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Introduction by the Organisers

Algebraic topology in general and homotopy theory in particular is in an ex-
citing period of growth and transformation, driven in part by strong interactions
with algebraic geometry, mathematical physics, and representation theory. This
has led to new approaches to our classical problems and the emergence of entirely
new areas of study, such as derived algebraic geometry and the ‘homotopy theory
of homotopy theories’. In this workshop we had presentations from across the full
range of new developments.

In 2009, Hill, Hopkins and Ravenel announced a proof that there do not exist
manifolds with Kervaire invariant 1 in dimensions 2k − 2 for any k ≥ 8. This
solves the long standing open Kervaire invariant problem (except for dimension
126, which is the only dimension which now remains open). The Kervaire invariant
is of a geometric nature, work of Browder had reformulated the question about the
existence of a Kervaire manifold in terms of pure homotopy theory. Hill, Hopkins
and Ravenel solved this homotopy theoretic formulation of the problem with the
help of equivariant stable homotopy theory and structured ring spectra. The
solution to the Kervaire invariant problem boosted new activities in these areas.
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Two example were described in the talks by Hill and Strickland. Michael Hill
(reporting on joint work with Michael Hopkins) explained a subtle and previously
misunderstood feature of equivariant commutative ring spectra. In this equivariant
context, the slogan that ‘E∞ is commutative’ is no longer true in a simple way;
there are different kinds of equivariant E∞-operads, giving rise to successively
more structure on homotopy groups, in the form of norm maps. In his talk, Neil
Strickland presented a new approach towards Tambara functors, the bookkeeping
device for the natural structure that exists on the homotopy ring of an equivariant
commutative ring spectrum.

The talk of Brooke Shipley (reporting on joint work with John Greenlees) dis-
cussed equivariant cohomology theories taking rational values, in a particularly
accessible case. Rational equivariant cohomology theories on free G-spaces, for a
compact Lie group G are represented by free rational G-spectra. The category
of these is Quillen equivalent to the category of torsion modules over the twisted
group ring H∗(BN)[W ] where N is the identity component of G and W = G/N
acts on N (and hence on H∗(BN)) by conjugation. The talk described how the
proof proceeds by a change of rings, an Eilenberg-Moore fixed point argument and
rigidity.

Steffen Sagave presented new insight into the concept of ‘units’ of a structured
ring spectrum. The classical theory sees only the connective part of a ring spectrum
and does not distinguish, for example, between a periodic ring spectrum and its
connective cover. Sagave introduced a version of the ‘spectrum of units’ of a
commutative structured ring spectrum that remembers if (and how) units in non-
zero degrees exist.

Three talks were devoted to applications of Tom Goodwillie’s calculus of func-
tors. In the early 90’s Tom Goodwillie devised a ‘calculus’ designed to analyze
highly nonlinear functors in non-semisimple contexts. Calculus provides a system-
atic theory of approximations to such functors, encoded in a sequence of spaces
(or rather spectra) with properties analogous to the coefficients in a Taylor series.
The analogy with classical calculus breaks down at certain points where the topo-
logical theory is richer. For example, the identity functor of topological spaces
has non-trivial higher derivatives and the derivatives of a functor are not indepen-
dent of each other, i.e., a functor is not simply a sum of the Taylor terms. Mark
Behrens (reporting on joint work with Charles Rezk) and Nick Kuhn (reporting on
joint work with Jason McCarty) exploited the Taylor towers of specific functors for
purposes of mod-2 homology calculations. Gregory Arone reported on joint work
with Michael Ching about the additional structure that is needed to assemble the
Taylor tower from the derivatives of a functor; the data is in terms of actions of
an operad formed by the derivatives of the identity functor. Operads were also
a key tool in Kathryn Hess’ talk (reporting on joint work with Bill Dwyer); they
give an new interpretation, in terms of spaces of operad morphisms, of a certain
double delooping first constructed by McClure and Smith. A consequence is a new
interpretation of the space of long knots as the double loop space of the space of
operad morphisms into the Kontsevich operad.
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An important point of contact between homotopy theory and algebra is in the
theory of group actions on spaces and the closely-related study of the classifying
spaces of groups. These connections manifested themselves in the talks by Adem,
Grodal and Benson. Alejandro Adem reported on joint work with José Manuel
Gómez, resulting in new calculations of equivariant K-groups for certain compact
connected Lie groups, acting on compact spaces with ‘maximal rank isotropy’, i.e.,
in a way that every stabilizer group contains a maximal torus. Jesper Grodal pre-
sented a new description of the Grothendieck group of homotopy classes of maps
between p–completed classifying spaces, out of an arbitrary finite group G, and
into symmetric groups. The answer is as the Grothendieck group of G-stable finite
S-sets, where S is a p-Sylow subgroup of G. The talk of Dave Benson (reporting
on joint work with Srikanth Iyengar and Henning Krause) described the classi-
fication of localizing subcategories of D(C∗(BG; k)) for a finite group G. There
is a one to one correspondence with subsets of Spec(H∗(BG)). The proof starts
by converting the problem to algebra by noting that D(C∗(BG)) is equivalent to
the localizing subcategory of K(Inj(kG)) generated by the tensor identity. After
this it applies the authors’ general stratification machinery. The talk went on
to make a similar conjecture for compact Lie groups G, and included a number
of illuminating examples where the collection of localizing subcategories is more
complicated.

John Rognes gave a survey talk on the phenomenon of redshift in algebraic
K-theory. The term ‘redshift’, coined by Rognes, refers to the observation that
algebraicK-theory and topological cyclic homology have then tendency to increase
the chromatic level (in the sense of stable homotopy theory) when applied to
commutative structure ring spectra.

Niko Naumann spoke on joint work with Tyler Lawson giving a criterion for
certain complex oriented cohomology theories to be represented by an E∞-ring
spectrum. Complex oriented theories (those with Chern classes) are basic to the
chromatic viewpoint on stable homotopy theory, while an E∞ ring spectrum has
power operations akin to Adams operations. The interplay between Chern classes
and power operations can be quite subtle, and the Naumann-Lawson criterion
addresses this issue using the algebraic geometry of p-divisible groups.

Hans-Werner Henn (reporting on joint work with Paul Goerss) gave a calcula-
tion of the Brown-Comenetz dual of the K(2)-local sphere at the prime 3. In a
celebrated paper, Gross and Hopkins calculated the E2-homology of this object
using the rigid analytic geometry of the Lubin-Tate deformation space; however,
this is not enough to determine the homotopy type in examples such as this. In
fact, there is a twist by an element of Hopkins’s Picard group.

John Francis’s talk began with a basic question: what would a homology theory
for manifolds look like? Specifically, with any homology theory, global data can
be assembled from local data using a Mayer-Vietoris sequence; so we want some
sort of local-to-global calculating tool for manifolds. After giving an axiomatic
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characterization, he then gave an elegant construction of topological chiral homol-
ogy using factorization algebras and a new and intuitive proof of the nonabelian
Poincaré duality theorem of Salvatore and Lurie.

Julie Bergner (reporting on joint work with Charles Rezk) gave an introduction
into the homotopy theoretic approach to higher category theory, advertising Rezk’s
category of Θn-spaces as a convenient model for the concept of (∞, n)-categories.

A new feature in this workshop was the ‘gong show’ on Wednesday morning.
Here the following nine junior participants took the opportunity to present their
work in 10-minute presentations.

Nora Seeliger: Group models for fusion systems and cohomology

George Raptis: Presheaves of coalgebras

Martin Palmer: Homological stability for oriented configuration spaces

Justin Noel: Maps of homotopy T -algebras

Lennart Meier: Modules over TMF

Martin Langer: Cohomology of certain crystallographic groups

Geoffroy Horel: Higher topological Hochschild cohomology

Dustin Clausen: p-adic analogs of the real J-homomorphism

Tarje Bargher: An operadic En+1-construction that acts on Map(Sn,M) stably
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Abstracts

Equivariant K-theory of group actions with maximal rank isotropy

Alejandro Adem

(joint work with José Manuel Gómez)

Let G denote a compact connected Lie group with torsion–free fundamental
group. Suppose that G acts on a compact space X so that each isotropy subgroup
is a connected subgroup of maximal rank; that is, Gx contains a maximal torus
T ⊂ G for every x ∈ X . We study the problem of computing K∗G(X), the complex
G–equivariant K–theory of X . Our work is primarily motivated by the examples
given by spaces of ordered commuting n-tuples in compact matrix groups such as
U(m), SU(m) and Sp(m) with the conjugation action. These examples can also
be described as spaces of homomorphisms Hom(Zn, G) ⊂ Gn with the conjugation
action. However there are other interesting types of examples for which these
techniques will apply: let G act on its Lie algebra g via the adjoint representation;
then the G-sphere Sg is an action with connected maximal rank isotropy.

The starting point for the computation of K∗G(X) for such actions is the obser-
vation that if T ⊂ G is a maximal torus, then by restriction there is an associated
action of NG(T ) on XT . This in turn yields a corresponding action of the Weyl
group W on the fixed-point set XT . The associated action of W on XT deter-
mines, in some way, the behaviour of the original action of G on X . We derive
some conditions on the action of W on XT , assuming that XT has the homotopy
type of a W -CW complex, so that K∗G(X) or K∗G(X)⊗Q can be computed from
the strong collapse of a spectral sequence associated to the skeletal filtration which
can be expressed in terms of Bredon cohomology. Before stating our main results
we briefly recall a definition from the theory of reflection groups.

Suppose that Wi ⊂ W is a reflection subgroup. Let Φi be the corresponding
root system and Φ+

i the corresponding positive roots. Define

W ℓ
i := {w ∈W | w(Φ+

i ) ⊂ Φ+}.

The setW ℓ
i forms a system of representatives for the different cosets inW/Wi. Let

W = {Wi}i∈I be a family of reflection subgroups of W . We say that W satisfies
the coset intersection property if given i, j ∈ I we can find some k ∈ I such that
Wi ∪Wj ⊂Wk and W ℓ

k =W ℓ
i ∩W

ℓ
j . We are now ready to state our first result:

Theorem 1 ([1]). Let G be a compact connected Lie group with torsion-free fun-
damental group and T ⊂ G a maximal torus. Suppose that G acts on a compact
space X with connected maximal rank isotropy such that XT has the homotopy type
of a W -CW complex. Assume that there is a CW-subcomplex K of XT contain-
ing a unique representative under the action of W for all the cells in XT and the
family {Wσ | σ is a cell in K} is contained in a family W of reflection subgroups
of W satisfying the coset intersection property. If H∗(XT ;Z) is torsion-free, then
K∗G(X) is a free module over R(G) of rank equal to

∑

i≥0 rankZH
i(XT ;Z).
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The previous theorem has the following applications.

Corollary 2. Let G be a simply connected compact Lie group acting on itself by
conjugation. Then K∗G(G) is a free module over R(G) of rank 2r, where r denotes
the rank of G.

This yields a new proof for a result first obtained in Brylinski and Zhang ([2])
where the structure ofK∗G(G) was determined as an algebra overR(G) for compact
connected Lie groups with π1(G) torsion-free, and which is a precursor to our work.
On the level of Lie algebras this corollary has the following analogue.

Corollary 3. Let G be a compact connected Lie group with π1(G) torsion-free.
Let G act on its Lie algebra g by the adjoint representation. If r is the rank of G,
then

K̃q
G(S

g) ∼=

{

R(G) if q ≡ r (mod 2),
0 if q + 1 ≡ r (mod 2).

We also obtain representation–theoretic conditions which imply thatK∗G(X)⊗Q
is a free R(G)⊗Q–module and which in many cases are not hard to verify. LetMW

be the family of W -representations A over Q for which there is an isomorphism of
R(G)⊗Q modules

(A⊗R(T ))W ∼= A⊗R(G).

Theorem 4 ([1]). Let G be a compact connected Lie group with torsion-free funda-
mental group and T ⊂ G a maximal torus. Suppose that G acts on a compact space
X with connected maximal rank isotropy subgroups in such a way that XT has the
homotopy type of aW -CW complex. If H∗(XT ,Q) belongs to the familyMW , then
K∗G(X)⊗Q is a free module over R(G)⊗Q of rank equal to

∑

i≥0 rankQH
i(XT ;Q).

Here are some applications of our second theorem. Let Cn(g) denote the al-
gebraic variety of ordered commuting n-tuples in g. As before, this variety is
endowed with an action of G via the adjoint representation. Consider the collec-
tion P of all compact Lie groups arising as finite products of the classical groups
S1, SU(r), U(q) and Sp(k).

Corollary 5. Suppose that G ∈ P is of rank r. Then there is an isomorphism of
modules over R(G)⊗Q

K̃q
G(Cn(g)

+)⊗Q ∼=

{

R(G)⊗Q if q ≡ rn (mod 2),
0 if q + 1 ≡ rn (mod 2).

Recall that if G acts on a topological space X then its inertia space is defined
as ΛX := {(g, x) ∈ G × X | gx = x}. Note that ΛX inherits an action of G
and the basic observation is that if G acts on X with connected maximal rank
isotropy subgroups and π1(Gx) is torsion-free, then ΛX has connected maximal
rank isotropy groups.

Theorem 6 ([1]). Let X denote a compact G–CW complex with connected max-
imal rank isotropy subgroups all of which have torsion–free fundamental group.
Assume furthermore that Hk(T × XT ;Q) is in MW for every k ≥ 0. Then
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K∗G(ΛX)⊗Q (as an ungraded module) is a free R(G)⊗Q module of rank equal to

2r ·
(

∑

i≥0 rankQ(H
i(XT ;Q))

)

, where r is the rank of G.

The construction of inertia spaces can be iterated. In this way we obtain a
sequence of spaces {Λn(X)}n≥0. If we further require that Gx ∈ P for all x ∈ X ,
then the action of G on Λn(X) has connected maximal rank isotropy subgroups
for every n ≥ 0.

Theorem 7 ([1]). Let X denote a compact G–CW complex such that all of its
isotropy subgroups lie in P and are of maximal rank. Assume furthermore that
Hk(T n×XT ;Q) is inMW for every k ≥ 0. Then K∗G(Λ

n(X))⊗Q (as an ungraded

module) is a free R(G)⊗Q module of rank equal to 2nr ·
(

∑

i≥0 rankQ(H
i(XT ;Q))

)

where r is the rank of G.

TakingX to be a single point with the trivialG–action yields Λn(X) = Hom(Zn, G)
(the space of ordered commuting n-tuples in G) with the conjugation action, and
our result can be applied.

Corollary 8. Suppose that G ∈ P is of rank r. Then K∗G(Hom(Zn, G)) ⊗ Q is
free of rank 2nr as an ungraded R(G)⊗Q module.

References
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Introduction to Redshift

John Rognes

1. Homotopy fixed points of smash powers

Consider a compact Lie group G and a commutative S-algebra B. The tensor
product G⊗B =

∧

GB is a commutative B-algebra with G-action. Consider the
G-homotopy fixed points (G ⊗ B)hG = F (EG+, G⊗ B)G. Experience has shown
that if π∗(B) contains vn-periodic families then π∗(G⊗B)hG often contains vn+k-
periodic families, where k is the rank of G. Since the vn+k-periodic families have
longer periods, or longer wavelength, than the vn-periodic families, we refer to this
as a redshift phenomenon.

The case G = T was investigated in the context of topological cyclic homology
by Madsen and coauthors [2], [5]. The tensor product T ⊗ B = THH(B) is the
topological Hochschild homology of B, and THH(B)hT is closely related to the
topological Frobenius homology TF (B; p) = holimn,F THH(B)Cpn . The higher
abelian cases, with G = Tk for k ≥ 2, have been emphasized by Carlsson, Dundas
and coauthors [3], [4].
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2. Examples of redshift

We write H for HFp, and focus on p = 2, but the results extend to odd primes.

2.1. The case G = T and B = H. In this case H∗(H) = A∗ = P (ξ̄1, ξ̄2, . . . )
is dual to the Steenrod algebra A . Computation shows that H∗(THH(F2)) =
A∗⊗P (x) where x is represented by σξ̄1, so π∗THH(F2) = P (x) with deg(x) = 2.
The odd spheres filtration on ET = S(C∞) induces a tower of fibrations with limit
THH(B)hT = F (ET+, THH(B))T. The continuous cohomology H∗c (THH(B)hT)
is the colimit of the cohomology groups in the tower. Computations show that
H∗c (THH(F2)

hT) ∼=
⊕

j∈Z Σ
2jH∗(HZ), so π∗THH(F2)

hT ∼=
⊕

j∈Z Σ
2jZ2. This is

a first example of redshift, where v0-periodicity arises in π∗THH(B)hT, even if
π∗(B) is v0-torsion.

2.2. The case G = T2 and B = H. Computation shows that H∗(T
2 ⊗ H) =

A∗ ⊗ P (x1, x2) ⊗ E(y), where x1, x2 and y are represented by σ1ξ̄1, σ2ξ̄1 and
σ1σ2ξ̄1, in degrees 2, 2 and 3, respectively. Here σ1 and σ2 are the differentials
and derivations induced by the standard generators of H1(T

2). A full computation

of H∗c ((T
2 ⊗ H)hT

2

) is complicated, but the image of the edge homomorphism

H∗(T2 ⊗H)→ H∗c ((T
2 ⊗H)hT

2

) contains many copies of H∗(ku), some of which
produce copies of π∗(ku

∧
2 ) in homotopy. This is an example of higher redshift,

where v0- and v1-periodicity arises in π∗(T
2 ⊗B)hT

2

, even if π∗(B) is v0-torsion.

2.3. The case G = T, B = tmf . Inspired by the redshift phenomenon, Bruner
and Rognes are investigating THH(tmf)hT as a possible example of a v3-periodic
theory with interesting maps S → K(tmf) → THH(tmf)hT. This has the po-
tential of detecting γ-family elements in π∗(S), which until now have not been
observed at p = 2.

2.4. The case G = T, B = MU . We are also interested in K(MU) and
THH(MU)hT, as a half-way house between K(S) = A(⋆) and K(Z). Is K(MU)
simpler to describe then K(S), in the way that π∗(MU) is simpler than π∗(S)?
Can K(S) be recovered from K(MU) by descent along the Hopf–Galois extension
S →MU , in the sense of [9]?

3. Algebraic and topological Singer constructions

The prime order case G = Cp is well understood.

3.1. The algebraic Singer construction. For each A -module M the algebraic
Singer construction is the tensor product R+(M) = ΣP (x±1)⊗M , with deg(x) =
1, with an explicitly given action by the Steenrod algebra [10]. There is a natural
A -module homomorphism ǫ : R+(M) → M , taking Σxr ⊗ a to Sqr+1(a), which
turns out to be an Ext-equivalence [1].
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3.2. The topological Singer construction. Let B be bounded below with
H∗(B) of finite type. Lunøe-Nielsen and Rognes [7] define the topological Singer
construction R+(B) = (B ∧ B)tC2 to be the Tate construction on the spectrum
B ∧B, with the C2-action given by transposition. There is a natural isomorphism
of A -modules H∗c (R+(B)) ∼= R+(H

∗(B)).
When B∧B is realized with the C2-equivariant structure given by the Bökstedt

smash product, there is a natural stable map ǫB : B → R+(B), from the geometric
fixed points of B ∧B to the Tate construction, which induces Singer’s homomor-
phism in continuous cohomology. Hence ǫB : B → R+(B) and the related map
Γ1 : (B ∧ B)C2 → (B ∧ B)hC2 are both 2-adic equivalences. The case B = S is
Lin’s theorem [6], being a special case of Segal’s Burnside ring conjecture.

4. Cyclic fixed points

The following theorem tells us that when the Segal conjecture for the Cp-action
on THH(B) holds “in high degrees”, then we are free to replace the homotopy
fixed points THH(B)hT with the Tate construction THH(B)tT, and either one of
these is a good approximation to the topological Frobenius theory TF (B; p).

Theorem 1 (Tsalidis [11]). Let B be a connective S-algebra with H∗(B) of finite
type. If the map Γ1 : THH(B)Cp → THH(B)hCp becomes k-coconnected after
p-adic completion, then so do all of the maps

Γ̂1 : THH(B)→ THH(B)tCp ,

Γ: TF (B; p)→ THH(B)hT and

Γ̂ : TF (B; p)→ THH(B)tT.

Calculations are often easier for the Tate constructions, since the Tate coho-
mology of Cp is (almost) a graded field, while the group cohomology has a more
complicated module theory.

5. Additive approximations

The unit map η : B → THH(B) extends to an T-equivariant map ω : T⋉B −→
THH(B). Given α ∈ Hq(B) we write σα ∈ Hq+1(THH(B)) for the image of σ⋉α,
where σ ∈ H1(T) is the generator.

The inclusion C2 ⊂ T induces a C2-equivariant map η2 : B ∧ B → THH(B),
which extends to an T-equivariant map ω2 : T⋉C2

B ∧B −→ THH(B). Applying
(−)tC2 we get a T/C2-equivariant map ωt : T/C2⋉R+(B) ≃ (T⋉C2

B∧B)tC2 −→
THH(B)tC2.

Theorem 2 (Lunøe-Nielsen, Rognes [8]). There is a homotopy commutative square

T⋉B
ω

//

ρ∧ǫB

��

THH(B)

Γ̂1

��

T/C2 ⋉R+(B)
ωt

// THH(B)tC2
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where ρ : T → T/C2 is the square root isomorphism, and ǫB : B → R+(B) is the
map inducing the Ext-equivalence in cohomology.

Using this diagram we can compute the effect of Γ̂1 on classes in H∗(THH(B))
that are in the image of ω∗, i.e., the classes α and σα for α ∈ H∗(B). This is made
possible by explicit formulas for (ǫB)∗ = ǫ∗ and (ωt)∗ in homology.

6. THH of complex bordism

In view of the examples B = HFp, HZ, ℓ, ku and tmf , where Γ1 and Γ̂1

only become equivalences with suitably finite coefficients and in high degrees, the
following theorem is a little surprising. It asserts that the Cp-equivariant Segal
conjecture holds for THH(MU), in just as strong a form as it holds for the Cp-
equivariant sphere spectrum THH(S) = S.

Theorem 3 (Lunøe-Nielsen, Rognes [8]). The map

Γ̂1 : THH(MU) −→ THH(MU)tCp

is a p-adic equivalence.

Outline of proof. We prove that Γ̂1 is a p-adic equivalence by showing that there is

an isomorphism of A -modules Φ∗ : H∗c (THH(MU)tCp)
∼=
−→ H∗c (R+(THH(MU)))

such that (Γ̂1)
∗ = ǫ ◦ Φ∗. To achieve this we show that there is a bicontinuous

isomorphism of complete A∗-comodules

Φ: Hc
∗(R+(THH(MU)))

∼=
−→ Hc

∗(THH(MU)tCp)

such that (Γ̂1)∗ = Φ ◦ ǫ∗.
This is done by two careful calculations, showing that there are pro-isomorphisms

of A∗-comodules

f : Hc
∗(R+(MU))⊗H∗(MU) H∗(THH(MU)) −→ Hc

∗(R+(THH(MU)))

and

g : Hc
∗(R+(MU))⊗H∗(MU) H∗(THH(MU)) −→ Hc

∗(THH(MU)tCp)

under H∗(THH(MU)). �

Corollary 4. The maps Γ1 : THH(MU)Cp → THH(MU)hCp, Γ: TF (MU ; p)→

THH(MU)hT and Γ̂ : TF (MU ; p)→ THH(MU)tT are p-adic equivalences.

This result tells us that we have a good chance at determining K(MU) by
way of TC(MU ; p), since TF (MU ; p), THH(MU)hT and THH(MU)tT are all
p-adically equivalent.
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Operads, modules and Goodwillie towers

Gregory Arone

(joint work with Michael Ching)

Let C and D each be either the category of pointed spaces or the category of
spectra. Let F : C −→ D be a pointed homotopy functor. By the work of Good-
willie [3], the derivatives of F form a symmetric sequence of spectra ∂∗F . This
symmetric sequence determines the homogeneous layers in the Taylor tower of F ,
but not the extensions in the tower. We explore the following question: what
natural structure does ∂∗F possess, beyond that of a symmetric sequence? Our
ultimate goal is to describe a structure that is sufficient to recover the Taylor tower
of F from the derivatives. Such a description could be considered an extension
of Goodwillie’s classification of homogeneous functors to a classification of Taylor
towers.

Our starting point is a theorem of Ching [2], which says that the derivatives of
the identity functor form an operad. Our first theorem says that the derivatives
of a general functor F form a bimodule (or a right/left module, depending on the
source and target categories of the functor) over this operad [1]. Koszul duality for
operads plays an interesting role in the proof. As an application we show that the
module structure on derivatives is exactly what one needs to write down a chain
rule for the calculus of functors.

However, this module structure on ∂∗F is not sufficient to recover the Taylor
tower of F and therefore it does not tell the whole story. We are led to seek a
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refinement of the module structure. We may now consider Goodwillie differentia-
tion as a functor from a category of functors to a suitable category of bimodules
over an operad

∂∗ : [C,D] −→ Bimodules.

We make the following key observation: The differentiation functor functor ∂∗,
considered as a functor into the category of bimodules, has a right adjoint. We
will denote this right adjoint by Φ.

Φ: Bimodules −→ [C,D].

The composite functor Φ∂∗ defines a comonad in the category of bimodules,
and the derivatives of a functor from C to D form a coalgebra over this comonad.
From this coalgebra structure one can, in principle, reconstruct the Taylor tower
of a functor. This leads to our main theorem:
Theorem. Goodwillie differentiation induces an equivalence of homotopy cate-
gories between the category of homotopy functors [C,D], where a weak equivalence
is a natural transformation that induces an equivalence of Taylor towers, and the
category of coalgebras over the comonad Φ∂∗.

Our next task is to give a more concrete characterization of what it means
to be a coalgebra over Φ∂∗ in specific cases. To this end we prove the following
results: Taylor towers of functors from Spaces to Spectra are classified by right
modules over something that may be called the “Lie pro-operad”. This structure
is a refinement of that of a right module over the Lie operad (which is what one
expects). Alternatively, one can say that (Taylor towers of) functors from Spaces
to Spectra are classified by “restricted right modules” over the Lie operad. In
the same vein we show that Taylor towers of functors from Spectra to Spectra
are classified by right modules over the “sphere pro-operad”. This structure is a
refinement of that of a symmetric sequence, again in accordance with expectation.

An interesting example to test our theory on is the functor X 7→ Σ∞Ω∞(E∧X).
Here E is a fixed spectrum, and the functor can be thought as a functor from either
the category of Spaces or Spectra to the category of Spectra. The derivatives of
this functor are given by the sequence E,E∧2, . . . , E∧n, . . .. The fact that this
sequence is the sequence of derivatives of a functor tells us something interesting
about the structure possessed by spectra in general. In particular it tells us that
spectra possess a natural structure of a restricted coalgebra over the Lie operad.
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Homological behavior of the Goodwillie tower

Mark Behrens

(joint work with Charles Rezk)

1. Calculus background

Let F : Top∗ → Top∗ be a functor from spaces to spaces, which preserves the
zero object, weak equivalences, and filtered homotopy colimits. Goodwillie [8]
associates to such a functor a tower of functors under F

· · · → P3(F )→ P2(F )→ P1(F ).

The fibers Dn(F ) = fiber(Pn(F )→ Pn−1(F )) satisfy

Dn(F )(X) = Ω∞Dn(F )(X), Dn(F )(X) = ∂n(F ) ∧hΣn
X∧n.

Here, ∂n(F ) is a Σn-spectrum. Under favorable circumstances, the tower con-
verges, in the sense that F (X) ≃ holimn Pn(F )(X). We then get a Goodwillie
spectral sequence (GSS)

π∗Dn(F )(X)⇒ π∗F (X).

The fiber sequences that give the layers deloop to give “k invariants” kn : Pn(F )→
BDn+1(F ). The “attaching map” between consecutive layers of the tower is given
by the composite

αn : Dn(F )→ Pn(F )
kn−→ BDn+1(F ).

These attaching maps are the d1-differentials in the GSS. We are interested in
studying the homology of the layers, and the homological behavior of these at-
taching maps, where F is the identity functor Id, and X is a sphere Sq. In this
case, the GSS converges to the unstable homotopy groups of spheres. The ho-
mology theories we will be discussing will be either (1) mod 2 homology, or (2)
Morava E-theory. All of the work in case (2) is joint with Charles Rezk.

2. Facts about Pn(Id)

We recall the following:

• The derivatives ∂∗(Id) form an operad [7] which is topologically Koszul
dual to the commutative operad. As such, it should be regarded as a
homotopical Lie operad.
• For any functor F , the derivatives ∂∗(F ) are a bimodule over ∂∗(Id) [1].
• For n 6= pk (and q odd if p > 2) the layer Dn(S

q) is p-locally contractible
[4]. Therefore, p-locally one actually studies the attaching maps αk :
Dpk(S

q)→ BDpk+1(Sq).

• The p-local attaching maps above deloop k-times: αk = Ωkβk [3].
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3. Mod 2 homology

Just as the E∞ operad has associated to it Dyer-Lashof operations, the Lie
operad ∂∗(Id) has Dyer-Lashof-Lie operations [5]. Using the left module structure
on ∂∗(F ) induces (mod 2) homology operations

Q̄i : H∗Dn(F )(X)→ H∗+i−1D2n(F )(X)

such that

Q̄rQ̄s =
∑

t

[(

s− r + t

s− 1

)

+

(

s− r + t

2t− r

)]

Q̄r+s−tQ̄t

Q̄ix = 0 if : i < |x|.

These relations give the Lie-Dyer-Lashof algebra a basis of admissibles Q̄i1 · · · Q̄is

with an admissibility criterion ij ≥ 2ij+1+1. In the language of these operations,
we get the following computation (compare with [4]).

Theorem 1 ([5]). We have

H∗D2k(Id)(S
q) = F2{Q̄

i1 · · · Q̄ikιq : : : ij ≥ 2ij+1 + 1, ik ≥ q}.

Our next task is to describe the effect on homology of the (delooped) attaching
maps

βk : BkD2k(Id)(S
q)→ Bk+1D2k+1(Id)(Sq).

Arone and Dwyer showed that there are equivalences ΣkD2k(Id)(S
q) ≃ ΣqL(k)q,

where L(k)q is the Steinberg summand of the Thom spectrum B(Fk2)
qρ̄ (ρ̄ is the

reduced regular representation). In particular, ΣkD2k(Id)(S
q) is a retract of a

suspension spectrum, and hence H∗B
kD2k(Id)(S

q) is the free allowable algebra
over the Dyer-Lashof algeba generated by H∗Σ

kD2k(Id)(S
q).

Theorem 2 ([6]). The induced map on mod 2 homology (βk)∗ is described on
algebra generators by

βk : Qj1 · · ·QjℓσkQ̄i1 · · · Q̄ik ιq =
ℓ

∑

s=1

Qj1 · · · Q̄js · · ·QjℓσkQ̄i1 · · · Q̄ikιq

Up to a weight filtration, the map is multiplicative.

In the formula in the above theorem, the Dyer-Lashof operations and the Lie-
Dyer-Lashof operations commute with the mixed Adem relations:

Q̄rQs =
∑

t

[(

s− r + t

s− 1

)

+

(

s− r + t

2t− r

)]

Qr+s−tQ̄t.

In the case of q = 1, these formulas coincide with the formulas of N.Kuhn of
the homology of the James-Hopf maps used in his proof of the Whitehead con-
jecture. We therefore extract the following corollary (proved independently by
Arone-Dwyer-Lesh).

Corollary 3 ([6], Arone-Dwyer-Lesh). The GSS for S1 collapses at the E2 page.
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4. Morava E-theory

Let E denote height n Morava E-theory. Let ∆q be the algebra of natural
additive operations which act on the module of indecomposables [QE∧∗ (R)]q for R
an augmented E∞ ring spectrum. Rezk recently showed these algebras are Koszul.
What does this mean? These algebras decompose additively as

∆q =
⊕

k

∆q[k]

where ∆q[k] is the E0-module spanned by “length k sequences of operations”.
Let Ē0 denote the ∆q-module structure on E0 induced from the augmentation
∆q → ∆q[0] = E0. Then the bar complex breaks up as

B•(Ē0,∆q, Ē0) =
⊕

k

B•(Ē0,∆q, Ē0)[k].

Being Koszul means that

H∗B•(Ē0,∆q, Ē0)[k] =

{

0, ∗ 6= k,

C[k]q, ∗ = k.

The modules C[k]q give the Koszul resolution — for M a ∆q-module, there is an
associated cochain complex

C[0]∨q ⊗E0
M

d0−→ C[1]∨q ⊗E0
M

d1−→ C[2]∨q ⊗E0
M

d2−→ · · ·

whose cohomology is Ext∆q
(Ē0,M).

Theorem 4. For odd q there are canonical isomorphisms

E∧q (Σ
kD2k(Id)(S

q)) ∼= C[k]∨−q.

We are making progress on the following (Φn is the Bousfield-Kuhn functor):

Conjecture 5. Under the isomorphism above, the induced map (Φnβk)∗ on E-

homology is given by the differential in the Koszul resolution for Ẽq(Sq).

References

[1] G.Arone, M.Ching, Operads and chain rules for calculus of functors, Astérisque 338 (2011).
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Localizations of Equivariant Commutative Rings

Michael A. Hill

(joint work with Michael J. Hopkins)

In this talk, I discussed joint work with Hopkins which addresses the question:
“When is the localization of a commutative G-equivariant ring a commutative G-
equivariant ring?”. In all that follows, let G be a finite group. The talk sketches
a proof of the following theorem.

Theorem 1. If for all acyclics Z for a localization L and for all subgroups H,
NG
HZ is acylic, then for all commutative G-ring spectra R, L(R) is a commutative

G-ring spectrum.

The proof is modeled on the standard non-equivariant proof in EKMM [1]. The
essential twist is understanding the interplay between the G-action on the E∞
operad and the norm.

Already in the statement of the theorem we have used the norm (as described in
Hill-Hopkins-Ravenel [2]). This is a symmetric monoidal functor NG

H : SH → SG
from the category of H-spectra (with its smash product) to the category of G-
spectra. This has the distinguished feature of also refining to the left adjoint to
the forgetful functor from commutative G-ring spectra to commutative H-ring
spectra. Thus there is for any commutative G-ring spectrum R a canonical map
of commutative G-ring spectra

NG
HRes

G
H(R)→ R.

These satisfy axioms analogous to the norm maps in Tambara functors, making
commutative G-rings into spectral Tambara functors (analogous to Guillou-May’s
description of equivariant spectra).

1. Localizations Need Not Be Commutative

We first sketch a counterexample to the obvious conjecture. Let P denote the
family of proper subgroups of G, and let ẼP denote the cofiber of the natural map
from the classifying space EP+ to S0. The spectrum ẼP is a localization of S0: we

kill all maps from induced cells. Since G is finite, we can also realize ẼP as S0[a−1ρ̄ ],
where aρ̄ is the inclusion of {0,∞} into the representation sphere associated to ρ̄,
the quotient of the real regular representation by its trivial summand.

This spectrum does not admit maps from the norms of its restrictions. For any
proper subgroup H , the commutative H-ring spectrum ResGH(ẼP) is contractible.

This is the terminal commutative H-ring, and since ẼP is not contractible, we
cannot have a commutative ring map

∗ ≃ NG
HRes

G
H(ẼP)→ ẼP .

The example already underscores the role the norm will play. Here there is
an obstruction to being a commutative ring spectrum. One way to interpret our
theorem is that this is the obstruction; if localization “plays nicely with the norm”,
then it takes commutative ring objects to commutative ring objects. On the other
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hand, the spectrum ẼP is a the result of inverting a map from an invertible element
(S−ρ̄) to the symmetric monoidal unit S0. For formal reasons, this is guaranteed to
be “infinitely coherently commutative”. Thus we need to understand the different
ways a G-commutative ring spectrum can be commutative.

2. Flavors of E∞

In the non-equivariant context, the model of the E∞ operad used for commu-
tative rings is the linear isometries operad on an separable Hilbert space U . In
the equivariant context, we have an additional choice: how does the group act
on U? We consider only universes (so if an irreducible representation occurs, it
does so infinitely often) that contain a trivial summand. This gives a hierarchy of
operads, all of which are underlain by the ordinary linear isometries operad. In all
cases, the key determination is which subgroups H are such that G/H embeds in
U (just as with transfers in the additive context). The extremal cases are where U
is a trivial universe (so only G/G embeds within), giving the “naive E∞ operad”
and U a complete universe (so all G/H embed within), giving the commutative
operad.

There is a huge difference between the algebras over these operads. Operads
over the naive E∞ operad are “coherently homotopy commutative”, but for a free
algebra over this operad on Z, the geometric fixed points is the free algebra on the
geometric fixed points of Z. In particular, for Z = G+, the geometric fixed points
are S0. In stark contrast, for the commutative operad, the geometric fixed points
can be much more complicated.

The spaces in these linear isometries operads are universal spaces for families of
subgroups of G×Σn. For the naive operad, the family is those subgroups contained
in G. For the commutative operad, the family is those subgroupsH ⊂ G×Σn such
that H∩Σn = {e}. As universal families, they have nice simplicial decompositions,
and the only cells which appear are those with stabilizer in the families associated
to the operad.

In all cases, Σn acts freely. Since G × Σn need not, there can be fixed points
produced. The easiest way to describe how these interact, and to see the result,
is to utilize the natural enrichment of the symmetric monoidal structure on G-
spectra.

2.1. Tensoring over G-spaces. It is well known that the category of commuta-
tive G-ring spectra is tensored over G-spaces (see for instance Mandell-May or the
appendix to Hill-Hopkins-Ravenel [3]). The universal property defining the tensor
structure establishes canonical equivalences

G/H ⊗R ≃ NG
HRes

G
H(R).

This tells us how to tensor any commutative G-ring spectrum with any finite G-set
(and therefore by the usual tricks with any G-space, though this will not directly
be needed). What is perhaps more exciting is that while the left-hand side is not
defined for R an arbitrary element of SG, the right-hand side is. This means that
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via the norm, we can define X ⊗ Z for a finite G-set X and a G-spectrum Z, and
the underlying spectrum is just the |X |-fold smash power of Z.

The key step in proving the theorem is to identify

(G× Σn/H)+ ∧Σn
Z∧n = (G× Σn/H)+ ∧Σn

(n⊗ Z),

where n denotes the set with n-elements and a trivial G-action. Depending on
H , smashing over Σn converts n into a different G-set (possibly with a non-trivial
G-action). This means that smashing G × Σn/H over Σn with n ⊗ Z yields a
wedge of spectra of the form X ⊗ Z for various G-sets (determined by H).

The key example is as follows. Let n = 2, and let G = C2. There is a subgroup,
Z/2 of G × Σ2 given by the diagonal (it’s ludicrous, since all the groups are the
same). Now consider

G× Σ2/H+ ∧Σ2
(2⊗ Z).

The quotient by H shows that we identify the canonical Σ2-action on 2 with a
C2-action. This converts 2 into C2 as a C2-space, and hence

G× Σ2/H+ ∧Σ2
(2 ⊗ Z) = C2 ⊗ Z = NC2

e ResC2

e (Z).

A similar analysis holds in the general case.

3. Sketch of the proof

We need to show that if Z is acyclic, then Z∧n/Σn is acyclic. Knowing this will
allow us to simply copy EKMM. We can replace Z∧n/Σn with Ln(U)+ ∧Σn

Z∧n,
where Ln(U). Using the cell decomposition and the described analysis of the
possible stabilizer subgroups, we see that this has a filtration with associated
graded suspensions of wedges of smash products of norms. EKMM arguments
handle the wedges and smash products, and by assumption, the norms are also
acyclic.

We can do something better. We described above a hierarchy of commutative
operads. The stronger statement, showed in essentially the same way, is as follows.

Theorem 2. If for all L-acyclic spectra Z and for all G/H embedding in U the
spectrum NG

HRes
G
H(Z) is L-acyclic, then for all commutative G-ring spectra R,

L(R) is an algebra over L(U).
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Commutative multiplications on BP 〈n〉

Niko Naumann

(joint work with Tyler Lawson)

We reported on joint work with T. Lawson using derived algebraic geometry to
approach E∞-structures on truncated Brown Peterson spectra BP 〈n〉. The main
result of [1] gives a purely algebraic criterion in case n = 2. This criterion roughly
demands the existence of a coordinate on Lubin Tate deformation space of a 1-
dimensional formal group of height 2 with strong rationality properties. The ex-
istence or otherwise of such a coordinate is one problem at every prime p and at
present we are only able to check this for p = 2, 3 using algebraization via elliptic
curves. We also reported on some applications [2] including an E∞-orientation
tmf(2) → BP 〈2〉. To conclude, we explained why one might hope to extend these
results to n ≥ 3 using [3] as a starting point.
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Spectra of units for periodic ring spectra

Steffen Sagave

One can associate a spectrum of units gl1E to a commutative structured ring
spectrum E. This is analogous to forming the abelian group of units GL1R in
the underlying multiplicative monoid of an ordinary commutative ring R. The
spectrum gl1E is useful because it controls the orientation theory of E.

The spectrum of graded units. The various equivalent definitions for gl1E in
the literature have the disadvantage that they do not see the difference between a
periodic ring spectrum and its connective cover. Our aim is to define a spectrum
of graded units which detects periodicity. It is a functor

glJ1 : CSpΣ → Γop-S/bJ , E 7→ glJ1 E

from the category of commutative symmetric ring spectra CSpΣ to the category
of Γ-spaces augmented over a certain Γ-space bJ .

Commutative symmetric ring spectra are one possible incarnation of a category
of commutative structured ring spectra. They are strictly commutative monoids
with respect to the smash product of symmetric spectra. Segal’s category of Γ-
spaces Γop-S is a convenient way to encode connective spectra. The Γ-space bJ
arises from a symmetric monoidal category J and represents the sphere spectrum.
So glJ1 E may be viewed as a connective spectrum over the sphere spectrum.
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Below we outline some aspects of the definition of glJ1 E and explain why we
think of it as graded units. Before that, we discuss how it relates to the ordinary
units gl1E.

Graded units and ordinary units. Let bgl∗1E be the spectrum associated with

the homotopy cofiber of the augmentation glJ1 E → bJ .

Theorem 1. [2] Let E be a positive fibrant commutative symmetric ring spectrum.
The ordinary spectrum of units gl1E is the connective cover of Ωbgl∗1E, and bgl∗1E
is connective.

The bottom homotopy group π0(bgl
∗
1E) is isomorphic to Z/nEZ where nE ∈ N0

is the periodicity of E. By definition, nE = 0 (and Z/nEZ ∼= Z) if all units of the
multiplicative graded monoid π∗(E) have degree 0, and nE is the smallest positive
degree of a unit in π∗(E) otherwise.

In other words, bgl∗1E is a not necessarily connected delooping of the ordinary
spectrum of units whose bottom homotopy group detects periodicity. The periodic
and connective complex K-theory spectra KU and ku illustrate this: The map
ku→ KU that exhibits ku as the connective cover of KU induces the surjection

Z ∼= π0(bgl
∗
1(ku))→ π0(bgl

∗
1(KU)) ∼= Z/2.

In contrast, the induced map of ordinary units gl1(ku) → gl1(KU) is a stable
equivalence.

Since bJ represents the sphere spectrum, the definition of bgl∗1E provides a
map S→ bgl∗1E. The induced map

Z/2 ∼= π1(S)→ π1(bgl
∗
1E) ∼= π0(gl1E) ∼= (π0(E))×

is the sign action of the additive group structure on π0(E). This implies that the
first k-invariant of bgl∗1E is non-trivial as soon as {±1} acts non-trivially on π0(E).

Graded E∞ spaces. The definition glJ1 E builds on the diagram space of graded

units GLJ1 E that we introduced in joint work with Schlichtkrull [3], and we will
now summarize the relevant material from [3].

In the same way as commutative symmetric ring spectra model E∞ spectra, one
can give strictly commutative models for E∞ spaces: The category SI of space
valued functors on the category of finite sets and injections I has a symmetric
monoidal product ⊠ such that all homotopy types of E∞ spaces are represented
by commutative monoids in (SI ,⊠) [3, Theorem 1.2]. We call these commutative
monoids in (SI ,⊠) commutative I-space monoids. For example, the underlying
multiplicative E∞ space of a commutative symmetric ring spectrum E arises as
commutative I-space monoid ΩIE in a natural way. The value of ΩIE at the
finite set m = {1, . . . ,m} is the space ΩmEm.

In this terminology, the construction of the ordinary units gl1E goes as follows:
The commutative I-space monoid ΩIE has a sub commutative I-space monoid
GLI1E of invertible path components, and Schlichtkrull [4] showed how to build

a Γ-space gl1E from GLI1E. Defining gl1E using GLI1E explains why gl1E does

not detect periodicity: The inclusion GLI1E → ΩIE corresponds to the inclusion
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π0(E)× → π0(E), and both GLI1E and ΩIE do not detect multiplicative units of
π∗(E) in non-zero degrees because they are build from the spaces ΩmEm which
do not carry information about the negative dimensional homotopy groups of E.

The key idea is now to pass to a more elaborate indexing category in order to
include information about units in all degrees of π∗(E). Let J be the Quillen lo-
calization construction Σ−1Σ on the category of finite sets and bijections Σ. This
is a symmetric monoidal category whose objects are pairs of finite sets (m1,m2).
Its classifying space has the homotopy type of QS0. As for I, we obtain a symmet-
ric monoidal category of space valued functors (SJ ,⊠). We call the commutative
monoids in (SJ ,⊠) commutative J -space monoids and write CSJ for the resulting
category.

In [3] we develop a homotopy theory for commutative J -space monoids that
clarifies their relationship to ordinary E∞-spaces:

Theorem 2. [3, Theorem 1.7] The category of commutative J -space monoids
admits a model structure such that it is Quillen equivalent to the category of E∞
spaces over BJ .

Thinking of E∞ spaces as a homotopical generalization of commutative monoids
and of commutative symmetric ring spectra as a generalization of commutative
rings, the following analogy explains this statement: An ordinary Z-graded com-
mutative monoid may be defined as a commutative monoid with a map to the
additive monoid of the initial commutative ring Z. By the theorem, a commuta-
tive J -space monoid is up to homotopy an E∞ space with a map to the underlying
additive E∞ space BJ ≃ QS0 of the initial commutative ring spectrum S. There-
fore we think of commutative J -space monoids as graded E∞ spaces.

Exploiting a close relationship between J and the combinatorics of symmetric
spectra, a commutative symmetric ring spectrum E has an associated commu-
tative J -space monoid ΩJE that is defined by (ΩJE)(m1,m2) = Ωm2Em1

on
the objects of J . This description indicates that ΩJ (E) also captures informa-
tion about negative dimensional homotopy groups of E. In view of the above
discussion, ΩJE is a model for the graded multiplicative E∞-space of E.

Grouplike graded E∞ spaces. A classical theorem in stable homotopy theory
states that grouplike E∞ spaces are equivalent to connective spectra. This has a
counterpart for graded E∞ spaces:

Theorem 3. [2] There is a chain of Quillen equivalences that induces an equiv-
alence between the homotopy category of grouplike commutative J -space monoids
and the homotopy category of connective spectra over the sphere spectrum.

If E is a commutative symmetric ring spectrum, one can form a grouplike sub
commutative J -space monoid GLJ1 E of graded units in ΩJE that corresponds to
the inclusion of the graded commutative group of units π∗(E)× into the underlying

graded multiplicative monoid of π∗(E). The augmented Γ-space of units glJ1 E

discussed above is constructed from GLJ1 E, and the theorem makes clear why a
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spectrum associated with GLJ1 E should be a connective spectrum over the sphere
spectrum.

The last theorem is also a key ingredient for

Theorem 4. [2] The functor Ho(CSpΣ) → Ho(Γop-S/bJ ) induced by glJ1 is a
right adjoint.

A similar statement about the ordinary units is proven by Ando, Blumberg,
Gepner, Hopkins, and Rezk [1, Theorem 3.2].

References

[1] M.Ando, A. J. Blumberg, D. J.Gepner, M. J.Hopkins, and C.Rezk. Units of ring spectra and
Thom spectra, 2008. arXiv:0810.4535

[2] S. Sagave. Spectra of units for periodic ring spectra. arXiv:1111.6731
[3] S. Sagave and C. Schlichtkrull. Diagram spaces and symmetric spectra. arXiv:1103.2764
[4] C. Schlichtkrull. Units of ring spectra and their traces in algebraic K-theory. Geom. Topol. 8

(2004), 645–673.

An algebraic model for free rational equivariant stable homotopy
theories

Brooke Shipley

(joint work with John Greenlees)

In previous work we gave a small and concrete model of free rational G-spectra
when G is a connected compact Lie group [1]. This talk discussed the extension
to general compact Lie groups, and used a new method of proof (following [2]).

Assume G is a compact Lie group with identity component N and component
group W = G/N . Here W acts on the polynomial ring H∗(BN) by ring isomor-

phisms. We write H∗(B̃N) to make the W action explicit. We then consider the

twisted group ring H∗(B̃N)[W ]. The algebraic model for free rational G-spectra

is given by differential graded torsion modules over H∗(B̃N)[W ]. Here, a module

is torsion if it is torsion as a module over the polynomial ring H∗(B̃N).

Theorem 1. [3] For any compact Lie group G, with identity component N and
component group W = G/N , there is a Quillen equivalence

free-G-spectra/Q ≃ tors-H∗(B̃N)[W ]-mod

of model categories. In particular their derived categories are equivalent

Ho(free-G-spectra/Q) ≃ D(tors-H∗(B̃N)[W ]-mod)

as triangulated categories.

Note that this algebraic model does not use the full information given by the
extension

1 −→ N −→ G −→W −→ 1.

For example, the relevant twisted group ring for both O(2) and Pin(2) is the
twisted polynomial ring Q[c][W ] where W is the group of order 2 whose nontrivial
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element negates c. In fact, this shows that free rational O(2)-spectra and free
rational Pin(2)-spectra are Quillen equivalent homotopy theories. The 2 to 1 map
Pin(2) −→ O(2) in fact induces this rational equivalence.
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Group actions on sets, at a prime p

Jesper Grodal

In this talk I presented an identification of the Grothendieck group of maps be-
tween p–completed classifying spaces Gr([BGp̂,

∐

nBΣnp̂]), for G an arbitrary
finite group, as the Burnside ring A(Fp(G)) of the p–fusion system Fp(G) of G.

Let S be a Sylow p–subgroup of G. A finite S–set X is said to be G–stable
if for all subgroups Q ≤ S and all g ∈ G such that gQg−1 ≤ S, the Q–set
obtained by restricting the S–action on X to Q is isomorphic, as a Q–set, to the
Q–set obtained by restricting the S-action to gQg−1, and then viewing X as a
Q–set via the conjugation map cg. The Burnside ring A(Fp(G)) is defined as the
Grothendieck group of the monoid of G–stable finite S–sets, under disjoint union
— this is easily seen only to depend on the p–fusion system Fp(G) of G, explaining
the notation.

Our main theorem can now be stated as follows:

Theorem 1. Let G be a finite group with Sylow p-subgroup S, and let A(Fp(G))
be the Burnside ring of G–stable finite S–sets, as defined above. Then

Gr([BGp̂,
∐

n

(BΣn)p̂])
∼=
−→ A(Fp(G))

It is easy to see that A(Fp(G)) is a free abelian group of rank the number
of conjugacy classes of p-subgroups in G, and it is naturally as a subring of the
(ordinary) Burnside ring A(S) of the Sylow p–subgroup S. The algebraic proper-
ties of A(Fp(G)) has been studied by several authors, see e.g., [2]. It was proven
in [1] that the map in Theorem 1 had finite kernel and cokernel, by observing
that the relevant obstructions took values in finite groups; we here show that the
obstruction groups in fact vanish.

Applying Theorem 1 for the different primes p dividing the order of G, one
obtains an ‘integral’ version, where the p–completion is replaced by the Quillen
plus construction (−)+.
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Theorem 2. The following diagram is a pull-back of rings

Gr([BG,
∐

n(BΣn)
+]) //

aug

��

∏

p||G|A(Fp(G))

aug

��

Z
diag

//
∏

p||G|Z

Said differently, Gr([BG,
∐

n(BΣn)
+]) is just the product of the A(Fp(G)), for

p | |G|, in the category of Z–augmented rings.
Theorem 1 can be viewed as an ‘uncompleted’ version of the Segal conjecture

via the following commutative diagram

(3) Gr([BGp̂,
∐

n(BΣn)p̂])
∼=

//

��

A(Fp(G))

(−)Î

��

[BGp̂, Q(S0)p̂]
∼=

// A(Fp(G))Î

where I is the augmentation ideal. Here the top isomorphism is Theorem 1 and
bottom isomorphism is the Segal conjecture, Ragnarsson style [5, 2].

Our proof follows the general outline of a celebrated result of Jackowski–Oliver
[4] on vector bundles over classifying spaces, but requires as new input an ‘equi-
variant stability theorem’ for the symmetric groups. The results of this talk will
appear in [3].
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Factorization homology

John Francis

We offer an axiomatic description of the factorization homology (a.k.a. topo-
logical chiral homology) of topological manifolds, in a sense analogous to (and
generalizing) the Eilenberg-Steenrod axioms for usual homology. This point of
view provides a new proof of the nonabelian Poincare duality of Salvatore and
Lurie, that factorization homology with coefficients in an n-fold loop space is ho-
motopy equivalent to a space of compactly supported maps. The method of proof
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generalizes to manifolds with boundary, in joint work with David Ayala and Hiro
Tanaka, and stratified manifolds.

Tambara functors

Neil Strickland

Tambara functors were introduced to encode the relationship between restriction
maps, transfers and norm maps in the homotopy groups of strictly commutative
equivariant ring spectra. They can be defined as follows: we introduce a bicate-
gory U whose 1-truncation is the Lawvere theory for commutative semirings, then
form the evident analogous bicategory UG of finite G-sets (as 0-cells), bispan di-
agrams of finite G-sets (as 1-cells) and equivariant isomorphisms (as 2-cells). We
then truncate to form an ordinary category UG, and define Tambara functors to
be product-preserving functors from UG to sets. There is a rich algebraic theory of
Tambara functors and their relationships with semirings, Mackey functors, Green
rings, functors on orbit categories and equivariant spectra. There is also a globally
equivariant theory defined using bispan diagrams of groupoids, which relates to
coherent systems of G-equivariant ring spectra defined for all groups G simulta-
neously. In this context we obtain an elegant description of the generalized Witt
rings of Dress and Siebeneicher as components of the left adjoint to an evaluation
functor.

Homotopy-theoretic approaches to (∞, n)-categories

Julie Bergner

(joint work with Charles Rezk)

The goal of this talk is to look at some of the details behind the machinery of
(∞, 1)-categories and more general (∞, n)-categories currently being used in a
number of applications throughout homotopy theory and other areas of mathe-
matics.

We begin with the basic idea of higher categories. An n-category should have
objects, together with 1-morphisms between objects, 2-morphisms between 1-
morphisms, and so forth up to n-morphisms between (n−1)-morphisms. Continu-
ing for all n, we can also obtain the notion of∞-category. If units and associativity
at all levels are defined strictly, there is no problem defining these structures rig-
orously; an n-category is defined to be a category enriched in (n− 1)-categories.

However, most examples that one finds within mathematics are not defined
so strictly. In homotopy-theoretic examples, often associativity only holds up to
homotopy, or more generally up to some kind of equivalence. While there are
many definitions of weak n-categories, comparing these definitions has proved to
be a very difficult task.

On the other hand, so-called (∞, 1)-categories, or weak ∞-categories with k-
morphisms weakly invertible for k > 1 have proved to be much more tractable,
in that a number of approaches to them have been shown to be equivalent to
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one another. The comparisons between more general (∞, n)-categories, where k-
morphisms are invertible for k > n, are still being developed and are the subject
of this talk.

To understand the development of (∞, n)-categories, we begin with the simplest
example, that of (∞, 0)-categories, or weak ∞-groupoids. It is often taken as a
definition that (∞, 0)-categories are just topological spaces or simplicial sets. To
see that this definition is sensible, think of the points of a topological space as ob-
jects, paths between points (which are invertible up to homotopy) as 1-morphisms,
homotopies between paths as 2-morphisms, homotopies between homotopies as 3-
morphisms, and so forth. Furthermore, the homotopy theory of (∞, 0)-categories
is well-developed, via the classical model structures on the categories of topological
spaces and simplicial sets.

Moving up a categorical level, we can use the idea that an (∞, 1)-category
should be a category enriched in (∞, 0)-categories. In other words we can consider
topological or simplicial categories as models for (∞, 1)-categories. Since there is
a model structure on the category of small simplicial categories, we can still do
homotopy theory here [1].

However, if we try to continue this process of enrichment, we get less manageable
models. First, the iterated enrichments are still going to be too rigid for many
examples. Second, the model structure on the category of simplicial categories is
not cartesian, so it is not expected that one can obtain a suitable model structure
for categories enriched in them. Therefore, we would like to find another model
for (∞, 1)-categories which has a cartesian model structure so that we have a good
homotopy theory of (∞, 2)-categories.

There are in fact several models for (∞, 1)-categories, each of which weakens the
definition of a simplicial category in some way. Quasi-categories, Segal categories,
and complete Segal spaces all have respective model structures which have been
shown to be Quillen equivalent to one another, thus establishing them as alterna-
tive approaches to (∞, 1)-categories [2], [3], [4], [5], [6]. In this talk we focus on
complete Segal spaces, which were developed by Rezk [9].

These objects are simplicial objects in the category of simplicial sets, satisfying
a Segal condition and a completeness condition. The Segal condition gives an up-
to-homotopy-composition, while the completeness condition compensates for the
fact that the objects of a simplicial category form a discrete space, where as the
0-space of a complete Segal space may not. One way to think of the completeness
condition is that it requires the 0-space to be a moduli space for equivalences in
the 1-space. There is a model structure on the category of simplicial spaces such
that the complete Segal spaces are the fibrant objects. Furthermore, this model
structure is cartesian, and there is in fact a model structure on the category of
categories enriched over it, giving a model for (∞, 2)-categories.

However, complete Segal spaces have only solved our problem at one level, as
we still have difficulty if we want to continue enriching to obtain (∞, n)-categories
for still larger n. What we really need are higher analogues of complete Segal
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spaces. There are multiple ways to define such objects, and here we look at Rezk’s
Θn-spaces [8].

The categories Θn are defined iteratively so that Θ1 = ∆, and the objects of
Θn look like simple models for strict n-categories, just as the objects of ∆ can be
thought of a simple models for ordinary categories. Considering functors Θopn →
sSets, we can require Segal and completeness conditions, but now at multiple
levels, and call the resulting objects Θn-spaces. These objects are the fibrant
objects in a cartesian model structure on the category of all functors Θopn → sSets.

While it seems that Θn-spaces give a good model for (∞, n)-categories, it would
be ideal to show that their model structure is Quillen equivalent to one on the
category of small categories enriched in (∞, n− 1)-categories, since enrichment is
a desired approach to higher categories. Finding a chain of Quillen equivalences
between these model structures is the subject of work in progress. One consequence
that will follow from this result will be a chain of Quillen equivalences between
the model structure for Θn-spaces and the one for the multi-simplicial model of
Barwick and Lurie, as used in [7].
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Long knots and maps of operads

Kathryn Hess

(joint work with William G. Dwyer)

1. Operads with multiplication

Let (M,⊗, I) be a monoidal category, and let Op denote the category of non-
symmetric operads in M. Let A and D2 denote the associative operad and the
little 2-disks operad, respectively.
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In [3] McClure and Smith constructed a functor from the category of operads
under A to the category of cosimplicial objects in M,

A ↓Op→M∆ : (A
ω
−→ O) 7→ O•ω ,

where the cofaces and codegeneracies of O•ω are defined in terms of ω and the
multiplication of operad. They then proved that if M is the category of simplicial
sets, then holim∆ O•ω is a D2-space and therefore a double loop space, if it is
connected.

Our main contribution is a determination of the homotopy type of a double
delooping of holim∆ O•ω, in terms of a derived mapping space of operad maps.

Theorem 1. [2] If O is a simplicial operad such that O(0) ∼ ∗ ∼ O(1), then for
every operad morphism ω : A → O, there is a natural weak homotopy equivalence

holim∆ O•ω ∼ Ω2 MapOp(A ,O)ω,

where MapOp(A ,O)ω denotes the derived mapping space of operad maps from A
to O, based at ω.

Let Km denote the mth-Kontsevich operad. Sinha proved in [5] that for all
m ≥ 4, there is an operad morphism ωm : A → Km such that holim∆(Km)•ωm

has the homotopy type of the space Lm of tangentially straightened long knots in
Rm. Our theorem thus implies that Ω2 MapOp(A ,Km)ωm

∼ Lm, providing an
intriguing new description of the space of long knots.

2. The fiber sequence theorem

To prove Theorem 1, we apply the following result twice.

Theorem 2. [2] Let (M,⊗, I) be a monoidal category with an “appropriately
compatible” model category structure. For every “nice” monoid morphism ω :
R→ S in M, there is a fibration sequence

ΩMapMon(R,S)ω → MapR,R(R,Sω)
η∗R−−→ MapM(I, S),

where MapMon, MapR,R and MapM denote the derived mapping spaces of monoid
maps, (R,R)-bimodule maps and maps in M, respectively. Moreover, Sω denotes
S endowed with R-bimodule structure induced by ω, and the fibre is taken over the
unit map ηS : I → S of the monoid S.

In the next section we give some indication of the meaning of “appropriate
compatibility” and of “niceness”, when we explain the first step in the proof of
Theorem 2. In both of the applications below, the hard work consists in verifying
these conditions in each particular context.

Applying Theorem 2 to the category sSetN of sequences of simplicial sets, en-
dowed with the composition monoidal product ◦ and unit object J = (∅, ∗, ∅, ...),
we obtain the following corollary.
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Corollary 3. For any map of simplicial operads ω : A → O, there is a fibration
sequence

ΩMapOp(A ,O)ω → MapA ,A (A ,Oω) −→ MapsSetN(J ,O).

In particular, if O(1) ∼ ∗, then

ΩMapOp(A ,O)ω ∼ MapA ,A (A ,Oω).

The category of (A ,A )-bimodules in sSetN can be identified with the category
of graded monoids in the category of right A -modules. To analyze the middle
term of the fibration sequence in Corollary 3 , we can therefore apply Theorem 2
to the category ModA endowed with the graded monoidal product ⊙ and unit
object I = (∗, ∅, ∅...).

Corollary 4. Let A⊙ denote the symmetric sequence A , considered as an (A ,A )-
bimodule (or, equivalently, as a graded monoid in ModA ). For any morphism
ϕ : A⊙ →X of (A ,A )-bimodules, there is a fibration sequence

ΩMapA ,A (A⊙,X )ϕ → MapA⊙,A⊙
(A⊙,Xϕ) −→ MapModA

(I ,X ).

In particular, if X (0) ∼ ∗, then

ΩMapA ,A (A ,X )ϕ ∼ MapA⊙,A⊙
(A ,Xϕ).

To complete the proof of Theorem 1, we observe that Corollaries 3 and 4 to-
gether imply that if O is a simplicial operad such that O(0) ∼ ∗ ∼ O(1), then for
any morphism of simplicial operads ω : A → O

Ω2 MapOp(A ,O)ω ∼MapA⊙,A⊙
(A⊙,Oω).

Using the two-sided simplicial bar resolution of A⊙ as a graded bimodule over
itself and applying mapping space level adjunctions, we obtain that

MapA⊙,A⊙
(A⊙,Oω) ∼ holim∆ O•ω

and thus conclude the proof.

3. From monoid maps to bimodule maps

The key to proving Theorem 2 is a particularly simple description of the derived
mapping space, which follows from work of Dugger [1] and Rezk [4]. Let N denote
the nerve functor.

Lemma 5. Let M be a left proper model category. Let X,Y ∈ ObM, and let
Xc ∼−→ X be a cofibrant replacement. If the induced map Xc

∐

Y → X
∐

Y is a
weak equivalence, then

MapM(X,Y ) ∼ N(Md
X,Y ),

where Md
X,Y denotes the full subcategory of (X

∐

Y )↓M of distinguished objects,

i.e., morphisms X
∐

Y → Z such that the composite Y → X
∐

Y → Z is a weak
equivalence.

Lemma 5 enables us to relate spaces of monoid maps to spaces of bimodule
maps, as specified in the next result.
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Theorem 6. Let (M,⊗, I) be a monoidal category that is also endowed with a
model category structure. Let R and S be monoids in M.

If

(1) all categories of monoids, right modules and bimodules in M inherit model
structures from M in which a morphism is a weak equivalence (respectively,
fibration) if the underlying morphism in M is;

(2) the forgetful functor (R
∐

S) ↓Mon → (R ⊗ S) ↓ RModS admits a left
adjoint, denoted E;

(3) the functor E restricts to a functor from the category Modd,cofR,S of distin-

guished, cofibrant (R,S)-bimodules under R ⊗ S to the category MondR,S
of distinguished monoids under R

∐

S; and

(4) (a) R is cofibrant in Mon, or

(b) Mon is left proper, and Rc
∐

S
∼
−→ R

∐

S;

then

MapMon(R,S) ∼ N(ModdR,S).

Hypotheses (1)-(4) above form the core of the definition of “appropriately com-
patible” model structure and of “nice” monoid morphisms. To complete the proof
of Theorem 2, we need two further hypotheses, one of which is the analogue of (4)
for bimodules, while the other says that cofibrant replacements of the unit I and
of the monoid R must act as units, up to homotopy, in M and in the category of
left R-modules, respectively.
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The Brown-Comenetz dual of the K(2)-local sphere at the prime 3

Hans-Werner Henn

(joint work with Paul Goerss)

1. Background

1.1. Brown-Comenetz duality on spectra. By Brown representability there
is a spectrum I such that

Hom(π0X,Q/Z) ∼= [X, I] .
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If we define IX = F (X, I) (in particular IS0 = F (S0, I) = I) we get a duality on
the category of spectra. In particular πk(I) ∼= Hom(π−kS

0,Q/Z).

1.2. Chromatic tower and chromatic square. For finite p-local spectra X
there is a convergent tower of Bousfield localizations

. . .→ LnX = LE(n)X → Ln−1X → . . .

where E(n) is the n-th Johnson-Wilson spectrum at p. Moreover, for every X
there is a homotopy pull back square (a “chromatic square”)

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X .

whereK(n) demotes the n-th MoravaK-theory at p. The (commun) vertical fibres
are denoted MnX .

1.3. Brown-Comenetz duality in the K(n)-local category. Define In via

Hom(π0(MnX),Q/Z) ∼= [X, In]

If we define InX = F (MnX, I) = IMnX (in particular InS
0 = F (MnS

0, I) ≃
F (S0, In) = In) we get a duality on the category Kn of K(n)-local spectra, in
particular InX and In are K(n)-local. Furthermore we have

πk(In) ∼= Hom(π−k(MnS
0),Q/Z) .

2. The K(n)-local Picard group and the Hopkins-Gross formula

2.1. Morava modules. Let En be the n-th Lubin Tate spectrum at p. This is
a complex oriented periodic spectrum whose π0 classifies deformations of the p-
typical formal group law Fn of height n over Fpn whose p-series is given by xp

n

. If
WFpn

denotes the ring of Witt vectors of Fpn there is a non-canonical isomorphism

(En)∗ ∼= WFpn
[[u1, . . . , u−1]][u

±1] .

This is acted on by the automorphism group Aut(Fn,Fpn) =: Gn. Furthermore

Gn ∼= Sn ⋊Gal(Fpn : Fp)

where Sn is the usual Morava stabilizer group which can be identified with the
group of units in the maximal order of the division algebra over Qn of dimension
n2 and Hasse invariant 1/n.

The Morava module of X is given by (En)∗X = π∗(LK(n)(En ∧ X)). Under
suitable assumptions onX (which will be satisfied in the sequel) this is a continuous
twisted (En)∗[[Gn]]-module.
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2.2. Picard groups. The categories Kn resp. EGn of K(n)-local spectra resp.
continuous twisted (En)∗[[Gn]]-modules are symmetric monoidal with respect to

X ∧K(n) Y := LK(n)(X ∧ Y ) resp. M ⊗En∗
N .

The invertible objects with respect to the monoidal structure form a group Picn :=
PicK(n) resp. (Picn)alg := PicEGn and the functor X 7→ (En)∗X induces a homo-
morphism Picn → (Picn)alg whose kernel is denoted by κn, i.e. we have a short
exact sequence

0→ κn → Picn → (Picn)alg .

If n is sufficiently large with respect to p then κn is known to be trivial.

2.3. Some elements in Picn and (Picn)alg. The spectra S1 and In are invertible
in Kn. There is another important invertible spectrum denoted S0[det]. It can be
obtained as follows.

We note that the group Gn admits a surjective homomorphism det : Gn → Z×p
with kernel SGn. Let G1

n be the kernel of the composition Gn → Z×p → Z×p /µ

where µ is the subgroup of roots of unity of Z×p . Let ψ denote the self map of En
given by the action of a fixed chosen topological generator of Z×p /µ. Then there
is a fibre sequence

LK(n)S
0 → E

hG1
n

n
ψ−id
−→ E

hG1
n

n

which for n = 1 and the obvious suitable choice for ψ gives the well known fibration
(because of E1 = KZp)

LK(1)S
0 → (KZp)

hµ ψp+1−id
−→ (KZp)

hµ .

The spectrum S0[det] is given as the fibre in the following exact triangle

S0[det]→ (EhSGn
n )χ

ψ−det(ψ).id
−→ (EhSGn

n )χ

where (EhSGn
n )χ is the eigenspectrum of E

hG1
n

n with respect to the action of µ via
its fundamental character χ : µ→ Z×p . Then we have

(En)∗(S
0[det]) ∼= (En)∗(S

0)[det]

where det on the right hand side means twisting the action by the determinant.

2.4. The Hopkins Gross formula. The following result which describes In mod-
ulo κn is known as the Hopkins-Gross formula (cf. [3], [5]).

Theorem 1. There is an isomorphism of continuous twisted (En)∗[[Gn]]-modules

(En)∗In ∼= Σn
2−n(En)∗[det] .
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3. The case n = 2 and p = 3

The case n = 1 is well understood [4]. For n = 2 it is known that κ2 = 0 if
p > 3. For n = 2 and p = 3 the structure of κ2 is given by the following result [2].

Theorem 2. Let p = 3. There is an isomorphism

H5(G2, (E2)4) ∼= Z/3× Z/3

and the d5-differential in the Adams Novikov spectral sequence induces an isomor-
phism

ϕ : κ2 → H5(G2, (E2)4) .

The next result characterizes a particularly important element in κ2 at p = 3.
For this we recall that V (1) denotes the cofibre of the Adams self map of the
mod-p Moore spectrum and G24 is a certain subgroup of G2 of order 24 which is
unique up to conjugacy and for which the homotopy fixed point spectrum EhG24

2

is a form of the K(2)-localization of the spectrum of topological modular forms
TMF .

Theorem 3. Let p = 3. There is a unique spectrum P ∈ κ2 satisfying
• EhG24

2 ∧ P ∼= Σ48EhG24

2

• P ∧ V (1) ∼= Σ48LK(2)V (1).

Finally we get the following refinement of the Hopkins-Gross formula for n = 2
and p = 3.

Theorem 4. Let p = 3. Then there is an equivalence

I2 ≃ LK(2)S
2 ∧ S0[det] ∧ P .

The main tools for proving these results are taken from [1]. In particular we
make heavy use of a certain finite length algebraic resolution of the trivial Z3[[G2]]-
module Z3 in terms of permutation modules on cosets of finite subgroups, as well
as its “realization” in terms of a “resolution of LK(2)S

0 by spectra” whose iterated
cofibres are the homotopy fixed point spectra of the action of these finite subgroups
on the spectrum E2.
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Localising subcategories for cochains on BG

David J. Benson

(joint work with Srikanth Iyengar, Henning Krause)

This is a report on joint work with Srikanth Iyengar and Henning Krause in
which we classified the localising subcategories of the derived category of cochains
on the classifying space of a finite group. The proof is given in [3], and depends
heavily on the paper [6]

Let G be a finite group and k a field of characteristic p. We write SpecH∗(G, k)
for the set of homogeneous prime ideals in the cohomology ring H∗(G, k) =
H∗(BG; k), including the maximal ideal. The main theorem is as follows.

Theorem 1. There is a natural one to one correspondence between the localising
subcategories of D(C∗(BG; k)) and the subsets of the set SpecH∗(G, k).

Here, we are regarding the cochains C∗(BG; k) as a commutative S-algebra
in the sense of [8], and D(C∗(BG; k)) is the derived module category. This is
a tensor triangulated category with X ⊗L

C∗(BG;k) Y as the tensor product. A

localising subcategory of a triangulated category is a triangulated subcategory that
is closed under direct sums. Our methods say nothing about the following possible
generalisation of the main theorem.

Conjecture 2. The theorem remains true if we replace finite groups with compact
Lie groups (and H∗(G, k) with H∗(BG; k)).

Algebraisation. The main theorem was proved by first proving an algebraic
theorem about modular representations of kG. We write K(Inj kG) for the category
whose objects are the chain complexes of injective = projective = flat kG-module
and whose arrows are the homotopy classes of degree preserving chain maps. This
is a tensor triangulated category in which the tensor product is X ⊗k Y with
diagonal action of G. The following theorem is proved in [7].

Theorem 3. If G is a p-group then there is an equivalence of tensor triangulated
categories D(C∗(BG; k)) ≃ K(Inj kG).

More generally, for any finite group D(C∗(BG; k)) is equivalent to the localising
subcategory of K(Inj kG) generated by the tensor identity ik, namely the injective
resolution of the field k. We write Loc(ik) for this.

What does K(Inj()kG) look like? As described in [7], there is a recollement of
triangulated categories

StMod(kG) ≃ Kac(Inj kG)
←−
−→
←−

K(Inj kG)
←−
−→
←−

D(kG)

where StMod(kG) is the stable category of kG-modules, which is equivalent via
Tate resolutions to the homotopy category Kac(Inj kG) of acyclic complexes of
injective modules. The compact objects are only preserved by the left adjoints in
the recollement, and give the more familiar sequence

stmod(kG)← Db(kG)← Perf(kG)
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where Perf(kG) is the category of perfect complexes in the bounded derived cate-
gory Db(kG).

Stratification. The setup is as follows. Let T be a compactly generated trian-
gulated category with coproducts. We write Σ for the shift in T. We denote by
Z∗(T) the centre of T, namely the graded ring whose degree n elements are the
natural transformations from the identity to Σn which commute with Σ up to the
appropriate sign. This is a graded commutative ring, but may be unmanageably
large.

If R is a graded commutative Noetherian ring together with a homomorphism
R→ Z∗(T), we say that R acts on T.

For each p ∈ SpecR we have a local cohomology functor Γp : T → T picking
out the layer of T corresponding to p. It is a composite of a Bousfield localisation
picking out the primes containing p and another deleting the primes properly
containing p. Then for X an object in T we define

suppR(X) = {p ∈ SpecR | ΓpX 6∼= 0}.

We say that the local-global principle holds for the action of R on T if for all X
in T we have

LocT(X) = LocT{ΓpX | p ∈ Spec(R)}.

(1) IfR has finite Krull dimension then the local-global principle automatically
holds.

(2) In a tensor triangulated category we always have the corresponding tensor
ideal statement. Namely, define Loc⊗

T
(X) to be the smallest tensor ideal

(i.e., closed under tensor product with an arbitrary object in T or equiva-
lently with a set of compact generators) localising subcategory containing
X . It is easy to check that this is the same as LocT({X ⊗ Y | Y ∈ T}).
If the tensor identity 1 generates T then we have Loc⊗

T
(X) = LocT(X).

Then the tensor ideal version that always holds is the statement that

Loc⊗
T
(X) = Loc⊗

T
{ΓpX | p ∈ Spec(R)}.

Definition 4. If the local-global principle holds and each ΓpT is either zero or a
minimal localising subcategory, we say that T is stratified by the action of R.

Theorem 5. [4]. If T is stratified by the action of R then there is a one to one
correspondence between the localising subcategories of T and the subsets of the set

suppR(T) = {p ∈ Spec(R) | ΓpT 6= 0}.

The map giving this correspondence is given by C 7→ {p | Γp C 6= 0}. Its in-
verse sends a subset S to the full subcategory consisting of objects X such that
suppR(X) ⊆ S.

In this language, Theorem 1 may be restated to say that the triangulated cat-
egory D(C∗(BG; k)) is stratified by the action of H∗(G, k). This is deduced from
the following theorem, proved in [6].

Theorem 6. K(Inj kG) is tensor stratified by H∗(G, k).
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The meaning of this is that each ΓpK(Inj kG) is a minimal tensor ideal localising
subcategory of K(Inj kG). This implies that the maps described in Theorem 5 give
a one to one correspondence between the tensor ideal localising subcategories of
K(Inj kG) and the subsets of SpecH∗(G, k).

This theorem was proved by means of a long series of reductions until methods
of Mike Hopkins and Amnon Neeman finished the problem.

If G is a finite p-group then Theorems 3 and 6 immediately imply Theorem 1,
and we are done. For a more general finite group we need the following.

Theorem 7. Suppose that R has finite Krull dimension and that T is a tensor
stratified by R. Then LocT(1) is stratified by R. Thus there is a one to one
correspondence between the tensor ideal localising subcategories of T and localising
subcategories of LocT(1). The map giving this correspondence sends C to C ∩
LocT(1), and its inverse sends D to Loc⊗

T
(D).

Note that without stratification, these maps need not give a one to one corre-
spondence. The map sending C to C∩LocT(1) is always surjective, but need not be
injective. For example if T = D(QCoh(P1)), the derived category of quasi-coherent
sheaves on the projective line, then the tensor identity is O. In this case LocT(O)
has no proper localising subcategories, while there are many tensor ideal localising
subcategories of T.
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The mod 2 homology of infinite loopspaces

Nicholas J. Kuhn

(joint work with Jason B. McCarty)

This is a report on work in [6]. An infinite loopspace is a space of the form
Ω∞X , the 0th space of a spectrum X . All homology is with mod 2 coefficients.

Problem How can one compute H∗(Ω
∞X) from knowledge of H∗(X)?
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The graded vector space H∗(X) has a minimum of extra structure: it is a
locally finite right module over the mod 2 Steenrod algebra A . By contrast, the
structure of H∗(Ω

∞X) is much richer: it is a restricted Hopf algebra in the abelian
category of left modules over the Dyer–Lashof algebra with compatible unstable
right A –module structure.

We study the problem via the spectral sequence obtained by applying mod 2 ho-
mology to the Goodwillie tower of the functor sendingX to Σ∞Ω∞X . Goodwillie’s
general theory [4] implies that this left half plane spectral sequence strongly con-
verges to H∗(Ω

∞X) if X is 0–connected, and has E1
−d,d+∗(X) = H∗(DdX), where

DdX = X∧dhΣd
. We use the further geometric structure on the tower that was

explored in [1] using a model for the tower derived from Arone’s model for the
suspension spectra of function spaces [2].

1. Lots of categories and a description of E1

We introduce various algebraic categories.

• M is the category of locally finite right A –modules. The Steenrod squares
go down in degree: given x ∈M ∈ M, |xSqi| = |x| − i.
• U is the full subcategory ofM consisting of modules satisfying the unstable
condition: xSqi = 0 whenever 2i > |x|.
• Q is the category of graded vector spaces M acted on by Dyer–Lashof
operations Qi :Mn →Mn+i, for i ∈ Z, satisfying the Adem relations and
the unstable relation: Qix = 0 whenever i < |x|.
• QM is the full subcategory ofM∩Q consisting of objects whose Dyer–
Lashof structure is intertwined with the Steenrod structure via the Nishida
relations. QU = QM∩ U .

All these categories admit tensor products, via the Cartan formula for both Steen-
rod and Dyer–Lashof operations. We define various categories of Hopf algebras.

• HM is the category of bicommutative Hopf algebras inM.
• HQM is the category of bicommutative Hopf algebras in QM satisfying
the Dyer–Lashof restriction axiom: Q|x|x = x2. HQU = HQM∩ U .

We also need two ‘free’ functors.

• R∗ :M→QM is left adjoint to the forgetful functor. Explicitly, R∗M =
⊕∞

s=0RsM where Rs :M→M is given by

RsM = 〈QIx | l(I) = s, x ∈M〉/(unstable and Adem relations).

Here, if I = (i1, . . . , is), Q
Ix = Qi1 · · ·Qisx, and l(I) = s.

• UQ : QM → HQM is left adjoint to the functor taking an object H ∈
HQM to its module PH of primitives. Explicitly,

UQ(M) = S∗(M)/(Q|x|x− x2).

We begin our study of the spectral sequence knowing the following.

• H∗(Ω∞X) is an object in HQU .
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• E1
∗,∗(X) = UQ(R∗(H∗(X))) as an object in HQM. Here, if x ∈ H∗(X)

and I = (i1, . . . , is), then QIx has bidegree (−2s, 2s + |x| + |I|), where
|I| = i1 + · · · + is. Steenrod operations act vertically, while Dyer–Lashof
operations double the horizontal degree.
• Each Er∗,∗(X) is an object in HM, and each dr is A –linear and both a
derivation and coderivation.

2. Universal differentials

Our first theorem identifies universal structure. Parts (b) and (c) are proved
by using properties of the Z/2–Tate construction combined with an action of the
little cubes operad C∞ on our tower.

Theorem 1. For all spectra X, the following hold in {Er∗,∗(X)}.

(a) For all x ∈ H∗(X), d1(x) =
∑

i≥0Q
i−1(xSqi).

(b) If y ∈ H∗(DdX) lives to Er, and dr(y) is represented by z ∈ H∗(Dd+rX),
then Qiy ∈ H∗(D2dX) lives to E2r, and d2r(Qiy) is represented by Qi(z) ∈
H∗(D2d+2rX).

(c) y ∈ H∗(DdX) represents z ∈ H∗(Ω∞X) in E∞−d,∗(X), then Qiy ∈ H∗(D2dX)

represents Qiz ∈ H∗(Ω∞X) in E∞−2d,∗(X).

Corollary 2. E∞∗,∗(X) ∈ HQM with structure induced from E1
∗,∗(X), and com-

patible with the structure on H∗(Ω
∞X).

Corollary 3. For all spectra X, x ∈ H∗(X), and I of length s, QIx lives to
E2s

−2s,∗(X) and d2
s

(QIx) =
∑

i≥0Q
IQi−1(xSqi).

3. An algebraic spectral sequence

We now build an algebraic spectral sequence using only differentials as in the
last corollary. Our discovery is that this spectral sequence can be completely
described, with an interesting E∞ term.

We need some notation related to the category U of unstable right A –modules.

• Let Ω∞ : M → U be right adjoint to the inclusion. Explicitly, Ω∞M is
the largest unstable submodule of M .
• Let Ω : U → U be right adjoint to the suspension Σ : U → U . Explicitly,
ΩM is the largest unstable submodule of Σ−1M .
• The functor Ω∞ is left exact, and we let Ω∞s :M→ U denote the associ-
ated right derived functors.

It is convenient to let LsM = ΩΩ∞s Σ1−sM . A reworked development of the
‘Singer complex’ [5, 3] for computing the derived functors Ω∞s reveals that the
functors Ls have extra structure.

Proposition 4. There are natural operations Qi : LsM → Ls+1, raising degree
by i, giving L∗M the structure of an object in QM.
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Our second theorem now goes as follows.

Theorem 5. For all M ∈ M, there is a spectral sequence {Ealg,r∗,∗ (M)} with the
following properties.

(a) The spectral sequence is a functor of M taking values HM, with each dr both
a derivation and coderivation.

(b) Ealg,1∗,∗ (M) = UQ(R∗M) as an object in HQM.

(c) dr is not zero only when r = 2s. For x ∈ M and I of length s, QIx lives to

Ealg,2
s

−2s,∗ (M), and d2
s

(QIx) =
∑

i≥0Q
IQi−1(xSqi).

(d) Ealg,∞∗,∗ (M) ≃ UQ(L∗M) as an object in HQU .

4. Examples

By playing off the two theorems, one can often prove that the algebraic spectral
sequence for H∗(X) agrees with the topological spectral sequence for X .

This happens, for example, in the following cases.

• X = a generalized Eilenberg–MacLane spectrum, unless there is 2–torsion
of order at least 4 in π0(X) or π−1(X).
• X = a suspension spectrum.
• X = the cofiber of S → HZ.

Even when the spectral sequences differ, the two theorems severely constrain
how this can happen.
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Gebäude 25.22
Universitätsstr. 1
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