
Mathematisches Forschungsinstitut Oberwolfach

Report No. 25/2013

DOI: 10.4171/OWR/2013/25

Mini-Workshop: Constructive Homological Algebra with
Applications to Coherent Sheaves and Control Theory

Organised by

Mohamed Barakat, Kaiserslautern

Thierry Coquand, Göteborg
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Abstract. The main objective of this mini-workshop is to bring together
recent developments in constructive homological algebra. There, the cur-
rent state already reached a level of generality which allows simultaneous
application to diverse fields of applied and theoretical mathematics. In this
workshop, we want to focus on simultaneous applications to system theory on
the one side and to coherent sheaves and their cohomology on the other side.
Surprisingly, these apparently remote fields share a considerable amount of
common constructive methods. Bringing category theory and homological
algebra to the computer leads to questions in logic and type theory. One goal
of this workshop is to promote and enlarge this overlap.
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Introduction by the Organisers

The quest for constructivity in mathematics is as old as mathematics itself.
Thanks to the emergence of powerful computers, constructivity is now regaining
increased interest in several fields of applied and theoretical mathematics. Sys-
tem theory and algebraic geometry are apparently two remote representatives of
such fields. However, as homological algebra is invading system theory, both fields
now share a common powerful tool which turns out to be one of the keys to con-
structivity questions in both theories. A unification of the existing computational
approaches is becoming necessary to extend the scope of applicability of construc-
tive homological algebra developed by researchers in the different fields. The study
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of such a unification also suggests a comparison between the different type systems
underlying the computational models of existing computer implementations.

Modeling Abelian categories of coherent sheaves on non-affine schemes is more
involved than modeling those of modules. The talks addressed recent results allow-
ing a constructive description of Abelian categories of coherent sheaves on spaces
with a finitely generated Cox ring S as a Serre quotient category of the category
of finitely presented graded S-modules. This includes the constructive treatment
of (local and) global Ext’s of which sheaf cohomology is a particular case.

Introducing modules as an intrinsic description of linear functional systems in
system theory opened the door to apply homological techniques stemming from
algebraic analysis. This provides a unified framework for system theory, which
expresses itself in terms of common concepts, techniques, results, algorithms, and
even implementations. There are numerous module-theoretic properties with a
system-theoretic interpretation, e.g., the module being torsion, torsion-free, pure,
reflexive, projective, stably free, free. All these properties have system-theoretic
counterparts, e.g., the existence of autonomous elements, of minimal (resp. in-
jective or Monge) parametrizations, of Bézout identities. This makes their study
crucial for applications in control theory and mathematical physics, e.g., motion
planning, quadratic optimal control, solving variational problems, and searching
for potentials or conservation laws, to name a few. Luckily, these module-theoretic
properties can be described in terms of homological algebra using resolutions, ex-
tension and torsion functors, projective dimension, and the purity filtration.

The talks focused on new developments in constructive homological algebra
with applications to

(1) coherent sheaves and their cohomology; equivariant vector bundles;
(2) system and control theory based on homological algebra techniques;
(3) discrete vector fields in algebraic topology.

One of the discussion sessions was devoted to the “univalent foundation of
mathematics”. Thierry Coquand, who attended the special year at the IAS, gave
an informal talk about Voevodsky’s new interpretation of dependent types where
a type is thought of as a homotopy type. This interpretation suggests a new way
to represent constructive mathematics in type theory. One remarkable feature of
this formalism is that two algebraic structures that are isomorphic are equal which
allows to transport properties from one structure to an isomorphic one.

Many participants profited from further stimulating discussion with participants
of the two parallel mini-workshops “Spherical Varieties and Automorphic Repre-
sentations” and “Localising and Tilting in Abelian and Triangulated Categories”.
For example, we would like to mention discussions with Stefan Schwede and Bern-
hard Keller about Morita theory, tilting theory, and (algebraically) triangulated
categories.

This interdisciplinary mini-workshop was attended by 17 participants from dif-
ferent areas of mathematics: algebraic geometry, algebraic topology, constructive
algebra, differential algebra, system and control theory, logic and type theory.
The participants had enough time for several informal discussions about various
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topics including Boij-Söderberg theory, equivariant vector bundles, symmetries of
algebraic surfaces, discrete vector fields, and comparisons between the programing
paradigms and implementations of homological algorithms in GAP4 and Coq. The
organizers and the participants would like to thank the MFO for the excellent
organization and the great hospitality. Christine Berkesch was funded by the “US
Junior Oberwolfach Fellows” program of the NSF.
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Abstracts

Computing Global Extension Modules

Gregory G. Smith

LetX be a smooth projective toric variety over a (computable) field k, and consider
two coherent OX -modulesM and N . Arguably, the most important examples of
sheaves are simply the structure sheaves of closed subschemes such as those arising
from a presentation of a Mori dream space, the tropical compactification of a very
affine variety, numerous models in algebraic statistics, or complete intersection
Calabi-Yau manifolds in string theory. We write ExtmX(M,N ) for the m-th global
extension module; these modules play a central role in duality theory. Although
there are various equivalent ways to define ExtmX(M,N ) including right derived
functors, hypercohomology, and equivalence classes of extensions (i.e. Yoneda Ext),
all of the classical approaches are ostensibly non-constructive. In contrast, this
extended abstract outlines an effective method for computing ExtmX(M,N ). Both
our presentation and the ensuing procedure constitute a relatively straightforward
generalization of the algorithm described in [5] for the case X = Pd.

Working over the smooth toric variety X provides a convenient means for en-
coding the sheavesM and N . To be more explicit, identify Pic(X) with Zr and
write OX(v) for the line bundle associated to v ∈ Zr. Let S := k[x1, . . . , xn] be the
Zr-graded Cox ring (a.k.a. total coordinate ring), and let B denote the irrelevant
ideal. From a geometric perspective, S is determined by torus-invariant divisors
on X and the reduced monomial ideal B is determined by the torus-fixed points
on X . In terms of combinatorics, S is given by the rays (i.e. one-dimensional
cones) in the fan corresponding to X and B is given by the maximal cones in
the same fan. Since the precise definitions will not be needed, we refer to §5.2
in [1] for the details. With this notation, the toric variety X is the geometric
quotient

(
An − V(B)

)
/(k×)r and d := dim(X) = n − r; see Theorem 5.1.11 in

[1]. Moreover, the category of coherent OX -modules is equivalent to the quotient
category of finitely generated Zr-graded S-modules by the thick subcategory of
all B-torsion modules; see §5.3 in [1]. In this context, our problem becomes the
following: given two finitely generated Zr-graded S-modules M and N , calculate
the module ExtmX(M,N ) whereM and N are the coherent sheaves corresponding
to M and N respectively.

Our projectivity assumption on X is also valuable. Specifically, this hypothesis
guarantees that there exists an r-dimensional polyhedral cone C ⊂ Zr such that
ExtmX

(
OX ,OX(v)

)
= Hm

(
X,OX(v)

)
= 0 for all m > 0 and v ∈ C. In particular,

the cone of numerically effective line bundles Nef(X) is contained in C; see Theo-
rem 9.2.3 in [1]. The maximal vanishing cone C ⊂ Zr is obtained from the reduced
homology of the induced subfans of X . Alternatively, the cone C is determined by
the twists in the minimal Zr-graded free resolution of the irrelevant ideal B; see
§3 in [4]. Roughly speaking, we use the line bundles corresponding to elements in
C to form an acyclic resolution of the coherent sheafM.
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The solution to our problem involves relating ExtmX(M,N ) to
(
ExtmX(M ′, N)

)
0

where M ′ is another Zr-graded S-module corresponding to M. To express our
main result, let F•(M) denote a minimal Zr-graded free resolution of M . It follows
that there is an exact sequence

0←M ← F0(M)← F1(M)← · · · ← Fi(M)← · · ·

where each Zr-graded S-module Fi(M) is a direct sum of twists of S:

Fi(M) =

bi(M)⊕

j=1

S
(
−ai,j(M)

)
for some ai,j(M) ∈ Zr.

The maps in this resolution are given by matrices of homogeneous forms and mini-
mality is equivalent to saying that none of the entries are nonzero constants. Under
this condition, all of the numerical invariants bi(M) and ai,j(M) are independent
of the choice of minimal free resolution.

Given these preliminaries, our main result is the following.

Theorem. Let M and N be finitely generated Zr-graded S-modules, let m be an
integer, and let v,u ∈ Zr be two vectors such that OX(u) is ample. If e ∈ N satis-
fies v + am−k,ℓ(SeuM) − ai,j(N) ∈ C for all 0 6 k 6 m, 1 6 ℓ 6 bm−k(M),
0 6 i 6 d − m and 1 6 j 6 bi(N), then there is a canonical isomorphism
ExtmX

(
M,N (v)

)
= ExtmS (SeuM,N)v.

The condition v+am−k,ℓ(SeuM)−ai,j(N) ∈ C holds for all e≫ 0, because OX(u)
is ample. WhenM = OX , we essentially recover Theorem 0.2 in [2].

The proof of this theorem, following §2 of [5], has three steps. One first proves a
uniform vanishing result. The appropriate weak form of multigraded Castelnuovo-
Mumford regularity (cf. §6 in [4]) states that, if v−ai,j(N) ∈ C for all 0 6 i 6 d−m
and 1 6 j 6 bi(N), then we have Hm

(
X,N (v)

)
= 0. Now, let F•(M) denote

the locally free resolution ofM corresponding to the sheafification of minimal free
resolution F•(M). Exploiting these vanishing conditions gives sufficient conditions
to force the spectral sequence

Ep,q
2 = Hp

(
Hq
(
X,HomX

(
F•(M),N (v)

)))
=⇒ Extp+qX

(
M,N (v)

)

to degenerate. The second step shows that, if v + am−k,ℓ(M) − ai,j(N) ∈ C
for all 1 6 k 6 m, 1 6 ℓ 6 bm−k(M), 0 6 i 6 d − m and 1 6 j 6 bi(N),
then we have ExtmX

(
M,N (v)

)
= Hm

(
HomX

(
F•(M),N (v)

))
. Having reduced

the problem to calculating the cochain complex HomX

(
F•(M),N (v)

)
, one uses

the exact sequence

0← H1
B(N)←

⊕
v∈Zr

H0
(
X,N (v)

)
← N ← H0

B(N)← 0

to obtain additional restrictions. Specifically, the third step establishes that, if
v+am,ℓ(M)−ai,j(N) ∈ C for all 1 6 ℓ 6 bm(M), 0 6 i 6 d+1 and 1 6 j 6 bi(N),
then we have Hm

(
HomX

(
F•(M),N (v)

))
= ExtmS (M,N)v. Combining all three

steps yields a proof for the theorem.
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To efficiently implement the algorithm arising from our theorem, one needs
minimize the size of F•(SeuM). To accomplish this, one should replace N with
its saturation with respect to B in order to minimize the ai,j(N). One should
also use a more refined vanishing result which keeps track of distinct vanishing
sets Cm for each cohomology group Hm

(
X,OX(v)

)
where 0 6 m 6 d. Moreover,

experimental evidence suggests that one should employ the e-th Frobenius power
of the monomial ideal generated in degree u (i.e. (Su)

[e]) rather than the e-th
ordinary power (i.e. Seu). Building on the approach presented in this extended
abstract, methods for computing the cohomology of sheaves on many normal toric
varieties and the global extension modules for coherent sheaves on projective space
are available in Macaulay2 [3].
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Morphisms between Discrete Vector Fields

Francis Sergeraert

(joint work with Ana Romero)

The tool Discrete Vector Fields is now important in Constructive Algebraic Topol-
ogy. It allowed us to find out a new understanding of the Eilenberg-Zilber theorem,
powerful as well for the theoretical point of view as for concrete programming.

The Eilenberg-Zilber theorem is so understood as an obvious generalization
of the standard triangulation of the square by two triangles (!). The same (!)
vector field gives as well the twisted Eilenberg-Zilber theorem, and also which
is obviously the right proof of the Eilenberg-MacLane conjecture (1953) about
the correspondence between the topological and algebraic notions of Classifying
Spaces.

More precisely, the algorithm implementing this correspondence, crucial when
computing homotopy groups through the Whitehead tower, has been immediately
implemented and gives striking results: for example the computing time of the
homotopy group π5(ΩS

3 ∪2 D
3) has so been divided by 18: five minutes vs one

hour and a half.
Numerous machine tests show an experimental evidence for the correctness of

this new version of the Eilenberg-MacLane correspondence, but the proof is not
so easy, not yet finished. The compatibility between the Eilenberg-Zilber vector
field and the underlying algebraic structures in fact is not obvious at all.
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The talk has been devoted to a central point of this subject, the naturality of
the reduction canonically induced by a discrete vector field. The result is rather
surprising. The natural (!) definition of morphisms between discrete vector fields
is not at all the right one, and the right one is surprising: simply the image of a
critical (resp. target) cell must be a critical (resp. target cell) but no condition at
all is to be required for the source cells!

For the foreseen application to Eilenberg-Zilber vector fields, it so happens the
behaviour of this vector field with respect to the source cells is totally anarchic,
but fortunately this behaviour is the right one with the target and critical cells.

A didactic exposition of this subject is the heart of the talk, the proofs being
quite elementary, a simple combinatorial game about some diagrams in finite lat-
tices. The talk finishes with the application: the reduction given by the so-called
Eilenberg-Zilber vector field is nothing but the old Eilenberg-Zilber reduction, as
defined and described by Eilenberg, Zilber and MacLane more than sixty years
ago. Allowing us to keep the benefit of the previous works in this area.

A detailed exposition of this work is available on the web site of the speaker [1].

References

[1] Ana Romero, Francis Sergeraert.
Discrete Vector Fields and Fundamental Algebraic Topology
www-fourier.ujf-grenoble.fr/∼sergerar/Papers/Vector-Fields.pdf

Boij–Söderberg theory and tensor complexes

Christine Berkesch

(joint work with Daniel Erman, Manoj Kummini, Steven V Sam)

The conjectures of M. Boij and J. Söderberg [3], proven by D. Eisenbud and
F.-O. Schreyer [8] (see also [7, 4]), link the extremal properties of invariants of
graded free resolutions of finitely generated modules over the polynomial ring
S = k[x1, . . . , xn] with the Herzog–Huneke–Srinivasan Multiplicity Conjectures.
Here k is any field and S has the standard Z-grading. In the course of their proof,
Eisenbud and Schreyer introduce a groundbreaking relationship between the study
of free resolutions over the S and the study of the cohomology of coherent sheaves
on Pn−1

k , via a nonnegative pairing of their associated numerics. This pairing
has recently been categorified through work of Eisenbud and Erman [6], further
extending the reach of Boij–Söderberg theory to larger classes of derived objects.

We now outline the main result of Boij–Söderberg theory for S. For simplicity,
we restrict our attention to a graded S-module M that is of finite length; minor
modifications yield the general situation. A minimal free resolution of M is an
acyclic complex (F•, ∂•) such that H0(F•) = M , ∂i(Fi) ⊆ 〈x1, . . . , xn〉Fi−1 for each
i, and Fi =

⊕
j∈Z S(−j)

βi,j . The ranks βi,j of the free modules are independent
of the choice of resolution F• of M , and they are called the Betti numbers of M .
We record these Betti numbers into a Betti table for M , denoted β(M).
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It appears to be a difficult question to classify which integer tables can be
realized as the Betti table of a graded S-module. In a shift in perspective, Boij
and Söderberg suggested that this task be approached up to scalar multiple. In
other words, view β(M) ∈

⊕n
i=0

⊕
j∈Z Q =: V and describe instead the cone of

Betti tables

BQ(S) := Q≥0 · { β(M) |M graded S-module of finite length }.

In this direction, we say that d = (d0 < d1 < · · · < dn) ∈ Zn+1 is a degree sequence
for S, and we define a partial order on these sequences via d ≤ d′ if di ≤ d′i for all
i. Associated to a degree sequence d, we define the pure diagram πd ∈ V by

βi,j(πd) =

{
1∏

ℓ 6=i
|di−dℓ|

if j = di,

0 otherwise.

These are related to the Herzog–Kühl equations for pure free resolutions, see [13].

Theorem 1 ([8]). The extremal rays of BQ(S) are precisely those spanned by the
πd. Furthermore, if D ∈ BQ(S), then there exist ai ∈ Q≥0 and degree sequences

d1 < d2 < · · · < dℓ such that D =
∑ℓ

i=1 aiπdi .

The decomposition of D in Theorem 1, which endows BQ(S) with the structure
of a simplicial fan, arises from a greedy algorithm. An important ingredient in
the proof of the theorem is to show that each pure diagram πd is realizable, up to
scalar multiple, as β(M) for some module M . Originally, Eisenbud and Schreyer
applied a nonconstructive pushforward argument to show the existence of such M .
A symmetrization of this argument produces tensor complexes, and the symmetry
of these resolutions also allows them to be described explicitly.

Fix (b0, . . . , bn) ∈ Nn+1, let R = Z[xi,J ], where 1 ≤ i ≤ b0, J = (j1, . . . , jn), 1 ≤
jℓ ≤ bℓ, and let φ = (xi,J ) ∈ Rb0 ⊗ (Rb1)∗ ⊗ · · · ⊗ (Rbn)∗ be the universal tensor.
In [1], we construct, from the tensor φ and a choice w ∈ Zn+1 from an infinite
family of appropriate weight vectors, a tensor complex F (φ,w)• with the following
properties.

Theorem 2 ([1]). A tensor complex F (φ,w)• satisfies the following:
(i) It is a graded pure free resolution of a Cohen–Macaulay module M(φ,w).
(ii) It is uniformly minimal over Z, i.e., F (φ,w)• ⊗R k[xi,J ] is a minimal free

resolution for any field k.
(iii) It respects the multilinearity of φ, i.e., it is GLb0 × · · · ×GLbn-equivariant.
(iv) Its differentials can by made explicit after fixing appropriate bases for the free

modules F (φ,w)i.

The construction of tensor complexes provides detailed new examples of min-
imal free resolutions, as well as a unifying view on a wide variety of complexes,
including the Eagon–Northcott, Buchsbaum–Rim, and similar complexes, called
Buchsbaum–Eisenbud matrix complexes [5, §A2.6], as well as the complexes used
by Gelfand–Kapranov–Zelevinsky and Weyman to compute hyperdeterminants
in [11, §14] and [14, §9.4]. In addition, tensor complexes have applications in Boij–
Söderberg theory, as they provide infinitely many new families of pure resolutions,
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as well as the first explicit description of the differentials of the Eisenbud–Schreyer
pure resolutions.

Corollary 3 ([1]). There is a map R→ S = k[x1, . . . , xn] such that S⊗RF (φ,w)•
is the Eisenbud–Schreyer pure resolution constructed in [8]. In particular, these
resolutions can be made explicit.

The BoijSoederberg and TensorComplexes packages of the computer algebra
software Macaulay2 contain implementations of the work discussed in this talk [12].
For surveys on Boij–Söderberg theory, see [2, 9, 10].
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[3] M. Boij and J. Söderberg, Graded Betti numbers of Cohen–Macaulay modules and the
multiplicity conjecture, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 85–106.
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A Constructive Setup for Coherent Sheaves

Markus Lange-Hegermann

(joint work with Mohamed Barakat)

Our motivation is to establish a constructive setup for homological algebra in the
category of coherent sheaves on several classes of schemes X . In the following we
only consider the projective n-space X = Pn over a computable field k. However,
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the methods discussed also work for projective schemes relative to an abstract
scheme and toric varieties [12]. Our approach is (partially) implemented in the
homalg project.

Our goal is homological algebra in the context of Abelian categories. We proceed
in a foundational manner: to implement all constructive proofs we need to provide
algorithms for all existential quantifiers and disjunctions in the defining axioms of
Abelian categories. We call any Abelian category computable, when this is possible.
For example the category Sgrmod of finitely presented graded modules over the
graded ring S := k[x0, . . . , xn] with deg(xi) = 1 is computable due to Gröbner
basis methods [5]. Such categories allow all standard homological constructions
and thus to work with them in tangible terms on a computer. This includes the
computation of spectral sequences, in particular the filtrations they induce on their
limits [2]. The goal of this talk is to show that the category CohPn of coherent
sheaves on projective n-space is computable.

Usually, one represents coherent sheaves by finitely generated graded modules,
as the sheafification functor ˜ : Sgrmod → CohPn is essentially surjective and
exact. However, used naively, this approach has the following problem. The
inclusion ι : 0 →֒ S/〈x0, . . . , xn〉 sheafifies to the isomorphism ι̃ : 0

∼
−→ 0, as

S/〈x0, . . . , xn〉 is Artinian and thus in the kernel of the sheafification functor. The
isomorphism ι̃ has an inverse, which we want to compute. However, ι has no
inverse; this is due to the sheafification not being an equivalence of categories.

The correct framework for CohPn is that of Serre quotient categories. It turns
out that CohPn is equivalent to the Serre quotient Sgrmod/Sgrmod0, where
Sgrmod0 is the thick subcategory of finitely generated Artinian graded S-modules.
A similar statement has long been known for a quotient of quasi-finitely generated
modules [10] and has only recently been extended to finitely generated modules [9].
The following theorem provides the computability for Serre quotient categories.

Theorem ([4]). Let A be a computable Abelian category and C a thick subcategory.
Assume that we can decide whether an object of A lies in C. Then the category
A/C is Abelian and as such computable.

An easy corollary is that CohPn is computable, as Sgrmod is computable and a
module is Artinian if and only if its Hilbert polynomial is zero. In these categories
graded modules are used to model sheaves but morphisms of sheaves are modeled
in a more complicated way. More precisely, the proof uses a description of Serre
quotient categories by a 3-arrow formalism, which we call Gabriel morphisms, to
replace the direct limit description of HomA/C by a constructive dynamical process.

As a special case this implies that the computation of spectral sequences of
filtered complexes is possible for the category of coherent sheaves on projective
space. It remains to describe the construction of interesting filtered complexes.
Usually, these arise from resolutions and application of functors. Now, we describe
the computation of some functors. The computation of sheaf Hom and the ten-
sor product of CohPn is just a sheafification of the graded Hom and the tensor
product in the category Sgrmod. Both their derivations Ext and Tor can be com-
puted algorithmically using locally free resolutions, which can be constructed by
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sheafifying graded free resolutions. Assume that the canonical quotient functor
Q : A → A/C has a right adjoint S, the so-called section functor. Under this
assumption we have HomA/C(Q(M), Q(N)) ∼= HomA(M, (S ◦Q)(N)). There are
algorithms to compute S◦Q [7, 3] and thus the Hom-functors is also algorithmical.
The computability of Ext in this context is established in [8, 1].

The computation of these functors and the computability of the Abelian cate-
gory of coherent sheaves is demonstrated by an example using the implementation
in the homalg project [11, 6]. We compute of the equidimensional filtration on a
coherent sheaf F on Pn using the spectral sequence

Extp(Ext−q(F ,OPn),OPn)⇒

{
F , p+ q = 0

0, otherwise.
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Computing Ext in Serre quotient categories

Mohamed Barakat

(joint work with Markus Lange-Hegermann)

The ability to compute Ext groups is of importance in algebra and geometry.
For example, the higher derived functors Hi(X,−) of the global section functor
Γ(X,−) = Hom(OX ,−) on a scheme X can be defined in terms of Ext:

Hi(X,−) = Exti(OX ,−),
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where OX is the structure sheaf of X . Categories of coherent sheaves CohX can
often be described as a Serre quotient of some category A of finitely generated
graded modules over a computable graded ring S (where Ext is computable) mod-
ulo a thick subcategory C. This is the case for X = Pn, X = XΣ a normal
toric variety, or X a Mori dream space, where S is the Cox ring graded by
the divisor class group ClX . The case X = Pn was already described in [4]: Let
S = k[x0, . . . , xn] denote the polynomial ring with its standard Z-grading. Graded
S-modules descend to modules on the orbit space

An+1/k∗ = Pn ∪̇ {0}︸︷︷︸
irrelevant

locus

Hence, CohPn is equivalent to the category S − grmod of finitely presented graded
S-modules but where the thick subcategory S − grmod0 of modules supported on
the irrelevant locus (here, the Artinians) is treated as the subcategory of zero
objects, i.e.,

CohPn ≃ S − grmod/S − grmod0.

Given a general Serre quotient category A/C of an Abelian category A, we
describe how to compute ExtiA/C by relating it to a limit of ExtiA’s in the ambient

category A, under certain conditions depending on i ≥ 0 (cf. [2]). Our approach
differs from the one used in Greg Smith’s talk [6] as it is formulated in the
context of abstract Abelian categories without enough projectives or injectives1

(and without an internalHom). Our excuse for not making a convergence analysis
like in [5, 6] is that it does not make much sense in this generality. We thereby
only generalize the first step in his proof.

From now on let A denote an Abelian category and C ⊂ A a thick (or Serre)
subcategory. Recall, the Serre quotient category A/C is defined by setting

• ObjA/C = ObjA;
• HomA/C(M,N) = lim

−→
{
M ′≤M,N ′≤N
M/M ′,N ′∈C

} HomA(M
′, N/N ′).

The definition of the Hom-group leads to the 3-arrow formalism presented in
Markus Lange-Hegermann’s talk [3]. Denote by Q : A → A/C,M 7→M,φ 7→
[φ] the canonical functor. It is exact but in general neither full nor faithful.

The computability of HomA/C reduces to that of HomA once the thick subcat-
egory C ⊂ A is localizing, i.e., once the canonical functor Q : A → A/C admits
a right adjoint S : A/C → A. S is called a section functor of Q since the
counit Q ◦ S → IdA/C is an isomorphism. The section functor S , or rather
the adjunction monad S ◦Q, allows getting rid of the limit in the definition of
HomA/C :

HomA/C(QM,QN) ∼= HomA(M, (S ◦Q)(N)).

1Only the nonconstructive qCoh Pn
⊃ Coh Pn has enough injectives.
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Corollary. If A is Hom-computable, C is constructively localizing (i.e., the monad
S ◦Q is computable) then A/C is Hom-computable.

In [1] we prove a theorem characterizing endofunctors W : A → A equivalent
to the adjunction monad S ◦Q.

Due to the lack of enough projectives or injectives we stick to Yoneda’s de-
scription of

ExtcA(M,N) = {[e : 0←− M ←− Gc ←− · · · ←− G1 ←− N ←− 0︸ ︷︷ ︸
exact

]}

as the Abelian group of certain equivalence classes of c-extensions. Applying
the exact Q to a Yoneda cocycle e ∈ ExtcA(M,N) yields a cocycle Q(e) ∈
ExtcA/C(M,N). Since Q vanishes on C we get a binatural transformation

Q
Ext : lim

−→
M ′≤M,N ′≤N
M/M ′,N ′∈C

ExtcA(M
′, N/N ′)→ ExtcA/C(M,N).

It is now natural to ask for conditions sufficient for QExt to be an isomorphism.
For c = 1 it turns out that assuming C ⊂ A localizing is already sufficient for Q

Ext

to be an isomorphism.

Theorem ([2]). If C ⊂ A is a localizing subcategory then QExt is an isomorphism
for c = 1.

For the proof we need the following considerations. The adjunction monad
yields an equivalence of categories

S ◦Q : A/C
∼
−→ SatC(A) ⊂ A,

where SatC(A) is the full subcategory of C-saturated objects, i.e., those objects A ∈
A satisfying Exti(C,A) = 0 for i = 0, 1 and all C ∈ C. So we are allowed to replace

A/C by SatC(A) and Q : A → A/C by the corestriction Q̂ = cores| SatC(A)(S ◦Q) :
A → SatC(A). The rest follows easily from the left exactness of the embedding
ι : SatC(A) →֒ A.

For c ≥ 2 we need further conditions on the categories A and C. Let HC(A)
be the maximal C-subobject of A defined as ker (A→ (S ◦Q)(A)). For an object
A ∈ A we call a subobject A⊥ ≤ A an almost C-complement if A⊥ ∩HC(A) = 0
and A/

(
HC(A) +A⊥

)
∈ C. We call C an almost split localizing subcategory if for

each A ∈ A there exists an almost C-complement A⊥. If every object A ∈ A has a
maximal almost C-complement then we call C a maximally almost split localizing
subcategory of A.

Theorem ([2]). If C is a maximally almost split localizing subcategory of the
Abelian category A then

Q̂
Ext : lim

−→
M ′≤M,
M/M ′∈C

ExtcA(M
′, N)→ ExtcSatC(A)(M,N)
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is an isomorphism (of Abelian groups) for all C-saturated M,N ∈ A.

For smooth projective toric varieties we saw the limit analysis in Greg Smith’s
talk [6], in which he generalized his argument for the projective space which was
based on the Castelnuovo-Mumford regularity [5]. The Yoneda approach
presented here shows that

• the case c = 1 is special and should be treated separately in applications;
• a better understanding of maximal almost C-complements might refine the
convergence analysis.
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Isomorphisms and equivalences of linear functional systems

Thomas Cluzeau

(joint work with Alban Quadrat)

A linear functional system (e.g., a linear system of ordinary differential (OD)
equations, partial differential (PD) equations, OD time-delay equations, difference
equations) can generally be written as Rη = 0, where R is a q × p matrix with
entries in a noncommutative polynomial ring D of functional operators (e.g., OD
or PD operators, time-delay operators, shift operators, difference operators) and
η is a vector of unknown functions. More precisely, if F is a left D-module, then
we consider the linear system kerF(R.) = {η ∈ Fp | Rη = 0}. The algebraic
analysis approach to mathematical system theory (see, e.g., [1, 3, 6, 7, 9, 10]) is
based on the fact that the linear system kerF (R.) can be studied by means of the
left D-module M = D1×p/(D1×q R) finitely presented by the matrix R. Indeed,
a remark of Malgrange [6] asserts that kerF(R.) ∼= homD(M,F), Hence, systemic
properties of kerF (R.) can be studied by means of module properties of M and F .
Algorithms for checking certain module properties of M were recently developed
based on constructive homological algebra for noncommutative polynomial rings
D admitting Gröbner bases for admissible term orders. These algorithms were
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implemented in the packages and the computer algebra systems OreModules,
OreMorphisms, Plural and homalg.

The first purpose of this talk is to develop a constructive version of Fitting’s
result [4] which asserts that two matrices presenting isomorphic left D-modules
can be enlarged by blocks of 0 and I (identity matrix) to get equivalent matrices.
This important result in module theory explains the relations between the key
concepts of isomorphism of modules and equivalence of matrices, and has many
applications in linear system theory. The results are gathered in the following
theorem:

Theorem 1. Let R ∈ Dq×p, R′ ∈ Dq′×p′ and

f : M = D1×p/(D1×q R) −→ M ′ = D1×p′/(D1×q′ R′)

be a left D-isomorphism, where P ∈ Dp×p′ is a matrix such that RP = QR′ for
a certain matrix Q ∈ Dq×q′ . Moreover, let R2 ∈ Dr×q (resp., R′

2 ∈ Dr′×q′) be a

matrix such that kerD(.R) = D1×r R2 (resp., kerD(.R
′) = D1×r′ R′

2). Then, there

exist 6 matrices P ′ ∈ Dp′×p, Q′ ∈ Dq′×q, Z ∈ Dp×q, Z ′ ∈ Dp′×q′ , Z2 ∈ Dq×r and
Z ′
2 ∈ Dq′×r′ satisfying





R′ P ′ = Q′ R,

P P ′ + Z R = Ip,

P ′ P + Z ′ R′ = Ip′ .

{
QQ′ +RZ + Z2 R2 = Iq,

Q′ Q+R′Z ′ + Z ′
2 R

′
2 = Iq′ ,

and such that the following results hold:

(1) With the notation s = q + p′ + p+ q′, we have:

X =

(
Ip P

−P ′ Ip′ − P ′ P

)
∈ GLp+p′(D), X−1 =

(
Ip − P P ′ −P

P ′ Ip′

)
,

Y =





Iq 0 R Q

0 I
p′ −P ′ Z′

−Z P 0 P Z′
− Z Q

−Q′
−R′ 0 Z′

2
R′

2




∈ GLs(D), Y

−1
=





Z2 R2 0 −R −Q

P ′ Z − Z′ Q′ 0 P ′
−Z′

Z −P Ip 0

Q′ R′ 0 Iq′




.

(2) The following commutative exact diagram holds

0 0 0
↓ ↓ ↓

D1×s .L
−→ D1×(p+p′)

π⊕ 0p′
−−−−→ M −→ 0

↓ .Y ↓ .X ↓ f

D1×s .L′

−→ D1×(p+p′) 0p ⊕ π′

−−−−→ M ′ −→ 0,
↓ ↓ ↓
0 0 0
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where π ⊕ 0p′ and 0p ⊕ π′ are defined by

D1×(p+p′)
π⊕ 0p′
−−−−→ M

(λ λ′) 7−→ π(λ),
D1×(p′+p) 0p ⊕ π′

−−−−→ M ′

(λ λ′) 7−→ π′(λ′),

and

L =




R 0

0 Ip′

0 0

0 0


 ∈ Ds×(p+p′), L′ =




0 0

0 0

Ip 0

0 R′


 ∈ Ds×(p+p′),

i.e., we have LX = Y L′, and thus: L′ = Y −1 LX ⇐⇒ L = Y L′ X−1.

The consequences of this theorem on the Auslander transposes and adjoints of
the finitely presented left modules are given. Then in the second part of the talk,
we give an explicit characterization of isomorphic finitely presented modules in
terms of certain inflations of their presentation matrices.

Theorem 2. Let M1 = D1×p/(D1×q R1) (resp., M2 = D1×t/(D1×sQ2)) be a left
D-module finitely presented by R1 ∈ Dq×p (resp., Q2 ∈ Ds×t) such that M1

∼= M2.
Then, there exist matrices R2 ∈ Dq×s, Q1 ∈ Dp×t, Q2 ∈ Ds×t, S1 ∈ Dp×q,
S2 ∈ Ds×q, T1 ∈ Dt×p, T2 ∈ Dt×s, V1 ∈ Dq×l, V2 ∈ Dt×l, W1 ∈ Dp×m, and
W2 ∈ Ds×m such that(

R1 R2

T1 T2

) (
S1 Q1

S2 Q2

)
= Iq+t +

(
V1

V2

)
(P1 0) ,

(
S1 Q1

S2 Q2

) (
R1 R2

T1 T2

)
= Ip+s +

(
W1

W2

)
(0 P2) ,

where P1 ∈ Dl×q and P2 ∈ Dm×s are defined by:

kerD(.R1) = D1×l P1, kerD(.Q2) = D1×m P2.

Fitting’s theorem on the syzygy modules of these modules can then be found
again. If the base ring is stably finite and one of the modules admits a full row
rank presentation, this result yields a characterization of isomorphic modules as
the completion problem characterizing Serre’s reduction, i.e., the possibility to
find a presentation of the module defined by less generators and less relations.
This completion problem is shown to induce different isomorphisms between the
modules finitely presented by the matrices defining the inflations which is then
used to study Serre’s reduction problem and completes results of [2].

Corollary 1. With the notations and the assumptions of Theorem 2, let D be a
stably finite ring (e.g., a noetherian domain D) and assume that q + t = p+ s.

(1) Then, we have:

(1)

(
R1 R2

T1 T2

) (
S1 Q1

S2 Q2

)
= Iq+t ⇔

(
S1 Q1

S2 Q2

) (
R1 R2

T1 T2

)
= Ip+s.
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(2) If either R1 or Q2 has full row rank, i.e., kerD(.R1) = 0 or kerD(.Q2) = 0,
then (1) holds. Equivalently, if R1 or Q2 has full row rank, then M1

∼= M2

is equivalent to the existence of R2 ∈ Dq×s, Q1 ∈ Dp×t, Q2 ∈ Ds×t,
S1 ∈ Dp×q, S2 ∈ Ds×q, T1 ∈ Dt×p, and T2 ∈ Dt×s such that:

(
R1 R2

T1 T2

) (
S1 Q1

S2 Q2

)
= Iq+t.
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A constructive approach to schemes and coherent sheaves

Henri Lombardi

We propose a constructive approach for the theory of Grothendieck’ “spectral”
schemes (these ones having as basis a spectral space). In particular, all Nœtherian
schemes are spectral.

Our constructions neither use the affine schemes as sheaves of local rings nor the
points (prime ideals) of the spectrum of a commutive ring. We “glue” finitely many
commutative rings in a purely formal way. The same kind of construction works
for the so called “sheaves of modules” over a spectral scheme. Our constructions
are made possible by the existence of gluing theorems which work in the case
of affine schemes, considering the category of affine schemes as the dual of the
category of commutative rings.
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First thing, gluing comaximal localizations of a commutative ring is fair.
Consider a ring R with comaximal elements si (i.e. ∃ui’s,

∑
i uisi = 1)

Ri = R[1/si], Rij = R[1/sisj ] and αi : R→ Ri, αij : Ri → Rij

Then in the following diagram R is the (inverse) limit of the Ri’s and Rij ’s.

Ri
αij //

αik

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

Rij

S

ψi

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
ψj

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱

ψk

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲
ψ!

//❴❴❴❴❴❴ R
αi

;;①①①①①①

αj

##❋
❋❋

❋❋
❋

αk

��✸
✸✸
✸✸
✸✸

✸✸
✸✸
✸

Rj

αji

CC✟✟✟✟✟✟✟✟✟✟✟

##❍
❍❍

❍❍
❍ Rik

Rk

;;✈✈✈✈✈✈
αkj

// Rjk

Two views for this gluing.
1 – Elements of the ring can be given locally, and a morphism between commutative
rings can be given locally.
2 – Good properties of the ring can be tested locally (e.g., to be a coherent ring,
a pp-ring, a pf-ring, a normal ring, a Prüfer ring, a ring with a divisor theory,
a Nœtherian ring), and in case of A-agebras, to be finitely generated, finitely
presented, smooth, unramified, étale, flat or quasi finite.
NB. The localized rings are not local rings. But they are finitely many. Localizing
at all primes is not a very good idea!

Second thing, the topological spectral space SpecR is to be replaced by its
dual, the Zariski lattice ZarR. There is fortunately a gluing theorem for distribu-
tive lattices which allows us to construct the base of the scheme obtained by gluing
affine schemes.

This can be explained in two steps.
If we give a distributive lattice T , and si ∈ T are “comaximal” (i.e.

∨
i si = 1T ),

denoting Ti = T/↑si, Tij = T/↑(sisj), πi : T → T/↑si, . . . , we get T as the limit
of the Ti’s and Tij ’s in the following diagram

T
πk

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

πj

��

πi

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

Ti

πij

��

πik

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘ Tjπji

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧ πjk

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘ Tkπki

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

πkj

��
Tij Tik Tjk

When T is not given, we give Ti’s, Tij ’s, Tijk’s and sij ’s in Ti for i 6= j, if we
have compatible quotients (πij(sik) = πik(sjk) and the diagram commutes)



1516 Oberwolfach Report 25/2013

Ti

πij

��

πik

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘ Tjπji

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧ πjk

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ Tkπki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

πkj

��
Tij

πijk

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘ Tik

πikj

��

Tjk

πjki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

Tijk

the limit T of the diagram is good: we recover s′i’s in T , with Ti = T/↑si.
Moreover “good properties” of distributive lattices can be tested “locally” (i.e.
tested on the Ti’s).

Third thing, a similar situation works for gluing modules from their localiza-
tions. Here again there are two steps.

When M is a given R-module, defining Mi = M [1/si] and so on . . . , we get M
as the limit of the Mi’s and Mij ’s in the following diagram

Mi

ϕij //

ϕik

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼
Mij

N

ψi

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
ψj

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱

ψk

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼
ψ!

//❴❴❴❴❴❴ M
ϕi

;;✈✈✈✈✈✈

ϕj

$$❍
❍❍

❍❍
❍

ϕk

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺

Mj

ϕji

CC✞✞✞✞✞✞✞✞✞✞✞

$$■
■■

■■
■

Mik

Mk

::✉✉✉✉✉✉

ϕkj

// Mjk

If M is not given, if we give Mi’s, Mij ’s, Mijk’s and compatible localization
morphisms

(
(Mi)i∈I), (Mij)i<j∈I , (Mijk)i<j<k∈I ; (ϕij)i6=j , (ϕijk)i<j,i6=k,j 6=k

)

as in the following commutative diagram (ϕij : Mi → Mij is a localization mor-
phism at sj and ϕijk : Mij → Mijk is a localization morphism at sk), then the
limit of this diagram reconstructs a good module.

Mi

ϕij

��

ϕik

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ Mjϕji

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦ ϕjk

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ Mkϕki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

ϕkj

��
Mij

ϕijk
))❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙ Mik

ϕikj

��

Mjk

ϕjki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

Mijk

Morevover “good properties” of modules can be tested locally (e.g. finitely gen-
erated, finitely presented, flat, coherent, finitely generated projective, finitely gen-
erated projective of rank r, exactness of sequences).

Now we define elementary schemes as formal objects obtained by gluing
finitely many affine schemes (i.e. commutative rings) along basic opens.
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Ri

αij

��

αik

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ Rjαji

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦ αjk

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ Rkαki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

αkj

��
Rij

αijk

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙ Rik

αikj

��

Rjk

αjki

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

Rijk
where αij : Ri → Rij are localization morphisms at sij ∈ Ri and αijk : Rij →
Rijk are localization morphisms at αij(sik) ∈ Rij . Almost every usual scheme,
including projective schemes and grassmannians, are elementary.
The “finite” data structure giving an elementary scheme is

(
(Ri)i∈I), (Rij)i<j∈I , (Rijk)i<j<k∈I ; (αij)i6=j , (αijk)i<j,j 6=k 6=i, (sij)i6=j∈I

)

A coherent sheaf of modules over the previous elementary scheme is defined
by formally gluing finitely presented coherent Ri-modules Mi with compatible
localisations Mij as Rij -modules and Mijk as Rijk-modules. The “finite” data
structure giving this “coherent sheaf” is

(
(Mi)i∈I), (Mij)i<j∈I , (Mijk)i<j<k∈I ; (φij)i6=j , (φijk)i<j,j 6=k 6=i

)

where each φij : Mi → Mij is a localization morphism at sij , and each φijk :
Mij →Mijk is a localization morphism at αij(sik).

Once we have defined morphisms between elementary schemes, we can define
a spectral scheme as obtained by gluing formally finitely many affine schemes
(i.e. commutative rings) along finite unions of basic opens.
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The search for low rank vector bundles

Sebastian Posur

(joint work with Mohamed Barakat)

In this extended abstract we want to present a new computational approach to the
search for indecomposable low rank vector bundles on the projective space Pn of
dimension n over some field k. For this purpose our main tools are representation
theory of finite groups and an equivariant version of the BGG equivalence [1].

Lots of problems concerning low rank vector bundles are still open and can
be attacked by trying to construct explicit examples. So far the only known
indecomposable (n− 2)-bundles are essentially due to Horrocks and Mumford on
P4 [3] and due to Horrocks on P5 [4]. No one knows if there exist examples in the
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case n ≥ 6. Furthermore Hartshorne’s famous conjecture implies the splitting of
every 2-bundle on Pn for n ≥ 7 [5].

In order to attack these problems, we first define an appropriate search space,
i.e., a space which contains all vector bundles with some prescribed cohomology
groups and which is computationally feasible. So every vector bundle E on Pn

can be regarded as an object in the category of coherent sheaves CohPn, which
can in turn be regarded as a full subcategory of its bounded derived category
Db(CohPn). For every coherent sheaf on Pn one can compute its so called Tate

resolution [2], which gives rise to a triangulated equivalence between Db(CohPn)
and the category of Tate sequences. A Tate sequence is a minimal complex of Z-
graded free modules over the exterior algebra E := ∧kn+1, where minimal means
that the application of the functor k⊗E− yields the trivial complex. A morphism
between Tate sequences is a homotopy equivalence class of chain maps.

Let Tate(E) be the Tate resolution of a vector bundle and define ωE as the
k-dual of E. Then we have an isomorphism

Tate(E)d ∼=

n⊕

i=0

ωE ⊗k H
i(Pn, E(d− i)),

i.e., the cohomology groups of E and all its twists are encoded in Tate(E) [2]. Thus
we can apply Serre’s criterion to read off from a Tate sequence if it corresponds to
a vector bundle [6].

Every Tate sequence is uniquely determined by its zeroth syzygy-object, i.e, the
kernel of the zeroth differential. In particular, it is uniquely determined by only
considering the zeroth differential. Thus using the isomorphism given above, it is
reasonable to define our desired search space as

P


HomE(ωE ⊗k

n⊕

i=0

Hi
−i, ωE ⊗k

n⊕

j=0

Hj
−j+1)


 ,

where Hi
−i, H

j
−j+1 are some prescribed vector spaces. Every vector bundle E with

cohomology groups Hi(E(−i)) ∼= Hi
−i and Hj(E(−j + 1)) ∼= Hj

−j can be found in
this search space. Its biggest drawback is its huge size. So for example if n = 4,
H2

−2 = k2, H1
0 = k5, then we know that the Horrocks Mumford bundle lies in

P
(
HomE(ωE ⊗k k2, ωE ⊗k k5)

)
, a projective space of dimension 99 and as such it

is not computationally feasible.
An effective strategy to decrease the dimension of the search space is the follow-

ing: let a finite group G act on all the notions introduced above. The constraints
given by this G-action will shrink the dimension of the search space dramatically.
To be more precise, we start with an action of G on Pn. Again, a G-equivariant
vector bundle has now a G-equivariant Tate resolution which is uniquely deter-
mined by a G-morphism in HomE(ωE ⊗k

⊕n
i=0 H

i
−i(E), ωE ⊗k

⊕n
j=0 H

j
−j+1(E)).
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Our new search space is thus given by

P


HomE(ωE ⊗k

n⊕

i=0

Hi
−i, ωE ⊗k

n⊕

j=0

Hj
−j+1)

G


 ,

where Hi
−i, H

j
−j+1 now are some prescribed G-modules. For example let G be the

semidirect product of the Heisenberg group of order 125 and SL(2, 5). Then there
is a G-action on P4 and there are irreducible G-modules H2

−2, H
1
0 of degree 2, 5,

respectively, such that the corresponding search space is a singleton only consisting
of the Horrocks-Mumford bundle. This remains true if we choose Q8 instead of
SL(2, 5).

A search algorithm constructed with the presented machinery above uses an
exhaustive search strategy relying on some data base of finite groups. Roughly
speaking, it proceeds as follows:

(1) Choose a group G and an action on Pn.

(2) Choose some G-cohomology groups Hi
−i, H

j
−j+1.

(3) Construct the maps in the corresponding search space and use Serre’s
criterion to decide whether you have constructed a vector bundle.

This approach can be further improved by considering special constellations
of prescribed cohomology groups which always yield singletons as search spaces.
Furthermore, the Hilbert series of the zeroth syzygy object in a Tate sequence
uniquely determines the rank and the Chern classes of a corresponding vector
bundle and thus can also be used in an effective implementation of the search
algorithm.
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Constructive Stafford’s theorems

Alban Quadrat

(joint work with Daniel Robertz)

The purpose of this work is to develop constructive versions of Stafford’s theo-
rems [10] on the module structure of Weyl algebras An(k) (i.e., the rings of partial
differential operators with polynomial coefficients) over a base field k of character-
istic zero [1]. More generally, based on results of Stafford and Coutinho-Holland
[4], we develop constructive versions of Stafford’s theorems for the so-called very
simple domains [4]. The algorithmization is based on the effective solvability of
certain inhomogeneous quadratic equations over a very simple domain D.

We show how to explicitly compute a unimodular element of a finitely generated
left D-module of rank at least two. This result is used to constructively decompose
any finitely generated left D-module into a direct sum of a free left D-module and a
left D-module of rank at most one. If the latter is torsion-free, then we explicitly
show that it is isomorphic to a left ideal of D which can be generated by two
elements. Then, we give an algorithm which reduces the number of generators of
a finitely presented left D-module with module of relations of rank at least two. In
particular, any finitely generated torsion left D-module can be generated by two
elements and is the homomorphic image of a projective ideal whose construction
is explicitly given. Moreover, a non-torsion but non-free left D-module of rank r
can be generated by r + 1 elements but no fewer.

These results are implemented in the Stafford package [7] for D = An(k)
and their system-theoretical interpretations [3, 6] are given within a D-module
approach [1, 5].

Finally, we prove that the above results also hold for the ring of ordinary differ-
ential operators with either formal power series or locally convergent power series
coefficients [8] and, using a result of Caro-Levcovitz [2], also for the ring of partial
differential operators with coefficients in the field of fractions of the ring of formal
power series or of the ring of locally convergent power series.

For more details and many illustrative examples, we refer to [9] and to the
Stafford package [7].
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Applying Thomas decomposition and algebraic analysis to certain
nonlinear PDE systems

Daniel Robertz

(joint work with Thomas Cluzeau, Alban Quadrat)

This talk is about work in progress in collaboration with Thomas Cluzeau (Uni-
versité de Limoges) and Alban Quadrat (Inria Saclay). We report on first steps of
a study of certain systems of nonlinear partial differential equations using a new
algebraic analysis approach. By applying module-theoretic techniques to a new
kind of linearization of the given equations, e.g., conservation laws of the given
nonlinear system are computed. An effective version of this approach relies on
methods of symbolic computation for both nonlinear and linear differential equa-
tions: a preparatory step applies a decomposition technique as proposed by J. M.
Thomas in the 1930s, cf. [10], [1], [9]; the linearized system is dealt with using a
version of Janet’s algorithm performing normal form computations for the sym-
bolic coefficients of the linearized system modulo the nonlinear system, cf. [5], [7],
[8].

Given a system Ry = 0 of linear functional equations, where R is a q×p matrix
with entries in a (not necessarily commutative) ring D of functional operators
and y is a vector of unknown functions, we associate to the system a left D-
module. It is the cokernel of the homomorphism D1×q → D1×p which is induced
by R. This module carries intrinsic information about the system, cf., e.g., [3]; in
particular, equivalent systems give rise to isomorphic modules. Here the set F of
candidates for the entries of y is also fixed to be a left D-module, the left action of
D corresponding to the one used in Ry = 0, and we assume that a faithful duality
between equations and solutions is defined by these choices.

We study ways in which this approach can be applied to certain systems of non-
linear partial differential equations. One way is to allow the unknown functions
and their derivatives to appear in the coefficients of the differential operators, i.e.,
in the matrix R. We assume that each (nonlinear) term in the given equations ad-
mits such a representation d y, where d is a differential operator. Simple examples
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are given by quasilinear PDE systems such as Burgers’ equation, the Korteweg-de
Vries equation or Euler’s equations for an incompressible fluid.

The linearized system is a system of linear partial differential equations whose
coefficients involve the unknown functions of the nonlinear system. A normal
form computation for the linearized system must take the relations satisfied by
these functions into account, cf. [8]. We obtain a (confluent and terminating)
rewriting system for the coefficients by determining first a Thomas decomposition
of the nonlinear system and choosing a so-called simple differential system in this
decomposition. In such a simple differential system each equation is solved for (a
power of) the highest derivative of an unknown function appearing in this equation.

With these techniques at hand we can now, for instance, compute homomor-
phisms from the left D-module defined by the adjoint operator of the differential
operator given by the linearized system to the module associated with the lin-
earized system, cf., e.g., [4], [2]. Using such a homomorphism to pull back solutions
of the linearized system to solutions of the system given by the adjoint operator,
the integration by parts formula yields a divergence expression which vanishes
upon substitution of solutions of the nonlinear system, i.e., a conservation law, cf.,
e.g., [6].
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The Mayer-Vietoris exact sequence in Čech cohomology

Claire Tête

(joint work with joint work with Lionel Ducos and Claude Quitté)

This talk is about the foundation of the Mayer-Vietoris exact sequence in Čech
cohomology, with respect to the augmented Čech complex, often called ”the sta-
ble Koszul complex”. Our treatment is elementary and uses neither the local
cohomology of Grothendieck nor the well-known noetherian local cohomology. We
use explicit objects giving us an elementary algebraic treatment in a general non-
noetherian context, i.e. two finite sequences a, b of a commutative ring and some
Čech complexes built from these sequences. More precisely, our strategy consists
in producing a short exact sequence of “type Čech“ complexes having the ex-
pected cohomologies. Then arises a simplicial complex on the set (a, b, ab) with
a relatively surprising combinatory.

Some details about the local cohomology. In [5], Grothendieck defines the local
cohomology groups of a sheaf F on a space X with support in a closed subset Y .
If we particularize this to affine schemes, i.e. with an arbitrary ring A and a
A-module M :

X = Spec(A), Y = V (a) = V (〈a〉), F = M̃

then we find the Čech cohomology modules Ȟia(M). But we don’t find the lo-

cal cohomology modules Hi
a
(M) of the noetherian algebraists (see [1], [3], [7]).

This is the same thing when the ring is noetherian. In fact, the noetherian local
cohomology modules are defined as the right derived functors of the functor

M −→ Γa(M) = {x ∈M | ∀ a ∈ A, ∃ e ∈ N, aex = 0}

But this is not taken in the good category. In [4], Eisenbud says : “if A is non-
noetherian, then the Čech complex does not always compute the derived functors
in the category of A-modules of Γa(), even for finitely generated a. Rather, it
computes the derived functors in the category of (not necessarily quasi-coherent)
sheaves of OSpec(A)-modules. For this and other reasons, the general definition of
the local cohomology modules should probably be made in this larger category.
See [Hartshorne/Grothendieck 1967] for a treatment in this setting”.

To sum up. The local cohomology of Grothendieck particularised with an affine
scheme and a quasi-coherent sheaf is isomorphic to the Čech cohomology :

Hi
V (a)(Spec(A), M̃) ≃ Ȟia(M)

but is not isomorphic to the noetherian local cohomology defined by the functor
Γa() in the category of A-modules :

Hi
V (a)(Spec(A), M̃ ) 6≃ Hi

a
(M)

With a noetherian ring A, these 3 cohomologies are the same.
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Exceptional sequences and tilting in algebraic geometry (and
computer algebra?)

Markus Perling

In this talk I gave an overview on semiorthogonal decompositions of derived
categories together with some perspective towards constructive and computer al-
gebraic aspects. More specifically, one would like to understand Db(X), the de-
rived category of coherent sheaves on a smooth complete variety X (defined, say,
over an algebraically closed field K). Derived categories have been introduced by
Grothendieck and Verdier [Ver77] as a general framework for homological algebra
(for more recent introductions to the subject, see e.g. [Wei94] and [GM03]). It
turns out that derived categories have a rich structure which to study is interesting
in its own right. In particular, among the aspects which attract much attention
in current research, are:

• The categorification of geometric invariants.
• The construction of interesting equivalences (e.g. in the form of non-
commutative models for algebraic varieties).

An important tool in both cases is given by semi-orthogonal decompositions.
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Definition: Two triangulated subcategories P ,Q of Db(X) represent a semi-
orthogonal decomposition of Db(X) if P and Q together generate Db(X) and
P ⊆ Q⊥, i.e. HomDb(X)(Q,P) = 0.

This is equivalent to saying that for any object F in Db(X), there exist objects
F ′ in Q and F ′′ in P such that there is a distinguished triangle

(1) F ′ −→ F −→ F ′′ −→ F ′[1]

(see [BK90]). It is an interesting aspect that the rather formal requirement of
Hom-vanishing indeed can encode a lot of geometric information about X (though
this is not entirely surprising, as it directly translates into Ext-vanishing, or, for
many examples, into cohomology vanishing).

Example ([Bĕı78]): For a line bundle O(i) on Pn, denote 〈O(i)〉 the triangulated
subcategory of Db(Pn) generated by O(i). Then 〈O(−n)〉, 〈O(−n+ 1)〉, . . . , 〈O〉
form a semi-orthogonal decmposition of Db(Pn).

Example ([Orl93]): More generally, consider a projective bundle P(E)
p
→ X

of rank r with relative ample bundle OE(1). For k ∈ Z we denote Db(X)k ⊂
Db(P(E)) the subcategory generated by objects of the form p∗F ⊗OE(k). Then
Db(X)−r, D

b(X)−r+1, . . . , D
b(X)0 is a semi-orthogonal decomposition ofDb(P(E)).

Example ([Orl93]): Consider the morphisms Z̃
j
→֒ Y

b
→ X , where b is a blow-

up along some smooth subvariety Z ⊂ X of codimension r and Z̃ → Z the
corresponding exceptional divisor. Then Z̃ is a projective bundle of rank r−1 over
Z and categories Db(Z)k are defined as before. Then there is a semi-orthogonal
decomposition j∗D

b(Z)−r+1, . . . , j∗D
b(Z)−1, b

∗Db(X) of Db(Y ).

Example: In [Kuz09], Kuznetsov shows that a cubic Fano threefold X admits a
semi-orthogonal decompositionAX , 〈O(1)〉, 〈O(2)〉. In [BMMS12], it is shown that
the component AX is a birational invariant of X , i.e. two cubic Fano threefolds
X,X ′ are isomorphic iff AX and AX′ are equivalent as triangulated categories.

Above series of examples gives a taste of semi-orthogonal decompositions in
increasing difficulty, i.e. the first example essentially represents the simplest type
of decomposition. This kind of decomposition can be formalized as follows.

Definition ([Rud90]): (i) An object E ∈ Db(X) is called exceptional if K ∼=
HomDb(X)(E,E) and HomDb(X)(E,E[k]) = 0 for all k 6= 0.

(ii) A sequence of exceptional objects E1, . . . , En is called a full exceptional se-
quence if it induces a semiorthogonal decomposition 〈E1〉, . . . , 〈En〉 ofDb(X).

(iii) An exceptional sequence is called strongly exceptional if HomDb(X)(Ei, Ej [k])
= 0 for all i, j and all k 6= 0.

It turns out that the construction of exceptional sequences is a surprisingly
hard problem and no complete set of criteria, neither sufficient nor necessary, is
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known in general. Among the varieties which are known to admit full exceptional
sequences are homogeneous spaces (e.g. [Kap88]), toric varieties [Kaw06], rational
surfaces ([Orl93], see also [HP11a]) and the spacesM0,n [MS12].

Definition: An object T in Db(X) is called tilting object if it generates Db(X)
and HomDb(X)(T, T [k]) = 0 for all k 6= 0.

If a tilting object T exists, then we denote its endomorphism algebra A :=
HomDb(X)(T, T ), a finite-dimensional basic K-algebra. By a result of Bondal
[Bon90], the functor

RHom(T, . ) : Db(X) −→ Db(A−mod)

induces an equivalence of derived categories. Indeed, any full strongly exceptional
sequence E1, . . . , En gives rise to a tilting object T :=

⊕n
i=1 Ei. However, in

general the construction of tilting objects is even harder than the construction
of exceptional sequences. So it is known that Kapranov’s construction for Flag
varieties yields strongly exceptional sequences, but even for toric varieties the
existence of such objects is completely open (see also [HP11a] for a discussion).

Example: On P2, exceptional vector bundles have been classified by Drezet and
Le Potier [DL85]. It was shown by Rudakov [Rud89] all full exceptional sequences
E ,F ,G with ranks e, f, g, respectively, correspond precisely to solutions of the
Markov equation

e2 + f2 + g2 = 3efg,

i.e. up to dualizing and twisting, there is a one-to-one correspondence between
exceptional sequences on P2 and solutions of the Markov equation. All such se-
quences are automatically strong and we can describe the correspoding endomor-
phism algebra as a path algebra with relations which is given by the quiver

•
3g
−→ •

3e
−→ •,

where
t
−→ denotes t parallel arrows. The relations can be characterized by the

kernel of the following short exact sequence:

0→ Hom(E , LFG)→ Hom(E ,F)⊗K Hom(F ,G)→ Hom(E ,G)→ 0.

Here, LFG denotes the left-mutation of G at F (see [Rud90]).

A general existence result is the following.

Theorem ([HP11b]): Any smooth, projective rational surface admits a tilting
bundle.

Note however, that the construction of [HP11b] in general yields tilting bundles
which do not decompose into strongly exceptional sequences.

Besides their conceptual relevance, exceptional sequences are also very interest-
ing from computational perspective. As sequence (1) indicates, they can be used
to decompose a given object into very simple parts. In the classical version of
Bĕılinson, this has become a very important tool for the study of vector bundles
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on projective spaces. A variation of this theme, the so-called BGG correspondence
[EFS03] is the basis for several implementations which facilitate the construction
of vector bundles on projective spaces and the computation of their invariants
([DE02], [DGPS12], [B+]). One can hope that the construction of exceptional se-
quences and tilting correspondence in a similar way will become an effective tool
to study sheaves on algebraic varieties and their derived categories. Among the
challenges here is the algorithmic construction of exceptional sequences and the
sufficiently high-level computer representation of tilting correspondence. The for-
mer can sometimes be done in a straightforward manner e.g. for certain types of
sequences on toric varieties [Per04], the latter can be facilitated e.g. by packages
such as homalg [B+].
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Deciding kernel membership of the sheafification functor on toric
varieties

Sebastian Gutsche

The goal of this talk is to give a constructive description of theAbelian category
of coherent sheaves on a toric variety. For this I use the notion of a Serre quotient
of computable category. A category is called computable if all existential quantifiers
are constructive. Given a computable category A and a thick subcategory C ⊂ A
the Serre quotient category A/C is computable if for an M ∈ A the membership
M ∈ C is decidable [1]. Given a normal toric variety X with Cox ring S we have
Coh (X) ∼= S − grmod/ker Sh, where Sh : S − grmod → Coh (X) denotes the
sheafification functor [2]. This means that Coh (X) is computable if it is decidable

whether the sheafification M̃ := Sh (M) of a module M is the zero sheaf. For
smooth toric varieties there is a global description when a sheaf is zero.

Theorem. Let X be a smooth toric variety with fan Σ and B ≤ S the irrelevant
ideal of S, the ideal generated by the monomials xσ̂ :=

∏
ρ∈Σ(1)−σ(1) xρ with σ ∈

Σmax. Then the sheafification of a M ∈ S−grmod is 0 iff B (XΣ)
lM = 0 for some

l ∈ Z>0.

For singular varieties this is wrong, for an example see [3, 5.3.11]. One way to
see whether a module sheafifies to zero is looking at the modules of global sections
on affine charts of an affine covering. A coherent sheaf is zero if and only if these
modules vanish. For a toric variety with fan Σ there is a nice description of the
modules of global sections on affine charts of the torus invariant affine covering
induced by the maximal cones in Σ.

Proposition. Let X be a toric variety with , and M ∈ S − grmod. Then, for
every σ ∈ Σmax it is

Γ
(
Uσ, M̃

)
= (Mxσ̂)0 ,

where Uσ denotes the affine subset of X associated to σ.

For a smooth cone σ this is easy to compute, one gets a description for (Sxσ̂)0
and (Mxσ̂)0 by setting the variables of S appearing in xσ̂ to 1 [3, 5.2.10]. Again,
this fails if σ is not smooth.
For an arbitrary normal toric variety X with fan Σ and a graded module M over
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S, we can compute (Mxσ̂)0 as an (Mxσ̂)0- module as follows: Given a presentation
map ϕ : F1 → F0 for the S-module M , we can compute a presentation for the
module (Mxσ̂)0 as an (Sxσ̂)0-module, without computing Mxσ̂ . To do so, we first
compute a Hilbert basis of the cone of monomials of degree 0 in Sxσ̂ . Given
this basis, we get a generating set for (Sxσ̂)0. Now we can present (Sxσ̂)α as an
(Sxσ̂)0-module for every α ∈ Cl (X), using Minkowsky-Weil decomposition of
the polyhedron of monomials of degree α in Sxσ̂ . From that point, by looking at
images of the generators of those modules, we can compute the degree zero part
of ϕxσ̂ , and get a presentation for (Mxσ̂)0.

The algorithm decides whether a module over the Cox ring sheafifies to zero,
and therefore lies in the kernel of Sh. This means the category of coherent sheaves
on a normal toric variety is computable as a Serre quotient.
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