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Introduction by the Organisers

The mini-workshop The Homotopy Interpretation of Constructive Type Theory,
organised by Steve Awodey (Pittsburgh), Richard Garner (Sydney), Per Martin-
Löf (Stockholm) and Vladimir Voevodsky (Princeton) was held between February
27th and March 5th 2011. It brought together researchers from three different con-
tinents and a number of different fields; some known for their work in constructive
mathematics and categorical logic, others for their work in higher-dimensional cat-
egory theory, and others still for their work in algebraic topology and homotopy
theory. What brought this seemingly disparate group of individuals together was
a desire to understand more completely a connection recently established between
these three areas: one mediated by the dependent type theory of Per Martin-Löf.
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Martin-Löf developed his dependent type theory in the 1970’s to provide a
rigourous constructive foundation for mathematics. Besides its philosophical and
theoretical interest, constructive type theory is of increasing practical importance,
since its constructivity is also a kind of computability: thus it can be viewed as
a particularly sophisticated kind of programming language, and in this guise, it
provides the foundation for a number of computerised “proof assistants”—such as
Epigram, Agda and Coq—which permit the large-scale formalisation and verifica-
tion of parts of mathematics and computer science.

As with any logical system, it is meaningful to ask what an appropriate notion
of model might be for dependent type theory. It is in considering this question that
the connection with homotopy theory and higher category theory is manifested.
Since the 1980’s we have had a notion of categorical model for dependent type
theory: this being a category equipped with certain extra structure suitable for
modelling the entities present in the logic. But what has only been realised over
the past five or so years is that the extra categorical structure required to model
the notion of equality in dependent type theory corresponds in a very precise
manner to the structure of a weak factorisation system such as occurs in Quillen’s
theory of abstract homotopical algebra, and which is of importance in the study
of higher-dimensional category theory.

This basic insight suggests that further, precise, links might be made between
the three areas mentioned above, and a small but growing body of work has begun
to show that this is the case. The purpose of this workshop was to bring together
researchers active in these areas—and interested in their intersection—in order
to take stock of the current situation and to determine in which further direc-
tions these ideas might fruitfully be pushed. A particular goal of the workshop
was to provide a forum for Vladimir Voevodsky—who has been considering ques-
tions in this area since 2006, but working broadly independently of other involved
researchers—to communicate at length his own ideas about, and visions for, the
topic at hand.

In line with this latter objective, approximately half of the itinerary for the
workshop was given over to a series of lectures by Voevodsky. In these, he de-
scribed his programme of “univalent foundations”; its objective being to exploit
the connection between dependent type theory and homotopy theory to provide
a foundation for mathematics, based on dependent type theory, which is intrinsi-
cally homotopical—in the sense of having as its basic entities not only sets, but the
entire taxonomy of homotopy types. This foundational endeavour is not merely
of theoretical interest; for as described above, Martin-Löf’s type theory under-
pins a number of computer-based proof assistants, and an important part of the
univalent-foundational project is that its toolset should include a workable com-
puter system in which modern mathematics, including its homotopy-theoretic and
higher-dimensional aspects, may be formalised. These two sides of the project—
the theoretical and the practical—were reflected in two streams to Voevodsky’s
lectures. The first dealt with the practical issues surrounding the development of
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mathematics within these foundations, aided by the proof-assistant Coq. The sec-
ond was devoted to showing the consistency of the univalent foundations relative to
classical mathematics; it did so by exhibiting a model for these foundations—which
are an extension of Martin-Löf’s dependent type theory by a homotopy-theoretic
reflection principle called the “univalence axiom”—in the algebraic topologist’s
category of simplicial sets.

The remaining half of the workshop’s itinerary was filled by talks from its
other participants. Given the rather diverse backgrounds of the audience, it was
thought prudent to devote the first two days of these talks to expository surveys
which, taken together, would ensure that everyone present was fully equipped to
process the material that was being presented to them. The remainder of the talks
described some of the most recent developments in the area, both in relation to
Voevodsky’s univalent foundations, and otherwise. The programme was rounded
out by an open problems session which helped to crystallise those questions around
which future research might accrete.

The organisers would like to advance their thanks, on behalf of all the workshop
participants, to Mathematisches Forschungsinstitut Oberwolfach for their efficient
and unobtrusive arrangement of the practical aspects of this workshop, and for
providing a quietly inspiring backdrop to a most scientifically fruitful meeting.
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Abstracts

Univalent foundations

Vladimir Voevodsky

This series of lectures was an introduction to “univalent foundations”—a new
foundational system for mathematics based on type theory and homotopy theory—
touching on their overall philosophy, some of the challenges involved in developing
mathematics in these foundations, and the question of their consistency relative
to the standard foundations.

The broad motivation behind univalent foundations is a desire to have a system
in which mathematics can be formalised in a manner which is as natural as possible.
Whilst it is possible to encode all of mathematics into Zermelo-Fraenkel set theory,
the manner in which this is done is frequently ugly; worse, when one does so,
there remain many statements of ZF which are mathematically meaningless. This
problem becomes particularly pressing in attempting a computer formalisation of
mathematics; in the standard foundations, to write down in full even the most
basic definitions—of isomorphism between sets, or of group structure on a set—
requires many pages of symbols. Univalent foundations seeks to improve on this
situation by providing a system, based on Martin-Löf’s dependent type theory,
whose syntax is tightly wedded to the intended semantical interpretation in the
world of everyday mathematics. In particular, it allows the direct formalisation
of the world of homotopy types; indeed, these are the basic entities dealt with by
the system.

The lectures given were divided into two groups. The first dealt with the practi-
cal challenges of developing and formalising mathematics within this foundational
system, aided by the mechanised proof-assistant Coq. The second was devoted
to showing the consistency of these foundations relative to the usual ones; this
was done by constructing a model of the univalent foundations in the category of
simplicial sets.

The first group of lectures were given largely with reference to a Coq “proof
script”—a text file providing commands to be executed by the Coq proof-assistant.
These commands allow one to make definitions and to prove lemmas and theo-
rems concerning those definitions, as one is accustomed to do in mathematics, all
within an ambient logic which is (an extension of) Martin-Löf’s dependent type
theory. Crucially, it is possible—by virtue of the homotopy-theoretic aspects of
this type theory—to adopt the position that the types which make up the Coq
system should have their intended interpretation as topological spaces. By mak-
ing definitions which reflect this position, one can in fact develop quite substantial
parts of homotopy theory in this framework. We now summarise some key points
in such a development.

In keeping with the intended interpretation, we shall denote the identity types
of Martin-Löf type theory not by IdA(a, b) but rather by pathsA(a, b), thinking of
this as the space of paths from a to b in the space A. This is reasonable, since all
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of the operations we expect a path space to support—such as the composability
and reversibility of paths—are derivable in the type theory.

Now to any type A, we associate a new type iscontr A, defined as Σx : A.Πy :
A. paths A x y. Under the intended interpretation, an element of this type is given
by a point x in the space A and a family of paths from this x to each point y ∈ A,
varying continuously in the parameter y. Such an element exists just when the
space A is contractible in the usual sense.

The notion of contractibility sits at the bottom of a hierarchy of notions that
may be attached to a type. We define a type A to be of h-level 0 if it is contractible,
and of h-level n+ 1 if, inductively, for all x, y : A, pathsA(x, y) is of h-level n. We
say that a type is a property if of h-level 1, and that it is a set if of h-level
2. All of these notions may be formalised as new types within our theory; so,
for instance, we define isaprop A to be the type Πx, y : A. iscontr(pathsA(x, y)).
From these definitions, it is possible to prove, for instance, that for any type
A we have isaprop(iscontr(A)), and isaprop(isaprop(A)), and more generally that
isaprop(ishlevel(n,A)).

The next important type-theoretic definition is that of weak equivalence. We
first define the homotopy fiber of a map f : A → B over a point b : B to be the
type hfiber f b := Σx : A. pathsB(fx, b). We now define a map f to be a weak
equivalence if all of its homotopy fibers are contractible; formally, we define isweq f
to be the type Πx : A. iscontr(hfiber f x), and define the type weq A B of weak
equivalences from A to B to be Σf : A → B. isweq f . We may now prove, for
instance, that a map f : A→ B is a weak equivalence if and only if there exists a
map g : B → A and homotopies Πx : A. pathsA(x, gfx) and Πy : B. pathsB(fgy, y).

We may now go on to develop basic properties of weak equivalences, and of their
interaction with the type-theoretic constructors, and of their interaction with the
hierarchy of h-levels. It is also possible to develop quite directly further aspects
of homotopy theory, such as the theory of homotopy fiber sequences. However, let
us close this discussion of the first group of lectures by introducing the univalence
axiom; this is the one major addition to Martin-Löf’s type theory required to make
its behaviour sufficiently close to that of the intended interpretation.

For this we suppose provided with a type-theoretic universe U ; this corresponds
to something like an inaccessible cardinal in the Zermelo-Fraenkel foundations.
Now for any A,B : U , it is possible to construct a term θ : pathsU (A,B) →
weq A B, showing that if two types in the universe have a path between them,
then those types are weakly equivalent. The univalence axiom states that the map
θ should itself be a weak equivalence for every A,B : U ; in other words, that
the homotopy theory of the types in the universe should be fully and faithfully
reflected by the equality on the universe. An important consequence of this axiom
is the principle of function extensionality; that if two elements f, g : Πx : A.B(x)
are pointwise homotopic, in the sense that Πx : A. pathsB(x)(fx, gx) is inhab-
ited, then they are joined by a path in the function space; that is, an element of
pathsΠx:A.B(x)(f, g).
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This concludes our discussion of the first group of lectures, and we now move
on to the second, which was devoted to proving the consistency of the univalent
foundations relative to the standard ones. These began by describing an appro-
priate mathematical representation of the syntax of a type theory. The basis of
such a representation is a general system of expressions which is, by definition,
a finitary (= filtered-colimit preserving) monad T on the category of sets. The
value of such a monad at the n-element set is to be interpreted as the set of raw
syntactic expressions with n free variables; we typically generate such monads as
submonads of free monads on a set of constructors. Given such a T , a type theory
over T is given by a pair of predicates determining those lists of raw syntactic
expressions which represent valid judgements of the type theory at hand.

This gives a robust mathematical representation of the syntax of a type theory;
but in practice it is more convenient to represent such type theories as structured
categories. For this we essentially use Cartmell’s notion of contextual category: this
being a category C—to be thought of as the category whose objects are contexts
in the given type theory and whose morphisms are substitutions—equipped with
certain extra structure allowing this intuition to be realised. For example, the
objects of C are graded by N—the degree of an object describing the length of
the context it represents—such that there is a unique object of degree 0, which
is terminal, and such that any object X of non-zero degree comes equipped with
a specified map pX : X → ftX , which represents the projecting-away of the last
component of the context. We do not rehearse the remaining details here.

We may now go on to construct from the category of simplicial sets a contextual
category which supports the interpretation of all the constructors of Martin-Löf’s
dependent type theory, plus the univalence axiom; this then proves the relative
consistency of the univalent foundations. The key to the construction is as follows.
We define a universe in a category C to be a map p : Ũ → U together with a chosen
pullback of that map along every f : X → U . Assuming C to have a terminal
object, we may define from this a contextual category C(C, p) as follows. There
is (necessarily) a unique object of degree 0; the objects of degree 1 are maps
f : 1→ U in C; the objects of degree 2 are pairs of a map f : 1→ U together with
a map g : f∗(Ũ)→ U ; objects of degree 3 are triples of f : 1 → U , g : f∗(Ũ)→ U

and h : g∗(Ũ)→ U ; and so on.
If C is locally cartesian closed, it is possible to define what it means, for instance,

for the universe p : Ũ → U to be closed under dependent products. For this,
let q : Ṽ → V denote the “universal dependent family in U”; it is the image of
p : Ũ → U under the functor

C
(Ũ)∗

−−−→ C/Ũ
Πp

−−→ C/U
ΣU−−→ C .

Now to ask that U is closed under dependent products is equally well to ask that
q is obtained as a pullback of p. We may similarly say what it means for U to be
closed under dependent sums, or for it to admit an interpretation of the identity
types (essentially by assuming the existence of a well-behaved factorisation of the

diagonal map Ũ → Ũ ×U Ũ in C). These requirements are enough to ensure
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that the contextual category C(C, p) admits interpretations of the Σ, Π, and Id

type-constructors.
The particular instance of the above process that we have in mind is the follow-

ing. Let C be the category of simplicial sets. Let U denote the simplicial set whose
n-simplices are Kan fibrations f : X → ∆n, where ∆n is the standard n-simplex
and f has fibers which are well-ordered and of cardinality < κ (here κ is a cardinal
with sufficiently good closure properties; for instance, an inaccessible cardinal).

Now there is a Kan fibration p : Ũ → U with well-ordered fibers of cardinality
of < κ which is universal amongst such, in the sense that every other such Kan
fibration is a pullback of it. A priori, this pullback is not necessarily unique; but
this Kan fibration has a further special property, that of being univalent in a sense
that we shall not make precise here—at low dimensions, it means that if two of
its fibers are weakly equivalent, then they lie over points joined by a path in U ,
so that “each fiber appears at most once”. This univalence ensures that the space
of ways in which a map q may appear as a pullback of p is contractible; so that
every small Kan fibration is a pullback of p “uniquely up to homotopy”.

It follows that p is closed under all the type-theoretic constructors of the ambient
category of simplicial sets; for example, the universal dependent family q : Ṽ → V
is itself a Kan fibration with κ-small, well-ordered fibers, and hence appears as a
pullback of the universal small Kan fibration, so that p is closed under dependent
products; and so on. Thus the contextual category C(C, p) models all the construc-
tors of Martin-Löf type theory. Furthermore, the fact that the Kan fibration p is
univalent allows us to prove that the corresponding contextual category validates
the univalence axiom, as desired.

A Coq tutorial

Andrej Bauer

In this tutorial we show how to use the Coq proof assistant. We cover the basic
usage of tactics, propositional and predicate calculus, and basic inductive defi-
nitions. Special attention is devoted to the inductive definition of propositional
equality, as it plays a central role in the homotopy-theoretic interpretation of type
theory. The accompanying material also shows a streamlined proof of Vladimir
Voevodsky’s result that the Univalence Axiom and Eta rule imply the principle
of Function Extensionality. Our proof was developed during the workshop with
Peter Lumsdaine, following a suggestion of Steve Awodey.

The materials used in the tutorial, as well as links to other resources about Coq
and homotopy type theory, are available at http://math.andrej.com/.
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Introduction to Type Theory and its Semantics

Thomas Streicher

From work of H. B. Curry it is well-known that simply typed λ-calculus can serve as
a proof term assignment for the implicational fragment of intuitionistic logic. It is
also well known that the semantics of simply typed λ-calculus is given by cartesian
closed categories. Later W. Howard suggested to give a proof term assignment
for full predicate logic via an extension of simply typed λ-calculus. This line
of thought resulted at the end of the 1960s in Martin-Löf’s Theory of Dependent
Types. The first version assumed a type of all types containing itself as an element
which was soon proved to be inconsistent by J.-Y. Girard. As a reaction to this
inconsistency Martin-Löf developed his predicative type theory with a stratified
hierarchy of (predicative) universes. About the same time J.-Y. Girard developed
his impredicative system F serving as a proof term assigment for second order
logic. It took about fifteen more years till Martin-Löf’s and Girard’s work was
synthesized by Th. Coquand and G. Huet in their Calculus of Constructions which
a bit later was extended by a hierarchy of universes and inductive definition. This
Extended Calculus of Constructions (ECC) is the underlying system of the Coq
system, an interactive theorem prover used by a lot of computer scientists and
mathematicians interested in actual formalization. In my talk I will describe how
to model such type systems categorically and what adaptions are needed to model
their intensional variants.

The most basic system is Π-calculus which differs from simply typed λ-calculus
by allowing types to depend on variables of previously defined types. A (typing)
context is an expression of the form Γ ≡ x1 : A1, . . . , xn : An where the xi are
pairwise distinct and the free variables of Ai are contained in the list x1, . . . , xi−1.
The rules for dependent product types are essentially those of the simply typed
λ-calculus. The main difference is the Π-formation rule

Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ (Πx : A)B

where one gets A→ B as the particular case where B does not depend on A.
Contexts will be interpreted in a category C of contexts with a terminal ob-

ject 1 corresponding to the empty context. Substitutions between contexts are
interpreted as morphisms in C. Families of types are interpreted as elements of a
subclass D of Mor(C), so-called display maps. We write a : A ✤ ,2 I to indicate
that a ∈ D. Representing I-indexed families of objects in C as morphisms in C
with codomain I is inherited wisdom from geometry and logic. That families of
types are stable under substitution is reflected by the assumption that D is stable
under pullbacks along arbitrary morphisms in C, i.e.

f∗A
❴
✤

a∗f
//

f∗a
❴
��

A

a
❴
��

J
f

// I
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This assumption guarantees that a induces a pullback functor a∗ : C/I → C/A.
For interpreting dependent products we assume that for every b : B ✤ ,2 A the
presheaf C/A(a∗(−), b) is representable by some Πab : P

✤ ,2 I, i.e. there exists a
morphism ev : a∗Πab → b such that for every f : J → I in C and g : a∗f → b in
C/A there is a unique λ(g) : f → Πab with ev ◦ a∗λ(g) = g as in

a∗J //

a∗λ(g)

��

g

}}④④
④④
④④
④④

J

λ(g)

��
B

b
!!❉

❉❉
❉❉

❉❉
❉ a∗P

a∗Πab❴
��

evoo // P

Πab❴
��

A
a

✤ ,2 I

where all squares are pullbacks. Accordingly, as first observed by R. Seely every
locally cartesian closed category C gives rise to an example when choosing D as C.
In order to interpret the equality rules for types we have to assume that pullbacks
of display maps are chosen in a functorial way and that canonical pullback functors
preserve Π and ev on the nose. In case of the intensional variant of the Π-calculus
we must not assume the λ(g) to be unique w.r.t. their required property but only
that there is a functorial choice of them.1

Dependent sum types are interpreted by composition of display maps and iden-
tity types as fibrewise diagonals. Of course, for this purpose D has to be closed
under these operations. In the latter case this means that

A

δa

⑧�$
❄❄

❄❄
❄❄

❄❄ 1A

��

1A

��

A×I A
✤ ,2

a∗a
❴
��

A

a
❴
��

A
a

✤ ,2 I

for every display map a : A
✤ ,2 I. In order to interpret equality of types we have

to assume that for a : A
✤ ,2 I and b : B

✤ ,2 A we have

B
pair

//

b

❴
��

ΣAB

Σab

❴
��

A
refl //

δa

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

IdA

❴
��

A
a

✤ ,2 I A×I A

where pair and refl are isomorphisms and these choices are preserved by canonical
pullbacks.

1In the simply typed case this amounts to a category C with finite products such that every
presheaf C(−×A,B) appears as retract of some representable presheaf C−, A→B.
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Recall that from the Yoneda lemma it follows that a morphism cA : PA → A is
an isomorphism iff for all f : PA → C there exists a unique map E(f) : A → C
with E(f) ◦ cA = f . If we assume that from every object in C there is a finite
sequence of display maps towards 1 (as common in models of type theory) the map
cA is an isomorphism iff for all c : C ✤ ,2 A and f : PA → C with c ◦ f = cA there
exists a unique section E(f) of c with E(f) ◦ cA = f . On the syntactical level in
type theory this is expressed in terms of so-called elimination rules where cA is
understood as a “constructor” and E(f) as defined from f by “pattern matching”.
In models of intensional type theory one does not require section E(f) to be unique
w.r.t. its required property but instead that this choice is stable under canonical
pullbacks.

The most innovative idea of Martin-Löf Type Theory was that of a universe.
Categorically, this is modeled by a display map e : E ✤ ,2 U inD such that the class
U = {f∗e | f : I → U} is closed under the respective operations corresponding
to various type formation rules. We call a universe U impredicative iff for all
a : A → I in D and p : P → A in U the map Πap is in U , too. This kind of
universes is used for interpreting the impredicative type of propositions of ECC.

The most well known example is a topos C with D = C and U the class of all
monos. This is a so called proof irrelevant model in the sense that every map
in U has at most one section. The most well known proof relevant models are
categories Asm(A) of so-called assemblies over a partial combinatory algebra A
as e.g. natural numbers with Kleene application. Here one takes for D all maps
of Asm(A) and for U the class of families of so-called modest sets, i.e. assemblies
where objects are uniquely determined by their realizers.
History and some references.
Display map semantics for type theory was introduced independently by various
people in the mid 1980s, namely M. Hyland et.al. in Cambridge, F. Lamarche in
Montreal and myself. Later on this was given a reformulation in terms of fibrations
by Th. Ehrhard and B. Jacobs. This is nice from a conceptual point of view but
its generality is not witnessed by any convincing examples. The most accessible
account on the appropriate level of generality are A. Pitts’ type categories as can
be found in his survey article on Categorical Logic in the Handbook of Logic in
Computer Science. In my old book Semantics of Type Theory one finds display
map semantics and a “split” version of it in terms of J. Cartmell’s contextual
categories as favoured again in recent work of V. Voevodsky.

Introduction to Homotopy Theory

Michael Shulman

Homotopy theory began, roughly, with the study of topological spaces up to defor-
mation rather than homeomorphism. For instance, the plane is not homeomorphic
to a point, but it can be “contracted” to a point via a continuous deformation.
More precisely, a homotopy f ∼ g between two maps f, g : X → Y is a map
H : X × [0, 1] → Y such that H(−, 0) = f and H(−, 1) = g, and a homotopy
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equivalence is a map f : X → Y such that there exists g : Y → X and homotopies
gf ∼ 1X and fg ∼ 1Y .

A basic invariant of homotopy type is the set of path-components, π0(X). An-
other is the fundamental group π1(X, x) at x ∈ X : the set of loops in X based at
x modulo basepoint-preserving homotopy, with group structure induced by con-
catenation of paths. We put these together into the fundamental groupoid, whose
objects are the points of X and whose morphisms are homotopy classes of paths.

We can go on to define the higher homotopy groups πn(X, x) as the set of based
maps Sn → X modulo homotopy. These are abelian for n ≥ 2, by the “Eckmann-
Hilton argument”, and we can put them all together into a fundamental n-groupoid
or ∞-groupoid, modulo a suitable definition of such things.

We may ask whether homotopy groups completely determine a space up to
homotopy. The answer is no, but we can define a nice class of spaces for which
they do: CW complexes, which are built by gluing together discs of various dimen-
sions. Whitehead’s theorem says that a map between CW complexes inducing an
isomorphism on all homotopy groups (called a “weak homotopy equivalence”) is
actually a homotopy equivalence. In fact, the homotopy theory of CW complexes
is naturally equivalent to that of their “fundamental ∞-groupoids.”

Doing mathematics “up to homotopy” also requires homotopical versions of
standard categorical constructions. Limits like equalizers and pullbacks are not
homotopy invariant, but we can define “homotopy” versions of them which are.
For instance, a point of the homotopy pullback X ×h

Z Y consists of a point x ∈ X ,
a point y ∈ Y , and a path between their images in Z. Such “homotopy limits” are
characterized, up to homotopy equivalence, by a homotopical universal property.

The homotopy limit is also the actual limit of a different diagram. For instance,
the homotopy pullback of f : A → B is the ordinary pullback of Pf → B, where
a point of Pf consists of a point a ∈ A and a path in B starting at f(a). This
map Pf → B is a fibration, meaning that any homotopy g ∼ h in B lifts to Pf
once we specify a lifting of g. Moreover, the homotopy pullback of a fibration is
homotopy equivalent to its actual pullback.

Finally, the homotopy lifting property means that any homotopy commutative
square between fibrations can be rectified to a strictly commutative one. Thus
fibrations have a property similar to CW complexes: all the morphisms between
them that “should be there” on the homotopy level are actually there on the strict
level. Taking this analogy further leads to Quillen model categories.

Homotopical aspects of type theory

Richard Garner

The objective of this talk was to draw together the threads spun by the preceding
tutorials on dependent type theory and homotopy theory, by sketching the funda-
mental observation which links the two areas together. The starting point is the
assignation sending a dependent type theory T to its classifying category C(T).
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Recall that this category has as objects, dependent contexts of variable declara-
tions ∆ = (x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1)) in the type theory
T, and as morphisms between them, dependent vectors of term assignations. For
each type judgement Γ ⊢ A type of T there is a distinguished morphism πA of C(T)
whose codomain is the context Γ and whose domain is the context Γ.A obtained
by extending Γ with A; it is given by projecting away the final component of the
context. We refer to such morphisms as dependent projections and write D for the
class of dependent projections in C(T). Observe that such a D-map admits pull-
backs along any morphism of C(T)—corresponding to type substitution in T—and
the pullback is then itself a D-map.

Consider now a type theory T which admits Martin-Löf’s intensional identity
types. Thus, for each type A (let us consider only a closed type for simplicity),
we have a type x : A, y : A ⊢ IdA(x, y) type; and this corresponds to having a
D-map p : IA → A × A in C(T). We have further a judgement x : A ⊢ r(x) :
IdA(x, x) witnessing the reflexivity of identity; and this corresponds to a map
r : A → IA in C(T) whose composite with p is the diagonal A → A × A. We
have moreover the elimination rule for identity types, which states that whenever
we have x, y : A, p : IdA(x, y) ⊢ C(x, y, p) type and x : A ⊢ d(x) : C(x, x, r(x)),
then we have a term x, y : A, p : IdA(x, y) ⊢ Jd(x, y, p) : C(x, y, p) satisfying
x : A ⊢ Jd(x, x, r(x)) = d(x) : C(x, x, r(x)). But this is equally well to say that
whenever we are given a diagram

A

r
��

d // C
g
��

IA
1
// IA

in C(T), with g ∈ D, we can find a diagonal filler j : IA → C making both squares
commute. This is in turn to say that the map r has the left lifting property with
respect to any D-map with codomain IA. But since D-maps are stable under
pullback, this is further equivalent to the statement that r has the left lifting
property with respect to every D-map. Writing I for the class of all maps with the
left lifting property with respect to D, we may therefore characterise T’s possession
of identity types as the condition that every diagonal A→ A× A in C(T) should
factor as the composite of an I-map followed by a D-map.

This is reminiscent of the definition of a weak factorisation system in the sense
of Bousfield–Quillen: wherein one is presented with a category C equipped with
two classes of maps L and R, each closed under retracts in the arrow category,
and such that every L-map has the left lifting property with respect to every R-
map, and every map f factors as f = gh with h ∈ L and g ∈ R. In particular, we
might hope for two things: that whenever T is a type theory, C(T) supports a weak
factorisation system, derived in some manner from the identity type structure; and
conversely, that whenever a category C suitable for the modelling of dependent type
theory supports a weak factorisation system of an appropriate kind, then it also
supports the interpretation of Martin-Löf’s identity types. The first of these was
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proven in [3], and the second in [1]—though in this direction, there are some subtle
coherence issues to deal with, which are considered in detail in [2] and [4].
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Equality and dependent type theory

Thierry Coquand

We give a purely axiomatic presentation of equality in type theory. Starting from
a dependent type theory with dependent sum and products, basic types such as
N (type of natural numbers), N0 (empty type) and N1 (unit type), we axiomatize
the equality type following the interpretation of types as spaces. We introduce a
new type IdA x0 x1 for A type and x0 x1 : A together with an element 1x : IdA x x
for x : A and an operation (·) : B(a0) → IdA a0 a1 → B(a1) if B(x) is family of
type over A, and the condition IdB(a) (b · 1a) b for each a : A and b : B(a). If A is
a type, following Voevodsky, we define iscontr A to be

Σa : A.Πx : A. IdA a x

The next axiom states that the space of paths from a given point is contractible

iscontr (Σx : A. IdA a x)

Modulo the other axioms, this last axiom is equivalent to the elimination rule
given by Ch. Paulin: given C(x, α) for x : A and α : IdA a x we have

elim : C(a, 1a)→ Πx : A.Πα : IdA a x.C(x, α)

with the “computation” rule: IdC(a,1a) (elim c a 1a) c for any c : C(a, 1a). Notice
however that this rule is here expressed as a propositional equality and not as
a new definitional equality added to type theory. Though we don’t add a new
definitional equality, but only new axioms, all the usual properties of equality seem
to be derivable. For instance, any type has a groupoid structure, and any function
defines a functor. Given a type X we can define the loop space Ω(X, a) = IdX a a
and it has a group structure. We can iterate this construction Ωn+1(X, a) =
Ωn(Ω(X, a), 1a) and prove that Ωn(X, a) is commutative for n > 2, which is a
formal version of Čech, 1932, result on the commutativity of higher homotopy
group. (More generally we can prove that if X with a binary operation and
an element e : X which is both a left and right unit for this operation then
the loop space Ω(X, e) is commutative.) We can then formulate the univalence
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axiom, and prove that it implies functional equality. Another consequence of the
univalence axiom is that isomorphic structures are equal. For instance on the type
S = ΣX : U.X×(X → X) we have IdS (X, a, f) (Y, b, g) iff the structures (X, a, f)
and (Y, b, g) are isomorphic. This is joint work with Nils Anders Danielsson, who
has checked all the proofs formally in an implementation of type theory.

The usual computation rule for equality type is obtained by defining the equality
to be the least reflexive relation. This gives a computational justification of all
but the last axiom (the univalence axiom). With this interpretation the equality
IdB(a) (b·1a) b holds as a definitional equality. We conjecture that a computational
interpretation of all the axioms is possible, defining the equality on a type by
recursion on this type (extending the definition of Gandy 1956 for simple type
theory). For this interpretation, we expect the equality IdB(a) (b · 1a) b to hold
only as a propositional equality and not as a definitional equality.

The Univalence Axiom and Function Extensionality

Nicola Gambino

Vladimir Voevodsky has recently introduced a model of Martin-Löf’s Constructive
Type Theory which validates not only the standard rules for identity types, but
also an additional principle, called the Univalence Axiom. The aim of this talk
is to present the Univalence Axiom and to illustrate Voevodsky’s proof that it
implies the principle of Function Extensionality, which is the assertion that if two
functions are pointwise propositionally equal, then they propositionally equal as
elements of the appropriate function type.

The outline of the proof is as follows. First, one observes that the Univalence
Axiom implies that if f : X → X ′ is a weak equivalence, then for every type Y ,
the composition function (−) ◦ f : (X ′ → Y )→ (X → Y ) is again a weak equiva-
lence. Secondly, using the fact that a homotopy equivalence is a weak equivalence,
one shows that the homotopy diagonal δY : Y → Id(Y ) is a weak equivalence.
Combining these two facts, we obtain that composition with δY ,

(−) ◦ δY :
(

Id(Y )→ Y
)

→
(

Y → Y
)

,

is a weak equivalence. This implies that the two projection functions

π1 , π2 : Id(Y )→ Y

are propositionally equal. Indeed, π1◦δY and π2◦δY are propositionally equal, since
they are both propositionally equal to the identity 1Y : Y → Y . But composition
with δY is a weak equivalence and so π1 and π2 must be propositionally equal.

It is now straightforward to derive the principle of Function Extensionality.
Indeed, suppose that we are given two functions f1 , f2 : X → Y and a proof
φ : Πx : X. IdY (f1x, f2) that they are pointwise propositionally equal. We can then
define a function f : X → Id(Y ) such that π1 ◦ f is propositionally equal to f1 and
π2 ◦ f is propositionally equal to f2 (using the η-rule). Since, as claimed above,
π1 is propositionally equal to π2, we have that π1 ◦ f is propositionally equal to
π2 ◦ f , which implies that f1 is propositionally equal to f2, as required.
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Logic-enriched type theory

Peter Aczel

My talk presented the idea of a logic-enriched type theory and stated that there is
a natural ‘logical version’, [UAl ⇒ FEl], of Vladimir Voevodsky’s result, proved
in the Coq computer system, that there is a closed term of type [UA→ FE]. Here
UA is a closed type expressing Voevodsky’s Univalence Axiom and FE is a closed
type expressing Function Extensionality.

To give more detail, let U be a type universe. The type UA is

(ΠX,Y : U)Weq(EXY ),

where, for f : A→ B, Weq(f) is a type that expresses that f is a weak equivalence,
and

E : (ΠX,Y : U)[IdU(X,Y )→ (Σf : X → Y )Weq(f)],

is a canonical function defined using the elimination rule for U and a function
E0 : (ΠX : U)Weq(idX). Also FE is the type

(ΠX,Y : U)(Πf1, f2 : X → Y )
[ExtEqX→Y (f1, f2)→ IdX→Y (f1, f2)],

where ExtEqX→Y (f1, f2) is (Πx : X)IdY (f1x, f2x). The logical versions of UA
and FE are the following, where we use ∼X for the propositional equality relation
on the typeX and let Tr(X) be the proposition (∃x : X)[x ∼X x]. The proposition
UAl is

(∀X,Y : U)Tr(Weq(EXY ))

and FEl is the proposition

(∀X,Y : U)(∀f1, f2 : X → Y )
[Tr(ExtEqX→Y (f1, f2))⇒ (f1 ∼X→Y f2)]

A Logic-enriched type theory is a dependently sorted predicate logic whose de-
pendent sorts are the dependent types of a type theory. I focused on a logic-
enrichment TT l of a version, TT of Martin-Löf’s intensional type theory, the logic
being intuitionistic predicate logic with equality combined with induction princi-
ples for the inductive types of the type theory. It is possible to add to TT l a logical
version ACl of the type-theoretic Axiom of Choice. Given a type A, a family of
types, B(x) for x : A, and a predicate, R(x, y) for x : A, y : B(x), ACl is the
proposition

(∀x : A)(∃y : B(x))R(x, y)
⇒ (∃f : (Πx : A)B(x))(∀x : A)R(x, f x).

Some metatheorems concerning the relationship between TT l + ACl and TT
were presented. These expressed that TT l +ACl characterises the logic obtained
in the [propositions = types] treatment of logic. A key feature of the proof of
[UAl ⇒ FEl] is that it takes place in TT l without any use of ACl. The advantage
of this is that TT l has a much richer variety of interpretations than TT l +ACl.
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Remarks on homotopical logic

André Joyal

Formal logic, like any formal system, can be analysed with the tools of abstract
algebra and category theory. The algebraic analysis of logic began with George
Boole in the 19th century and was pursued by Tarski in the 20th century with the
notion of cylindric algebra, and by Heyting with the notion of Heyting algebra.
The categorical analysis of logic, which began with the work of Lambek and Law-
vere, has transformed deeply our conception of algebraic logic by adding a kind
of conceptual layer between the syntax and the semantics. More explicitly, to any
formal logical system is associated a term model which is a category equipped with
certain structure. The properties of the category of terms can be described quite
independently of the actual syntax of the formal system. Ideally, every formal
system of logic should exhibit three layers: a conceptual layer which specifies a
certain class C of categories and functors, a semantic layer which specifies natu-
ral examples of categories in C (the semantic domains) and a formal layer which
specifies a language and a deduction system for constructing algebraically the cat-
egories in C. The layers are not independent of each other and each clarifies the
others. But the conceptual layer has the central role as a kind of middle-man:

Formal layer ← Conceptual layer → Semantic layer

For example, the conceptual layer of classical predicate logic can be taken to be
the class of Boolean pretopoi, its semantic layer to be the category of sets, and its
formal layer to be the syntax and deduction rules of predicate calculus. Of course,
this description has many variants since the layers may be chosen differently. For
example, all Boolean Grothendieck topoi could be included in the semantics of
classical predicate logic.

The conceptual layer of (pure) dependent type theory consists of categories C
equipped with a class D of display maps closed under base changes (and possibly
under composition) (see the talk of Thomas Streicher). We may suppose in addi-
tion that C has a terminal object 1 and that the unique map A → 1 is a display
map for every object A. The conceptual layer of type theory with products Π can
be taken to be a category C with a class of display maps D closed under internal
products in the following sense: the product f∗(X) of a display map X → A along
a display map f : A → B exists and is a display map f∗(X) → B. If D = C,
this means that the category C is locally cartesian closed. On the other hand, the
conceptual layer of intensional type theory was missing until quite recently. A
breakthrough was the groupoid interpretation of Hofmann and Streicher [5]. We
now know that intensional type theory has a natural semantics in a Quillen model
category E , thanks to the work of Awodey and Warren [2]. The category C is the
full subcategory of fibrant objects of E and the display maps are the fibrations;
the equality type IdA → A × A is the path space as constructed by Quillen. In
order to interpret the internal products Π we suppose that the category E is lo-
cally cartesian closed and that the model structure right proper. This is true for
example of the classical model structure on the category of simplicial sets, and
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more generally of the model structure (introduced by myself) on the category of
simplicial objects of any Grothendieck topos.

It is obvious that homotopy theory has had a strong influence on the de-
velopment of many branches of mathematics during the last twenty years. To-
day, we have A1-homotopy theory (Morel, Voevodsky), a theory of higher stacks
(Hirschowitz, Simpson), homotopical algebraic geometry (Toen and Vezzosi), de-
rived algebraic geometry (Deligne, Drinfel’d, Kontsevich, Kapranov, Ciocan-Fonta-
nine, Toen, Vezzosi, Lurie) and topological algebraic geometry (Lurie, Toen, Vez-
zosi). Many new objects and ideas were introduced in these developments. A
new structural foundation based on (∞, 1)-categories, rather than on ordinary
categories, was put in place. Roughly speaking, an (∞, 1)-category is a category
enriched over the category of homotopy types. The main examples are simplicial
categories (Dwyer and Kan), Segal categories (Hirschowitz and Simpson), complete
Segal spaces (Rezk) and quasi-categories (Bordman and Vogt / Joyal). In his book
“Higher topos theory” Lurie has demonstrated that essentially all the categorical
constructions of SGA4 can be extended from categories to quasi-categories, hence
also to all (∞, 1)-categories [7]. There is a similar trend in algebra, starting with
the A∞-algebras of Stasheff. Boardman and Vogt have given a general mechanism
by which one can create homotopy coherent versions of any classical algebraic
structure.

categories →∞-categories , algebras →∞-algebras , topoi →∞-topoi

It seems natural to ask the question

logic →∞-logic?

I conjecture that, in the presence of the function extensionality axiom of Vo-
evodsky, intensional type theory is a formal system for working in a locally carte-
sian closed (∞, 1)-category. More precisely, let me describe the notions involved
in this conjecture. There is a notion of quasi-category with finite products [6, 7].
If X and Y are quasi-categories with finite products, then a map f : X → Y pre-
serves finite products if it takes each terminal object in X to a terminal object of
Y and if the canonical morphism f(x × y) → f(x) × f(y) is invertible for every
pair of objects x, y ∈ X . A quasi-category with finite products X is cartesian
closed if the map x × (−) : X → X has a right adjoint [x,−] : X → X for ev-
ery object x in X . If X and Y are cartesian closed quasi-categories, then a map
f : X → Y is cartesian closed if it preserves finite products and the canonical mor-
phism f [x, y] → [f(x), f(y)] is invertible for every pair of objects x, y ∈ X . We
shall denote the category of cartesian closed quasi-categories by CCQ.

Recall that the category of quasi-categories QCat is enriched over itself, since
it is cartesian closed. It is thus enriched over the category of Kan complexes if
we put Hom[X,Y ] = J [X,Y ], where J(Z) is the maximal sub Kan complex of a
quasi-category Z. If X and Y are cartesian closed quasi-categories, then the full
simplicial subset of Hom[X,Y ] spanned by the cartesian closed maps X → Y is
a Kan complex CC[X,Y ]. This defines an enrichment of the category CCQ over
the category of Kan complexes.
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If A is a simplicial set, we shall say that a cartesian closed quasi-category F (A)
equipped with a map i : A→ F (A) is freely generated by A if the restriction map

i∗ : CC[F (A), X ]→ Hom[A,X ]

is a homotopy equivalence for every cartesian closed quasi-category X .
A quasi-category X has finite limits if it has a terminal object and the quasi-

category X/x has finite products for every object x ∈ X . A quasi-category with
finite limits X is locally cartesian closed if the quasi-category X/x is cartesian
closed for every object x ∈ X . If X and Y are locally cartesian closed quasi-
categories, then a map f : X → Y is a locally cartesian closed if it preserves
terminal objects and the induced map X/x→ Y/f(x) is cartesian closed for every
object x ∈ X . There is a notion of locally cartesian closed quasi-category freely
generated by a simplicial set.

Recall that a homotopical category is a pair (C,W ) where C is a category and
W ⊆ C is a class of morphisms called weak equivalences [3]. There is then a
quasi-category L(C,W ) equipped with a map i : C → L(C,W ) which inverts uni-
versally every morphism in W . The quasi-category L(C,W ) is the Dwyer–Kan
localisation of C with respect to W . It can be constructed by first attaching to
(the nerve of) C a left and a right inverse to every arrow in W , and then by taking
a fibrant replacement of the resulting simplicial set (in the model structure for
quasi-categories)[6].

If G is a graph, let us denote by MLTT (G) the type system obtained by ad-
joining to Martin-Löf intensional type theory a type T (a) for each vertex a ∈ G
and a term f of type T (a) → T (b) for each arrow f : a → b in G. Let us denote
by CT (G) the term category associated to MLTT (G) as in [4]. Let us denote by
W the set of display maps in CT (G) which are weak equivalences in the sense of
Voevodsky.
Conjecture The quasi-category L(CT (G),W ) is locally cartesian closed and it is
freely generated by G as a one dimensional simplicial set.

Conclusion

Homotopical logic could be defined as a (new) branch of logic which studies
structured homotopy types rather than structured sets. Sets are homotopy types
of h-level 1 (Voevodsky). The goal of Univalent Foundations is to replace sets by
homotopy types in the foundation of mathematics. I hope the project is successful.
But not all mathematical logic is concerned with foundational questions and the
same should be true of homotopical logic. A large part of model theory studies
groups, fields, graphs, etc. Homotopical model theory may study ring spaces,
spectra, ring spectra, etc. But a field is defined more by its methods than by its
objects. It is not yet clear that homotopical model theory can be different from
homotopy theory itself.

In order to accommodate homotopical logic, I would like to introduce a fourth
layer in my schematic description of formal logic. The conceptual layer may be
defined by a class of structured quasi-categories rather than by a class of structured
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categories. Every quasi-category is the Dwyer–Kan localisation of a homotopical
category (C,W ) (in a non-unique way). In homotopical logic, the purpose of the
formal system is to generate (C,W ) algebraically. We may say that (C,W ) belongs
to the algebraic layer.

Formal layer ← Algebraic layer ← Conceptual layer → Semantic layer .
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A combinatorial realizability model of 1-truncated type theory

Michael A. Warren

(joint work with Pieter Hofstra)

Let T1 be the theory obtained by adding to intensional Martin-Löf type theory
the 1-truncation rule

p : IdIdA(a,b)(f, g)

f = g : IdA(a, b)

which states the the usual reflection rule holds when applied to types which are
themselves already identity types. It follows from [2] that each closed type A in
this theory has an associated groupoid |A| with objects the closed terms of type
A and with hom-sets given by |A|(a, b) the set of closed terms of type IdA(a, b).
When G is a (directed) graph we obtain the 1-truncated theory T1[G] with G
adjoined by adding to T1 a new basic type pGq together with the axioms

• paq : pGq for each vertex a of G.
• pfq : IdpGq(paq, pbq) for each edge f from a to b.

Henceforth, Gödel brackets p·q are omitted, as it is always clear from context
when we are speaking of vertices and edges and when we are speaking of their
type-theoretic representatives. Sending a graph G to the underlying graph of |G|
gives a monad T on the category Graph of graphs and, following [1], the algebras
are called 1-truncated Martin-Löf complexes. Understanding the behavior of
these algebras is a first step in the project initiated in ibid of modeling homotopy
types using the higher-categorical structures arising from type theory.
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In this connection, we observe that the monad T gives rise to new vertices. In
particular, T (G) will in general have infinitely many vertices even when the graph
G is finite. For example, if f is a loop in the graph G on a vertex a and b is any
vertex of G, the elimination rule for identity types gives

x, y : G, z : IdG(x, y) ⊢ G x : G ⊢ b : G

J([x : G]b, a, a, f) : G

where the first two hypotheses are simply obtained by weakening. One would like
to know that such “duplicate” or “doppelgänger” terms do nothing homotopically
harmful. E.g., T (G) should have the same connected components as G. Similarly,
from a logical point of view one would like to know that there are no non-standard
terms of natural number type in T1[G] in the sense that we would like to prove
that for each term t of natural number type there exists a numeral n and a term
of type Id(t, n). (Whether there exist non-standard terms of natural number type
in the presence of Voevodsky’s univalence axiom is a related question and we
expect that the techniques mentioned in this abstract can be modified to yield
a proof of Conjecture 1 from [5].) We will now describe the model construction
(appearing in full in [3]) which allows us to answer these and related questions.
This construction is inspired by the logical relations method due to Tait [4].

We begin by describing the general interpretation of closed terms and types:

• A closed type A will be interpreted as a functor [[A]] : |A| → Set. Intu-
itively, [[A]](a) is the set of realizers of a and we write α  a : A to indicate
that α is an element of this set.
• A closed term a : A will be interpreted as an element of [[A]](a). (Explicitly,
as a global section of [[x : A]] =

∫

[[A]] which projects to a.)

The description for open terms proceeds inductively based on the lengths of con-
texts. For the sake of brevity we describe the simple case of an open type
x : A ⊢ B(x) depending only on a single free variable. In this case, we have
a pseudofunctor |x : A ⊢ B| : |A| → Gpd which sends an object a of |A| to
the groupoid |B(a)| and acts on arrows by the usual “reindexing” term. We write
|x : A, y : B(x)| for the groupoid

∫

|x : A ⊢ B(x)| obtained by the Grothendieck
construction. Given [[A]] we define ‖x : A, y : B(x)‖ to be the pullback of the
projection |x : A, y : B| → |x : A| along the projection [[x : A]] → |x : A|. I.e.,
‖x : A, y : B(x)‖ has as objects tuples (a, α, b) where a : A, α  a and b : B(a).
Then we have the following:

• [[x : A ⊢ B(x)]] is a functor ‖Γ, y : B‖ → Set.
• An open term x : A ⊢ b(x) : B(x) is interpreted as a section of the
projection [[x : A, y : B(x)]]→ [[x : A]] such that [[b(x)]](a, α) is of the form
(a, α, b(a), β).

In terms of realizers, this means that to define the interpretation of an open type
x : A ⊢ B(x) is precisely to give a notion of realizer

β α b : B(a)
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for (a, α, b) an object of ‖x : A, y : B(x)‖ such that there is a functorial action

β · (f, g) α′ b′ : B(a′)

on realizers, for arrows (f, g) : (a, α, b)→ (a′, α′, b′) in ‖x : A, y : B(x)‖. Similarly,
to give the interpretation of an open term x : A ⊢ b(x) : B(x) is precisely to give
an assignment

b[α] α b(a) : B(a)

for each α  a : A, which is required to satisfy a simple coherence condition. This
completes the description of the general setting of the model and we may now
describe the interpretation of the various terms and types of the theory explicitly.
We begin by describing the interpretation of the basic type G.

Consider the groupoid model (see [2]) of T1[G] obtained by interpreting the type
G as the free groupoid F(G) on G. Under this interpretation a closed term a : G
will be interpreted as an object of F(G) (a vertex of the graph G). This inter-
pretation restricts to a functor |G| → F(G) and composing it with the canonical
functor F(G)→ |G| gives an endofunctor ¯ on |G| which associates to each closed
term a of type G a basic term ā of type G called the closure of a. Similarly, given
a closed term f : IdG(a, b) we obtain f̄ : IdG(ā, b̄), where this term f̄ is a composite
of basic terms and inverses of basic terms. We say that a map f : a→ b in |G| is
dense if f̄ is definitionally equal to the reflexivity term r(ā) in T1[G]. Then, we
define,

α  a : G iff α is a dense map a→ ā.

The functorial action on realizers is easily given by defining α ·f  b, for f : a→ b,
to be the composite f̄ ◦ α ◦ f−1. To take another example, given A together with
[[A]], α  a : A, β  b : A and a closed term f : IdA(a, b) we define

ξ α,β f : IdA(a, b) iff α · f = β and ξ = ∅.

I.e., realizers are proofs that α · f = β. Realizers at dependent product type are
given by sections, realizers at dependent sum type are given by pairs and realizers
at natural number type are given exactly as for G.

We then obtain the following consequences:

Theorem 1. The interpretation described above is sound and complete with re-
spect to the theory T1[G].

Corollary 2. The natural numbers in T1[G] are standard in the sense that if a is
any term of natural number type, then there exists a numeral n and a propositional
equality a→ n.

Corollary 3. The canonical map F(G)→ |G| is a categorical equivalence.

Proof. It suffices to construct a natural isomorphism η : 1|G| → .̄ We take as the
component ηa : a→ ā the realizer from [[a]]. This determines a natural since, given
f : a→ b, the realizer of f from [[f ]] is a proof that f̄ ◦ ηa ◦ f−1 = ηb. �

Corollary 4. T (G) has the same connected components as G.
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Homotopy-theoretic models of type theory

Benno van den Berg

(joint work with Richard Garner)

Martin-Löf Type Theory was developed by Per Martin-Löf in 1973 [9] with the
aim of providing a rigorous foundation for predicative, constructive mathematics.
As was stressed later by Martin-Löf (see [10]) the theory can also be regarded as
a functional programming language, due to the proofs-as-programs paradigm. On
this paradigm, a constructive proof for a certain statement can be regarded as a
program which computes a witness.

The theory went through several phases before it reached its final mature form.
One point which remained unsettled for a long time were the rules for the identity
types. Martin-Löf’s idea is that “types” are the constructive analogue of sets and
are always built up inductively. However, in some of the older formulations of type
theory the rules for the identity types did not conform to this philosophy (see, for
example, [11], which in all other respects contains the mature system). For every
type A and elements a, b ∈ A there is a new type Id(A, a, b), to be thought of as the
set of proofs saying that the terms a and b denote equal elements of A. The older
“extensional” formulation of the rules for the identity type essentially say that the
type Id(A, a, b) contains at most one element and that this type is inhabited pre-
cisely when the terms a and b have the same normal form. This was later rejected,
essentially for two reasons. First of all, this formulation did not fit in the general
philosophy, as it prevented the type Id(A, a, b) from being inductively generated.
Secondly, it made type checking undecidable. The intensional formulation of the
identity types avoid both problems: they are formulated in a way which conforms
to the general philosophy and they keep type checking decidable.

There is a price to pay, however, for the intensional identity types are much
harder to work with and much harder to understand. But in recent years unex-
pected connections to ideas from higher-dimensional category theory and algebraic
topology have started to shed light on the combinatorics of the intensional identity
types (besides the references mentioned below, see also [1, 12, 13].

For this the seminal paper has been the one by Hofmann and Streicher [6] where
they show that the rules for the intensional identity type give every type the struc-
ture of a groupoid (a category in which every arrow is invertible). Moreover, they
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gave a model of type theory in which types A are interpreted as groupoids, ele-
ments a, b as objects, and the identity type Id(A, a, b) as the set (discrete groupoid)
of arrows from a to b. Using this model they managed to refute the uniqueness
of identity proofs in intensional type theory. So whereas in the extensional type
theory it is built in that there can be only one proof of the equality of a and b, this
is not provable in intensional type theory: indeed, what Hofmann and Streicher
show is that in the model based on groupoids there are generally more. But, as
they remark, it is still the case that proofs of equalities have to be equal in the
model (as Id(A, a, b) is interpreted as a discrete groupoid), but there is no reason
to expect this to be provable in the type theory. Indeed, in general, one would
expect Id(A, a, b) to have a groupoidal structure as well, and the same applies to
the iterated identity type Id(Id(A, a, b), p, q), etcetera. So the resulting structure
on each type A should not be just groupoidal, or even 2-groupoidal, but that of a
(weak) ω-groupoid.

As a matter of fact, in work with Richard Garner (see [3]), we prove that this
is correct: the resulting structure is that of a weak ω-groupoid.1 A striking aspect
of our proof is that it works for rather abstract reasons which have little to do
with the syntax of type theory (the structure one needs for the proof to work can
be formulated entirely in terms of what are called weak factorisation systems; to
see how these arise from type theory, consult [5]). This means it can be applied
in other settings as well. Indeed, it can be used to show that the fundamental
weak ω-groupoid of a space2 is indeed a weak ω-groupoid in the sense of Batanin-
Leinster. That we have a uniform proof that both type theory and homotopy
theory give rise to weak ω-groupoids shows that the analogy goes much deeper
than one might initially suspect.

In subsequent work with Richard Garner [4], we have taken the natural next
step, which is to use ideas from homotopy theory to build models for the intensional
identity types. It turns out that it all works as one would hope, so that the category
of topological spaces can be used to model the identity types, when interpreting
the identity types as path spaces. In fact, we have a simple notion of a “path
object category” and show how the intensional identity types can be interpreted
in these path object categories. We also show that not only does the category of
topological spaces have the structure of such a path object category, but also the
category of simplicial sets can be endowed with such a structure.
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Open problems session

A short session was convened during the workshop to discuss how the programme
of homotopy type theory should be taken forward and in which directions further
research should be directed. A broad range of ideas was discussed, and these were
crystallised into the following short list of questions.

• What are the potential benefits of the Univalence Axiom (UA) for the
practice of (higher) category theory?
• In Coq, given a term t : nat constructed with the use of UA, is there is a
terminating algorithm which constructs a term t0 : nat which does not use
UA and a term (whose construction may well use UA) in Idnat(t, t0)?
• Does UA have models in other categories (e.g. 1-topoi) not equivalent to
the standard one?
• Can we extend type theory with a homotopically meaningful notion of
colimit/cofibration?
• What is Sn (in Coq)?
• What is a simplicial type?
• Can the notion of proposition be implemented in Coq in a way which does
not commit to the interpretation given in the Calculus of Constructions?
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• Does there exist a univalent (weakly universal Kan) fibration in the cate-
gory of simplicial objects in an arbitrary topos?

Reporter: Richard Garner
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