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Introduction by the Organisers

1. Approximate subgroups

A major theme was the use of model theoretic and “nonstandard” methods
in (generalized) additive combinatorics, especially the study of “approximate sub-
groups” and related problems, as well as the relationship with established methods
such as asymptotic cones. Freiman’s classification of approximate subgroups of Z
is a cornerstone of additive combinatorics. Similar questions concerning approx-
imate subrings of fields (the sum-product phenomenon) have been very recently
resolved by Bourgain, Tao and others, with applications by Bourgain, Gamburd,
Wigderson and others; the contribution of the model theorist Chris Miller was
essential. Tao defined and studied approximate subgroups of arbitrary groups. In
recent work by Hrushovski, model theoretic techniques provided a breakthrough
that later led to decisive results concerning the case of linear groups, and is likely
to lead to such results in general. The novelty of the methods was not only in
using “nonstandard models” or ultraproducts, from model theory, but also apply-
ing techniques from the study of definable groups in “tame” first order theories
(stable, simple,..) even though the cases at hand are far from tame.
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The connection with simplicity theory is deep, and one can hope to develop
more of the methods of this part of model theory in a pseudo-finite setting.

On the other hand, a very important aspect has been the connection with
Lie groups. While the question of connected quotient groups arose in the simple
setting, it is still not known if they actually occur there; a question that deserves
another look. But connected quotient groups, often Lie groups, have been essential
in recent developments in theories without the independence property. It would
be very valuable to put together the expertise from these different pursuits, and
attempt to amalgamate them. (This connects with topic 4 below.) One significant
theoretical issue is the generalization from absolutely to relatively bounded index
quotients, which would have great interest for applications.

Earlier use of nonstandard methods in broadly similar frameworks was seen
with the Van den Dries-Wilkie treatment of Gromov’s theorem on finitely gener-
ated groups of polynomial growth, in which a model-theoretic approach to “as-
ymptotic cones” of metric spaces (viewing a metric space from afar) played an
important role. What is also common in these examples (Hrushovski, Gromov)
is the appearance and construction of a Lie group as a key feature of the proof.
So far, the deeper methods of Lie theory have been used as a black box, although
on the other hand the shortest and most general treatments of substantial parts
Montgomery-Zippin-Gleason-Yamabe work have been given by model theorists
(Hirschfeld, Goldbring.) It would be important again to combine more organically
what has been understood by different works.

Other broadly related developments in recent years include the classification of
asymptotic cones of semisimple Lie groups (Kramer, Tent, and others).

So the meeting in part focussed on an exposition of the above methods, exploring
the common features, and then hearing about the most recent advances.

We had several excellent talks in the workshop on this topic. There was first
a tutorial by Pierre Simon and Emmanuel Halupczok on Hrushovski’s work on
approximate subgroups. Subsequently a talk by Breuillard on his work with Green
and Tao giving a definitive description if approximate subgroups (but influenced by
Hrushovski). Also a talk by Hrushovski, generalizing the results to approximate
equivalence relations, as well as discussing other work on related themes of the
workshop, such as how close isG/G00 to a compact Lie group, for suitable definable
groups G in NIP theories.

The organizers included in the meeting several other related topics:

2. Stability, free groups, and hyperbolic groups

Free groups (as well as torsion-free hyperbolic groups) were recently proved by
Sela to be structures whose first order theory is stable. This gives very important
new examples of stable groups. Secondly it suggests that the ”true” algebraic
geometry of the free group should be the study of the category of definable sets
in the free group. Understanding the definable sets will have a great impact on
other questions about the free group as work of Bestvina and Feighn shows.
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It is also natural to apply methods from 1. (especially asymptotic cones) to the
free group and the interaction with stability looks to be fascinating. By studying
the dependence relation in free groups one can also hope to give another proof of
the stability of free groups.

In the workshop Ould-Houcine first gave a short tutorial on methods in geo-
metric group theory (such as the JSJ decomposition). There were later talks on
current research by Ould-Houcine, Tent, Sklinos, and Sela. Sela described some
of his recent work on free products solving many long-standing conjectures.

3. Classification of first order theories

Stable first order theories have been mentioned in 1 and 2. Much of the theory
needed in recent applications of model theory (as in 1) has come from the extension
of methods from the study of stable first order theories to unstable but ”tame” first
order theories, such as simple theories, theories without the independence property,
etc. In fact this theme and the connection to valued fields and rigid geometry was
the basis of the January 2010 Model Theory meeting at Oberwolfach. In any case,
this is a very active area on the ”purer” side of model theory (e.g. Banff workshops
in 2009, 2012) and will feed in to the other aspects of the meeting.

There were a variety of research talks around this theme: Krupinski, Newelski,
Simon, Starchenko. In particular Pierre Simon’s talk on invariant types in NIP
theories, presented some very strong results. Berarducci also gave a research talk
connected with this theme, around groups defined in certain 2-sorted structures,
with some striking results.

4. Connected components, non G-compact theories

Recent work (Conversano, Pillay) has produced new examples of ”connected
components” of groups (in suitable model-theoretic senses), arising from ultra-
products of universal covers of suitable semisimple Lie groups. This ties up with
theme 3 above (giving for example new non G-compact theories) and also the
methods in theme 1.

Conversano presented some of her results. Gismatullin gave a short talk pre-
senting new noncommutative examples of G00/G000. And Kaplan gave a beautiful
talk on his recent work with Miller and Simon on Lascar strong types and descrip-
tive set theory.

5. Other

Other talks in the workshop were on important contemporary themes such as
valued fields, difference fields, groups of finite Morley rank, and the search for
“bad groups”. (Chatzidakis, Halupczok, Hils, Loeser, Poizat, Zilber).
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Zoé Chatzidakis
Algebraic dynamics and difference fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Gilbert Levitt (joint with Vincent Guirardel)
Extendable automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Sergei Starchenko
VC*-density and (p,q)-theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pierre Simon
Invariant types in NIP structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Bruno Poizat
Groupes lineaires de rang de Morley fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Ehud Hrushovski
Approximate equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Emmanuel Breuillard (joint with Ben Green and Terence Tao)
The structure of approximate groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

François Loeser
Motivic counting of points of bounded height . . . . . . . . . . . . . . . . . . . . . . . . 34

Rizos Sklinos (joint with Chloé Perin, Larsen Louder)
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Abstracts

Approximate subgroups I

Pierre Simon

This talk was the first of a series of three presenting the work of Hrushovski and
of Breuillard-Green-Tao on approximate subgroups. My presentation focussed on
the model-theoretic framework and in particular the use of definable measures to
study pseudofinite structures. Everything I mentioned is due to Hrushovski and
comes from [1] and [2].

Given a sequence of finite structures (Mi : i < ω), we consider the ultraproduct
M =

∏
U Mi, where U is some non-principal ultrafilter on ω. For our purposes

it is convenient to work with a very large language L, say one containing any
internal subset of M as a predicate. For some measure-theoretic arguments, it is
useful to have a countable language, in which case we can take a sufficiently rich
sublanguage of L.

Now, on each structure Mi, we have a measure µi which is the normalized
counting measure. Those give rise to a limit measure µ which is a [0, 1]-valued
finitely additive measure of definable sets of M . Having taken the language rich
enough, that measure is definable. This means that for every r ∈ (0, 1), the
condition µ(φ(x; b)) > r is an open condition in tp(b/∅).

We say that an invariant relation R(x, y) is stable if there does not exist an
indiscernible sequence (ai, bi : i < ω) such that R(ai, bj) holds if and only if
i ≤ j. An easy, but fundamental, observation is that for any two formulas φ(x; y)
and ψ(x; z), the relation R(a, b) ≡ µ(φ(x; a) ∩ ψ(x; b)) = 0 is stable. In fact,
this remains true if we replace 0 by any other value, but it is more difficult to
prove. One can then adapt stability theory to work in this context (and also
in the slightly more general context which we will need for applications to near-
subgroups). More precisely, one shows that if R(x, y) is a stable invariant relation,
if a, b, b′ are points in M such that b and b′ have the same Lascar-strong type, if
neither tp(b/a) nor tp(b′/a) forks over ∅, then R(a, b) holds if and only if R(a, b′)
holds. If furthermore R is type-definable, then one can replace Lascar-strong types
by compact (also called Kim-Pillay) strong types.

Given a groupG equipped with a finitely additiveG-invariant measure µ (taking
values in R+ ∪ {∞}), a subset X of G is said to be a near-subgroup if X−1 = X
and we have 0 < µ(X), µ(X ·3) < ∞, where X ·3 denotes the set of products of 3
elements of X .

The main theorem is the following: LetX ⊂ G be a near-subgroup (with respect
to some definable measure µ), then there is a µ-wide type-definable subgroup
S ⊆ X ·4 of bounded index.

To prove this, we must first slightly adapt the context described above to allow
for measures taking unbounded—and even infinite—values. One then works in the∨
-definable set G̃ defined as the group generated by X and considers its reduct to

G̃-translation-invariant relations. In particular, the group of automorphisms acts
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transitively on elements. The required subgroup S is then simply taken to be the
set of elements which have same compact strong type as the identity.

References

[1] E. Hrushovski, Stable group theory and approximate subgroups, Journal of the AMS 25 (2011),
189–243.

[2] E. Hrushovski, Notes on approximate equivalence relations, available on the author’s web-
page.

Valued difference fields and NTP2

Martin Hils

(joint work with Artem Chernikov)

Every non-principal ultrapoduct of structures of the form (Fa
p, F robp) is an

algebraically closed field with a generic automorphism. This is a deep result of
Hrushovski [8] which required a twisted version of the Lang-Weil estimates. One
may consider the non-standard Frobenius acting on an algebraically closed valued
field of residue characteristic 0, i.e. the limit theory of the Frobenius automorphism
acting on an algebraically closed valued field of characteristic p (where p tends
to infinity). Hrushovski gave a natural axiomatisation of this limit theory in
the language of valued difference fields (denoted by VFA in the sequel). Durhan
(formerly Azgın) [1] obtained an alternative axiomatisation, as well as an Ax-
Kochen-Ershov principle for a certain class of valued difference fields.

Recall that a valued difference field is a valued field (K, k,Γ) together with
an automorphism σ such that σ(O) = O, where O = {a ∈ K | val(a) ≥ 0}.
The automorphism σ induces an automorphism σ of the residue field k and an
automorphism σΓ of the value group Γ. We treat valued difference fields in the
3-sorted language of Pas, augmented by symbols for σ, σ and σΓ, and where we
require that angular component map ac satisfies ac ◦ σ = σ ◦ ac), together with

The theory VFA is interesting from an algebraic point of view. The induced
automorphism σ̄ on the residue field is generic, by the aforementioned result of
Hrushovski. The induced automorphism σΓ on the value group Γ is ω-increasing
(i.e. σΓ(γ) > nγ for all γ > 0 and n ≥ 1; valued difference fields satisfying
this property will be called contractive). Thus, Γ gets the structure of a divisible
torsion free ordered Z[σ]-module (i.e. an ordered vector space over Q(σ), where
σ >> 1 is an indeterminate). It is sufficient to add a σ-Hensel property to obtain
an axiomatisation of VFA. The Ax-Kochen-Ershov principle of Durhan then holds
for contractive σ-henselian valued difference fields of residue characteristic 0.

Note that the theory VFA is neither simple (due to the total order in the value
group) nor NIP (since the residue difference field has the independence property).
It appears that Shelah has defined another property called NTP2 (not the tree
property of the second kind). This class generalises both simple and NIP theories,
and contains new examples (any ultraproduct of p-adics is NTP2 [5]). Recently
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it has attracted attention, largely motivated by Pillay’s question on equality of
forking and dividing over models in NIP, and a good theory of forking for NTP2

theories has been developed [7, 5, 4].

Definition. Let T be a complete theory. We say that ϕ (x, y) has TP2 if there
k ∈ ω and (aij)i,j∈ω (in some monster model of T ) such that:

(1) {ϕ (x, aij)}j∈ω is k-inconsistent for every i ∈ ω.

(2)
{
ϕ
(
x, aif(i)

)}
i∈ω

is consistent for every f : ω → ω.

The theory T is called NTP2 if no formula has TP2.

Here is the main result of our work.

Theorem 1. Let K = (K,Γ, k, σ) be a contractive σ-henselian valued difference
field of residue characteristic 0, with residue field k and value group Γ. Assume
that Th(k, σ̄) and Th(Γ, σΓ) are NTP2. Then Th(K) is NTP2.

Corollary. Every completion of VFA is NTP2.

The corollary follows from the theorem. Indeed, σ is generic, so Th(k, σ̄) is
simple and in particular NTP2. The value group together with the induced auto-
morphism σΓ is an ordered vector space over Q(σ), so o-minimal. In particular,
(Γ, σΓ) is NIP and thus NTP2.

In the isometric case, where one requires σΓ = id, an Ax-Kochen-Ershov prin-
ciple is known to hold as well [9, 3, 2]. In this setting, we prove the following
statement which is analogous to Theorem 1.

Theorem 2. Let K = (K, k,Γ, σ) be a σ-henselian valued difference field of residue
characteristic 0, with σ an isometry and where we assume that there are enough
constants. Then Th(K) is NTP2 if and only if Th(k, σ) is NTP2.

For p a prime number, let W (Falg
p ) be the quotient field of the ring of Witt

vectors with coefficients from Falg
p , with its natural valuation. On the valued field

W (Falg
p ), there is a natural isometry, namely the Witt-Frobenius automorphism

which we denote by F̃ robp, sending x =
∑

n anp
n ∈W (Falg

p ) to
∑

n a
p
np

n. Letting

ac(x) := aval(x), we get an ac-valued difference fieldWp = (W (Falg
p ),Z,Falg

p , F̃ robp).
Let U be a non-principal ultrafilter on the set of prime numbers. Then

∏
U Wp

satisfies the hypotheses of Theorem 2 (see [3]). Thus, these valued difference fields
are NTP2 by our result.

Theorem 2 is an analogue of Delon’s theorem for preservation of NIP in henselian
valued fields of residue characterstic 0. Preservation for NTP2 in this setting is
due to Chernikov [5].

The proofs of Theorem 1 and Theorem 2 are quite technical. They combine
a new result on extending indiscernible arrays by parameters coming from sta-
bly embedded NTP2 sorts with the back-and-forth system used to eliminate field
quantifiers. In this way, one reduces to a situation where one deals with immediate
extensions, and these are controlled by NIP formulas.
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Introduction to actions on trees and JSJ-decompositions

Abderezak Ould Houcine

In this talk we introduce actions on simplicial trees and JSJ-decompositions. We
explain the structure of groups acting on simplicial trees as given by Bass-Serre
theory. Bass-Serre theory shows that a group acts on a simplicial tree if and only
if it is an iteration of amalgamated free products and of HNN-extensions. By the
notion of graph of groups, this theory gives a complete description of groups acting
on simplicial trees.

In geometric group theory, the following general problem is studied : ”Given
a finitely generated group G and a class of subgroups C, what is the relationship
between the various graphs of groups decompositions of G, where the associated
edges groups are in C ? ”

Schematically, a JSJ-decomposition (or JSJ-splitting), relative to C, corresponds
to the most possible canonical decomposition of G from which all other decompo-
sitions (relative to C) can be obtained. We explain JSJ-decompositions.

References
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JSJ deformation space.

[2] E. Rips and Z. Sela. Cyclic splittings of finitely presented groups and the canonical JSJ
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[3] J.-P. Serre, Trees. (Translated from the French by John Stillwell). Springer-Verlag, 1980.
ISBN 3-540-10103-9.
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Approximate subgroups II

Immanuel Halupczok

Freiman’s inverse problem consists in characterizing those finite subsets X of a
group G such that X ·X is not much bigger than X . More precisely, assuming that
|X ·X | ≤ K · |X | for some fixed K ∈ N, one would like to obtain a description of X
whose “complexity” only depends on K. For simplicity, one usually also assumes
X = X−1 and 1 ∈ X . The oldest result of this type, dating from the 60ies, is
due to Freiman himself and describes such sets X in G = Z. Later, there have
been several generalizations until finally, in 2009, Breuillard-Green-Tao obtained
such a result in arbitrary groups G. It turns out that if G is non-commutative,
then to obtain good descriptions of X , it is better to impose a somewhat stronger
condition than just |X · X | ≤ K · |X |: either one requires that X · X can be
covered by a fixed number K of (say, left-) translates of X (such an X is called a
K-approximate subgroup), or one requires that |X ·X ·X | ≤ K · |X | for some fixed
K (such an X is said to have “small tripling”). The result of Breuillard-Green-Tao
is valid in both settings.

There are two basic types of approximate subgroups. One of them are actual
subgroups of G. For the other one, suppose first that we have elements a1, . . . , an ∈
G such that the generated group G′ := 〈a1, . . . , ad〉 is abelian. Moreover, choose
n1, . . . , nd ∈ N and consider P := {ar11 · · · ardd | −ni ≤ ri ≤ ni}. This set P is a

K-approximate subgroup where K only depends on d (one can take K = 2d). If
the generated group G′ is nilpotent, then by imposing some additional conditions
on the ai and ri, one can also ensure that P is an approximate subgroup; such P
are called nilprogressions.

The two above types of approximate subgroups can be combined: if we have
H ⊳ G′ ⊆ G with G′/H nilpotent and P ′ is a nilprogression in G′/H , then the
preimage P ⊆ G of P ′ is also an approximate subgroup. The result of Breuillard-
Green-Tao says that any approximate subgroup X “is close to” a P of this form,
where the d appearing in the definition of P ′ only depends on K (but neither on
X nor on G). One possible definition of what it means for X and P to be “close
to each other” is to require that X · X and P are C-commensurable for some C
depending only on K: each of the two sets X ·X and P can be covered by C-many
translates of the other one.

In the talk, I sketched a model theoretic variant of the proof of Breuillard-Green-
Tao; this variant is due to Hrushovski and can be found in lecture notes on his web
page. The first step is to reformulate the main result using ultraproducts as follows.
One fixes K ∈ N and assumes that G is an ultraproduct of groups Gi and X ⊆ G
is an ultraproduct of K-approximate subgroups Xi ⊆ Gi. (In fact, Hrushovski
uses the small tripling condition instead of approximate subgroups.) The claim is
that then, there exist definable H ⊳ G′ ⊆ G, P ⊆ G′ satisfying conditions similar
to the ones in the classical version of the result for some d, C ∈ N. There is no
condition anymore that d, C only depend on K; this has been replaced by the fact
that d and C are not allowed to be non-standard numbers.
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The main steps of the proof of this ultraproduct version of the result are the
following:

• The main theorem of the talk Approximate Subgroups I can be applied to
X and yields a ∧-definable group S such that in particular, the quotient
L := 〈X〉/S has bounded cardinality. From this, one deduces that L is a
locally compact group.

• By a theorem of Gleason-Yamabe, L has a subquotient L′ which is a Lie-
group. We can write it as L′ = G̃/S′ for some ∨-definable G̃ ⊆ 〈X〉 and
some ∧-definable S′ ⊇ S.

• Using that G̃ is generated by a definable set, one finds a smallest definable
group G′ containing G̃ (in an appropriate language). With considerably
more work, one also finds a largest definable group H contained in S′.
The heart of the proof is then to show that G′/H is nilpotent. When
doing this, one more or less automatically obtains the nilprogression P ′;
the reason is that the construction of G̃ and S′ ensures that any definable
subset of G̃ containing S′ is commensurable to X ·X .

• We suppose without loss H = 1 (by passing to the quotient). To prove
that G′ is nilpotent, we define a “distance to 1” in G′. One the one hand,
the commutator of two elements close to 1 is even closer to 1 (this is true
in the Lie group L′, and a central part of the work is to show that it is
also true in G′). On the other hand, using that X is pseudo-finite, we
can find an element a ∈ G′ \ {1} that has mininimal distance to 1. This
implies that a is central in G′. By repeating this argument (and using an
induction over dimL), one obtains that G′ is nilpotent.

The Borel cardinality of Lascar strong types

Itay Kaplan

(joint work with Benjamin Miller and Pierre Simon)

To any complete first-order theory T we can associate natural equivalence relations,
or strong types. A strong type (over ∅) is a class of an automorphism-invariant
equivalence relation on C

α which is bounded (i.e., the quotient has small cardinal-
ity) and refines equality of types. The phrase “strong type” by itself often refers
to a Shelah strong type, which is simply a type over the algebraic closure of ∅ (in
T eq). In other words, two tuples have the same Shelah strong type if they are
equivalent with respect to every definable equivalence relation with finitely many
classes. Refining this is the notion of KP strong type (≡α

KP ), in which two tuples
are equivalent if they are equivalent with respect to every bounded type-definable
equivalence relation. Finally, the Lascar strong type (≡α

L) is the finest notion of
strong type. The classes of ≡α

L coincide with the connected components of the
Lascar graph on C

α, in which two tuples are neighbors if they lie along an infinite
indiscernible sequence. The Lascar distance dL is the associated graph distance.

In [New03], Newelski established the following fundamental facts:
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Fact 1. [New03] Suppose that T is a complete first-order theory and α is an
ordinal.

(1) A Lascar strong type is type definable iff it has finite diameter.
(2) If Y is an ≡α

L-invariant closed set, contained in some p ∈ Sα (∅), on which
every ≡α

L-class has infinite diameter, then Y contains at least 2ℵ0-many
≡α

L-classes.
(3) Lascar strong types of unbounded diameter are not Gδ sets (see below).
(4) If T is small (i.e., T is countable and the number of finitary types over ∅

is countable), then ≡n
L = ≡n

KP for all n < ω (i.e., the two notions of type
agree on finite sequences).

As opposed to Shelah and KP strong types, the space of Lascar strong types
does not come equipped with a Hausdorff topology. It is therefore unclear to
what category this quotient belongs. In [KPS12], the authors suggest viewing it
through the framework of descriptive set theory (this idea was already mentioned
in [CLPZ01]).

Given two Polish spacesX and X ′ and two Borel equivalence relations E and E′

respectively on X and X ′, we say that E is Borel reducible to E′ if there is a Borel
map f from X to X ′ such that x E y ⇐⇒ f(x) E′ f(y) for all x, y ∈ X . Two
relations are Borel bi-reducible if each is Borel reducible to the other. The quasi-
order of Borel reducibility is a well-studied object in descriptive set theory, and
enjoys a number of remarkable properties. One of them is given by the Harrington-
Kechris-Louveau dichotomy, which asserts that a Borel equivalence relation is
either smooth (Borel reducible to equality on 2ω) or at least as complicated as E0

(eventual equality on 2ω).
Suppose that T is a complete countable first-order theory, α a countable ordinal.

Then for a countable model M , Sα (M) is a Polish space. If p, q ∈ Sα (M), we

write p ≡M,α
L q (respectively p ≡M,α

KP q) when there are realizations a |= p and

b |= q such that a ≡α
L b (respectively a ≡α

KP b). It is not hard to see that ≡M,α
L is

an Fσ equivalence relation, and that ≡M,α
KP is a closed equivalence relation.

It is shown in [KPS12] that up to Borel bi-reducibility, ≡M,α
L does not depend

on the choice of M , even when restricted to a KP -class. This observation extends
to a larger class of sets. Suppose that Y ⊆ C

α is Gδ — a countable intersection of∨
-definable sets — and that Y is closed under ≡α

L. Then for a countable modelM ,
let YM = {p ∈ Sα (M) | ∃a ∈ Y (a |= p)}. One can show that YM is a Gδ subset

of Sα (M), and that up to Borel bi-reducibility ≡M,α
L ↾ YM is independent of the

choice of M (so we may write ≡α
L↾ Y ).

Our main result is the following solution to the main conjecture of [KPS12].

Theorem 2. Suppose T is a complete countable first-order theory, α a countable
ordinal, and suppose Y is a Gδ subset of C

α which is closed under ≡α
L. If for

some a ∈ Y , there is no bound on dL restricted to the class [a]≡α
L
then ≡α

L ↾ Y is

non-smooth: E0 ≤B ≡α
L ↾ Y .
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Note that by Fact 1 (1) the assumption that there is no bound on dL in the
class [a]≡α

L
is equivalent to saying that [a]≡α

L
is not type-definable. However, the

proof of the theorem does not use this factKPLN.

Corollary 3. Suppose T and α are as above. Suppose K ⊆ C
α is a KP strong

type. If ≡α
L ↾ K is not trivial, then it is non-smooth.

For uncountable theories, the ambient type spaces are no longer Polish, so we
get:

Theorem 4. Suppose T is a complete first-order theory, α a small ordinal, Y ⊆ C
α

is either Gδ or closed (i.e.,
∧
-definable) and Y is closed under ≡α

L. If for some
a ∈ Y , there is no bound on dL restricted to the class [a]≡α

L
then |Y/≡α

L| ≥ 2ℵ0 .

To prove it we use the notion of a (strong) Choquet space, and in factKPLN
allow Y to be any “strong Choquet” space (this includes closed and Gδ sets). From
this theorem we can recover Fact 1.

Problem 5. What are the possible Borel cardinalities of ≡α
L? Note that by

definition, this relation is Kσ (a countable union of compacts), so by [Kan08,
Theorem 6.6.1] it is Borel reducible to ℓ∞ (this is an equivalence relation on Rω,
where a and b are ℓ∞-equivalent if there is some k ∈ N such that |a (i)− b (i)| < k
for all i < ω).

See [KMS13] for the full paper.
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Algebraic dynamics and difference fields

Zoé Chatzidakis

(Most of this is joint work with E. Hrushovski, [2, 3], and was partially supported
by ANR-06-BLAN-0183)

Algebraic dynamics. An algebraic dynamics is a pair (V, φ) where V is a (quasi-
projective, irreducible) variety, and φ : V → V is a rational dominant map (i.e.,
locally, it is given by tuples of rational functions; it is defined outside some Zariski
close set, and φ(V ) is Zariski dense in V ).
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Assume that (V, φ) is defined over the field k, and consider the function field
k(V ) of V . Thinking of the elements of k(V ) as of functions on V which are
defined almost everywhere, we obtain a map φ∗ : k(V ) → k(V ), f 7→ fφ. As φ
is dominant, this map is an injection of k(V ) into itself, and [k(V ) : φ∗k(V )] is
finite, called the degree of φ.

We work in some large algebraically closed field Ω, over which everything is
defined. Algebraic dynamics form a category, in which morphisms from (V, φ) to
(W,ψ) are given by rational maps h : V →W such that ψf = gφ.

Difference fields. A difference field is a field K endowed with an endomorphism
σ (which is necessarily injective, but not necessarily onto). Examples are (K,σ)
where σ is any automorphism of K, for instance the Frobenius map x 7→ xp if the
characteristic is p > 0. And . . . (k(V ), φ∗) when (V, φ) is an algebraic dynamics,
and φ∗ is defined as above. Note that φ∗ is the identity on K.

Conversely, if (L, σ) is a difference field, which is finitely generated (as a field)
over some subfield k on which σ is the identity, then (L, σ) ≃ (k(V ), φ∗) for
some algebraic dynamics (V, φ) as above. Indeed, let a be a finite tuple such that
L = k(a), and let V be the algebraic (affine) variety defined over k of which a is
a generic (so that k(a) is naturally isomorphic to k(V )). Since L is closed under
σ, we have σ(a) ∈ k(a), and for some tuple f of rational functions over k, we have
σ(a) = f(a). As k(a) ≃ k(σ(a)), σ(a) is also a generic point of V , so that the
tuple f induces naturally a rational dominant map φ : V → V .

The original question. Let (V, φ) as above be defined over the field K = k(t),
t transcendental over k. For each natural number n, let us denote by φ(n) the
n-time iterate of the function φ, and let us denote by Kn the set of elements of
k(t) which can be represented by quotients of polynomials of degree ≤ n. Assume
that for some N > 0, for every m > 0, the set

V (KN) ∩ φ−1V (KN ) ∩ · · · ∩ φ−(m)V (KN )

is Zariski dense in V . What can one say about (V, φ)?

Answer M. Baker ([1]): If degφ > 1, V = P1
K , then (V, φ) ≃ (V0, φ0), where

(V, φ0) is defined over k.

Crucial reduction. Under the above hypotheses, there is a positive integer ℓ,
an algebraic dynamics (W,ψ) defined over k, and a dominant map g : (W,ψ) →
(V, φ(ℓ)).

Explanation: KN is bijectively isomorphic (via a map π) to a definable subset of
k2N+2, and the map φ induces a map Φ which sends V (KN) to V (KN ′), where
N ′ −N is the sup of the degrees of the rational maps defining φ. For each m, we
set

Sm = π−1(V (KN ) ∩ φ−1V (KN ) ∩ · · · ∩ φ−(m)V (KN ));

we know that each Sm is infinite, and they form a decreasing sequence. If S is the
intersection of the Zariski closures of the Sm’s, then S is infinite, and Φ restricts
to a dominant map S → S. This map permutes the irreducible components of S,
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and if W is a component of maximal dimension of S and whose image under π is
Zariski dense in V , we take ℓ such that Φ(ℓ) stabilises W . The constructible map
π then induces a rational dominant map g : W → V , and gΦ(ℓ) = φ(ℓ)g as desired.

New question. LetK = k(t), (V, φ) and (W,ψ) algebraic dynamics, g : (W,ψ) →
(V, φ) a dominant map, and we suppose that everything is defined over K, and in
addition (W,ψ) is defined over k.

What can we say about (V, φ)?

Answer: (V, φ) has a quotient (V0, φ0) defined over k, with deg φ0 = deg φ.

Remark: this does not say much when deg φ = 1, since one can then take the
dominant map to be a constant map and dim(V0) = 0. However, when deg φ > 1,
the variety V0 must be of positive dimension.

Translation in terms of difference fields.
Let a be a generic of W over K (in some large algebraically closed field), and let
b = g(a). Then b is a generic of V . Define the endomorphism σ of K(a) by letting
σ be the identity on K, and σ(a) = ψ(a); then σ(b) = φ(b). We want to find some

c ∈ K(b) such that σ(c) ∈ k(c) and c |⌣kK (k(c) is free from K over k). This will
be given by (an adaptation of the proof of) the following model-theoretic result:

Theorem (T a complete supersimple theory, having the CBP, and with T = T eq;
finite rank). Let B0 ⊂ B be such that tp(B0/B) is almost-S-internal for some set

S of rank 1 types. Let a1 be a tuple, a1 |⌣B0
B, and let a2 be a tuple such that

a2 ∈ acl(Ba1). Then there is e ∈ dcl(Ba2) such that e |⌣B0
B and tp(a2/B0e) is

almost-S-internal.

Idea of the proof. If it were true that dcl coincided with “the difference field
generated by”, this would give us almost directly the result: take B0 = k, B = k(t),
S the generic type of Fix(σ), and a1 = a the generic of W , a2 = b = g(a1) the
generic of V . The tuple e above, if chosen well, will satisfy σ(e) ∈ k(e), and will
give us the desired (V0, φ0). The assertion on the degree of φ0 comes from the
fact that if L ⊂ M with tp(M/L) almost-S-internal, then the limit degree of the
extension is 1 (i.e., M = Lσ(M)).

But this is false: dcl is in general much bigger than “the difference field” generated
by. Some tricks need to be used, which also give the result for (V, φ) when the
dominating map sends (W,ψ) to (V, φ(ℓ)) with ℓ > 1.
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Extendable automorphisms

Gilbert Levitt

(joint work with Vincent Guirardel)

Rather than looking for subgroups invariant (up to conjugacy) under a given
automorphism of a group G, one can fix a subgroup H ⊂ G and consider auto-
morphisms leaving H invariant.

Define Out(H 1G) ⊂ Out(H) as the group of outer automorphisms of H which
extend to G. A general question (that we heard from D. Calegari at an Oberwol-
fach meeting) is to understand Out(H 1G): what does it contain? is it finitely
generated? finitely presented?...

If H is a vertex group Gv in a graph of groups decomposition of G, it is easy
to see that Out(H 1G) contains Out(H ; Incv), the group of automorphisms of H
which act trivially (i.e. as an inner automorphism of H) on each incident edge
group.

When H is a malnormal subgroup of a free group Fn, this construction accounts
for almost all of Out(H 1G):

Theorem 1. Let H be a finitely generated malnormal subgroup of Fn. If
Out(H 1Fn) is infinite, then H is a vertex group in a graph of groups decom-
position of G with finitely generated edge groups. Moreover, Out(H ; Incv) has
finite index in Out(H 1Fn).

It follows that Out(H 1Fn) is finitely presented (it has a finite index subgroup
with a finite classifying space).

The theorem also holds when H is a malnormal quasiconvex subgroup of a
hyperbolic group G (this ensures that G is hyperbolic relative to H).

When H is not malnormal, one can still prove:

Theorem 2. Let H ⊂ Fn be finitely generated, not cyclic. If every automorphism
of H extends to an automorphism of Fn, then H is a free factor.

I sketched the proof of Theorem 2 when H = 〈a, b〉 has rank 2. In this case H
is a free factor provided that the automorphism α sending a to ab and b to bab
extends to an automorphism ᾱ of Fn. The key property of α is that powers of the
commutator γ = aba−1b−1 are the only periodic conjugacy classes.

The main tool in the proof is the canonical cyclic JSJ decomposition of Fn

relative to γ. Assuming that H is not contained in a proper free factor, this is an
ᾱ-invariant graph of groups Γ, with infinite cyclic edge groups and γ contained in
a vertex group. Moreover, vertex groups are cyclic, surface groups (quadratically
hanging), or rigid.

The choice of α ensures that H is contained in a vertex group. One then shows
that this vertex group is of surface type, and that Fn is an amalgam H ∗〈γ〉H

′. It
follows that H is a free factor.
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VC*-density and (p,q)-theorems

Sergei Starchenko

In this talk we survey VC-density and its relation with (p,q)-theorems.
We fix a complete first order theory T . Let ϕ(x; y) be a partitioned formula.

For M |= T and A ⊆ M ℓ(y) let Sϕ(A) be the set of all complete ϕ-types over A:
maximal consistent subsets of {ϕ(x, a) : a ∈ A} ∪ {¬ϕ(x, a) : a ∈ A}.

Let π∗
ϕ : N → N be the function defined as

π∗
ϕ(n) = max{|Sϕ(A)| : A ⊆M ℓ(y), |A| = n}.

By Sauer-Shelah dichotomy we have that either π∗
ϕ(n) = 2n for all n or π∗

ϕ(n) ≤

Cnd for some d.
A complete theory T has NIP if for any formula ϕ(x; y) there is d ∈ N such

that |Sϕ(A)| < 2d for any A ⊆M ℓ(y).
Assume T has NIP. For a formula ϕ(x; y) and r ∈ R we write vc∗(ϕ) ≤ r if

there is C ∈ R with |Sϕ(A)| ≤ C|A|r for all finite A ⊆ M ℓ(y). We define the dual
VC-density of ϕ(x; y) as

vc∗(ϕ) = inf{r ∈ R : vc∗(ϕ) ≤ r}.

In general it is not easy to compute vc∗-densities.

Theorem 0.1.

(1) Let T be a weakly o-minimal theory. Then vc∗(ϕ(x; y)) ≤ ℓ(x).
(2) Let T be a theory of finite U -rank without f.c.p. Then vc∗(ϕ(x; y)) ≤

ℓ(x)U(T ).
In particular, if T is ℵ1-categorical then vc

∗(ϕ(x; y)) ≤ ℓ(x)RM(T ).

Many open questions.

Conjecture. If T = Th(Qp) or T = ACV F(p,q) then vc
∗(ϕ(x; y)) ≤ ℓ(x).

The best known bound for Qp is vc∗(ϕ(x; y)) ≤ 2ℓ(x)− 1, and the best known
bound for ACF(0,0) is vc

∗(ϕ(x; y)) ≤ 2ℓ(x).

Open question. Assume T has NIP. Assume there is k such that for all ϕ(x; y)
with ℓ(x) = 1 we have vc∗(ϕ) ≤ k.
Is it true that for all n there is k(n) such that vc∗(ϕ(x; y)) ≤ k(ℓ(x))?

Conjecture Let T be a VC-minimal theory. Then vc∗(ϕ(x; y)) ≤ ℓ(x).

Theorem 0.2 (V.Guingona). If T is VC-minimal and ϕ(x; y) a formula with
ℓ(x) ≤ 2 then vc∗(ϕ) ≤ 2.

1. VC*-density and forking

Observation Assume T has NIP. Let ϕ(x; y) be a formula and k ∈ N with k >
vc∗(ϕ). Let ~a = (ai)i∈ω be an indiscernible sequence. If the family {ϕ(x; ai) : i ∈
ω} is k-consistent then it is consistent.

From Forking=Dividing (Chernikov, Kaplan) we obtain:
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Claim 1.1. Assume T has NIP. Let U be a large saturated model of T and M ≺ U
a smal substructure. Let ϕ(x; y) be a formula and k ∈ N with k > vc∗(ϕ).

For a ∈ U the following are equivalent.

(1) ϕ(x; a) does not fork over M .
(2) The family {ϕ(x; a′) : a′ ≡M a} is consistent.
(3) The family {ϕ(x; a′) : a′ ≡M a} is k-consistent.

1.1. On (p,q)-Theorem.

Theorem 1.2 ((k,k)-theorem, Matoušek). Let F ⊆ P(X) be a VC-class and
k ∈ N with k > vc∗(F). Then there is t ∈ N such that for any finite k-consistent
F0 ⊆ F there are p1, . . . , pt ∈ X such that every F ∈ F0 contains at least one pi.

Corollary 1.3 (A form of weak f.c.p.). Assume T has NIP. Let ϕ(x; y) be a
formula and k ∈ N with k > vc∗(ϕ). Then there is t ∈ N such that for any set A
if the family {ϕ(x, a) : a ∈ A} is k-consistent then the family{

t∨

i=1

ϕ(xi; a) : a ∈ A

}

is finitely consistent.

Observation.Let X be a compact topological space. Let F ⊆ P(X) be a VC-
class of closed subsets of X , and k ∈ N with k > vc∗(F). Then there is t ∈ N such
that for any k-consistent F0 ⊆ F there are p1, . . . , pt ∈ X such that every F ∈ F0

contains at least one pi.

Using the above observation we obtained the following theorem.

Theorem 1.4. Assume T has NIP. Let U be a large saturated model of T and
M ≺ U a small substructure. Let ϕ(x; y) and θ(y) be formulas over M and
k ∈ N with k > vc∗(ϕ). Assume the family {ϕ(x; a) : a ∈ θ(M)} is k-consistent.
Then there are M-invariant types p1, . . . , pt ∈ Sx(U) such that every ϕ(x; a), for
a ∈ θ(U), is contained in one of pi.

Open question. Do we have a definable (k,k)-theorem?
Assume T has NIP. Let ϕ(x, y) be a formula and d ∈ N with d > vc∗(ϕ). Let

θ(y) be a formula such that the family {ϕ(x; a) : |= θ(a)} is d-consistent. Can
we find formulas θi(y), i = 1, . . . , t such that θ(y) →

∨
θi(y), and each family

{ϕ(x; a) : |= θi(a)} is consistent?

By logical compactness, the above question is equivalent to the following.
Assume ϕ(x; a) does not fork over M. Can we find θ(y) ∈ tp(a/M) such that

the family {ϕ(y; b) : b ∈ θ(M)} is consistent.

Theorem 1.5 (Simon). Assume T is dp-minimal. Then definable (k,k)-theorem
holds for ϕ(x, y) with ℓ(x) ≤ 2.
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Invariant types in NIP structures

Pierre Simon

In this talk, I presented some constructions and results concerning invariant types
in NIP theories. The underlying hope of this work is that one can analyze invariant
types in terms of definable and finitely satisfiable ones.

A central notion here is that of commuting types. Two invariant types p and
q commute if realizing first p then the invariant extension of q is the same as
realizing first q and then the invariant extension of p. It is well known that a
finitely satisfiable type and a definable one always commute. The converse is
also true: if an invariant type commutes to all finitely satisfiable types, then it
is definable. Shelah has shown in [2] that a general type over a saturated NIP
structure can be decomposed into a finitely satisfiable one and a directed quotient.
Putting those two facts together, one can hope to decompose an invariant type in
an NIP theory into a finitely satisfiable component, and a definable quotient.

This strategy works at least in the case of dp-minimal types, where actually the
decomposition collapses to one extreme or the other. We prove that an invariant
dp-minimal type is either finitely satisfiable or definable. This theorem is stated
in [1], but I presented a different proof during the talk which involves defining two
functions that map invariant types to finitely satisfiable ones.

From now on, we assume NIP. Let M ≺ N , N is |M |+-saturated. Let p be
an M -invariant type. One can define two M -finitely satisfiable types RM (p) and
FM (p) as follows:
RN (p) is taken to be the eventual type (over C) of Morley sequences of p lying

inside N .
To define FN (p), one first works in a pair (N ′, N) where N ′ is |N |+-saturated.

Then consider a saturated elementary extension (N ′
1, N1). The type FN (p) is

defined as the eventual type over N ′ of Morley sequences of p lying inside N1.
The intuition is that p has some N -finitely satisfiable part and that this part

is maintained in FN (p) and somehow reversed in RN (p). It is always the case
that p and RN (p) commute. The key to proving the aforementioned theorem is
to determine what it means for FN (p) to commute with either p or RN (p). (One
should think of commuting types as being somehow ‘far away’, and in particular
as having no finitely-satisfiable part in common).

The following properties hold:
FN (p) commutes with p if and only if p is definable, if and only if FN (p) =

RN (p).
FN (p) commutes with RN (p) if and only if p is finitely satisfiable, if and only

if FN (p) = p.

To prove the theorem, we now only need to observe that if q, r are invariant
commuting types and p is dp-minimal, then p must commute with either q or r.
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Groupes lineaires de rang de Morley fini

Bruno Poizat

Suivant la problèmatique de la Conjecture de Cherlin-Zilber, beaucoup d’ènergie
a été dépensée ces dernières années en vue de montrer l’existence, dans un quel-
conque groupe de rang de Morley fini, de sous-groupes définissables connexes nilpo-
tents généreux (comme sont les tores maximaux d’un groupe algébrique simple).

Nous montrons que c’est vrai pour les groupes de rang de Morley fini linéaires,
c’est-à-dire ceux qui se plongent, pour un certain entier n, dans GLn(K), où K
est un corps qu’on peut supposer gratuitement algébriquement clos. Nous com-
mençons par montrer que, si le groupe est en outre simple (ou, plus généralement,
s’il n’a pas de sous-groupe normal unipotent non-trivial) les centralisateurs de ses
points génériques sont des groupes abéliens divisibles et généreux, qui sont tous
conjugués.

Nous rappelons les définitions suivantes :

• une partie A du groupe G est dite générique si G est recouvert par un
nombre fini de translatés de A; autrement dit G = a1 ·A·b1 ∪· · ·∪ an ·A·bn;
si A est définissable et si G est de rang de Morley fini, cela signifie que A
a même rang que G;

• une partie A du groupe G est dite généreuse si la réunion de ses conjuguées
est générique.

Notre méthode d’investigation repose sur deux types d’ingrédients :

• des propriétés bien connues des groupes algébriques
• la théorie de Wagner et de Nevelski de la généricité pour les sous-groupes
non-définissables d’un groupe stable, qui permet de transférer à un groupe
linéaire certaines des propriétés de sa clôture de Zariski.

Nous rendons compte ici de cette théorie dans le cadre qui nous est utile. La
clôture de Zariski d’un sous-groupe H d’un groupe algébrique est le plus petit
sous-groupe de ce dernier contenant H qui soit définissable (les géomètres disent
constructible) au sens de la théorie du corps algébriquement clos K.

Lemme de Wagner. Soit G un groupe algébrique, et soit H un sous-groupe de
G dont il soit la clôture de Zariski; alors tout type générique de S1(G) est finiment
satisfaisable dans H.

Corollaire 1. Sous les hypothèses du lemme précédent, si A est une partie con-
structible générique de G, on peut trouver un uplet a0, . . . an d’éléments de H tels
que G = a0 · A ∪ · · · ∪ an ·A.

Corollaire 2. Sous ces mêmes hypothèses, et si A est une partie constructible de
G, A est générique dans G si et seulement si B = A ∪H est générique dans H.
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Corollaire 3. On reprend les hypothèses du Lemme de Wagner en supposant en
outre que H est un groupe de rang de Morley fini, qui soit connexe relative-ment à
sa propre théorie, et que la paire (G,H) est suffisamment saturée. Alors on peut
trouver g dans H ∪ Go qui soit générique (sur ∅, ou sur un ensemble convenu de
paramètres dans H ) à la fois au sens de G et au sens de H.

On considère alors un groupe infini simple H de rang de Morley fini, qui soit
linéaire: pour un certain entier n, H est un sous-groupe de GLn(K), où K est
un corps algébriquement clos. Nous notons G la clôture de Zariski de H dans
GLn(K). En minimisant sa dimension, on se ramène au cas où G est un groupe
algébrique simple. Quitte à la remplacer par une extension élémentaire, nous
pouvons supposer que la paire (G,H) est autant saturée qu’on veut, si bien que
nous trouvons un point g de H qui est générique à la fois au sens de G et au sens de
H . Il est bien connu que le centralisateur T de g dans G est un tore connexe, soit
encore un groupe commutatif divisible, qui est généreux dans G. Nous montrons
alors, grâce à des calculs de rang à la Jaligot, que le centralisateur de g dans H , qui
est l’intersection de H et de T , est généreux dans H , et qu’il est connexe au sens
de la théorie de H . Cette démonstration fonctionne en fait quant G est seulement
réductif; on en conclut que tout groupe linéaire H de rang de Morley fini possède
un sous-groupe définissable connexe résoluble et généreux, puis, par transitivité,
un tel sous-groupe nilpotent, car cela est vrai pour tout groupe résoluble de rang
de Morley fini d’après les travaux de Frécon et Jaligot.
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résultat surprenant de Monsieur Frank Olaf Wagner, The Journal of Symbolic Logic,
66,1637-1648

[11] id., Centralisateurs génériques, à parâıtre au Journal of Symbolic Logic
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Approximate equivalence relations

Ehud Hrushovski

1. Preliminaries; probability logic

Given a graph (Ω, R), we define a metric dR(x, y) = minn. (∃x = x1, . . . , xn =
y,R(xi, xi+1)).

Let µ be the normalized counting measure µ(X) = |X |/dΓ. µ(Ω) will generally
be infinite, but we assume balls have finite measure. We similarly have compatible
measures µm on Ωm; in the ultraproduct, they will usually measure a bigger
algebra than the measure algebra.

We will use probability logic, see [8]. The most convenient form is within con-
tinuous logic, cf. e.g. [1]: relations are viewed as real-valued, Boolean connectives
{0, 1}n → {0, 1} are replaced by continuous functions [0, 1]n → [0, 1]. In probabil-
ity logic, quantifiers are further replaced by integral operators: φ(x, y) 7→ Iyφ(x, y),
intended to denote the µy-measure of {y : φ(x, y)}. A formula Iy1

· · · Iyn
φ, with

φ quantifier-free, is said to be in normal form. A quantifier-elimination result of
Hoover (1982) asserts (in the present setting) that any formula can be approxi-
mated by one in normal form. 1 Hoover’s theorem can be proved as follows: the
normal form sentences of a theory T induce a probability distribution on the space
of L-structures on N; a random L-structure on N is then a model of all of T ; more-
over, probability agrees with frequency (Iyφ(x, y) = limn

1
n |{i ≤ n : φ(x, ai)}).

In the case of complete separable metric spaces A, with the distance viewed
as a real-valued relation, the completion of any random L-structure will be iso-
morphic to the support of the measure on A; this is Vershik’s proof of Gromov’s
reconstruction theorem for measured-metric spaces, see [5], [10].

In the case of finite graphs, with normalized counting measures, the (normal
form) theory of a graph Ω can be described as follows. Let Gr(m) be the set
of graphs on m + 1 vertices. Given a ∈ Ω, and γ ∈ Gr(m), let C(γ, a) be the
set of graph embeddings γ → Ω with 0 7→ a. Define the local statistics function
LSm : Ω → [0, 1]Gr(m): LSm(a)(γ) = µm(C(γ, a). Compare [2] in the case of
sentences, [3] for formulas.

Definition 1.1. (Ω, R) is m, ǫ-homogeneous if the range of LSm is concentrated
in an ǫ-ball (for sup metric on RN .)

2. The stabilizer theorem for equivalence relations

We will be interested in graphs of large finite degree, and larger, or infinite
diameter; our main results will be modulo bounded degree graphs.

Say two metrics d, d′ are commensurable at scale α if an α-ball of d′ is contained
in finitely many α- balls of d, and vice versa.

1As we only assume balls have finite measure, we require a slight modification where only
formulas of radius 1 can be measured by a quantifier; Iy(φ(x, y)&R1(x1, y)) would be a typical

case.
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A metric space is k-doubling at scale α if d, (1/2)d are commensurable at scale
α.

Let R be a graph, with a measure assigning finite measure to balls. R is a
k-approximate equivalence relation if

• dR-balls of radius 1 have measure of a a fixed order of magnitude dΓ,
(1/k)dΓ ≤ µ(B1(a)) ≤ kdΓ.

• dR is k-doubling at scale 1: every 2-ball is a union of k 1-balls.

An ǫ- slice is a set Z whose intersection with every 1-ball has measure < ǫ.

Theorem 2.1 (Stabilizer theorem). Let R be a k- approximate equivalence rela-
tion. Then there exists a graph S on the same set of vertices, such that S◦8 ⊂ R◦4,
and for all a ∈ Ω outside an ǫ-slice U , |S(a)| ≥ Ok(1)|R(a)|.

Moreover S is 0-definable, uniformly in (Ω, R), in an appropriate logic; in par-
ticular Aut(Ω, R) leaves U, S invariant.

This generalizes the stabilizer theorem of [7] and of Sanders-Croot-Sisask, cf.
[9]. Namely, given a subset X of a group G, define RX(x, y) ⇐⇒ xy−1 ∈ X .
Then X is an approximate subgroup of G iff RX is an approximate equiv. relation.
canonical statements about R, such as the theorem above, translate back to
statements about X .

sketch of proof:

• xSny iff µ{z : |µ(R(x)△R(z))− µ(R(y)△R(z))| ≥ 2−n} ≤ 2−n}
• At limit, ∩nSn: for almost all z, µ(R(x)△R(z)) = µ(R(y)△R(z)). It is
cobounded.

• Sn+1 ◦ Sn+1 ⊂ Sn. (Away from measure 0).
• Sn ⊂ R◦4, for large n.
• Sn is definable in terms of R using probability logic . This definability
will be essential, showing that (approximate) symmetries of the graph, are
(approximate) symmetries of the associated refining metric.

• The proof uses stability: µ(R(x)△R(z)) is a stable real-valued formula.

A locally compact limit.

Proposition 2.2. Take an ultraproduct (Ω, R) of k-approximate equivalence re-
lations. Define a finer metric d: d(x, y) = 2−m if Sm(x, y) but not Sm+1(x, y).
Factor out the equivalence relation: d(x, y) infinitesimal. Then (Ω, R) is a disjoint
union of components; each is a locally compact metric space Y , with a locally
finite measure.

Proposition 2.3. Let (Ω, µ, R) be an approximate equivalence relation, with re-
spect to a measure µ. Then up to measure 0, the completion with respect to d is
determined by the local statistics of Ω. Moreover, if a, b ∈ Ω and LS(a) = LS(b)
then there exists an isometry with a 7→ b.

Proof. (Vershik style). Suppose (Ω′, µ′, R′) has the same local statistics. Let (an)
be a random sequence in Ω, and (bn) a random sequence in Ω′, with R(ai, aj) ⇐⇒
R′(bi, bj). Then the map an → bn is an isomorphism preserving not only R,
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but also any probability-logic definable relation; in particular Sn. Hence it is an
isometry; extend it to the completion. The same holds in the pointed case; in
particular for (Ω, a) vs. (Ω, b). �

3. Sharpening the focus

We managed to raise the resolution of a metric given at scale 1; but at finer
scales, we lost sight of the doubling property. We next aim to show that assuming
approximate symmetry, we can maintain doubling at arbitrarily fine scales.

A metric d : Ω2 → N admits a fine structure of dimension e, scale s, distortion
c if there exists a pseudo-metric 2 d′ : Ω2 → 2−sN, such that

• The 2e-doubling condition holds at every scale 2−s, . . . , 1.
• d, d′ are c-commensurable at scale 1, up to a 1/c-slice.

Fix a degree of approximateness K, also a fast growing function Ψ.

Theorem 3.1. For some c, e ∈ N, for any K- approximate equivalence relation
(X,R), the fibers of LS : X → RN admit a fine structure of dimension ≤ c, ,
distortion ≤ e, and scale Ψ(c+ e).

While there are no groups in hypothesis or conclusion, the proof uses group
theory (Peter-Weyl, Gleason, Yamabe, . . .).

Corollary 3.2. For some c ∈ N, for any (c, 1/c)-homogeneous K- approximate
equivalence relation (X,R) admits a fine structure of dimension ≤ c,distortion ≤ c,
and scale Ψ(c). In fact, any sequence of increasingly homogeneous K- approximate
equivalence relation has a subsequence approaching (after distortion) a Riemannian
homogeneous space.

Compare [4], Theorem 2, in the case of the circle.
Proof

• Ultraproduct. Obtain two equivalence relations: Ẽ = finite distance. Γ =
infinitesimal distance.

• Let Ω be a class of Ẽ; then Ω/Γ is locally compact.
• G := Aut(Ω/Γ) acts transitively on Ω, by isometries of the fine metric.
Keisler,Gromov-Vershik,

• A locally compact structure on G (compact-open topology.) The stabilizer
of a point is compact.

• By Gleason-Yamabe, an open subgroup H , a small normal compact sub-
group N , with H/N a Lie group.

• From Ω to an H-orbit: locally bounded distortion. (R induces a graph of
bounded degree on Ω/H .)

• Factor out N . Obtain a coarser equivalence relation than the original
distance-zero, but still contained in dR ≤ 4.

2we allow d(x, y) = 0 without x = y; in other words we factor out a (precise) equivalence
relation, contained entirely in R◦4. SImilarly we allow d(x, y) = ∞, thus fibering over a bounded
valence graph.
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• Now the Lie group H/N acts transitively on Ω/Γ, compact point stabi-
lizer. Find an invariant Riemannian metric. This metric is doubling up to
distance 1, and the “distance -1” relation is commensurable with dR.

• Return information to finite factors, up to scale Ψ(c).

It is to be hoped that stronger Riemannian statements, for instance of Bishop-
Gromov type, can also be brought down.

4. Lovász-Szegedy and the NIP route to finite dimensionality

Recall our locally compact limit Y , constructed at the end of §1. When |Ω| =
O(dΓ), this is precisely the space that Lovász-Szegedi call the graphon. (They use
the L1 metric: d(x, y) = |µ(R(x)△R(z))− µ(R(y)△R(z)).) (See [2], [6]).

Whereas we used a doubling condition, approximate symmetry and Gleason-
Yamabe to obtain finite dimensionality, [6] obtain a similar result under an assump-
tion of NIP. Recall: NIP (R) ≤ k if there is no set Y of size k such that every subset
fo Y has the form R(b) ∩ Y , for some b. A metric space has packing dimension
≤ r, if for large N , one cannot find N r disjoint 1/N -balls. Lovász-Szegedi show:
if R has NIP, the associated locally compact space has finite packing dimension r.

Definition 4.1. A nearly-Lie group is a connected locally compact group G, with
a profinite subgroup H, and G/H Lie. Note that nearly Lie groups are topologically
finitely generated.

Restoring the approximate symmetry assumption, we obtain a (NIP) version of
Corollary 3.2 without distortion.

Theorem 4.2. A NIP, k-approximate, increasingly symmetric sequence of graphs
approaches a homogeneous space for a nearly Lie group, fibered over a graph of
bounded valency.

We also obtain an answer to a question raised earlier by Pillay.

Theorem 4.3. Let G be a definable group in a NIP theory. Assume µ is a left-
invariant generically stable measure on G. Let φ(x, y) be a formula, and let G00

φ

be the µ-stabilizer of φ: g ∈ G00
φ ⇐⇒ µ(φ(x, a)∆φ(gx, a)) = 0 for all a. Then

G0/G00
φ is a nearly Lie group.

It is natural to ask: given a saturated model M of a NIP theory and a formula
φ(x, y), does there exist a homomorphism h : Aut(M) → G into a nearly-Lie
group, whose kernel fixes all φ-types over M that do not fork over ∅?
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The structure of approximate groups

Emmanuel Breuillard

(joint work with Ben Green and Terence Tao)

In the talk, I discussed the notion of approximate subgroup. The concept was
introduced a few years ago by T. Tao in [6] as a tool to tackle the so-called non-
commutative Freiman problem. This problem can be described as asking for a
rough classification of finite subsets A of an ambient group G with the property
that the size of the product set AA = {a1a2|a1, a2 ∈ A} is not much bigger that
the size of A itself in that |AA| ≤ K|A|, where K ≥ 1 is a fixed parameter. Such
sets are said to be of doubling at most K. Rough means that we will consider two
such sets A and B to be essentially equivalent for the purpose of this classification
if each set can cover the other set by few (left and right) translates of it, where few
means a number less than a constant f(K) depending on K only. The celebrated
Freiman Theorem from the 1960’s (see e.g. [4]) answered this problem in the case
when G = Z. For some historical background and a presentation of the non-
commutative Freiman problem, we refer the reader to T.Tao’s blog. Let K ≥ 1 be
a parameter.

Definition 1 (Approximate subgroup). A K-approximate subgroup of an ambient
group G is a finite subset A of G such that A is symmetric (i.e. stable under inverse
A = A−1), contains the identity and verifies AA ⊂ XA for some symmetric subset
X ⊂ G with |X | ≤ K.

Using various tools from additive number theory and the combinatorics of sum-
sets, T. Tao [6] reduced the non-commutative Freiman problem to the classification
of approximate subgroups of a given ambient group.
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Basic examples of approximate groups include finite groups, arithmetic progres-
sions, or more generally nilpotent progressions.

Definition 2 (progression). Given an ambient group G, elements e1, . . . , er in
G and integers L1, . . . , Lr > 0, a progression P = P (e1, . . . , er;L1, . . . , Lr) with
generators e1, . . . , er and side lengths L1, . . . , Lr is defined as the subset of all
elements g in G that can be written as a word in the letters e±1

i using at most

Li letters ei or e−1
i for each i = 1, . . . , r. The number r is called the rank of the

nilprogression.

Definition 3 (nilprogression). A nilprogression of rank r and step s is a pro-
gression P = P (e1, . . . , er;L1, . . . , Lr) in a given ambient group G, such that the
subgroup generated by the ei’s is nilpotent of nilpotency class at most s.

The above definition is from [2]. A related concept was introduced in [1]. The
two notions are roughly equivalent in the sense given below.

Definition 4 (coset nilprogression). A coset nilprogression of rank r and step
s is the inverse image of a nilprogression of rank r and step s under a group
homomorphism with finite kernel.

It is a rather simple matter to prove that coset nilprogressions of rank r and
step s are K-approximate subgroups with a parameter K which depends only on
r and s, and not on the side lengths Li’s, the generators ei’s, nor on the ambient
group G.

In 2009, E. Hrushovksi wrote the paper [5] in which he addressed the general
problem in an arbitrary group by tools that had not been considered before in
this context as they pertain to model theory and stability theory in mathematical
logic.

Making key use of the Gleason-Montgomerry-Zippin structure theory of locally
compact groups, he was able to give the first general structure theorem valid for
all approximate groups showing that they always exhibit some nilpotent behavior
close to what B. Green and T. Sanders had been calling a Bourgain system. He also
gave complete answers to the non-commutative Freiman problem in several non-
trivial cases: for groups with bounded exponent (there every approximate group is
roughly equivalent to a finite subgroup), for subgroups of GLn over a field (there
every approximate group is roughly equivalent to a solvable approximate group
-by- a finite semisimple group), for finitely generated groups that are exhausted by
an increasing union of K-approximate subgroups (they must be nilpotent-by-finite
and this improves Gromov’s well-known polynomial growth theorem). Hrushovski
deduced all these properties from what Green, Tao and I now call the “Hrushovski
Lie model theorem”. This associates to any infinite sequence of K-approximate
groups a certain canonically defined connected Lie group. For this result, we refer
to Hrushovski’s lecture notes available on his web-page, as well as the extended
abstracts of Pierre Simon and Immanuel Halupczok corresponding to the talks
they gave on Hrushovski’s work on approximate groups at this workshop.

Recently together with B. Green and T. Tao, we managed to extend Hrushovski’s
methods in order to get a more complete description of an arbitrary approximate
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subgroup in an arbitrary group. We say that two subsets A,A′ ⊂ G areK ′-roughly
equivalent if

|A ∩A′| ≥
1

K ′
max{|A|, |A′|}

A simple argument (Ruzsa covering lemma) shows that if A,A′ are K ′-roughly
equivalent, then A′ can be covered by at most K ′ left translates of AA−1 and also
by K ′ right translates of A−1A.

We prove:

Theorem 1 ([2]). Let A be a K-approximate subgroup in an ambient group G.
Then A is C(K)-roughly equivalent to a coset nilprogression P of rank and nilpo-
tency class O(logK). The constant C(K) depends only K and not on A nor G.

In fact we may choose P so that P ⊂ AD, where D = D(K). Moreover, we
may even require P to belong to A12 at the expense of getting only a polynomial
bound O(KC) on the rank and step of P . See [2].

In the talk, we described how one can deduce this theorem from Hrushovski’s
Lie model theorem by analysing the proof by Gleason and Yamabe of the structure
theorem for locally compact groups (proved in the 1950’s) and mimicking some of
these techniques to make them work in the approximate group setting. These old
arguments of Gleason and Yamabe are best understood using model theory, as was
first spelled out by J. Hirshfeld. We refer the reader lecture notes by Goldbring
an Van den Dries for the non-standard treatment of the theorems of Gleason and
Yamabe and to the original paper [2] for a detailed description of our method.

Theorem 1 has several consequences. For example it gives another proof as well
as a strengthening of Gromov’s theorem on groups with polynomial growth. It
also allows one to prove a conjecture of Gromov regarding a so-called “generalised
Margulis lemma” about discrete subgroups of isometries in general metric spaces.
Finally it has the following consequence, which is worth noting:

Corollary 1. Any K-approximate subgroup A of a local group has a subset of size
at least |A|/C(K) which can be embedded in a global group.

This is the approximate group analogue of a recent result of I. Goldbring [3],
which answered a long standing basic problem regarding local groups by showing
that the same holds for compact neighborhoods of the identity in arbitrary locally
compact local groups.
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Motivic counting of points of bounded height

François Loeser

The aim of the talk was to present some recent results that can be seen as “motivic”
versions of various results about counting points of bounded height in diophantine
geometry. In a classical paper [1], Bombieri and Pila used the determinant method
to give bounds for points of bounded height and transcendental and algebraic
curves. This was later extended to higher dimensions by Pila and Wilkie [6] and
Pila [5], respectively. We have presented work in progress with R. Cluckers and
G. Comte on non-archimedean versions of such results. Our approach relies on
a non-archimedean analogue of the Yomdin-Gromov Lemma [3]. In the second
part of the talk, we have presented joint work with A. Chamber-Loir on a motivic
analogue of his recent result with Y. Tschinkel on counting integral points of
bounded height on partial equivariant compactifications of vector groups [2]. Our
approach in based on the motivic Poisson summation of Hrushovski and Kazhdan
[4].
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Hyperbolic towers in the free group

Rizos Sklinos

(joint work with Chloé Perin, Larsen Louder)

We use hyperbolic towers to answer some model theoretic questions around the
generic type in the theory of free groups. We note that the notion of a hyperbolic
tower was first introduced by Sela in his characterization of finitely generated
groups that have the same elementary theory as a non abelian free group.

The understanding of the generic types of a stable group is of great importance
in model theory. Towards this end one is able to see using a result of Poizat
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(connectedness of Fω) that the free group has essentialy a unique generic type,
which from now on we call p0.

It was shown by Pillay and Sklinos (independently) that p0 has infinite weight.
Note that this is strictly stronger than the non-superstability of the free group.
Moreover, Sklinos showed that p0 is non-isolated. In other words, in the light
of a result of Pillay, i.e. p0 defines the set of primitives elements, our result is
equivalent to saying that the set of primitives is not ∅-definable. As a matter of
fact in this talk we show that no complete type over the empty set is isolated.

We show that all the finitely generated models of this theory realize the generic

type p0, but that there is a finitely generated model which omits p
(2)
0 . We exhibit a

finitely generated model in which there are two maximal independent sets of real-
izations of the generic type which have different cardinalities, i.e. the free product
of Z with the fundamental group of the connected sum of two tori. We show that
the fundamental group of the connected sum of two tori is homogeneous. Thus,
we also exhibit a free product of homogeneous groups which is not homogeneous.
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Isometries in valued fields

Immanuel Halupczok

To any definable set X ⊆ Zn
p in the p-adic integers, one can associate a Poincaré

series, which is defined as follows. Let Nλ be the number of points of the image
of X in (Z/pλZ)n. Then the Poincaré series is the formal sum

PX(t) =

∞∑

λ=0

Nλt
λ ∈ Q[[t]].

In the 80ies, Denef proved that this series is a rational function, i.e., PX(t) ∈ Q(t).
It is easy to verify that PX(t) only depends on the isometry type ofX (with respect
to the ultrametric maximum norm on Zn

p ), so Denef’s result can be regarded as
a result about isometry classes of definable sets. However, the precise meaning of
this result for the isometry classes is not very intuitive. The goal of these notes
is to present a geometric description of definable sets up to isometry under the
assumption that p is sufficiently big; that description will be precise enough to
imply the result by Denef.
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Our main result lives in Henselian valued fieldsK of characteristic (0, 0). (Recall
that a valued field is called “Henselian” if it satisfies Hensel’s Lemma, i.e., if zeros
of polynomials in the residue field can be lifted to K.) To obtain a corresponding
result in Qp for big p, we will use a standard compactness argument. The result
says that for every definable set X ⊆ Kn there exists a t-stratification. Roughly,
a t-stratification for X is a definable partition Kn = S0 ∪̇ · · · ∪̇ Sn, where Si is of
dimension i, which satisfies the following condition. Suppose that d ≤ n and that
B ⊆ Kn is a ball with B ∩ (S0 ∪ · · · ∪Sd−1) = ∅. (We are still using the maximum
metric, so a ball is the same as a cube.) Then there exists a definable isometry
f : B → B such that f(X ∩B) = B0 ×X ′ where B0 is the projection of B to Kd

and X ′ is a definable subset of Kn−d. In other words, for each d ≤ n, away from
a subset of dimension < d, X is “isometrically trivial in d dimensions”.

Note that this is rather different from what happens in the archimedean world.
For example, no open subset of the parabola {(x, x2) | x ∈ R} is isometric to
a straight line; however, writing OK for the valuation ring of K, it is an easy
computation to verify that the projection {(x, x2) | x ∈ OK} → OK to the first
coordinate is an isometry.

The precise definition of a t-stratification is a bit stronger than what is written
above. The following additional properties will be needed to deduce the rationality
of Poincaré series.

(a) The same isometry f : B → B that sends X ∩ B to B0 × X ′ also sends
Si∩B (for i ≥ d) to B0×S′

i for some S′
i ⊆ Kn−d. One can deduce that the

partition S′
d ∪̇ · · · ∪̇ S′

n of the projection of B to Kn−d is a t-stratification
for X ′.

(b) After possibly permuting coordinates, X ′ and S′
i can be chosen to be fibers

of the projection π : B → B0. More precisely, we can fix any a ∈ B0 and
chooseX ′ := {x ∈ Kn−d | (a, x) ∈ X} and S′

i := {x ∈ Kn−d | (a, x) ∈ Si}.

Now let me sketch how this implies the rationality of the Poincaré series. The
main result holds uniformly for all K, so for any formula φ, we can apply com-
pactness to obtain that there exists a t-stratification for X := φ(Qn

p ) as soon as p
is big enough.

Let us denote by B the set of all balls B ⊆ Qn
p satisfying B∩S0 = ∅ and that are

maximal with this property: for any B′ ) B, we have B′∩S0 6= ∅. Then Qn
p is the

disjoint union of all B ∈ B and S0. Since S0 is 0-dimensional and hence finite, this
allows us to compute PX(t) from the series PX∩B(t), where B runs over B. Since
B ∩ S0 = ∅, the definition of t-stratification yields an isometry X ∩B → B0 ×X ′

B

for some X ′
B ⊆ Kn−1 (and where B0 is the projection of B to K) and since

Poincaré series are not affected by isometries, we have PX∩B(t) = PB0×X′

B
(t).

Now PB0×X′

B
(t) can easily be computed from PX′

B
(t), and using induction, we can

assume that PX′

B
(t) is a rational function.

The last missing ingredient to obtain rationality of PX(t) is to understand
how PX′

B
(t) depends on B (when B runs through B). Each set X ′

B is definable
individually but unfortunately, these sets are not definable uniformly in B. How-
ever, by property (b) above, we have a definable family X ′

B,a parametrized by
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{(B, a) | B ∈ B, a ∈ π(B)}. (Different B ∈ B might need different choices of
the coordinate projection π : Kn → K, but since there are only finitely many
possibilities, this is not a problem.) Moreover, by (a) each set X ′

B,a comes with

a t-stratification S′
1,B,a, . . . , S

′
n,B,a, and this is uniform in (B, a). This allows us

to deduce that the dependence of PX′

B,a
(t) on (B, a) is also uniform in a suitable

sense, which (together with the fact that PX′

B,a
(t) does not depend on a) finally

allows us to deduce rationality of PX(t).
One final remark: Our main result in Henselian valued fields resembles a result

from real and complex geometry about the existence of Whitney stratifications,
which describe singularities of subsets of Rn or Cn. In fact, our result actually
implies the existence of Whitney stratifications. The idea is that an elementary
extension K of R or C can be turned into a Henselian valued field in a natural
way; if one applies our result in K, the obtained t-stratification induces a Whitney
stratification in R resp. C.

Globally valued fields

Itäı Ben Yaacov

(joint work with Ehud Hrushovski)

In order to fix terminology, by a valuation on a field k we mean a map v : k →
(Γ,+,≤) ∪ {∞}, most often with Γ ⊆ R, satisfying

• v(ab) = v(a) + v(b),
• v(a+ b) ≥ v(a) ∧ v(b)− v(2)−,
• v(a) = ∞ if and only if a = 0,

where ∧ denotes the minimum, and t− = −(t ∧ 0) is the negative part of t. If
v(t)− 6= 0 (i.e., if v(2) < 0) then the valuation is said to be Archimedean, and
there exists an embedding k ⊆ C under which |x| = 2v(x)/v(2). Otherwise, the
corrective term −v(2)− vanishes, and v is an “ordinary” ultra-metric valuation.

The sum formula is a relation linking the valuations on a number or function
field, asserting that for every x 6= 0 the sum of all valuations of x, appropriately
normalised, must vanish:

∑

p

vp(x) = 0.

This property (often stated in multiplicative notation as the product formula∏
p |x|p = 1) is extremely useful, e.g. for the definition of heights etc. In con-

trast, the Approximation Theorem asserts that a finite family of nonequivalent
valuations on a given field can satisfy no relation between them.

In order to cast the “sum formula” into a model-theoretic formalism we need
the following facts and observations:

• In the definition of a valuation, one may replace the hypothesis that Γ is
totally ordered with Γ being lattice-ordered.
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• We recall that an L1 lattice is a real Banach lattice (namely a Banach
space equipped with a compatible lattice ordering), such that in addition∥∥|x| + |y|

∥∥ = ‖x‖ + ‖y‖. For every measure space X , the space L1(X) of

real summable functions is an L1 lattice, and every L1 lattice is of this
form (see Meyer-Nieberg [Mey91]).

• The class of L1 lattices is elementary in continuous logic. It is moreover
stable (see [BBH11]).

• In an L1 lattice one can recover integration as
∫
f = ‖f ∨ 0‖ − ‖f ∧ 0‖.

We therefore define a globally valued field (GVF) as a triplet (K,E, v), where:

• K is a field.
• E is an L1 lattice.
• v : K → E ∪{∞} is a lattice-valued valuation, such that for every x ∈ K×

we have
∫
v(x) = 0, i.e., ‖v(x)∨0‖, ‖v(x)∧0‖ (and, as an aside, the height

of x is defined as this common value: h(x) = ‖v(x) ∨ 0‖).

The class of GVFs is elementary in continuous logic, and inductive: the (com-
pleted) union of an increasing chain of GVFs is one as well. Example include Q,
k(t), as well as any algebraic extension thereof (in the case of infinite algebraic
extensions, the set of valuations is no longer discrete).

At this stage the natural questions arise:

• Does the theory GV F admit a model companion? We know that GV F
does not have the amalgamation property, so a model companion, if it
exists, cannot have quantifier elimination.

• Is the model companion stable? (Notice that the “value group”, namely
the L1 lattice, is known to be stable.)

• Are Q̃ and k̃(t) models of the model companion, i.e., are they e.c.?

For the time being, the only definitive positive answer we can give is that k̃(t)
is e.c. Partial results toward answering the other two involve capacity theory and
a theory of lattice-valued vector spaces over globally valued fields.
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Groups definable in o-minimal structures

Annalisa Conversano

(joint work with Marcello Mamino, Anand Pillay)

Several classes of connected real Lie groups can be defined in an o-minimal struc-
ture, such as compact groups, algebraic groups, Nash groups and linear semisimple
groups. Semisimple groups which are not linear have infinite discrete centre, so
they cannot be defined in an o-minimal structure. However they can be defined
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in the two-sorted structure ((Z,+), (R,+, ·)) (where there are no additional basic
relations between the sorts) [11], which has NIP as well.

In [9] Fornasiero notices how, in all the cases mentioned above, the groups can
be defined in a d-minimal structure, and asks if this is the case for every connected
Lie group. The negative answer is provided by the following:

Theorem 1. [5] A first-order structure M interprets all connected real Lie groups
if and only if M interprets the real field expanded with a predicate for the integers.

In the proof, a connected 3-dimensional nilpotent Lie group L is presented,
which is bi-interpretable with the real field expanded with a predicate for the in-
tegers (where the projective sets can be defined). Therefore L interprets every
connected Lie group.

The classical Levi decomposition of connected Lie groups finds an analogue in
the o-minimal context, where the appropriate notion of a Levi subgroup is given
by the following:

Definition 2 ([8]).

(i) A group S is ind-definable semisimple if S is ind-definable definably
connected and S/Z(S) is definable semisimple (a definable group is semisim-
ple if has no infinite abelian normal subgroups).

(ii) A maximal ind-definable semisimple subgroup of a definable group G is
called a ind-definable Levi subgroup of G.

Theorem 3 (Levi decomposition [8]). Let G be a definably connected group de-
finable in an o-minimal expansion of a field. Then G has a ind-definable Levi
subgroup S, unique up to conjugation, and

G = R · S,

where R is the solvable radical of G. Moreover R ∩ S ⊆ Z(S), and Z(S) is
finitely generated.

The study of the homotopy type of a connected real Lie group is reduced to the
compact case, because Lie groups have maximal compact subgroups (all conjugate)
which are homotopy equivalent to the whole group [12]. Groups definable in o-
minimal structures in general do not have a maximal definably compact, definable
subgroup. However, a reduction to the compact case still exists, considering the
quotient G/N (G) by the maximal normal definable torsion-free subgroup N (G).
(The existence of N (G) is proved in [6])

Theorem 4. [3] Let G be a definably connected group definable in an o-minimal
structure, and N (G) its maximal normal definable torsion-free subgroup.

Then the quotient G/N (G) has a maximal definably compact definable sub-
group K, which is definably connected and unique up to conjugation. Moreover,

G/N (G) = K ·H,

where H is a (maximal) definable torsion-free subgroup, and K ∩H = {e}.
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By Theorem 4 and previous work on torsion-free definable groups [14], it follows
that G and K have the same o-minimal homotopy type.

On the other hand, even though G might not contain a definable subgroup
isomorphic to K, denoting by π : G → G/N (G) the canonical projection, it is
possible to show that the exact sequence 1 → N (G) → π−1(K) → K → 1
always splits abstractly [4]. Therefore:

Theorem 5. [4] Every definably connected group G, definable in an o-minimal
structure, can be decomposed as

G = K1 ·H1 with K1 ∩H1 = {e},

where H1 = π−1(H) is a maximal definable torsion-free subgroup of G, and K1 is
abstractly isomorphic to the maximal definably compact subgroup K of G/N (G).

It is known that given a definable group G in a saturated o-minimal expansion
of a field, there is a canonical homomorphism from G to a compact real Lie group
G/G00 , where G00 is the smallest type-definable subgroup of G of bounded index
[2]. It follows by Theorem 4 and [1] (where K and K/K00 are proved to be ho-
motopy equivalent) that G and G/G00 have the same homotopy type if and only
if G/G00 is Lie-isomorphic to K/K00. So it is natural to ask when this is the case
and, more generally, whether there is a relation between the compact Lie groups
G/G00 and K/K00.

It turns out that G/G00 is always a quotient of K/K00 [7]. Moreover the prob-
lem of determining when these two Lie groups are isomorphic is related to other
model-theoretic notions (see Theorem 8 below) that are now briefly recalled.

Let T be an arbitrary theory, and M a model of T . If X is a definable set in
M , then a Keisler measure µ on X (over M) is a finitely additive probability
measure on the family of subsets of X which are definable (with parameters) inM .

When X = G is a definable group, then G(M) acts (on both the left and right)
on the set of Keisler measures µ on G overM : if Y is an M -definable subset of G,
then (g · µ)(Y ) = µ(g−1 · Y ). In particular it makes sense for a Keisler measure µ
on G over M to be left (or right) G(M)-invariant.

Note that if N is another model of T (assuming G is definable without param-
eters), then there is a G(N)-invariant Keisler measure on G over N if and only
if there is a G(M)-invariant Keisler measure on G over M [10]. So the following
definition does not depend on the model:

Definition 6. [10] A definable group G is definably amenable if has a left
G-invariant Keisler measure.

Definition 7. [13] Let M̄ be a saturated structure. A definable group G has
a bounded orbit if there is some p ∈ SG(M̄) whose stabilizer Stab(p) = {g ∈
G(M̄) : gp = p} has bounded index in G(M̄).
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In [6], the two notions above are shown to be equivalent for groups definable in a
saturated o-minimal expansions of a field, giving a positive answer to a conjecture
of Newelski and Petrykowski [13] in this special case. Moreover:

Theorem 8. [7] Let G be a definably connected group definable in a saturated
o-minimal expansion of a real closed field. Then the following are equivalent:

• G is definably amenable;
• G has a bounded orbit;
• G/G00 is Lie isomorphic to K/K00;
• G/N (G) is definably compact;
• G00 is torsion-free.

When the equivalent conditions in Theorem 8 are satisfied, then the connected
components G00 and G000 coincide [7], where G000 denotes the smallest invariant
type-definable subgroup of bounded index in G. The first known example of a
definable group G where G00 6= G000 appears in [6]. The general analysis of the
connected components and related quotients is continued in [7].
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The Elementary Theory of Free Products of Groups

Zlil Sela

We study the first order theory of free products of arbitrary groups. In a joint
work with E. Jaligot, we started this study, by analyzing the set of solutions to
systems of equations over an arbitrary free product. For that purpose, we used
limit groups over free products, and with each system of equations, or alterna-
tively, with each finitely presented group, we have associated (non-canonically) a
Makanin-Razborov diagram over free products. This Makanin-Razborov diagram
encodes the set of solutions to the finite system of equations over an arbitrary free
product, or alternatively describes all the quotients of a given finitely presented
group that are free products.

We start this work by studying systems of equations with parameters over
arbitrary free products. We generalize the notion of a graded limit group from
free groups to free products, and then define rigid and (weakly) solid limit groups
over free products, generalizing the corresponding notions over free and hyperbolic
groups. Unfortunately, the boundedness results that were proved for the number
of rigid and strictly solid families of homomorphisms over free and hyperbolic
groups, can no longer be valid over free products. However, we manage to prove a
combinatorial boundedness for rigid and (weakly) strictly solid families, that plays
an essential role in studying the first order theory of free products, successfully
replacing the strong boundedness results that hold in free and hyperbolic groups.

In further prove a general form of Merzlyakov theorem (over free groups) on
the existence of formal solutions for sentences and formulas over varieties that
are defined over free products. In particular, we show how to associate (non-
canonically) a formal Makanin-Razborov diagram with a given AE sentence or
formula over free products, generalizing the results over free groups.

By applying the techniques that were used in proving quantifier elimination
in the theory of a free group, we finally associate (non-canonically) finitely many
graded resolutions with a given coefficient-free formula over free products. This
finite collection of resolutions is non-canonical, but it is universal, and it is good
for all non-trivial free products apart from the infinite dihedral group, D∞. In
principle, the finite collection of resolutions enables one to reduce a sentence or
a formula from an ambient free product to its factors. Indeed, we show that any
given coefficient-free sentence over free products is equivalent to a finite disjunction
of conjunctions of (coefficient-free) sentences over the factors of the free product.
Furthermore, any given coefficient-free formula over free products is equivalent
to a coefficient-free formula in an extended language, that involves finitely many
quantifiers over the factors of the free product, and only 3 quantifiers over the
ambient free product. Note that since the resolutions that we associated with
a coefficient-free predicate are universal, the reduction of sentences and formulas
from the ambient free product to its factors is uniform, i.e., it is good for all free
products, and it does not depend on any particular given one.

The uniform reduction of sentences and formulas, and the resolutions that are
associated with a given (coefficient-free) formula, enable us to prove some basic



Model Theory: Groups, Geometry, and Combinatorics 43

results on the first order theory of free products. S. Feferman and R. Vaught
studied the first order properties of certain products of structures. Their methods,
that look at the cartesian product of given structures, do not cover free products
of groups (as they indeed indicated in their paper). This and his work with A.
Tarski, led R. L. Vaught to ask the following question that we answer affirmatively:

Theorem 1. Let A1, B1, A2, B2 be groups. Suppose that A1 is elementarily equiv-
alent to A2, and B1 is elementarily equivalent to B2. Then A1 ∗B1 is elementarily
equivalent to A2 ∗B2.

The existence of graded resolutions that are associated with a given sentence
over free products enables one to prove the following theorem, that generalizes
Tarski’s problem for free groups.

Theorem 2. Let A,B be non-trivial groups, and suppose that either A or B
is not Z2. Let F be a (possibly cyclic) free group. Then A ∗ B is elementarily
equivalent to A ∗B ∗ F .

The resolutions that are associated with coefficient-free formulas and sentences
over free products, that enable a uniform reduction from the ambient free product
to its factors, allow us to prove other uniform properties of sentences over free
products.

Theorem 3. Let Φ be a coefficient free sentence over groups. There exists an
integer, k(Φ), so that for every group, H , Φ is a truth sentence overH1∗. . .∗Hk(Φ),
Hi ≃ H , if and only if Φ is a truth sentence over H1 ∗ . . . ∗Hn, Hi ≃ H , for every
n ≥ k(Φ).

Note that the integer k(Φ) depends on the coefficient free sentence, Φ, but it
does not depend on the group, H . It is easy to see that k(Φ) can not be chosen to
be a universal constant, e.g., we can take Φm to be a sentence that specifies if the
number of conjugacy classes of involutions in the group is at least m. For such a
sentence, Φm, k(Φm) = m.

Theorem 3 can be further strengthened for sequences of groups. Let Φ be a
coefficient free sentence over groups. Given any sequence of groups, G1, G2, . . .,
we setM1 = G1,M2 = G1∗G2,M3 = G1∗G2∗G3, and so on. The sentence Φ may
be truth or false on any of the groups (free products) Mi, i = 1, . . .. Here one can
(clearly) not guarantee that the sentence Φ is constantly truth or constantly false
staring at a bounded index (of the Mi’s). However, one can prove the following.

Theorem 4. There exists an integer c(Φ), so that for every sequence of groups,
G1, G2, . . ., the sentence Φ over the sequence of groups,M1 = G1,M2 = G1∗G2, . . .
may change signs (from truth to false or vice versa) at most c(Φ) times.

We proceed by using the resolutions that are associated with a coefficient-free
formula over free products, and combine them with a modification of the strategy
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that was applied to prove the stability of free groups, to prove that free products
of stable groups is stable.

Theorem 5. Let A and B be stable groups. Then A ∗B is stable.

In fact we prove a slightly stronger result, and show that a free product of a
countable collection of groups that are uniformly stable, is stable.

Theorem 6. Let G1, G2, . . . be a sequence of groups. Suppose that every sentence
Φ is uniformly stable over the sequence {Gi}. Then the countable free product,
G1 ∗G2 ∗ . . ., is stable.

Finally, it is worth noting that our results for free products of groups, or slight
strengthenings of them that are still valid over groups, can be shown to be false
for free products of semigroups, using techniques of Quine and Durnev. e.g., a
free product of finite semigroups is in general unstable (although it is stable if
the finite semigroups happen to be groups). Hence, it seems that model theoretic
techniques that handle products of general structures, like the ones that were used
by Feferman and Vaught, can not suffice to analyze the elementary theory of free
products of groups.
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Topological dynamics of stable groups

Ludomir Newelski

Assume T is a complete stable theory in language L, M |= T and G ⊆ M is a
0-definable group in M . As usual we work within a monster model C of T . SG(M)
denotes the set {tp(a/M) : a ∈ GC}.

For the types p, q ∈ SG(M) we define their free product p ∗ q as the type
tp(a · b/M), where a |= p and b |= q are independent over M . (SG(M), ∗) is a
semigroup. This semigroup was investigated already in [1]. Here we look at it
from the point of view of topological dynamics.

Topological dynamics
SG(M) is a point-transitive G-flow, meaning that SG(M) is a compact topo-

logical space, upon which G acts by homeomorphisms (here the action is induced
by left translation), with a dense G-orbit. In our situation we have that Gen, the
set of generic types p ∈ SG(M), is the unique minimal sub-flow of SG(M). It is
also the unique minimal left ideal in SG(M) and a maximal subgroup of SG(M).

Assume X is an arbitrary point-transitive G-flow. We associate with it its Ellis
semigroup E(X) which is the topological closure of the set {πg : g ∈ G} in the
space of functions X → X with the topology of pointwise convergence. πg, g ∈ G
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are the homeomorphisms of X given by the action of G on X . E(X) is also a
point-transitive G-flow in its own right.

In our situation we have that SG(M) is isomorphic to its Ellis semigroup
E(SG(M)) both as a semi-group (with respect to ∗) and a G-flow. We locate
the semigroup SG(M) within the definable realm of M . The main tools for this
are definability of types in stable theories [2] and the following functional inter-
pretation of the Ellis semigroup.

Functional interpretation
Assume A ⊆ P(G) is a G-algebra of sets (meaning that it is a Boolean algebra

of subsets of G with an action of G preserving the Boolean operations; the action
again is the left translation). Then naturally S(A), the Stone space of A, is a
point-transitive G-flow.

For every p ∈ S(A) we define a function dp : A → P(G) by:

dp(U) = {g ∈ G : g−1U ∈ p}

We say that A is d-closed if it is closed under dp for every p ∈ S(A). For
example, A = DefG(M) = {U ⊆ G : U is definable (with parameters) in M} is
a d-closed G-algebra of subsets of G, because every type in T is definable. Also,
S(A) = SG(M). Assume A is d-closed and let End(A) denote the semigroup of
all G-endomorphisms of A. We have the following facts.

• For p ∈ S(A), dp ∈ End(A).
• Let d : S(A) → End(A) be the function mapping p to dp. Then d is a
bijection.

• d induces an operation ∗ on S(A) so that d : (S(A), ∗) → (End(A), ◦) is
an isomorphism of semigroups. Also the semigroup (S(A), ∗) is isomorphic
to its Ellis semigroup E(S(A)) via the function p 7→ lp, where lp is the left
translation by p.

• If A = DefG(M), then the operation ∗ induced by d is just the free
multiplication of types.

To locate the semigroup SG(M) in the definable realm of M we follow the
classical path to define the generic types of G. For ∆ ⊆ L let DefG,∆(M) be
the algebra of relatively ∆-definable subsets of G. We say that ∆ is invariant if
the family of subsets of G relatively defined by M -instances of formulas from ∆ is
invariant under both left- and right-translation. Let Inv be the family of all finite
invariant sets ∆ ⊆ L. It is co-final in [L]<ω.

Let ∆ ∈ Inv. Then we have the following facts:

• DefG,∆(M) is a d-closed G-algebra of sets.
• SG,∆(M) = S(DefG,∆(M)) is a point-transitive G-flow and we have a
semigroup operation ∗ on it so that it is isomorphic to (End(DefG,∆(M)), ◦)
and to its Ellis semigroup.

• DefG,∆(M) =
⋃

∆∈InvDefG,∆(M) and SG(M) is an inverse limit of
SG,∆(M),∆ ∈ Inv, both as a G-flow and a semigroup. The connecting
functions are restrictions.
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Using the definability lemma and the isomorphisms d we get that the semigroup
(SG,δ(M), ∗) is type-definable in M eq.

Maximal subgroups of SG,∆(M)
Maximal subgroups of Ellis semigroups are important in topological dynamics.

Here we are able to describe explicitly the maximal subgroups of SG,∆(M), where
∆ ∈ Inv.
Let H < G be a ∆-definable ∆-connected subgroup. This means thatMlt∆(H) =
1 and implies that there is a unique type p ∈ SG,∆(M) that is generic in H . Let
N = NG(H) and let Sp = {n · p : n ∈ N} ⊆ SG,∆(M). Then Sp is a maximal
subgroup of SG,∆(M). Moreover it is definable in M eq (and also definable in
SG,∆(M) in the pure semigroup structure) and is definably isomorphic to the
group N/H . We have the following:

• All maximal subgroups of SG,∆(M) are of the above form, they are pair-
wise disjoint and every subgroup of SG,∆(M) is contained in a unique
maximal one.

• if S is a maximal subgroup of SG(M), then S is an inverse limit of some
maximal subgroups S∆ ⊆ SG,∆(M),∆ ∈ Inv (the connecting functions
are restrictions).

Let p ∈ SG(M). We may consider the sequence of ∗ powers p∗n = p ∗ · · · ∗ p
(n times) of p. We prove that in this respect p is ”profinitely many steps away”
from a translate of a generic type of a connected subgroup of G. To make this
explicit, for ∆ ∈ Inv let n∆ = RM∆(G) and p∆ = p|∆ ∈ SG,∆(M). Then for
every ∆ ∈ Inv there is a maximal subgroup S∆ of SG,∆(M) such that p∗n ∈ S∆

for every n ≥ n∆. So S∆ = N∆/H∆ as explained above.
Let S be the maximal subgroup of SG(M) being the inverse limit of the groups

S∆ and let H =
⋂

∆H∆. Then H is a connected type-definable subgroup of G and
the types p∗n eventually converge to translates of the generic type of H . Here an
essential role is played by the functional interpretation of types as endomorphisms
(via the functions d). Let p ∈ SG(M). Then dp is an endomorphism of DefG(M).
We associate with it its kernel and image. The sizes of the kernels and images of
functions dp are strictly correlated with their local ranks and then with forking.
These new objects provide a new way to measure types in SG(M).

This talk is based on my paper [4].
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Groups definable in two orthogonal sorts

Alessandro Berarducci

(joint work with Marcello Mamino)

This work can be thought as a contribution to the model-theory of covers of
groups in the spirit of [7, 2, 1]. We classify the groups G which are interpretable
in the disjoint union of two structures (seen as a two-sorted structure). We show
that if one of the two structure is superstable of finite SU-rank and the SU-rank is
definable, then G is an extension of a group interpretable in the (possibly) unstable
sort by a group interpretable in the stable sort.

We assume some familiarity with the basic notions of model theory. A good
recent reference is [6]. Given two structures Z and R, let (Z,R) be the two-sorted
structure with a sort for Z and another sort for R in a disjoint language (no
connections between the two sorts). Note that Z and R are then fully orthogonal
in the following sense: any definable subset of Zm ×Rn is a finite union of sets of
the form A×B with A a definable subset of Zm and B a definable subset of Rn.

Our aim is to study the groups G which are interpretable in (Z,R), or equiv-
alently definable in (Z,R)eq . Obvious examples are the direct products of groups
H ×K with H definable in Z and K definable in R. More generally one can have
a quotient of H × K by a finite subgroup. There are however more interesting
examples. Indeed by [2] the universal cover f : G → H of a real Lie group H de-
finable in an o-minimal expansion R of the real field is interpretable in ((Z,+), R).
This shows that a group G interpretable in (Z,R)eq does not need to arise from a
direct product.

The next natural question is whether G is always an extension of a group
definable in one sort by a group definable in the other sort. As already mentioned
we will show this is indeed true under a suitable stability assumption on Z, but
let us first show that in full generality the question has a negative answer. To this
aim we take Z = R = (R,+, <). So we have two structures Z and R which are at
the same time “equal” and orthogonal. There is of course no contradiction: indeed
strictly speaking in (Z,R) we only have an isomorphic copy of Z and an isomorphic
copy of R with the isomorphism not definable in (Z,R). We are going to describe
a group G definable in (Z,R)eq with no infinite definable subgroup internal to one
of the two sorts. So in particular G cannot be a definable extension of a group
internal to one sort by a group internal to the other sort. The construction is
based on [3, Example 5.2]. Take G = (Z × R)/Λ with Z2 ∼= Λ < Z × R and Λ in
sufficiently generic position. Note that Λ is not definable. However we can define
G in (Z,R)eq taking a definable set X ⊆ Z ×R such that X + Λ = G and X ∩ Λ
is finite (a big enough square X = [0, a] × [0, a] will do) and identifying G with
X/Γ (where X/Λ is the quotient of X by the equivalent relation “to be in the
same coset”). Since we only need a finite portion of Λ to define X/Λ we obtain a
definition in (Z,R)eq. This is exactly the example in [3] except that in that paper
the authors work with only one sort (which amounts to have the identity map from
Z to R at disposal). They prove that in the one-sort setting G has no definable
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proper infinite subgroups. This holds a fortiori in the two-sorted setting since we
have fewer definable sets. Thus clearly G has no infinite subgroups internal to one
of the two sorts.

In the example just given it is important to have the order relation < in the lan-
guage, so the structures are unstable (in the model-theoretic sense). We will show
that under a suitable stability assumption on the Z-sort any group interpretable
in (Z,R) is an extension of a group interpretable in R by a group interpretable in
Z. Our main result is:

Theorem. Let Z be a superstable structure of finite SU-rank and assume that
the SU-rank is definable. Let R be an arbitrary structure. Given a group (G, ·)
definable in (Z,R)eq, there is a Z-internal definable normal subgroup Γ⊳G such
that G/Γ is R-internal.

Note that in any superstable structure Z of SU-rank 1 (for instance (C,+, ·) or
(Z,+), or (R,+)), the SU-rank is definable (see [5, Corollary 5.11]), and therefore
Z satisfies the assumption of the theorem.

The subgroup Γ that we are going to describe is not canonical, namely it depends
on how G sits in the ambient space (Z,R)eq. For instance if G is the universal
cover of the circle group R/Z, then G can be naturally interpreted in ((Z,+),R),
but it has neither a minimal nor maximal Z-internal normal subgroup. Indeed in
this example Γ is Z-internal if and only if 2Γ is such, and G/Γ is R-internal if and
only if G/2Γ is such, so there is no reason to prefer Γ over 2Γ.

We give below the definition of Γ, omitting the proof that Γ has the desired
properties. Let us first deal with the case when Γ is definable in (Z,R) rather than
(Z,R)eq. So we have G ⊆ Zm × Rn for some m,n ∈ N. Let πR : Zm ×Rn → Rn

be the natural projection. We define:

Γ =
{
g ∈ G : (Most y)(Mostx)

(
πR(xg

y) = πR(g
yx) = πR(x)

)}

where gy = ygy−1 and (Most y)φ(y) means that the projection on Zm of the set
of y ∈ G such that φ(y) fails has lower SU-rank than the projection of the whole
of G.

The case when G is definable in (Z,R)eq is similar, but we need to define πR
in a suitable way. To do this we first show that there is a finite-to-one definable
function f from any given sort of (Z,R)eq to a sort of Zeq ×Req. To define πR in
the imaginary case we first apply f and then we use the projection from Zeq×Req

to Zeq. The same definition of Γ will then work.
We can also show that if R is an o-minimal structure, then every group G

interpretable in ((Z,+), R) admits a unique “t-topology” in analogy with the o-
minimal case [4]. In particular, if R is based on the reals, then G has a natural
Lie group structure. As a corollary of the main theorem we then obtain:

Corollary. Let R be an o-minimal structure. Then any group definable in
((Z,+), R) is a cover of a group definable in R.

Here by “cover” we mean a definable morphism which is continuous and open in
the t-topology and has a discrete kernel. Note that it is not generally true that an



Model Theory: Groups, Geometry, and Combinatorics 49

extension of a group definable in R = (R,+, ·) by a group definable in (Z,+) is a
cover of a group definable in R (see [1, Theorem 3.12]). Among all the extensions,
only the covers will be definable in ((Z,+),R)eq .
Acknowledgements. In my talk in Oberwolfach I only spoke about the SU-rank
1 case. The finite rank case can be obtained with the same construction adding the
definability assumption on the rank (which in the SU-rank 1 case comes for free).
We thank Anand Pillay for suggesting this possibility. Preliminary versions of the
results were presented at the “Konstanz-Naples Model Theory Days” (Konstanz
6-8 Dec. 2012).
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A non-desarguesian projective plane of an analytic origin

Boris Zilber

(joint work with K.Tent)

Hrushovski’s construction of “new” strongly minimal structures and more gener-
ally “new” stable structures proved very effective in providing a number of ex-
amples to classification problems in stability theory. For example, J.Baldwin used
this method to construct a non-desarguesian projective plane of Morley rank 2 (see
e.g. [3]). But there is still a classification problem of similar type which resists all
attempt of solution, the Algebraicity (or Cherlin-Zilber) Conjecture. At present
there is a growing belief that there must exists a simple group of finite Morley
rank which is not isomorphic to a group of the form G(F) for G an algebraic group
and F an algebraically closed field (a bad group).

The speaker developed an alternative interpretation of the “new” stable struc-
tures obtained by Hrushovski’s construction, see e.g. [5]. In this interpretation
the universe M of the structure is represented by a complex manifold and rela-
tion by some subsets of Mn explained in terms of the analytic structure on M. In
this interpretation Hrushovski’s predimension inequality corresponds to a form of
(generalised) Schanuel’s conjecture. We argue that looking for stable structures of
analytic origin is potentially a better way of producing new stable structures.
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Below we briefly explain a construction of a new non-desarguesian projective
plane that originates in a complex analytic structure. The new, in comparison
with previous examples of e.g. “green fields” (see [6]) is that we have to use a
non-trivial collapse procedure.

Consider structures Kf = (K,+, ·, f), where (K,+, ·) is a field and f : K → K
a unary function.

Let Lalg be a relational language for structures of the form Kf , relations of
which are those of L along with all the relations corresponding to Zariski closed
0-definable subsets of Kn. We always assume that K is a field of characteristic 0.
Let C(Kf ) be the class of all finite Lalg-structures that can be embedded in Kf .

Note that in the language Lalg we can say for an n-tuple X and a varietyW over
Q that X ∈ W. So the expression tr.deg(X) = m means that m is the dimension
of the smallest variety W over Q such that X ∈ W.

Below we use the terminology of [3].

Theorem 1. (A.Wilkie[4] and P.Koiran [2]) The structure Cf = (C,+·, f),
where f is an entire Liouville function, is a model of the first order theory Tf
of a rich structure for the class of finite Lalg-structures satisfying, for every finite
subset X, the Hrushovski inequality

δ(X) ≥ 0, where δ(X) := tr.deg(X ∪ f(X))− |X |.

We add to this the following.
Theorem 2. Cf is ω-saturated. Moreover, Cf is the unique model of Tf of

cardinality continuum which satisfies the countable closure property.

Consider the class C(Cf ). This is an amalgamation class with respect to strong
embeddings ≤ determined by δ.

Let µ be a Hrushovski function satisfying µ(α) = 1, for any α, which is a code
of a pair (x, x1, y1, x2, y2/a1, a2, b) in a substructure {x, x1, y1, x2, y2, a1, a2, b} that
satisfies relations

a1x = x1, a2x = x2,
f(x1) = y1, f(x2) = y2,
y1 − y2 = b

Note, that the code of type α says that f(a1x) − f(a2x) = b, and µ(α) = 1
amounts to saying that the latter has at most one solution in x.

Consider the corresponding subclass Cµ(Cf ). We want to prove that this class
has AP with respect to ≤ .

Theorem. Cµ(Cf ) is an amalgamation class. There exists a countable rich
structure Kf for class Cµ(Cf ).

(i) Kf is an algebraically closed field with a function f.
(ii) Given a1 6= a2 and b in Kf , there is a unique solution to the equation

f(a1x)− f(a2x) = b.

In particular, f is a bijection on K.
(iii) Kf is embeddable in Cf .
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(iv) depending on µ, the theory of Kf is ω-stable of rank ω or strongly minimal.

The difficult part of the proof is to establish that Cµ(Cf ) is an amalgamation
class. The rest follows by standard arguments.

Lemma. The ternary operation T (a, b, x) on Kf determine a ternary ring.
That is

the following hold:
(T1) T (1, a, 0) = T (a, 1, 0) = a for all a ∈ Kf ;
(T2) T (a, 0, c) = T (0, a, c) = c for all a, c ∈ Kf ;
(T3) If a, b, c ∈ Kf , the equation T (a, b, y) = c has a unique solution y;
(T4) If a, a′, b, b′ ∈ Kf and a 6= a′, the equations T (x, a, b) = T (x, a′, b′) have a

unique solution x in R;
(T5) If a, a′, b, b′ ∈ Kf and a 6= a′, the equations
T (a, x, y) = b, T (a′, x, y) = b′ have a unique solution x, y in Kf .

It is well-known (see [1]) that with every ternary ring there is an associated
projective plane (which is definable in the ring). Every Desarguesian plane has a
unique associated ternary ring, which is an associative division ring.

Corollary. The projective plane PT (Kf ) associated with the ternary ring
(Kf , T ) is not desarguesian. The Morley rank of PT (Kf ) is equal to 2-times
the Morley rank of Kf .
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Ampleness in free groups

Abderezak Ould Houcine

(joint work with K. Tent)

Pillay [6] defined the notion of ampleness in a stable theory. It is a property
that reflects the existence of geometric configurations behaving very much like
projective space over a field and so any theory interpreting an infinite field is in
fact ample (see Pillay [6]). We use here the slightly stronger definition given by
Evans in [1]. As usual we write A |⌣C

B to express that the sets A and B are

independent over the set C; we denote by acleq(ā) the algebraic closure of ā with
respect to T eq (see Section 2 and [8] for more background).
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Definition 0.1. [1] Suppose T is a complete stable theory and n ≥ 1 is a natural
number. Then T is n-ample if (in some model of T , possibly after naming some
parameters) there exist tuples a0, . . . , an such that:

(i) an 6 |⌣a0;
(ii) a0 . . . ai−1 |⌣ai

ai+1 . . . an for 1 ≤ i < n;
(iii) acleq(a0) ∩ acleq(a1) = acleq(∅);
(iv) acleq(a0 . . . ai−1ai) ∩ acleq(a0 . . . ai−1ai+1) = acleq(a0 . . . ai−1) for 1 ≤ i < n.

We call T ample if it is n-ample for all n ≥ 1. �

Pillay [5] proved that the elementary theory of nonabelian free groups is 2-
ample and conjectured that it is not 3-ample. We here refute Pillay’s conjecture
by showing the following more general result.

Theorem 0.2. [3] The elementary theory of any nonabelian torsion-free hyperbolic
group is ample.

Since nonabelian free groups of finite rank are torsion-free and hyperbolic it
follows that their elementary theory is ample. In fact in our proof we go from free
groups to torsion-free hyperbolic groups, we show ampleness in free groups and
then we transfer this result to torsion-free hyperbolic groups.

By [2] the algebraic closure is closely related to graph of groups decompositions
and JSJ-decompositions. We construct a graph of groups decomposition (over
cyclic subgroups) of the free group in such a way that certain vertex groups then
witness ampleness. Since we also need to study the imaginary algebraic closure, we
use Sela’s elimination of imaginaries to reduce the problem to the usual algebraic
closure and the algebraic closure relative to the conjugacy classes. The necessary
properties of the imaginary algebraic closure are established using again its close
relation to JSJ- decompositions.

In what follows, we shall explain the strategy of the proof of Theorem 0.2 in
the case of free groups. We use the following result of Sela about elimination of
imaginaries.

Theorem 0.3. [7] The elementary theory of nonabelian free groups has geomet-
ric elimination of imaginaries relative to conjugation, right (left) cosets of cyclic
subgroups and double cosets of cyclic groups. �

We reduce the problem to the study of the ordinary algebraic closure and the
imaginary algebraic closure relative to conjugacy. We let

aclc(A) = acleq(A) ∩ SE0

here SE0
is the sort of the conjugacy relation and

acl(A)c = {aF |a ∈ A}.

Proposition 0.4. [3] Let F be a nonabelian free group. For finite tuples ā, b̄, c̄ ∈ F
we have

acleq(ā) ∩ acleq(b̄) = acleq(c̄)
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if and only if

aclc(ā) ∩ aclc(b̄) = aclc(c̄)

and

acl(ā) ∩ acl(b̄) = acl(c̄).

�

To understand the ordinary algebraic closure we use results from [2] where in
particular the following link with the JSJ-decomposition is given.

Theorem 0.5. [2] If F is a free group of finite rank with nonabelian subgroup
A, then acl(A) coincides with the vertex group containing A in the generalized
malnormal (cyclic) JSJ-decomposition of F relative to A. �

It turns out that the algebraic closure relative to the conjugacy classes is also
related to JSJ-decompositions. We prove the following.

Proposition 0.6. [3] Let F be a free group of finite rank, A a nonabelian subgroup
of F and c ∈ F . The following are equivalent:

(1) cF ∈ aclc(A).
(2) There exists finitely many automorphisms f1, . . . , fp ∈ AutA(F ) such that

for any f ∈ AutA(F ), f(c) is conjugate in F to some fi(c).
(3) c is malnormaly universally elliptic relative to A.
(4) In any generalized cyclic JSJ-decomposition of F relative to A, either c is

conjugate to some element of the elliptic abelian neighborhood of a rigid vertex
group or it is conjugate to an element of a boundary subgroup of a surface type
vertex group. �

To deal with the independence relation we use the following characterization of
Perin and Sklinos.

Proposition 0.7. [4] Let F be a free group of finite rank, ā, b̄ be finite tuples
from F and C a free factor of F . Then

ā |⌣
C

b̄

if and only if

F = A ∗ C ∗B with ā ∈ A ∗ C and b̄ ∈ C ∗B.

�

Sequences witnessing ampleness in free groups are defined as follows. Let
Hi = 〈ci, di, ai, bi | cidi[ai, bi] = 1〉, that is Hi is the fundamental group of an
orientable surface with 2 boundary components and genus-1, where ci and di are
the generators of boundary subgroups. Let Pn = H0 ∗H1 ∗ · · · ∗Hn−1 ∗Hn, and
G0 = P0 = H0, Gn = 〈Pn, ti, 0 ≤ i ≤ n− 1 | dtii = ci+1〉 for n ≥ 1 Then G2n is a
free group and the sequence (a0, b0, c0), (a2, b2, c2), · · · , (a2n, b2n, c2n) is a witness
of the n-ample property.
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On model-theoretic connected components

Jakub Gismatullin

Suppose (G, ·, . . .) is an infinite group with some first order structure. By G∗ we
denote sufficiently saturated elementary extension of G (i.e. a monster model). In
model theory we consider several kinds of model-theoretic connected components
of G. For a small set of parameters A ⊂ G∗ define (see [2] and references therein):

• G∗0
A (the connected component of G over B) is the intersection of all

A-definable subgroups of G∗ which have finite index in G∗,
• G∗00

A (the type-connected component of G over A) is the smallest subgroup
of ‘bounded index’ in G∗ (bounded relative to |G∗|), that is, type-definable
over A,

• G∗000
A (the ∞-connected component of G) is the smallest subgroup of

bounded index in G∗, that is, A-invariant (invariant under the automor-
phisms of G∗ fixing A pointwise).

In the literature the component G∗000
A is sometimes denoted by G∗∞

A . We say,
that G∗000 exists, if for every small A ⊂ G∗, G∗000

A = G∗000
∅ (likewise G∗00 and

G∗0). The quotients G∗/G∗∞
A , G∗/G∗00

A and G∗/G∗0
A with the logic topology

are compact topological groups which are invariants of the theory Th(G) of G.
That is, they do not depend on the choice of saturated extension G∗. We have
G∗∞

A ⊆ G∗00
A ⊆ G∗0

A. Moreover,

• G∗/G∗0
A is a profinite group,

• G∗/G∗00
A is a compact Hausdorff group,

• G∗/G∗∞
A is a quasi-compact group, that is, compact but not necessary

Hausdorff.

For example, if Th(G) is stable, then G∗0
A = G∗00

A = G∗000
A is just the connected

component G∗0 of G, which does not depend on parameter set A. For a non-
stable group, model-theoretic connected components may be distinct. For exam-
ple, for G = S1 = SO2(R) viewed as a group definable in (R,+, ·, 0, 1), G∗ = G∗0

A
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but G∗ 6= G∗00
A = G∗000

A are infinitesimals and G∗/G∗00
A is just S1. Suppose

G = S̃L2(R) is the topological universal cover of SL2(R). A. Conversano and A.

Pillay proved in [1] that G∗00/G∗000 is Ẑ/Z (where Ẑ is the profinite completion
of Z). In [5] a general result on model-theoretic connected components of cen-
tral extensions is proved. Our aim is to understand what is the structure of the
quotient G∗00

A /G
∗000
A . Can it be non-abelian? (in examples from [1, 5] all such

quotients are abelian). What groups may appear as a quotient G∗00
A /G

∗000
A ? In

[3] we constructed examples of type-absolutely connected groups (see below) with
some additional structure, for which G∗00

A /G
∗000
A is far from being abelian.

Compactifications and type-absolutely connected groups

Equip G with the discrete topology. Then for all A ⊆ G the mappings G →
G∗/G∗00

A and G→ G∗/G∗0
A are group-compactifications of G, that is, the image of

G is dense in G∗/G∗00
A and in G∗/G∗0

A. In [3] we introduced notions of absolutely
connected and type-absolutely connected group. The latter notion has the following
topological interpretation

Fact ([3, Theorem 5.10.]) Let G be an infinite group. Then every homomor-
phism G→ C to a compact group C is trivial (i.e. the Bohr compactification of G
with discrete topology is trivial) if and only if G is type-absolutely connected, that
is G∗00

B = G∗ for all sufficiently saturated extensions G∗ of an arbitrary expansion
of G, and all small B ⊆ G.

In the literature groups with the trivial Bohr compactification are called min-
imally almost periodic (with respect to the discrete topology). Using results of
S. Rothman and A. Shtern [7] and our Fact one can characterize type-absolutely
connected Lie groups:

Suppose G = SR (where R is the solvable radical and S is a
Levi subgroup) is a Levi decomposition of a connected Lie group
G. Then G is minimally almost periodic (that is, type-absolutely
connected) if and only if S has no nontrivial compact simple factors
and R = [G,R].

In particular, every semisimple connected Lie group without compact factors

(e.g. S̃L2(R)) is type-absolutely connected.
Another source of type-absolutely connected groups is the Peter-Weyl-van Kam-

pen theorem: suppose C is a compact Hausdorff group, then continuous finite
dimensional unitary representations separate points of C. Certain properties of
unitary groups and above theorem give [4]:

(1) ([4, 2.4]) The following groups are type-absolutely connected
(a) a simple group of cardinality > 2ℵ0 ,
(b) a group G satisfying the following: for every x ∈ G, there are in-

finitely many distinct finite nonabelian simple groups H such that
x ∈ H ≤ G.
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(2) ([4, 2.5]) Suppose G is an infinite group with finite exponent m ∈ N, i.e.
gm = e, for every g ∈ G. Then G∗00

A = G∗0
A for an arbitrary monster

model G∗ ≻ G of an arbitrary expansion of G and small A ⊂ G∗.

Non-abelian G∗00
A /G

∗000
A

Using type-absolutely connected groups [3, Section 3], generalized quasimor-
phisms [3, Section 4] and a method of recovering of a compact group C from its
dense subgroup D (as a quotient of a monster model D∗ with some structure by
some type-definable bounded index subgroup, [3, Proposition 4.7]) we proved in
[3] the following:

Fact ([3, Theorem 4.9]) Suppose C is a compact Hausdorff group and D < C

is a dense subgroup generated by D = 〈di〉i∈I . Let S =
⋃3

k=−3

⋃
i∈I d

k
i
D
, where

ab = b−1ab. Then there exists a type-absolutely connected group G with some first
order structure, and an epimorphism

G∗00
∅ /G

∗000
∅ → C/

〈
S
〉
,

where S is the closure of S in C.

Let C = F̂2 be the profinite completion of a 2-generated free group F2 = 〈a, b〉

and let D be the smallest normal subgroup of F̂2 generated by a, b. Applying our
result we obtain a groupG and an epimorphism G∗00

∅ /G
∗000
∅ → C/D. One can ask:

is C/D non-abelian? Nikolov and Segal recently proved [6] that C/D is abelian,
so one cannot deduce in this case that G∗00

∅ /G
∗000
∅ is non-abelian. Nevertheless,

this example might give a way how to study groups from [6] using model-theoretic
connected components.

An example of G with non-abelian G∗00
∅ /G

∗000
∅ can be derived from:

Fact ([3, Theorem 4.11]) Suppose {Gn}n∈N is any family of compact con-
nected Hausdorff topological groups of weight ≤ 2ℵ0 (e.g. compact connected
Lie groups). Then there exists a type-absolutely connected group G such that∏

n∈N
Gn/

⊕
n∈N

Gn is a homomorphic image of G∗00
∅ /G

∗000
∅ .

In particular, if infinitely many of the Gn’s are non abelian, then G∗00
∅ /G

∗∞
∅

is also non abelian. Also, an ultraproduct
∏

n∈N
Gn/U is a homomorphic image

of
∏

n∈N
Gn/

⊕
n∈N

Gn. Therefore, our result implies that there exists a type-

absolutely connected G such that G∗00
∅ /G

∗∞
∅ is, for example, non solvable.
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Minimality and quasi-minimality in the context of groups and fields

Krzysztof Krupiński

(joint work with T. Gogacz, P. Tanović, F. Wagner)

The part of this research concerning regular groups and fields comes from [1], and
the part with more specific results concerning minimal groups and fields comes
from [2].

Recall that a minimal structure is an infinite structure whose all definable sub-
sets are finite or co-finite. A quasi-minimal structure is an uncountable structure
in a countable language whose all definable subsets are countable or co-countable.

Basic examples of minimal structures are various orders (e.g. (ω,<)) and
strongly minimal structures (e.g. algebraically closed fields). Among the main
examples of quasi-minimal structures there are various orders (e.g. ω1 × Q),
strongly minimal structures expanded by some orders, and Zilber’s pseudoexpo-
nential fields. A well-known conjecture of Boris Zilber predicts that the complex
exponential field (C,+, ·, 0, 1, exp) is quasi-minimal.

A common generalization of minimal and quasi-minimal groups [or fields] are
regular groups [or fields], i.e., groups [fields] possessing a global regular type (which
is necessarily a unique generic type). The notion of a regular type has been
introduced in [3], and it generalizes the classical notion of regularity from the
stable situation to the context of arbitrary theories.

Our goal is to understand the structure of regular groups and fields, or, more
specifically, of minimal or quasi-minimal groups and fields.

A fundamental theorem of Reineke tells us that each minimal group is abelian.
Surprisingly, an analogous statement for quasi-minimal groups seems hard to
prove.

Conjecture 0.1. Each quasi-minimal group is abelian.

A more general question has been formulated in [3, Section 3].

Question 0.2. Is every regular group abelian?

We reduce the problem to the case of groups with only one non-trivial conjugacy
class. Then we notice that a standard construction (involving HNN-extensions)
of an uncountable group with a unique non-trivial conjugacy class does not lead
to a quasi-minimal group, because the centralizers of all non-trivial elements of
the resulting group are uncountable (and so also co-uncountable). Motivated by
this obstacle, we construct a group of cardinality ω1 with only one non-trivial
conjugacy class, in which the centralizers of all non-trivial elements are countable.
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We leave as an open question whether the group we constructed is quasi-minimal,
or at least regular.

One of the oldest unsolved problems in algebraic model theory is Podewski’s
conjecture predicting that each minimal field is algebraically closed. Known to be
true in positive characteristic [4], it remains wide open in the zero characteristic
case.

One has an obvious analog of Podewski’s conjecture for quasi-minimal fields.

Conjecture 0.3. Each quasi-minimal field is algebraically closed.

The above conjecture is open even in positive characteristic. A common gener-
alization of Podewski’s conjecture and Conjecture 0.3 is:

Conjecture 0.4. Each regular field is algebraically closed.

We say that a regular group is generically stable if its unique generic type is
generically stable (see [3, 1] for the definition of a generically stable type). We
prove the above conjecture in the generically stable situation.

Theorem 0.5. Each generically stable regular field is algebraically closed. In
particular, each generically stable minimal or quasi-minimal field is algebriacally
closed.

As a consequence, one gets that each quasi-minimal field of cardinality greater
than ω1 is algebraically closed, and a similar result for regular fields with NSOP.
The case of minimal or quasi-minimal fields with NIP is still open.

Having Theorem 0.5, a natural question arises whether there exists a regular
field which is not generically stable. We conjecture that there are no such minimal
fields (see Conjecture 0.6 below), but in the quasi-minimal context such a filed
exists [3, Example 5.1].

Assume now that K is a regular field which is not generically stable. Suppose
that K is not algebrically closed, i.e., it has a finite extension L of degree n. Then
L is naturally interpreted as Kn with coordinate-wise addition and some definable
multiplication. Let p be the global generic type of K and p(n) its n-th power.
We prove that the orbit of p(n) under the multiplicaive group of L is unbounded,
which one can hope to be useful to get a final contradiction for some (e.g. NIP)
fields.

From now on, we focus on minimal groups and fields. We say that a minimal
structure is ordered if there is a definable order on singletons having an infinite
chain. We obtain a dichotomy saying that a minimal group [field] is either gener-
ically stable or it is ordered. By virtue of Theorem 0.5, this reduces Podewski’s
conjecture to the case of ordered minimal fields (ordered in the above sense, and
not in the sense of field theory!). So, each of the following two conjectures implies
Podewski’s conjecture.

Conjecture 0.6. There is no minimal ordered field [of characteristic zero].

Conjecture 0.7. Each minimal ordered group is a torsion group.
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Analogous conjectures in the quasi-minimal context are false by [3, Example
5.1]. We introduce a notion of almost linear structure, and we prove these two
conjectures in the almost linear situation (in quasi-minimal context, even in almost
linear situation they are false).

Definition 0.8. 1) A definable order < on M with an infinite chain is almost
linear if the incomparability relation ∼ defined on M by

x ∼ y ⇐⇒ ¬(x < y ∨ y < x)

is an equivalence relation on M .
2) A minimal structure is almost linear if such an order exists.

We proved:

Theorem 0.9. An almost linear minimal group G is either elementary abelian of
exponent p or a finite sum of Prüfer p-groups for a fixed prime p. In particular,
it is a torsion group.

This implies immediately:

Theorem 0.10. There is no almost linear minimal field.

We have also found a complete classification of minimal almost linear groups
as certain valued groups, which yields examples showing that all possibilities from
the conclusion of Theorem 0.9 can be realized.

Theorem 0.10 implies that a possible counter-example to Conjecture 0.6 would
have to be a field which is not almost linear. It is hard to believe that such
structures exist. In particular, all known examples of minimal ordered structures
are almost linear.

Question 0.11. Does there exist a minimal ordered structure [group] which is
not almost linear?
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Proceedings and Lecture Notes 53 (2011), 189–211.

[4] F. O. Wagner, Minimal fields, Journal of Symbolic Logic 65 (2000), 1833–1835.



60 Oberwolfach Report 01/2013

Minkowski dimension and definability

Chris Miller

(joint work with Philipp Hieronymi)

My research is currently focussed on the study of tameness in expansions R of
the real field R := (R,+, · ).

It is well known that nondefinability of the set of nonnegative integers N is
justifiably regarded as necessary for the definability theory of R to be worthy
of study. This suggests the question: What can be said about R if it does not
define N? Of course, we should be most interested in cases where R is obtained
by expanding R by mathematically “reasonable”, “natural” or “interesting” sets.
I focus here on a basic case: Assume from now on that R is an expansion of R
by constructible sets, that is, R is of the form (R, (Xi)i∈I) where I is an index set
and each Xi ⊆ Rni is a boolean combination of open sets. Note that if X ⊆ Rm is
constructible and f : X → Rn is continuous, then the graph of f is constructible.

Abstractly, there is a largest such R; up to interdefinability, it just (R,N).
By cell decomposition, every o-minimal expansion of R is an expansion of R by
constructible sets; in the context of the tameness program, I regard all o-minimal
structures as equally well behaved. Thus, the point is to understand what can
be said about R if it neither defines N nor is o-minimal (see [2, 3, 4] for some
examples).

If X ⊆ Rn is constructible, then X either has (nonempty) interior or is nowhere
dense. The question arises: When does this hold for all sets definable in R? (A
number of nice properties then follow—see [3]—but it would take us too far afield
to discuss this here.) It certainly fails if R defines N, as then Q is definable. The
question arises: If R does not define N, does every definable set either have interior
or be nowhere dense? This question turns out to be equivalent to one of interest
in its own right concerning a coincidence of natural dimensions on definable sets,
as I now explain.

Given ∅ 6= E ⊆ Rn, let dimE be the euclidean dimension of E, that is, the
maximal m ∈ N such that some coordinate projection of E on Rm has interior.
We also put dimclE = dim cl(E), where cl(E) is the usual topological closure of
E. If E is also bounded, then the upper Minkowski dimension, dimME, of E is
defined by

dimME = n− lim
r↓0

logµ{ x ∈ Rn : dis(x,E) < r }

log r

where dis(x,E) denotes the distance of x to E and µ denotes Lebesgue measure
in Rn. (There are many different names and equivalent formulations of dimM in

the literature.) For convenience, we put dimM∅ = dim ∅ = −∞, and extend the
definition of dimM to arbitrary E ⊆ Rn by setting

dimME = sup{ dimME
′ : E′ is a bounded subset of E }.

It is easy to see that dimE ≤ dimclE ≤ dimMcl(E) = dimME ≤ n. Most
notions of dimension that are commonly encountered in geometric measure theory
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(e.g., capacitary, Hausdorff and packing dimensions) are bounded below by dim
and above by dimM. Hence, if dimE = dimME, then it is fair to say that essentially
all dimensions normally encountered in geometric measure theory coincide on E
with both dim and dimcl. Observe that dim = dimM on all open sets, but it is
easy to construct examples of closed sets where this fails (e.g., dimM cl{1/n : n ∈
N>0} = 1/2).

It is an exercise to see that every definable set either has interior or is nowhere
dense iff dim = dimcl on all definable sets. Thus, if dim = dimM on all definable
sets, then every definable set either has interior or is nowhere dense. Recently,
P. Hieronymi and I (building on earlier joint work with A. Fornasiero [1]) have
established the converse by showing that if S is any expansion of R that does not
define N, then dim = dimM on all coordinate projections of closed sets definable
in S. (If every set definable in S either has interior or is nowhere dense, then S

does not define N. All closed sets are trivially projections of themselves.)
Hieronymi and I are currently working to extend our result mentioned above.

We hope to show that if R does not define N, then dim = dimM on all sets
definable in R (thus showing also that every definable set either has interior or
is nowhere dense). At the workshop, I announced that we had managed to show
that dim = dimM on all boolean combinations of projections of closed definable
sets, but we have since discovered a gap in our proof. Thus, our most immediate
goal is to attempt to repair this gap.
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62 Oberwolfach Report 01/2013

Participants

Prof. Dr. Tuna Altinel

Institut Camille Jordan
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