
Mathematisches Forschungsinstitut Oberwolfach

Report No. 41/2011

DOI: 10.4171/OWR/2011/41

Mini-Workshop: New Developments in Newton-Okounkov
Bodies

Organised by

Megumi Harada, Hamilton

Kiumars Kaveh, Pittsburgh

Askold Khovanskii, Toronto

August 21st – August 27th, 2011

Abstract. The theory of Newton-Okounkov bodies, also called Okounkov
bodies, is a new connection between algebraic geometry and convex geom-
etry. It generalizes the well-known and extremely rich correspondence be-
tween geometry of toric varieties and combinatorics of convex integral poly-
topes. Okounkov bodies were first introduced by Andrei Okounkov, in a
construction motivated by a question of Khovanskii concerning convex bod-
ies govering the multiplicities of representations. Recently, Kaveh-Khovanskii
and Lazarsfeld-Mustata have generalized and systematically developed Ok-
ounkov’s construction, showing the existence of convex bodies which capture
much of the asymptotic information about the geometry of (X,D) where
X is an algebraic variety and D is a big divisor. The study of Okounkov
bodies is a new research area with many open questions. The goal of this
mini-workshop was to bring together a core group of algebraic/symplectic
geometers currently working on this topic to establish the groundwork for
future development of this area.
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Introduction by the Organisers

The mini-workshop New developments in Newton-Okounkov bodies, organised by
Megumi Harada (McMaster University), Kiumars Kaveh (University of Pitts-
burgh), and Askold Khovanskii (University of Toronto), was held August 21 to
August 27, 2011. The goal of the meeting was to explore the new and rapidly de-
veloping research area centred on Newton-Okounkov bodies (also called Okounkov
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bodies1). These are convex bodies associated to algebraic varieties in a very gen-
eral setting, and may be viewed as a vast generalization of the theory of toric
varieties.

The meeting was attended by 16 participants, with broad geographic represen-
tation. In addition to the official participants, one Oberwolfach Leibniz Postdoc-
toral Fellow actively took part in the research activities. There were 13 research
talks total and 4 informal discussion sessions which focused on open problems and
future directions for research.

In the remaining part of this introduction we attempt to briefly describe some of
the motivation behind the subject of Okounkov bodies. It should be emphasized
that our mini-workshop provided ample evidence that the theory of Okounkov
bodies touches upon many other subjects and that there is a wealth of possible
areas of application; as such, we make no claim that our brief overview below is is
in any way complete.

A central theme in algebraic geometry is to associate to a variety a combinatorial
object – in particular a convex polytope – in such a way that questions about the
original variety (such as intersection theory) be answered from the geometry of the
associated polytope. A setting in which this geometry-combinatorics dictionary
works out perfectly is the extremely useful and popular theory of toric varieties.
The theory of Okounkov bodies is a new general frame work to associate convex
bodies to algebraic varieties; as such it is a vast generalization of the theory of
toric varieties, as we now explain.

Recall that the celebrated Bernstein-Kushnirenko theorem from Newton poly-
hedra theory relates the number of solutions of a system of polynomial equations
with the volume of their corresponding Newton polytopes. Indeed, this theorem
motivated the development of the theory of toric varieties. In the more recent
setting of symplectic manifolds and Hamiltonian actions, the Atiyah-Guillemin-
Sternberg and Kirwan convexity theorems link equivariant symplectic and alge-
braic geometry to the combinatorics of moment map polytopes. In the case of a
toric variety X , the moment map polytope ∆ coincides with its Newton polytope
and therefore fully encodes the geometry of X , but this fails in the general case. In
ground-breaking work, Okounkov constructs, for an (irreducible) projective vari-
ety X ⊆ P(V ) equipped with an action of a reductive algebraic group G, a convex

body ∆̃ and a natural projection from ∆̃ to the moment map polytope ∆ ofX . The
volumes of the fibers of this projection encode the so-called Duistermaat-Heckman
measure, and in particular, one recovers the degree of X (i.e. the symplectic vol-

ume) from ∆̃. The recent work of Kaveh-Khovanskii and Lazarsfeld-Mustata,
which generalizes and systematically develops Okounkov’s ideas, yield construc-
tions of such ∆̃(X,D) (associated to X and a choice of (big) divisor D) – the
Okounkov body – even without presence of any group action. Crucially, in their

1One of the suggestions made at our workshop was to use the term “NObodies”, for short.
Some of the workshop participants have embraced this new terminology, as can be seen from the
abstracts.
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construction the polytope ∆̃(X,D) has (real) dimension precisely the (complex)
dimension of X , just as in the case of toric varieties. In this sense the polytope
has the maximal possible dimension. As a first application, Kaveh and Khovan-
skii use their construction to prove a far-reaching generalization of the Bernstein-
Kushnirenko theorem to arbitrary varieties which relates the self-intersection num-
ber of a divisor with the volume of the corresponding Newton-Okounkov body.

Thus, by generalizing the case of toric varieties as well as many other cases
of varieties with a group action, the work of Okounkov, Lazarsfeld-Mustata, and
Kaveh-Khovanskii show that there are combinatorial objects of ‘maximal’ dimen-
sion associated to X . The fundamental question is:

What geometric data of (X,D) do the combinatorics of
these Newton-Okounkov bodies encode, and how?

We now mention briefly a small sample of the exciting directions for future
research which were discussed at the workshop. First, we have already mentioned
that, generalizing the Bernstein-Kushnirenko theorem in toric geometry, the vol-
umes of the Okounkov bodies ∆̃ give the intersection numbers of divisors on X .
Motivated by this, we may ask another important and general question: what
topological or geometric data can we extract from other similar invariants of the
Newton-Okounkov bodies, e.g., the volume of its boundary ∂∆̃? Are they related
to the other coefficients of the Hilbert function of X , and if so, how? Secondly,
we expect rich applications of Okounkov bodies to, and interactions with, geo-
metric representation theory and Schubert calculus. Kiritchenko’s talk on convex
chains for Schubert varieties and Kaveh’s talk on crystal bases and Okounkov bod-
ies already indicate some of the possibilities. Third, we must better understand
conditions under which the Okounkov body is actually a convex polytope (and
hence amenable to combinatorial methods). Dave Anderson took important first
steps in this direction, but more is needed. Anderson’s talk at our workshop ad-
dressed precisely this question in the context of Bott-Samelson varieties. Fourth,
the toric degeneration construction of Dave Anderson and the resulting gradient-
Hamiltonian-flow construction explained in Kaveh’s talk on ‘Integrable systems
via Okounkov bodies’ suggests that there exists an integrable system on a variety
X in rather broad generality.

The above (very incomplete) sampling of open research problems discussed at
our workshop already ilustrates that the theory of Okounkov bodies lies in the
exciting intersection of equivariant algebraic geometry, convex geometry, repre-
sentation theory, symplectic geometry, and commutative algebra. Lozovanu’s talk
also suggests connections with number theory, while Huh’s talk indicates that
tropical geometry and the theory of matroids should also be relevant. We expect
this theory not only to significantly contribute to each of these areas, but also to
establish previously unknown connections between them. The theory is evidently
quite powerful in that it unifies seemingly unrelated constructions in different re-
search areas, such as the Newton polytope of a toric variety, the moment polytope
of a Hamiltonian action on a symplectic manifold, and the Gelfand-Cetlin poly-
topes (or more generally the Littelmann-Berenstein-Zelevinsky string polytopes of
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representation theory). Furthermore, the Okounkov-body theory allows us also
to employ (or use as guiding principles) the well-known and powerful methods of
toric geometry to a very large class of varieties.

As can be seen from the discussion above, the theory of Okounkov bodies is
still in its infancy and the subject is wide open. We hope that this quick overview
has interested the reader in the subject. The abstracts which follow contain a
remarkable breadth of topics which further develop the themes we only sketched
above (or introduce new themes altogether). Our Oberwolfach Mini-Workshop
brought together a core group of algebraic/symplectic geometers working on this
topic in order to lay the groundwork for the future development of this area. By
all accounts, it was a remarkable and enjoyable success. We hope and expect that
this will be the beginning of a long and illustrious history of such gatherings.
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Abstracts

Interplay between Algebraic and Convex Geometries

Askold Khovanskii

(joint work with Kiumars Kaveh)

It has been a standard view that the connection between convex geometry and
algebraic geometry belongs only to the framework of toric varieties. But recently
I and my former student K. Kaveh found an unexpected general theory, which
we call the theory of Newton-Okounkov bodies, that connects general algebraic
varieties and convex geometry (see [1, 2, 3, 4, 5] and also [6]). We obtain several
results: we show that for a large class of graded algebras, the Hilbert functions
have polynomial growth and their growth coefficients satisfy a Brunn-Minkowski
type inequality. We prove analogues of the Fujita approximation theorem for
semigroups of integral points, graded algebras and arbitrary linear systems re-
spectively. Applications include a far-reaching generalization of the Kushnirenko
theorem, a new version of the Hodge inequality, and an elementary proof of the
Alexandrov-Fenchel inequality in convex geometry and its analogue in algebraic
geometry. There are also local versions of these algebraic inequalities dealing with
the Samuel multiplicities of primary ideals. These local algebraic inequalities sug-
gest a new geometric Alexandrov-Fenchel type inequality for the so-called mixed
co-volumes of convex bodies inscribed in a fixed convex cone.
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Okounkov bodies on projectivizations of rank two toric vector bundles

José Luis González

In his work on log-concavity of multiplicities, e.g. [8], [9], A. Okounkov introduced
a procedure to associate convex bodies to linear systems on projective varieties.
This construction was systematically studied by R. Lazarsfeld and M. Mustata
in the case of big line bundles in [5], and by K. Kaveh and A. Khovanskii in [6]
where they use a similar procedure to associate convex bodies to finite dimensional
subspaces of the function field K(X) of a variety X .

The construction of theseOkounkov bodies depends on a fixed flag of subvarieties
and produces a convex compact set for each Cartier divisor on a projective variety.
The Okounkov body of a divisor encodes asymptotic invariants of the divisor’s lin-
ear system, and it is determined solely by the divisor’s numerical equivalence class.
Moreover, these bodies vary as fibers of a linear map defined on a closed convex
cone as one moves in the space of numerical equivalence classes of divisors on the
variety. As a consequence, one can expect to obtain results about line bundles by
applying methods from convex geometry to the study of these Okounkov bodies.

Let us consider an n-dimensional projective variety X over an algebraically
closed field, endowed with a flag X• : X = Xn ⊇ · · · ⊇ X0 = {pt}, where Xi is
an i-dimensional subvariety that is nonsingular at the point X0. In [5], Lazarsfeld
and Mustata established the following:
(a) For each big rational numerical divisor class ξ on X, Okounkov’s construction
yields a convex compact set ∆(ξ) in Rn, now called the Okounkov body of ξ, whose
Euclidean volume satisfies

volRn

(
∆(ξ)

)
=

1

n!
· volX(ξ).

The quantity volX(ξ) on the right is the volume of the rational class ξ, which is
defined by extending the definition of the volume of an integral Cartier divisor D
on X , namely,

volX(D) =def lim
m→∞

h0(X,OX(mD))

mn/n!
.

(b) Moreover, there exists a closed convex cone ∆(X) ⊆ Rn × N1(X)R charac-
terized by the property that in the diagram

∆(X)

((

�

�

// Rn ×N1(X)R

tt

N1(X)R,

the fiber ∆(X)ξ ⊆ Rn × {ξ} = Rn of ∆(X) over any big class ξ ∈ N1(X)Q is
∆(ξ). ∆(X) is called the global Okounkov body of X .

In this talk, we are interested in describing the Okounkov bodies of the divisors
on the projectivization P(E) of a toric vector bundle E over a smooth projective
toric variety X . Such vector bundles were described by A. Klyachko in [7] in terms
of certain filtrations of a suitable vector space, and they have been the focus of
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some recent activity, e.g. [4], [10], [11]. As we will see, these filtrations can be
used to compute the sections of all line bundles on P(E). For our main result, we
restrict to the case of rank two toric vector bundles, where the Klyachko filtrations
are considerably simpler. Using the data from the filtrations, we construct a
flag of torus invariant subvarieties Y• on P(E) and produce finitely many linear
inequalities defining the global Okounkov body of P(E) with respect to this flag.
In particular, we see that this is a rational polyhedral cone.

In the construction of Okounkov bodies on a variety one constructs a valuation-
like function νY•

and then one obtains an associated semigroup SY•
encoding all

images of νY•
. We use our description of the global Okounkov body of a projec-

tivized rank two toric vector bundle to prove the finite generation of the semigroup
SY•

in this setting. As an application one obtains a proof of the finite generation of
the total coordinate rings or Cox rings of these varieties (see [3], [2] for alternative
arguments for the finite generation of these Cox rings). A reference for the results
presented in this talk is the article [1].
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Crystal bases and Newton-Okounkov bodies

Kiumars Kaveh

Let G be a connected reductive algebraic group over C. The purpose of the talk
is to show that some important convex polytopes arising in the representation
theory of G, as well as in the theory of spherical G-varieties, are instances of
Newton-Okounkov bodies for flag and spherical varieties respectively.
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The main result concerns a geometric description of the so-called string para-
metrization of a crystal basis for an irreducible representation of G. More precisely,
we show that the string parametrization of a crystal basis coincides with a valua-
tion on the field of rational functions on the flag variety G/B, constructed out of a
natural coordinate system on a Bott-Samelson variety. We regard the elements of
the irreducible representation as polynomials on the (opposite) open cell in G/B
and hence rational functions on G/B. This realization of the string parametriza-
tion shows that the so-called string polytopes of Littelmann and Berenstein-Zelevin-
sky ([Litt98, B-Z01]) associated to irreducible representations of G, can be realized
as Newton-Okounkov bodies for the flag variety of G. This provides a new point
of view on crystal bases and we expect it to make several properties of the crystal
bases more transparent. As an example, one can readily deduce a multiplicativity
property of the dual canonical basis for the covariant algebra C[G]U due to P.
Caldero ([Cal02]).

The motivation for this result goes back to a result of A. Okounkov who showed
that when G = Sp(2n,C), the set of integral points in the Gelfand-Cetlin polytope
of an irreducible representation of G can be identified with the collection of initial
terms of elements of this representation regarded as polynomials on the open cell
in the flag variety ([Ok98]).

Let Vλ be a finite dimensional irreducible representation of G with highest
weight λ. There are remarkable bases for Vλ, consisting of weight vectors, called
crystal bases which combinatorially encode the action of Lie(G) ([Kash90]). Crys-
tal bases play a fundamental role in the representation theory of G. There is a nice
parametrization of the elements of a crystal basis, called the string parametrization,
by the set of integral points in a certain polytope in RN , where N = dim(G/B) is
the number of positive roots ([Litt98], [B-Z01]). This parametrization depends on
a choice of a reduced decomposition for the longest element w0 in the Weyl group,
i.e., an N -tuple of simple roots w0 = (αi1 , . . . , αiN ) with

w0 = sαi1
· · · sαiN

.

The polytope associated to Vλ and a reduced decomposition w0 is called a string
polytope. We denote it by ∆w0

(λ). The number of integral points in the polytope
∆w0

(λ) is equal to dim(Vλ). The string polytopes are generalizations of the well-
known Gelfand-Cetlin polytopes of representations of GL(n,C) ([G-C50]).

Let X = G/B be the flag variety of G, and let Xw ⊂ X denote the Schubert
variety corresponding to a Weyl group element w. Fix a reduced decomposition
w0 = (αi1 , . . . , αiN ). It gives rise to a sequence of Schubert varieties in G/B:

{o} = XwN
⊂ · · · ⊂ Xw0 = X,

where wk = sαik+1
· · · sαiN

, and o = eB is the unique B-fixed point in X . The

reduced decomposition w0 also gives rise to a sequence of Bott-Samelson varieties

{o} = X̃N ⊂ · · · ⊂ X̃0 = X̃w0
,

together with a birational isomorphism π : X̃w0
→ X , such that for each k, X̃k is

smooth and π|X̃k
: X̃k → Xwk

is also a birational isomorphism. One constructs
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a natural coordinate system u1, . . . , uN , in a Zariski open subset Ũ of Xw0
lying

above the opposite open Schubert cell of X , such that in the open set Ũ each X̃k

is given by the equations u1 = · · · = uk = 0. The coordinate system u1, . . . , uN

then defines a highest term valuation vw0
on the algebra of polynomials on Ũ , and

hence a valuation on the field of rational functions C(X). As usual this valuation
extends to define a valuation on the ring of sections of any line bundle on X .

Let Lλ denote the G-linearized line bundle on X associated to a dominant
weight λ. The space of sectionsH0(X,Lλ) is isomorphic to the dual representation
V ∗
λ . The main result is the following:

Theorem 1. The string parametrization for a dual crystal basis in V ∗
λ coincides

with the valuation vw0
on H0(X,Lλ). It follows that the string polytope ∆w0

(λ)
coincides with the Newton-Okounkov body of the algebra of sections R(Lλ) =⊕

k H
0(X,L⊗k

λ ) and the valuation vw0
.

A variety X is spherical if a (and hence any) Borel subgroup has a dense orbit.
When X is spherical the space of sections of any G-linearized line bundle on X is
a multiplicity-free G-module. Flag varieties are spherical.

Generalizing the notion of the Newton polytope of a toric variety, to a G-
linearlized line bundle L on a spherical varietyX one associates a polytope ∆w0

(X,L)
(see [Ok97] and [A-B04]). The construction depends on a reduced decomposition
w0. It combines the so-called moment polytope of (X,L) and the string polytopes
∆w0

(λ). From the above result one shows:

Corollary 1. There is a natural geometric valuation ṽw0
on C(X) such that the

polytope ∆w0
(X,L) can be realized as the Newton-Okounkov body of the ring of

sections R(L) =
⊕

k H
0(X,L⊗k) and the valuation ṽw0

.

Fix a total order < on Zn respecting addition. Let A be a subalgebra of the
polynomial ring C[x1, . . . , xn]. A subset f1, . . . , fr ∈ A is called a SAGBI basis for
A (Subalgebra Analogue of Gröbner Basis for Ideals) if the set of highest terms
of the fi (with respect to <) generates the semigroup of highest terms in A (in
particular this semigroup is finitely generated). Given a SAGBI basis for A one
can represent each f ∈ A as a polynomial in the fi via a simple classical algorithm
(known as the subduction algorithm). There are not many examples of subalgebras
known to have a SAGBI basis. It is an important unsolved problem to determine
which subalgebras have a SAGBI basis.

We generalize the notion of SAGBI basis to the context of valuations on graded
algebras. Using the previous result we show that:

Corollary 2. With respect to the valuation ṽw0
, the ring of sections R(L) of any

G-linearized very ample line bundle L on a projective spherical variety X has a
SAGBI basis. It follows that (X,L) has a flat degeneration to the toric variety
associated to the polytope ∆w0

(X,L).

This recovers toric degeneration results in [A-B04], [Cal02] and [Kav05].
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It is expected that the Gelfand-Cetlin and more generally the string polytopes
carry a lot of information about the geometry of the flag variety (and more gener-
ally spherical varieties). In fact, there is a general philosophy that these polytopes
play a role for the flag variety similar to the role of Newton polytopes for toric
varieties. The results presented here provide strong evidence in this direction.
More evidence for this similarity is obtained in the recent works of V. Kiritchenko
who made an interesting connection between the combinatorics of the faces of the
Gelfand-Cetlin polytope and the Schubert calculus (in type A) [Kir09]. This talk
is also closely related to the work of [And10].
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Newton bodies consisting of orbits of the coadjoint action

Boris Kazarnovskii

1. Formulations. Let G be a complex reductive Lie group, f1, · · · , fk be a system
of matrix functions of finite dimensional holomorphic representations π1, · · · , πk

of G, respectively. (A matrix function is a linear combination of matrix elements
of representation). Define

(1) Xk = {g ∈ G : f1(g) = · · · = fk(g) = 0}.
Theorem 1. For k = dimG and general system (1), the number of points of Xk

is equal to k!Vk(∆π1 , · · · ,∆πk
), where ∆π – defined below k-dimensional convex

body depending on representation π, and Vk – mixed volume of convex bodies.

Remark 1. Other formulas for the number of points of Xk are in [2, 3, 4].
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The body ∆π depends on the choice of the maximal compact subgroup K ⊂ G.
Let g be a Lie algebra of G, Img ⊂ g be a Lie algebra of K and Reg =

√
−1Img.

In the dual space g∗, we consider the real subspaces Reg∗ and Img
∗ orthogonal to

Img and Reg, respectively, with respect to the real part of the complex pairing.
These subspaces are invariant under the coadjoint action of K.

The body ∆π lies in the space Reg∗ and consists of orbits of coadjoint action of
group K. Let τ be a maximal torus of group K (∆π doesn’t depend on the choice
of τ). Define β∗ as the subspace of fixed points of the coadjoint action of τ on the
space Reg∗. The space β∗ is dual to the Lie algebra of τ . We place the weights of
the representation dπ of Lie algebra g in the space β∗. We define ∆π as the union
of coadjoint K-orbits in Reg∗ intersecting the weight polytope (the convex hull of
the weights) .

If G = GL(m,C), then ∆π consists of Hermitian matrices with the set of
eigenvalues lying in the weight polytope.

Proposition 1. For any π the body ∆π is convex.

Definition 1. (1) The increment of a finite-dimensional representation π of a Lie
group G is the function on g equal to the maximum real part of eigenvalues of the
representation operator dπ.

(2) The reductive increment hπ of holomorphic representation π is the function
on g that coincides with the increment on the subspace Reg and is constant along
the subspace Img.

Corollary 1. The reductive increment hπ is the support function of ∆π.

Remark 2. If G = (C \ 0)N then the functions increment, reductive increment
and support function of the weight polytope are the same.

There is an analogue of Theorem 1 for the case k ≤ dimG.

Theorem 2. [1] The asymptotic density (defined below) of varieties of type (1)
exists and is equal to ddchπ1 ∧ · · · ∧ ddchπk

.

Remark 3. If G = (C \ 0)N then the current ddch1 ∧ · · · ∧ · · · ∧ ddchk is, in fact,
some recoding of the so-called tropicalization of variety Xk [6]. So Theorem 2 can
be placed in the context of a more general question: ”Is there a way of survival of
tropical geometry after passing from torus to an arbitrary complex reductive Lie
group ?”.

2. Comments on Theorem 2.
2.1. Monge-Ampere operator. The mixed Monge-Ampere operator of degree
k is called a map (h1, · · · , hk) 7→ ddch1 ∧ · · · ∧ ddchk (for a function g on a com-
plex manifold dcg(xt) = dg(

√
−1xt) for any tangent vector xt). Values of the

operator are considered as currents (functionals on the space of smooth compactly
supported differential forms) of degree 2k. If hi are continuous plurisubharmonic
functions on the complex manifold (eg, convex functions on g), then the current
ddch1∧· · ·∧ddchk is well defined. This means that approximating hi with smooth
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plurisubharmonic functions one gets the sequence of values of Monge-Ampere op-
erator weakly converging to the current independent of the choice of approxima-
tion. This functional can be continued to a functional on the space of continuous
compactly supported forms (i.e. is the current of measure type).

Proposition 2. [6] Let hi be a support function of a convex body Ai ⊂ ReCn∗.
Then the current ddch1 ∧ · · · ∧ ddchn is the Euclidean measure on subspace ImCn

with multiplicity equal to n! times the mixed volume of A1, · · · , An.

2.2. Asymptotic density. Now we consider the averaged root distribution X̄k.
This is the averaging of root varieties (1) over all systems of matrix functions of
our representations. Formula for the averaged root distribution current belongs to
the family of “Crofton formulas” [5]

X̄k = ddc logTr (π1(g)π1(g)
∗) ∧ · · · ∧ ddc logTr (πk(g)πk(g)

∗).

Any g ∈ G is uniquely represented as {g = exp(y)κ : y ∈ Reg, κ ∈ K} (this
decomposition is called the polar decomposition or the Cartan decomposition).
Let the map expr : g → G is defined as

expr : ξ → exp(Reξ) exp(Imξ),

and logr(X̄k) = exp∗r X̄k.
Consider the scaling map rt : z 7→ Rez/t + Imz of the space CN . Let Z be a

current on the space CN . If (rt)∗Z = σr + o(1) as t → +∞, then say that the
current σr is the reductive density of Z.

Definition 2. The asymptotic density of varieties of type (1) is the reductive den-
sity of the current logr(X̄k).

3. Sketch of proof. The map expr : g → G is not holomorphic, but nevertheless
(it requires justification) it is true that

logr(X̄k) = ddc logTr exp(2dπ1(Reξ)) ∧ · · · ∧ ddc log Tr exp(2dπk(Reξ)).

So the asymptotic density equals to

lim
t→∞

r∗t ( dd
c logTr exp(2dπ1(Reξ)) ) ∧ · · · ∧ r∗t ( dd

c logTr exp(2dπk(Reξ) )

Proposition 3. Let f be a function on Cn such that f(x+
√
−1y) = f(x) for any

x, y ∈ ReCn. Then

(rt)
∗dcf =

1

t
dc(rt)

∗f

.

So (of proposition 3) the asymptotic density equals to

lim
t→∞

ddc
(
1

t
logTr exp(2dπ1(tReξ))

)
∧ · · · ∧ ddc

(
1

t
logTr exp(2dπk(tReξ))

)
.

Now the proof ends with a final reference to the following well known state-
ment (to justify the correctness of the reference we must show that the function
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logTr (exp(tA) exp(tA∗)) is plurisubharmonic)

lim
t→+∞

1

t
logTr (exp(tA) exp(tA∗)) = h(A),

where A is a square matrix, h(A) is the increment of A, and the convergence is
locally uniform on the set of n× n matrices.
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Convex chains for Schubert varieties

Valentina Kiritchenko

(joint work with Evgeny Smirnov and Vladlen Timorin)

In [4], we constructed generalized Newton polytopes for Schubert subvarieties in
the variety of complete flags in Cn. Every such “polytope” is a union of faces of a
Gelfand–Zetlin polytope (the latter is a well-known Newton–Okounkov body for
the flag variety). These unions of faces are responsible for Demazure characters of
Schubert varieties and were originally used for Schubert calculus.

The methods of [4] lead to an extension of Demazure (or divided difference)
operators from representation theory and topology to the setting of convex geom-
etry. Below I define divided difference operators acting on convex polytopes and
outline some applications such as a simple inductive construction of Gelfand-Zetlin
polytopes and their generalizations.

The definition is based on the following observation. Let Π(µ, ν) where µ,
ν ∈ Zm denote the integer coordinate parallelepiped {(x1, . . . , xm)|µi ≤ xi ≤ νi} ⊂
Rm, and let σ(x) for x ∈ Rm denote the sum of coordinates

∑m
i=1 xi. Given a

parallelepiped Γ = Π(µ, ν) ⊂ Rm of dimension m − 1 (assume that µm = νm)
and an integer C, there is a unique parallelepiped Π = Π(µ, ν′) ⊂ Rm such that
Γ = Π ∩ {xm = µm} (that is, ν′i = νi for i < m) and

∑

x∈Π∩Zd

tσ(x) = DC(
∑

x∈Γ∩Zd

tσ(x)), (∗)
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whereDC is a Demazure-type operator on the ring Z[t, t−1] of Laurent polynomials
in t:

DC(f) :=
f − tf∗

1− t
, f∗ := tCf(t−1).

Indeed, an easy calculation (using the formula for the sum of a geometric progres-
sion) shows that

∑m
i=1(µi + ν′i) = C which yields the value of ν′m. Note that Γ is

a facet of Π unless Π = Γ.
We now use this observation in a more general context. A root space of rank n

is a coordinate space Rd together with a direct sum decomposition

Rd = Rd1 ⊕ . . .⊕ Rdn

and a collection of linear functions l1, . . . , ln ∈ (Rd)∗ such that li vanishes on
Rdi . We always assume that the summands are coordinate subspaces so that Rd1

is spanned by the first d1 basis vectors etc.
Let P ⊂ Rd be a convex polytope in the root space. It is called a parapolytope

if for all i = 1,. . . , n, the intersection of P with any parallel translate of Rdi is a
coordinate parallelepiped. For instance, if d = n, that is, d1 = . . . = dn = 1, then
every polytope is a parapolytope. For each i = 1,. . . , n, we now define a divided
difference operator Ai on parapolytopes. In general, the operator Ai takes values
in convex chains in Rd (see [3] for a definition) but in many cases of interest (see
examples below) these convex chains will just be single convex parapolytopes.

First, consider the case where P ⊂ (c + Rdi) for some c ∈ Rd, i.e. P =
P (µ, ν) is a coordinate parallelepiped. Here µ = (µ1, . . . , µd), ν = (ν1, . . . , νd).
Put Ni := d1 + . . . + di and N0 = 0. Assume that dim(P ) < di. Choose the
smallest j ∈ [Ni−1 + 1, Ni] such that µj = νj . Define Ai(P ) to be the coordinate
parallelepiped Π(µ, ν′), where ν′k = νk for all k 6= j and ν′j is chosen so that

Ni∑

k=Ni−1+1

(µk + ν′k) = li(c), (∗∗)

that is, an analog of formula (∗) holds for Γ = P , Π = Ai(P ) and C = li(c). The
definition yields a non-virtual coordinate parallelepiped if li(c) is sufficiently large
and can be extended to other values of li(c) by linearity.

For an arbitrary parapolytope P ⊂ Rd define Ai(P ) as the union of Ai(P ∩ (c+
Rdi)) over all c ∈ Rd:

Ai(P ) =
⋃

c∈Rd

{Ai(P ∩ (c+ Rdi))}

(assuming that dim(P ∩ (c + Rdi)) < di for all c ∈ Rd). In other words, we
first slice P by subspaces parallel to Rdi and then replace each slice with another
parallelepiped according to (∗∗). Note that P is a facet of Ai(P ) unless Ai(P ) = P .
It is easy to check that A2

i = Ai (the same identity as for the classical Demazure
operators).

Examples: (1) The simplest meaningful example is R2 = R ⊕ R = {(x, y)}
with the functions l1 = y and l2 = x. If P = (a, b) is a point, then A1(P ) and
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A2(P ) are segments:

A1(P ) = [(a, b), (b− a, b)], A2(P ) = [(a, b), (a, a− b)],

assuming that 1
2b ≥ a ≥ 2b. If b < 2a, then A1(P ) is a virtual segment. If 2b > a,

then A2(P ) is virtual.
If P = [(a, b), (a′, b)] is a horizontal segment, then A2(P ) is the trapezoid (or a

skew trapezoid) with the vertices (a, b), (a′, b), (a, a− b), (a′, a′ − b).
(2) A more interesting example is R3 = R2 ⊕R = {(x, y, z)} with the functions

l1 = z and l2 = x+y. If P = [(a, b, c), (a′, b, c)] is a segment in R2, then A1(P ) is the
rectangle with the vertices (a, b, c), (a′, b, c), (a, c−a−a′−b, c), (a′, c−a−a′−b, c).
Using this calculation and those in (1), it is easy to show that if P = (b, c, c) is a
point and −b − c > b > c, then A1A2A1(P ) is the 3-dimensional Gelfand–Zetlin
polytope given by the inequalities a ≥ x ≥ b, b ≥ y ≥ c and x ≥ z ≥ y, where
a+ b+ c = 0.

(3) Generalizing the last example we now construct Gelfand–Zetlin polytopes

for arbitrary n via divided difference operators. For n ∈ N, put d = n(n−1)
2 .

Consider the root space Rd = Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ R1 of rank (n − 1) with the
functions li given by the formula: li(x) = σi−1(x) + σi+1(x). Here σi(x) denotes
the sum of those coordinates of x ∈ Rd that correspond to the subspace Rdi (put
σ0 = σn = 0).

For every strictly dominant weight λ = (λ1, . . . , λn) (that is, λ1 > . . . > λn) of
GLn such that λ1 + . . .+ λn = 0, the Gelfand–Zetlin polytope Qλ coincides with
the polytope

[(A1 . . . An−1)(A1 . . . An−2) . . . (A1)] (p),

where p ∈ Rd is the point (λ2, . . . , λn;λ3, . . . , λn; . . . ;λn).
Similarly, divided difference operators for suitable root spaces allow one to con-

struct the classical Gelfand–Zetlin polytopes for symplectic and orthogonal groups.
They also yield an elementary description of more general string polytopes defined
in [5] and might help to extend the results of [4] to arbitrary semisimple groups.

As outlined below, these convex geometric operators are well suited for inductive
constructions of Newton–Okounkov polytopes for line bundles on Bott towers and
on Bott-Samelson varieties (for natural choice of a geometric valuation). The
former polytopes were described in [2] and the latter are currently being computed
by Dave Anderson.

Bott towers. Consider a root space with d = n, that is, d1 = . . . = dn = 1.
We have the decomposition

Rn = R⊕ . . .⊕ R︸ ︷︷ ︸
n

; y = (y1, . . . , yn)

into coordinate lines. Assume that the linear function li for i < n does not depend
on y1, . . . , yi, and ln = y1. I can show that the polytope P := A1 . . . An(p) (for a
point p ∈ Rn) coincides with the Newton–Okounkov body for a Bott tower (that
depends on l1, . . . , ln) together with a line bundle (that depends on p). For n = 2,
a Bott tower is a Hirzebruch surface and P is a trapezoid (or a skew trapezoid)
constructed similarly to the one in example (1). In general, a Bott tower is a toric
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variety obtained by successive projectivizations of rank two split vector bundles,
and P is a multidimensional version of a trapezoid.

Bott–Samelson resolutions. Let X = R(i1, . . . , il) be the Bott-Samelson
variety corresponding to any sequence (αi1 , . . . , αil) of roots of the group GLn.
It can be obtained by successive projectivizations of rank two (usually non-split)
vector bundles. Consider the root space Rd = Rd1 ⊕ Rd2 ⊕ . . . ⊕ Rdn−1 with the
functions li given by the formula li(x) = σi−1(x)+σi+1(x), where di is the number
of times the root αi occurs in the sequence (αi1 , . . . , αil). Denote by Tv the parallel
translation in the root space by a vector v ∈ Rd. Consider the polytope

P =
[
Ai1Tv1Ai2 . . . Tvl−1

Ail

]
(p).

In his talk, Dave Anderson described an algorithm for computing the Newton–
Okounkov body of a line bundle on X with respect to the valuation given by the
flag of subvarieties {. . . ⊃ R(il−1, il) ⊃ R(il)}. Based on his computations for l = 3
[1], I conjecture that this Newton–Okounkov body coincides with P for suitable

choice of a point p ∈ Rd and vectors vj ∈ Rdij for j = 1, . . . , l − 1.
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Combinatorial 2-truncated cubes and applications

Victor Buchstaber

(joint work with Vadim Volodin)

Our interest in the family of 2-truncated cubes arises from [Bu2] where it was
shown that associahedra (Stasheff polytopes) are 2-truncated cubes, i.e. can be
obtained from a cube by truncations only of faces of codimension 2 (2-truncations).

The F -polynomials (see [Bu1]) of n-polytopes P is defined by

F (P )(α, t) = αn + fn−1α
n−1t+ · · ·+ f1αt

n−1 + f0t
n,

where fi are the components of f -vector of P . The H-polynomial is defined by

H(P )(α, t) = F (P )(α− t, t) = h0α
n + h1α

n−1t+ · · ·+ hn−1αt
n−1 + hnt

n

The numbers hi are the components of h-vector of P . The classical Dehn-Sommer-
ville equations imply that H(P ) is symmetric for any simple polytope (see [Bu1]).
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Therefore, it can be represented as a polynomial of a = α+ t and b = αt:

H(P ) =

[n2 ]∑

i=0

γi(αt)
i(α+ t)n−2i.

By definition, γ-vector is (γ0, γ1, . . . , γ[n2 ]) and γ-polynomial is

γ(P )(τ) = γ0 + γ1τ + · · ·+ γ[n2 ]τ
[n2 ]

.
One of the well-known problems is to find a geometric interpretation of the

γ-vector. The famous Charney-Davis conjecture for polytopes is equivalent to the
statement that γ[n2 ] is nonnegative for flag simple polytopes. It has a natural
generalization which in the case of polytopes is formulated as the following.

Conjecture 1 (Gal, 2005). Any flag simple n-polytope P satisfies γi(P
n) ≥ 0, i =

0, . . . , [n2 ].

Gal’s conjecture is proved in particular cases. One can check that any 2-
truncated cube is a flag simple polytope.

Theorem 1. Gal’s conjecture holds for any 2-truncated cube.

The proof is based on the formula γ(Q) = γ(P ) + τγ(G)γ(∆n−k−2), where Q
is obtained from P by truncation of the face G of dimension k. When k = n− 2
the formula becomes γ(Q) = γ(P ) + τγ(G) and we can apply induction.

It was shown in [Bu1] that the g-vector is obtained from the γ-vector by mul-
tiplication on the matrix with nonnegative coefficients. They yield the following
implications for simple n-polytopes P1 and P2.

γi(P1) ≤ γi(P2) ⇒ gi(P1) ≤ gi(P2) ⇒ hi(P1) ≤ hi(P2) ⇒ fi(P1) ≤ fi(P2).

So, if we have upper and lower bounds for the components of γ-vector on some
class of simple polytopes, then it implies upper and lower bounds for components
of g-,h- and f -vectors on this class of simple polytopes.

Every Delzant polytope, particularly every 2-truncated cube Pn is the image
of moment map for some smooth toric variety M2n

P . Odd Betti numbers b2i−1 for
Hamiltonian toric manifold M2n

P are zero and even Betti numbers b2i are equal
to components hi(P ) of the h-vector of P . Then we have lower bounds for Betti
numbers of smooth toric manifolds corresponding 2-truncated cubes.

Corollary 1. If the image of the moment map for smooth toric variety M2n
P is a

2-truncated cube Pn, then

b2i(M
2n
P ) ≥ hi(I

n) =

(
n

i

)
.

Let σ(M2n) be the classical signature of M2n. If n is odd σ(M2n
P ) is zero, but

if n = 2q is even, then

(1) σ(M4q
P ) =

2q∑

k=0

(−1)khk(P
2q) = (−1)qγq(P

2q).
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Truncation of a face corresponds to a blow-up for the associated smooth toric
variety. So, when the image of the moment map Pn is a 2-truncated cube, then
the smooth toric variety M2n

P is obtained from a product of complex projective
lines by a sequence of blow-ups. Moreover if the dimension of the 2-truncated cube
is even, the following result holds.

Corollary 2. If the image of the moment map for smooth toric variety M4q is a
2-truncated cube P 2q, then

(−1)qσ(M4q) ≥ 0.

One of our main results is that many famous classes of simple polytopes are
2-truncated cubes.

An important class of simple polytopes is nestohedra. These polytopes arose
in the work of C. De Concini and C. Procesi. Nestohedra were constructed as
Minkowski sums of certain sets of simplexes corresponding to some building set.
Attention was drawn to nestohedra due to the work of A. Postnikov, V. Reiner,
L. Williams where they obtained important results about their combinatorics and
in particular proved Gal’s conjecture for chordal building sets.

Theorem 2. A flag nestohedron is a 2-truncated cube if and only if it is a flag
polytope.

Corollary 3. Gal’s conjecture holds for every flag nestohedron.

A wide class of flag nestohedra are graph-associahedra was introduced by M.
Carr and S. Devadoss. Among them are the Stasheff polytopes (associahedra),
Bott-Taubes polytopes (cyclohedra) and permutohedra. Graph-associahedra can
be described as nestohedra where the building set is constructed by natural way
from a graph. We prove the following bounds for the graph-associahedra.

Theorem 3. There are following unimprovable bounds:

1) γi(As
n) ≤ γi(PΓn+1) ≤ γi(Pen) for any connected graph Γn+1 on [n+ 1];

2) γi(Cyn) ≤ γi(PΓn+1) ≤ γi(Pen) for any Hamiltonian graph Γn+1 on [n+
1];

3) γi(As
n) ≤ γi(PΓn+1) ≤ γi(St

n) for any tree Γn+1 on [n+ 1].

The similar bounds hold for f -, g- and h-vectors.

The theorem and (1) implies bounds for signature and Betti numbers for cor-
responding smooth toric varieties.

We describe geometric operations that transform an n-dimensional graph-asso-
ciahedron to an (n + 1)-dimensional one. It allows us to consider a series of
graph-associahedra and to describe their combinatorics in terms of differential and
functional equations on generating function of face polynomials. Similar equations
were obtained using the ring of simple polytopes (see [Bu1]). For example, the
functional equation on the generating series of the H-vectors of Stasheff polytopes
is

HAs(x) = (1 + αxHAs(x))(1 + txHAs(x)), where HAs(x) =

∞∑

n=0

H(Asn)xn.
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S. Fomin and A. Zelevinsky introduced a new class of polytopes corresponding
to cluster algebras related to Dynkin diagrams. It was shown by M. Goresky that
the polytopes corresponding to diagrams of the D-series are not nestohedra but
each of them is a 2-truncated cube.

In the work of S. L. Devadoss, T. Heath, W. Vipismakul it was shown that some
moduli spaces of marked bordered surfaces has a polytopal stratification and there
they introduced a class of simple polytopes called graph cubeahedra generalizing
the polytopes associated with moduli spaces. This class contains as well-known
series (for example, associahedra) as a new sequence of polytopes called halohedra.
We introduce a class of simple n-polytopes NP (P,B) (called nested polytopes).
Each of them is defined by a pair (P,B), where P is a simple n-polytope with
fixed order of facets and B is a building set on [n].

Theorem 4. (1) The nested polytope NP (P,B) is flag if both polytope P and
nestohedron PB are flag.

(2) The nested polytope NP (P,B) is a 2-truncated cube if P is a 2-truncated
cube and PB is a flag polytope.

(3) The nested polytope NP (In, B(Γn)) is equivalent to graph cubeahedron
corresponding Γn. Here Γn is a simple graph on n nodes and B(Γn) is
a graphical building set associated with Γn.

Corollary 4. (1) Every graph cubeahedron is a 2-truncated cube.
(2) Gal’s conjecture holds for every graph cubeahedron.
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Volumes of NObodies

Victor Lozovanu

(joint work with Alex Küronya and Catriona Maclean)

An important reason for organizing this mini-workshop, as we have seen, is to see
applications of the theory of Newton-Okounkov bodies (“NObodies”) to different
areas of mathematics. The purpose of this talk is to look at NObodies and volumes
of divisors from an arithmetic point of view.



2348 Oberwolfach Report 41/2011

In the last thirty years or so, it became clear that it is helpful and useful to tackle
many problems appearing in algebraic geometry from an asymptotic perspective.
One of these is the Riemann-Roch problem:

Riemann-Roch Problem 0.1. Compute the dimensions:

h0(X, kD) := dimC(H
0(X,OX(kD)))

as a function of k, where D is a Cartier divisor on a complex projective variety X
of dimension n.

The history of this problem is very rich and dates back to Zariski. On surfaces,
based on Zariski’s work, Cutkosky and Srinivas in [3] show that the function
h0(X, kD) grows as a sum of a quadratic polynomial and a periodical function for
large k. In higher dimensions, the problem is more complex and Cutkosky was first
to realize that it is helpful to look at the problem from an asymptotic perspective.
This was materialized first in the work of Ein and Lazarsfeld, who developed the
theory of volume. Later, based on work of Okounkov [11], [12], Lazarsfeld and
Mustata in [10] and independently Kaveh and Khovanskii in [6] introduced the
notion of Newton-Okounkov bodies.

If D is a Cartier divisor on some irreducible projective variety X of dimension
n, then the volume of D is defined to be

volX(D) = lim sup
k→∞

dimC(H
0(X,OX(kD)))

kn/n!
.

The volume is one of the first asymptotic invariants of divisors that has been
studied. It first appeared in some form in [2] (and is elegantly explained in [9]),
where Cutkosky used the irrationality of a volume of a divisor to show the non-
existence of birational Zariski decompositions with rational coefficients. For a
complete account, the reader is invited to look at [9] and the recent paper [10].

Since it is invariant with respect to numerical equivalence of divisors, the volume
can be considered as a function on the Néron–Severi group. This function turns out
to be homogeneous, log-concave, and extends continuously to divisors classes with
real coefficients. It can be explcitly determined on toric varieties [5], on surfaces
[1], and on abelian varieties and homogeneous spaces for example. In every case,
the volume reveals a fair amount of the underlying geometry.

Our main focus here is the multiplicative submonoid of positive real numbers
consisting of volumes of integral divisors, which we denote by V . First, we know
that the volume of a divisor with finitely generated section ring is rational. Look-
ing at the case of surfaces, an immediate consequence of Zariski decomposition
gives that every divisor there — even the ones with non-finitely generated section
ring — has rational volume. Conversely, based on Cutkosky’s construction [9, Ex-
ample 2.3.6], there are examples of integral divisors such that any positive rational
number can be displayed as the volume of one of those divisors.

In higher dimensions, we mentioned that the volume of an integral divisor need
not be rational. Although the example Cutkosky obtains is algebraic, the question
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remains whether any non-negative real number is contained in the monoid V . This
issue was addressed in [8] from two somewhat complementary directions.

Theorem. The set of volumes satisfies the following two properties:

(1) V is countable;
(2) V contains transcendental elements.

Let us briefly give an idea why the above results appearing originally in [8] hold.
The transcendency of volumes of integral divisors is an application of Cutkosky’s
principle to look for examples among projectivized vector bundles over varieties
whose behaviour we understand quite well. In our case we consider O(1) of the
projectivization of a rank three vector bundle on the self-product of a general
elliptic curve. We exploit the non-linear shape of the nef cone on the abelian
surface to show the transcendency of vol(O(1)). This example also shows that
divisors with transcendental volume show up quite naturally and often in a non-
finitely generated setting.

As far as the cardinality of V is concerned, it is a direct consequence of a
much stronger countability result: building on the existence of multigraded Hilbert
schemes as proved in [4], we establish the fact that there exist altogether count-
ably many volume functions and ample/nef/big/pseudo-effective cones for all ir-
reducible varieties in all dimensions.

Getting back to the issue of transcendental volumes, it is an interesting fact
that the irregular values obtained so far by Cutkosky’s construction have all been
produced by evaluating integrals of polynomials over algebraic domains. In fact,
all volumes computed to date can be put in such a form quite easily. Such numbers
are called periods, and are studied extensively in various branches of mathematics,
including number theory, modular forms, and partial differential equations. An
enjoyable account of periods can be found in [7].

To some degree the phenomenon that all known volumes are periods is explained
and accounted for by the existence of Newton-Okounkov bodies. Expanding earlier
ideas of Okounkov [11, 12], Lazarsfeld and Mustata and independently Kaveh and
Khovanskii associate a convex body to any divisor with asymptotically sufficiently
many sections. The actual NObody depends on the choice of an appropiate com-
plete flag of subvarieties; however, it is not difficult to see that the volume of a
divisor D on an n-dimensional irreducible projective variety X is proportional to
the n-dimensional Lebesgue measure of the corresponding NObody. Consequently,
whenever the NObody of a divisor with respect to a judiciously chosen flag is an
algebraic domain, the volume of D will be a period, which indeed happens in all
known cases.

This gives rise to the following two questions: (1). Is it true that the volume
of a line bundle on a smooth projective variety is always a period?, (2) For any
integral divisor can one find a flag with respect to which the NObody is given by
inequalities of polynomial with rational coefficients?
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Multigraded Fujita Approximation

Shin-Yao Jow

Let X be an irreducible variety of dimension d over an algebraically closed field K,
and let D be a (Cartier) divisor on X . When X is projective, the following limit,
which measures how fast the dimension of the section space H0

(
X,OX(mD)

)

grows, is called the volume of D:

vol(D) = volX(D) = lim
m→∞

h0
(
X,OX(mD)

)

md/d!
.

One says that D is big if vol(D) > 0. It turns out that the volume is an interesting
numerical invariant of a big divisor ([Laz04, Sec 2.2.C]), and it plays a key role in
several recent works in birational geometry ([BDPP04], [Tsu00], [HM06], [Tak06]).

When D is ample, one can show that vol(D) = Dd, the self-intersection number
of D. This is no longer true for a general big divisor D, since Dd may even be
negative. However, it was shown by Fujita [Fuj94] that the volume of a big divisor
can always be approximated arbitrarily closely by the self-intersection number of
an ample divisor on a birational modification of X . This theorem, known as Fujita
approximation, has several implications on the properties of volumes, and is also
a crucial ingredient in [BDPP04] (see [Laz04, Sec 11.4] for more details).
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In their recent paper [LM08], Lazarsfeld and Mustata obtained, among other
things, a generalization of Fujita approximation to graded linear series. Recall
that a graded linear series W• = {Wk} on a (not necessarily projective) variety X
associated to a divisor D consists of finite dimensional vector subspaces

Wk ⊆ H0
(
X,OX(kD)

)

for each k ≥ 0, with W0 = K, such that

Wk ·Wℓ ⊆ Wk+ℓ

for all k, ℓ ≥ 0. Here the product on the left denotes the image ofWk⊗Wℓ under the
multiplication mapH0

(
X,OX(kD)

)
⊗H0

(
X,OX(ℓD)

)
−→ H0

(
X,OX((k + ℓ)D)

)
.

In order to state the Fujita approximation for W•, they defined, for each fixed pos-

itive integer p, a graded linear series W
(p)
• which is the graded linear subseries of

W• generated by Wp:

W (p)
m =

{
0, if p ∤ m;

Im
(
SkWp −→ Wkp

)
, if m = kp.

Then under mild hypotheses, they showed that the volume of W
(p)
• approaches the

volume of W• as p → ∞. See [LM08, Theorem 3.5] for the precise statement, as
well as [LM08, Remark 3.4] for how this is equivalent to the original statement of
Fujita when X is projective and W• is the complete graded linear series associated
to a big divisor D (i.e. Wk = H0

(
X,OX(kD)

)
for all k ≥ 0).

Our goal is to generalize the Fujita approximation theorem to multigraded linear
series. We will adopt the following notations from [LM08, Sec 4.3]: let D1, . . . , Dr

be divisors on X . For ~m = (m1, . . . ,mr) ∈ Nr we write ~mD =
∑

miDi, and we
put |~m| = ∑ |mi|.

Definition 1. A multigraded linear series W~• on X associated to the Di’s consists
of finite-dimensional vector subspaces

W~k
⊆ H0

(
X,OX(~kD)

)

for each ~k ∈ Nr, with W~0 = K, such that

W~k
·W~m ⊆ W~k+~m

,

where the multiplication on the left denotes the image of W~k
⊗ W~m under the

natural map

H0
(
X,OX(~kD)

)
⊗H0

(
X,OX(~mD)

)
−→ H0

(
X,OX((~k + ~m)D)

)
.

Given ~a ∈ Nr, denote by W~a,• the singly graded linear series associated to the

divisor ~aD given by the subspaces Wk~a ⊆ H0
(
X,OX(k~aD)

)
. Then put

volW~•
(~a) = vol(W~a,•)
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(assuming that this quantity is finite). It will also be convenient for us to consider
W~a,• when ~a ∈ Qr

≥0, given by

W~a,k =

{
Wk~a, if k~a ∈ Nr;

0, otherwise.

Our multigraded Fujita approximation, similar to the singly-graded version,
is going to state that (under suitable conditions) the volume of W~• can be ap-
proximated by the volume of the following finitely generated multigraded linear
subseries of W~•:

Definition 2. Given a multigraded linear series W~• and a positive integer p,

define W
(p)
~• to be the multigraded linear subseries of W~• generated by all W~mi

with |~mi| = p, or concretely

W
(p)
~m =






0, if p ∤ |~m|;∑

|~mi|=p
~m1+···+~mk=~m

W~m1
· · ·W~mk

, if |~m| = kp.

We now state our multigraded Fujita approximation when W~• is a complete
multigraded linear series, since this is the case of most interest and allows for a
more streamlined statement.

Main Theorem ([Jow11]). Let X be an irreducible projective variety of dimension
d, and let D1, . . . , Dr be big divisors on X. Let W~• be the complete multigraded
linear series associated to the Di’s, namely

W~m = H0
(
X,OX(~mD)

)

for each ~m ∈ Nr. Then given any ε > 0, there exists an integer p0 = p0(ε) having
the property that if p ≥ p0, then

∣∣∣∣1−
vol

W
(p)
~•

(~a)

volW~•
(~a)

∣∣∣∣ < ε

for all ~a ∈ Nr.

The main tool in our proof is the theory of Newton-Okounkov bodies developed
systematically in [LM08]. Given a graded linear series W• on a d-dimensional
variety X , its Newton-Okounkov body ∆(W•) is a convex body in Rd that encodes
many asymptotic invariants of W•, the most prominent one being the volume
of W•, which is precisely d! times the Euclidean volume of ∆(W•). The idea
first appeared in Okounkov’s papers [Oko96] and [Oko03] in the case of complete
linear series of ample line bundles on a projective variety. Later it was further
developed and applied to much more general graded linear series by Lazarsfeld-
Mustata [LM08], and also independently by Kaveh-Khovanskii [KK08, KK09].
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Do we have Okounkov bodies in tropical geometry?

June Huh

(joint work with Eric Katz)

We discuss several log-concavity conjectures, in particular the log-concavity conjec-
ture of Rota, Heron and Welsh on the coefficients of the characteristic polynomial
of a matroid M . Our approach to the conjecture is based on the observation that
log-concave sequences correspond to homology classes of Pn×Pm which are repre-
sentable by an irreducible subvariety [2, Theorem 20]. More precisely, if we write
a homology class ξ ∈ Ak(P

n × Pm) as an integral linear combination

ξ =
∑

i

ei
[
Pk−i × Pi

]
,

then the following holds:

1. If ξ is an integer multiple of either
[
Pn × Pm

]
,
[
Pn × P0

]
,
[
P0 × Pm

]
,
[
P0 × P0

]
,

then ξ is representable by a subvariety iff the integer is 1.
2. If otherwise, some positive integer multiple of ξ is representable by a subvari-

ety iff ei form a nonzero log-concave sequence of nonnegative integers with no
internal zeros.
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Therefore, to show that the coefficients of the reduced characteristic polynomial

χM (q) := χM (q)/(q − 1) =

r∑

i=0

(−1)iµiqr−i.

form a log-concave sequence, it is natural to look for a subvariety of Pn × Pm

which has the homology class corresponding to the sequence µi. If the matroid
M is realizable over a field, then there is such a subvariety defined over the same
field [3, Theorem 1.1]; writing A for an arrangement of n + 1 hyperplanes on an

r-dimensional projective subspace V ⊂ Pn realizing M , the closure Ṽ ⊂ Pn × Pn

of the graph of the Cremona transformation

Crem : Pn
99K Pn, (z0 : · · · : zn) 7→ (z−1

0 : · · · : z−1
n )

restricted to V \ A satisfies

[Ṽ ] =

r∑

i=0

µi[Pr−i × Pi] ∈ Ar(P
n × Pn).

To justify the above equality between homology classes, we prove its tropical ana-
logue which in fact applies to all matroids. More precisely, we show

µk = deg
(
αr−k · (Crem∗α)k ·∆M

)

where α is the piecewise linear function min(0, x1, . . . , xn) on Rn and ∆M is the
Bergman fan of M studied by Ardila-Klivans [1]. Since the log-concavity of the
intersection numbers is a formal consequence of the existence of Okounkov bodies
of line bundles in the classical case [4, 5], one might ask: can we construct Ok-
ounkov bodies in tropical setting? The question is closely related to the problem of
defining irreducible tropical varieties. Several necessary conditions were discussed
during the workshop.
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Integrable systems via Okounkov bodies

Kiumars Kaveh

(joint work with Megumi Harada)

A (completely) integrable system on a symplectic manifold is a Hamiltonian
system which admits a maximal number of first integrals (also called ‘conservation
laws’). A first integral is a function which is constant along the Hamiltonian flow;
when there are a maximal number of such, then one can describe the integral
curves of the Hamiltonian vector field implicitly by setting the first integrals equal
to constants. In this sense an integrable system is very well-behaved. For a
modern overview of this vast subject, see [2] and its extensive bibliography. The
theory of integrable systems in symplectic geometry is rather dominated by specific
examples (e.g. ‘spinning top’, ‘Calogero-Moser system’, ‘Toda lattice’). The main
contribution of this work (joint work-in-progress with M. Harada), summarized
in Theorem 1 below, is a construction of an integrable system on (an open dense
subset of) a variety X under only very mild hypotheses. (Details still remain to be
checked as of this writing.) Our result therefore substantially contributes to the set
of known examples, with a corresponding expansion of the possible applications
of integrable systems theory to other research areas.

We begin with a definition. For details see e.g. [3]. Let (X,ω) be a symplectic
manifold of real dimension 2n. Let {f1, f2, . . . , fn} be functions on X .

Definition 1. The functions {f1, . . . , fn} form an integrable system on X if
they pairwise Poisson-commute, i.e. {fi, fj} = 0 for all i, j, and if they are func-
tionally independent, i.e. their derivatives df1, . . . , dfn are linearly independent
almost everywhere on X .

We recall two examples which may be familiar to researchers in algebraic ge-
ometry.

Example. A (smooth projective) toric varietyX is a symplectic manifold, equipped
with the pullback of the standard Fubini-Study form on projective space. The
(compact) torus action on X is in fact Hamiltonian in the sense of symplectic
geometry and its moment map image is precisely the polytope corresponding to
X . The torus has real dimension n = 1

2dimR(X), and the n components of its
moment map form an integrable system on X .

Example. Let X = GL(n,C)/B be the flag variety of nested subspaces in Cn.
For λ a regular highest weight, consider the usual Plücker embedding X →֒ P(Vλ)
where Vλ denotes the irreducible representation of GL(n,C) with highest weight
λ. Equip X with the Kostant-Kirillov-Souriau symplectic form coming from its
identification with the coadjoint orbitOλ of U(n,C) which meets the positive Weyl
chamber at precisely λ. Then Guillemin-Sternberg build an integrable system on
X by viewing the coadjoint orbit Oλ as a subset of hermitian n× n matrices and
taking eigenvalues (listed in increasing order) of the upper-left k × k submatrices
for all 1 ≤ k ≤ n− 1. This is the Guillemin-Sternberg/Gel’fand-Cetlin integrable
system on the flag variety. (See [4] for details.)
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More generally, suppose now X is a projective variety and L a very ample line
bundle on X . Let n = dimC(X). Pick ν a valuation (corresponding to some choice
of flag of subvarieties) and let ∆(X,L, ν) denote the corresponding Okounkov
body. Denote by S := S(X,L, ν) the value semigroup in Zn × Z≥0.

Theorem 1. In the setting above, suppose that S is a finitely generated semigroup.
(Recall that this implies that ∆(X,L, ν) is a rational polytope.) Then there exist
f1, . . . , fn functions on X such that

• the fi are continuous on X and differentiable on an open dense subset U
of X,

• the fi pairwise Poisson-commute on U ,
• the image of X under µ := (f1, . . . , fn) : X → Rn is precisely the Okounkov
body ∆(X,L, ν).

Remark. Among other things, our theorem addresses a question posed to us by
Julius Ross and by Steve Zelditch: does there exist, in general, a ‘reasonable’ map
from a variety X to its Okounkov body? At least under the technical assumption
that the value semigroup S is finitely generated, our theorem suggests that the
answer is yes.

We now we briefly sketch the idea of our proof. The essential ingredient is the
toric degeneration from X to the toric variety X0 corresponding to ∆(X,L, ν),
constructed by Dave Anderson [1]. Let f : X → C denote the flat family with
special fiber f−1(0) ∼= X0 and f−1(t) = Xt

∼= X for t 6= 0. Since toric varieties are
integrable systems (see example above), the idea is to “pull back” the integrable
system on X0 to one on X . To accomplish this we use the so-called ‘gradient
Hamiltonian vector field’ (first defined by Ruan and also used by Nishinou-Nohara-
Ueno, cf. [6, 5]) on X , where we think of X as a symplectic space by embedding
it into an appropriate product of projective spaces. The main technicality which
must be overcome to make this sketch rigorous is to appropriately deal with the
singular points of X such that the fi are continuous on all of X (not just at
smooth points). It turns out that, in order to deal with this issue, we need a
subtle generalization of the famous Lojasiewicz inequality.

Note added in proof. As we prepared this abstract and our manuscript, it
came to our attention that Allen Knutson had more or less precisely predicted our
result in a MathOverflow discussion thread. (His post is dated January 2010, but
he apparently had the ideas long before.)
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Polyhedral effective cones and polyhedral Okounkov bodies

Dave Anderson

Let X be a normal projective variety of dimension d, let L be a big line bundle
on X , and let Y• be an admissible flag of subvarieties. A key problem is to
find methods for computing the Okounkov body ∆ = ∆Y•

(L). Still more refined
information is contained in the semigroup Γ = ΓY•

(L) used to define the Okounkov
body. When Γ is finitely generated, it follows immediately that ∆ is a rational
polytope, and by the results of [1] there is a flat degeneration to a corresponding
toric variety.

With this as motivation, we seek some geometric criteria for finite generation of
the semigroup Γ. A first approach comes from [1], using the notion of a maximal
divisor :

Definition. Let Y ⊂ X be a subvariety of codimension 1, and let

D = aY + b1B1 · · ·+ bkBk + e1E1 + · · ·+ eℓEℓ

be an effective divisor in H0(X,L), written in terms of its irreducible components.
We say D is maximal with respect to Y if each biBi is contained in the base scheme
of L, and all Ei’s lie on a facet of the pseudoeffective cone Eff(X) not containing
Y .

The significance of this notion is that orders of vanishing along Y are bounded
— not only for sections of L, but also for sections of all tensor powers L⊗m. It
follows that the projection of Γ onto the first two coordinates is a finitely generated
semigroup, and one obtains an inductive criterion for finite generation of Γ this
way [1, Corollary 4.11].

The inductive condition described above is somewhat complicated, and it would
be desirable to have a criterion that is easier to check. We propose a second
method, and illustrate it with the example of a three-dimensional Bott-Samelson
variety.

Let X = X(α, β, α) be the Bott-Samelson variety

(Pα × Pβ × Pα)/B
3,

where Pα, Pβ are the standard parabolic subgroups in GL3 containing the Borel
group B of upper triangular matrices, and B3 acts (on the right) by (p1, p2, p3) ·
(b1, b2, b3) = (p1b1, b

−1
1 p2b2, b

−1
2 p3b3). The Picard group of X is generated by the

classes of the three divisors

Xi = {[p1, p2, p3] | pi = e}
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(where e ∈ GL3 is the identity element). Thus every line bundle on X can be
written as L = O(n1X1 + n2X2 + n3X3).

There is a natural choice of flag Y• on X :

X ⊇ {[ṡα, ∗, ∗]} ⊃ {[ṡα, ṡβ , ∗]} ⊃ {[ṡα, ṡβ , ṡα]},
where ṡ∈P is a representative of a simple reflection. We show that the global
Okounkov cone of X with respect to this flag is defined by the inequalities

n1, n2, n3 ≥ 0,

t1, t2, t3 ≥ 0,

n3 − t3 ≥ 0,

n2 − t2 − t3 ≥ 0,

2n2 − n3 − t2 − t3 ≥ 0,

n1 − t1 ≥ 0,

n1 + n2 − t1 − t2 − t3 ≥ 0,

n1 + n3 − t1 − t2 − t3 ≥ 0

inside N1(X)R × R3 = R3 × R3. The inequalities are obtained by examining the
pseudoeffective cones of each divisor Xi; these cones are known to be polyhedral,
and this plays a role in the proof. We suggest that these methods should generalize
beyond Bott-Samelson varieties to compute Okounkov bodies for varieties with
recursive structure, and where one has a good understanding of pseudoeffective
cones of divisors.

Setting (n1, n2, n3) = (1, 2, 1) in the above example, one recovers the Okounkov
body of the projectivized tangent bundle of P2, an example computed by J. L. Gon-
zalez.

Using a different flag and different methods, K. Kaveh identifies the Okounkov
bodies of line bundles on certain Bott-Samelson varieties with the string polytopes
coming from the theory of crystal bases [2]. A promising future direction is to
use the approach outlined here to arrive at a new geometric description of crystal
bases.

References

[1] D. Anderson, Okounkov bodies and toric degenerations, preprint, arXiv:1001.4566v2.
[2] K. Kaveh, Crystal bases and Newton-Okounkov bodies, preprint, arXiv:1101.1687v1.

Okounkov bodies of complexity-one T -varieties

Lars Petersen

In the first half of this talk I gave a brief introduction to the language of polyhedral
divisors, divisorial fans and marked fansy divisors. Generalizing the well known
correspondence between polyhedral fans and normal toric varieties, these notions
not only provide a handy description of T -varieties, i.e. normal varieties with an
effective torus action, but also facilitate, for example, the investigation of orbit
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structures and invariant Cartier divisors together with their global sections. For
more details, we refer the reader to [1].

In the second half of this talk, I presented some recent results on the com-
putation of Okounkov bodies of projective complexity-one T -varieties formulated
in terms of the notions mentioned above. Namely, fixing a T -invariant flag and
a T -invariant big divisor D on the variety X , the associated Okounkov body is
a rational polytope which can be computed explicitly in terms of the essentially
combinatorial data describing D. Moreover, assuming X to be rational, it can be
shown that the global Okounkov body is a rational polyhedral cone (see [3]) which
generalizes a result obtained by González for projectivized toric vector bundles of
rank two over smooth projective toric varieties, cf. [4].

Let T be a d-dimensional algebraic torus and denote by M and N its mutually
dual lattices of characters and one-parameter subgroups. A marked fansy divisor
over the smooth projective curve C consists of a triple (S,Σ,M) where

S =
∑

P∈C

SP ⊗ P

is a formal sum in which the SP are polyhedral subdivisions ofNQ all with the same
complete polyhedral (tail)fan Σ. In addition, M ⊂ Σ denotes the set of marked
cones. For the remaining coherence conditions regarding M and those imposed
upon the specific arrangement of the subdivisions the reader is referred to [2].
Now, given a marked fansy divisor S over C one can associate to it a complete
complexity-one T -variety TV(S,Σ,M). Conversely, every complete T -variety X
of complexity one can be described in these terms.

Moreover, every marked fansy divisor (S,Σ,M) over C comes with a natural
partner TV(S,Σ, ∅) together with a proper T -equivariant morphism

r : TV(S,Σ, ∅) → TV(S,Σ,M)

and a quotient map π : TV(S,Σ, ∅) → C with general fiber equal to the toric
variety TV(Σ). In this setting, M encodes the set of T -orbits in TV(S,Σ, ∅)
which are identified via the map r. Together with the quotient map π these data
completely determine the orbit structure of TV(S,Σ,M). In particular, one can
immediately read off the set of invariant prime divisors.

On the other hand, invariant Cartier divisors on TV(S,Σ,M) correspond to
divisorial support functions h = (hP )P∈C on (S,Σ,M). This is a collection of
continuous piecewise affine linear functions hP : |SP | → Q with the following
properties:

• hP has integral slope and integral translation on every polyhedron in SP .
• the linear part h(v) := limk→∞ hP (kv)/k for v ∈ NQ is independent of P ,
i.e. h : Σ → Q defines a piecewise linear function on Σ.

• hP 6= h for only finitely many P ∈ C.
• (hP |SP (σ))P is principal for every maximal cone σ ∈ M ∩ Σ(d), see [1,
Section 7] for more details.
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We denote the associated T -invariant Cartier divisor by Dh. An explicit descrip-
tion of its global sections is then given as follows (see also [1, Section 9]):

Γ(TV(S,Σ,M), Dh) =
⊕

u∈M

Γ(TV(S,Σ,M), Dh)u =
⊕

u∈✷h∩M

Γ(C, h∗(u)),

where ✷h := {u ∈ MQ | 〈u, v〉 ≥ h(v) ∀v ∈ NQ} and

h∗(u) :=
∑

P∈C

h∗
P (u)P :=

∑

P∈C

min
v∈SP (0)

(u− hp)P,

i.e. we can consider h∗ as a map from ✷h → CaDivQ C.
For the construction of a T -invariant flag Y• := Y0 ⊃ Y1 ⊃ · · · ⊃ Yd+1 on

TV(S,Σ,M), it is sufficient to perform a detailed analysis of its orbit structure.
Fixing a smooth T -invariant fixed point Yd+1 in TV(S,Σ,M), one can then con-
struct essentially two different types (general and toric), depending upon the local
structure of TV(S,Σ,M) around Yd+1.

Theorem. Let TV(S,Σ,M) be a projective T -variety of complexity one together
with a fixed general flag Y• and a big T -invariant Cartier divisor Dh. Then we
have that

∆Y•
(Dh) =

{
(x,w) ∈ R× Rd

∣∣ w ∈ ∆Y≥1
(Dh), 0 ≤ x ≤ degh∗(w)

}

up to a shift of ∆Y≥1
(Dh) where the latter denotes the Okounkov body of the

induced Cartier divisor Dh on the general fiber TV(Σ) with respect to an induced
flag Y≥1. In particular, ∆Y•

(Dh) is a rational polytope.

Results of similar type also hold for a fixed toric flag and can be derived almost
entirely by only using properties of the function h∗.

Finally we consider the global Okounkov body of a rational projective complexi-
ty-one T -variety TV(S,Σ,M). A key ingredient used in its investigation is an ex-
plicit representation of the divisor class group of TV(S,Σ,M) as the cokernel of a
linear map of lattices associated to (S,Σ,M), cf. [1, Section 7]. This representa-
tion also provides a description of the pseudoeffective cone of TV(S,Σ,M) which
is rational polyhedral. The following result can then be proved by closely analyz-
ing the properties of the function h 7→ h∗ and the fact that the global Okounkov
body can be represented as the convex hull of the graph of the latter function over
a rational polyhedral cone of one dimension less.

Theorem. Let TV(S,Σ,M) be a rational projective T -variety of complexity
one together with a fixed general or toric T -invariant flag Y•. Then the global
Okounkov body ∆Y•

(TV(S,Σ,M)) is a rational polyhedral cone.
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