso, and the elastic net. Predictive accuracy, features
of variable selection, and estimation bias will be studied to assess the practical use
of these methods.

We observed that the performance of SCAD and adaptive lasso is highly depen-
dent on non–trivial pre–selection procedures. A practical solution to this problem
does not yet exist. Since there is high risk of missing relevant covariates when
using SCAD or adaptive lasso applied after an inappropriate initial selection step,
we recommend to stay with lasso or the elastic net in actual data applications.
But with respect to the promising results for truly sparse models we see some
advantage of SCAD and adaptive lasso, if better pre–selection procedures would
be available. This requires further methodological research.

Populational inference in presence of non–ignorable missing data with

individualized modelling prediction of latent variables

Haiqun Lin

We propose a method of using latent variable prediction for population inference
of longitudinal data in the presence of non–ignorable missing data. Under the sit-
uation of missing completely at random, generalized estimating equation (GEE)
provide a valid approach (Liang & Zeger 1986). Under the situation of missing at
random, the weighted GEE proposed by Robins and colleagues is a valid approach
(Robins, Rotnetzky and Zhu 1993). For non–ignorable missing data, we interpret
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the latent variable modelling approach as an individualized prediction of proba-
bility of not missing into weighted GEE. Our estimation of population parameter
is consistent. Our method is evaluated with simulation study and illustrated with
a longitudinal clinical trial data with a large fraction of dropouts.

High dimensional predictive inference: a decision theoretic perspective

Edward I. George

(joint work with Larry Brown, Feng Liang, Xinyi Xu)

Let X and Y be independent multivariate normal vectors with a common unknown
mean. Based on only observing X , we consider the problem of obtaining a predic-
tive density that is close to unknown true density of Y as measured by expected
Kullback–Leibler loss. This is the predictive version of the general problem of es-
timating a multivariate normal mean under quadratic loss, and we will see that a
strikingly parallel theory exists for addressing it. To begin with, a natural ’straw
man’ procedure for this problem is the (formal) Bayes predictive density under
the uniform prior which is best invariant and minimax. It turns out that there are
wide classes of procedures that dominate this straw man including Bayes predic-
tive densities under superharmonic priors. For the characterization of admissible
procedures for this problem, the class of all generalized Bayes rules here is seen to
form a complete class, and easily interpretable conditions are seen to be sufficient
for the admissibility of a formal Bayes rule. Moving on to the multiple regres-
sion setting, our results are seen to extend naturally. Going further, we develop
minimax multiple shrinkage predictive estimators for the situation where there is
model uncertainty and only an unknown subset of the predictors is thought to be
potentially irrelevant.

Reporter: Ulrich Mansmann
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