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Introduction by the Organisers

The workshop Complex Algebraic Geometry, organized by Fabrizio Catanese
(Bayreuth), Christopher Hacon (Salt Lake City), Yujiro Kawamata (Tokyo) and
Bernd Siebert (Hamburg), drew together 52 participants from all over the world.

There were several young PhD students and PostDocs, and a quite remarkable
group of established leaders of the fields related to the thematic title of the work-
shop. It was quite difficult to decide which talks to choose for the program, in
view of the variety of very attractive options. Eventually, thanks to the kind offer
of some senior participants to decline the offer to deliver a talk, we ended with 21
50 minutes talks, all followed by a lively discussion.

As usual at an Oberwolfach Meeting, the mathematical discussions continued
outside the lecture room throughout the day and the night. The Conference fully
realized the aim of setting in contact mathematicians with different specializations
and non uniform background, of presenting new fashionable topics alongside with
new insights on long standing classical open problems.

A central role was played by classification theory of projective and Kähler va-
rieties, their minimal models, vanishing theorems, generic positivity , base point
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freeness, and the role of singularities. (for instance pertaining to the classification
of ). There were talks on new results on algebraic surfaces, on irregular varieties,
quotients of Abelian varieties, Fano manifolds, and compactifications of the vector
group. Some talks were dedicated to the plane Cremona group and to the use of
derived categories for rationality questions.

Chow and Hilbert schemes, GIT limits, stability, moduli spaces, were another
direction which was present. The action of the absolute Galois group on moduli
spaces and on the topology and Hodge structure of varieties was also another
theme. Finally, different approaches to moduli spaces of curves with symmetries
were presented.

In spite of the title of the conference, also characteristic p methods and problems
were exposed.

The variety of striking results and the very interesting and challenging proposals
presented in the workshop made the participation highly rewarding. We hope that
these abstracts will give a clear and attractive picture, which will be useful to the
mathematical community.
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Abstracts

Faithful Actions of Gal(Q̄/Q) and Change of Fundamental Group

Ingrid Bauer

(joint work with F. Catanese, F. Grunewald)

The results presented in this talk are contained in [2]. We begin with the following
observation:

Remark 1. 1) σ ∈ Aut(C) acts on C[z0, . . . zn], by sending

P (z) =
∑

I=(i0,...,in)

aIz
I 7→ σ(P )(z) :=

∑

I=(i0,...,in)

σ(aI)z
I .

2) Let X be a projective variety X ⊂ Pn
C, X := {z|fi(z) = 0 ∀i}. The action of

σ extends coordinatewise to Pn
C, and carries X to the set σ(X) which is another

variety, denoted by Xσ, and called the conjugate variety. In fact, since fi(z) = 0
implies σ(fi)(σ(z)) = 0, one has that Xσ = {w|σ(fi)(w) = 0 ∀i}.
3) Likewise, if f : X → Y is a morphism, its graph Γf is a subscheme of X × Y ,
hence we get a conjugate morphism fσ : Xσ → Y σ.

In the 60’s J. P. Serre showed in [5] that there exists a field automorphism
σ ∈ Gal(Q̄/Q), and a variety X defined over Q̄ such that X and the Galois
conjugate variety Xσ have non isomorphic fundamental groups, in particular they
are not homeomorphic.

We prove here a strong sharpening of the phenomenon discovered by Serre:
observe in this respect that, if c denotes complex conjugation, then X and Xc are
diffeomorphic.

Theorem 2. If σ ∈ Gal(Q̄/Q) is not in the conjugacy class of c, then there exists
a surface isogenous to a product X such that X and the Galois conjugate surface
Xσ have non isomorphic topological fundamental groups.

Remark 3. Since the action of Gal(Q̄/Q) leaves the algebraic fundamental group
invariant, we have that the profinite completions of π1(X) and of π1(X

σ) are
isomorphic.

This result is obtained in several steps. To an algebraic number a and g ≥ 3
we associate the hyperelliptic curve Ca of genus g defined by the equation

w2 = (z − a)(z + 2g)Π2g−1
i=0 (z − i).

Let Fa : Ca → P1 be a certain functorial Belyi function and denote by ψa : Da → P1

the normal closure of Ca .

Remark 4. 1) We denote by Ga the monodromy group of Da and observe that
there is a subgroup Ha ⊂ Ga acting on Da such that Da/Ha

∼= Ca.
2) Observe moreover that the degree d of the Belyi function Fa depends not only
on the degree of the field etension [Q(a) : Q], but much more on the height of the
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algebraic number a; one may give an upper bound for the order of the group Ga in
terms of these.

The pair (Da, Ga) that we get is a so called triangle curve, according to the
following definition:

Definition 5. 1) A G- marked variety is a triple (X,G, α) where α : X ×G→ X
is an effective action of the group G on X
Two marked varieties (X,G, α), (X ′, G, α′) are said to be isomorphic if there is an
isomorphism f : X → X ′ transporting the action α : X × G → X into the action
α′ : X ′ ×G′ → X ′, i.e., such that

f ◦ α = α′ ◦ (f × id) ⇔ η′ = Ad(f) ◦ η, Ad(f)(φ) := fφf−1.

2) A marked curve (D,G, η) consisting of a smooth projective curve of genus g and
an effective action of the group G on D is said to be a marked triangle curve of
genus g if D/G ∼= P1 and the quotient morphism p : D → D/G ∼= P1 is branched
in three points.

Without loss of generality we may assume that the three branch points in P1 are
{0, 1,∞} and we may choose a monodromy representation µ : π1(P

1 \{0, 1,∞}) →
Ga corresponding to the normal ramified covering ψa : Da → P1. Denote further
by τ0, τ1, τ∞ the images of geometric loops around 0, 1, ∞ . Then we have that
Ga is generated by τ0, τ1, τ∞ and τ0 ·τ1 ·τ∞ = 1. By Riemann’s existence theorem
the datum of these three generators of the group Ga determines a marked triangle
curve (see [3]).

Theorem 6. To any algebraic number a /∈ Z there corresponds, through a canon-
ical procedure (depending on an integer g ≥ 3), a marked triangle curve (Da, Ga).

This correspondence yields a faithful action of the absolute Galois group Gal(Q̄/Q)
on the set of isomorphism classes of marked triangle curves.

Let us recall now the basic definitions underlying our next construction: the
theory of surfaces isogenous to a product, introduced in [3] (see also [4]), and which
holds more generally for varieties isogenous to a product.

Definition 7. 1) A surface isogenous to a (higher) product is a compact complex
projective surface S which is a quotient S = (C1 × C2)/G of a product of curves
of resp. genera g1, g2 ≥ 2 by the free action of a finite group G. It is said to be
unmixed if the embedding i : G → Aut(C1 × C2) takes values in the subgroup (of
index at most two) Aut(C1)×Aut(C2).
2) A Beauville surface is a surface isogenous to a (higher) product which is rigid,
i.e., it has no nontrivial deformation.
3) An étale marked surface is a triple (S′, G, η) such that the action of G is fixpoint
free. An étale marked surface can also be defined as a quintuple (S, S′, G, η, F )
where η : G→ Aut(S′) is an effective free action, and F : S → S′/G is an isomor-
phism.

Remark 8. Consider the coarse moduli space Mx,y of canonical models of surfaces
of general type X with χ(OX) = x,K2

X = y. We denote by M the disjoint union
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∪x,y≥1Mx,y, and we call it the moduli space of surfaces of general type. Fix

a finite group G and consider the moduli space M̂G
x,y for étale marked surfaces

(X,X ′, G, η, F ), where the isomorphism class [X ] ∈ Mx,y. This moduli space

M̂G
x,y is empty or is a finite étale covering space of Mx,y.

Recall the following result concerning surfaces isogenous to a product ([3], [4]):

Theorem 9. Let S = (C1 × C2)/G be a surface isogenous to a product. Then
any surface X with the same topological Euler number and the same fundamental
group as S is diffeomorphic to S. The corresponding subset of the moduli space

M
top
S = M

diff
S , corresponding to surfaces homeomorphic, resp, diffeomorphic to S,

is either irreducible and connected or it contains two connected components which
are exchanged by complex conjugation.

If S is a Beauville surface (i.e., S is rigid) this implies: X ∼= S or X ∼= S̄. It
follows also that a Beauville surface is defined over Q̄, whence Gal(Q̄/Q) acts on
the discrete subset of the moduli space M of surfaces corresponding to Beauville
surfaces. We make the following

Conjecture 10. The absolute Galois group Gal(Q̄/Q) acts faithfully on the dis-
crete subset of the moduli space M of surfaces of general type corresponding to
Beauville surfaces.

We can prove the following:

Theorem 11. The absolute Galois group Gal(Q̄/Q) acts faithfully on the set
of connected components of the (coarse) moduli space of étale marked surfaces
isogenous to a higher product.

With a rather elaborate strategy (i.e., showing that the kernel mathfrakK of
the action of Gal(Q̄/Q) has to be Abelian, which implies by a result of Fried and
Jarden, that mathfrakK is trivial) we can then show the stronger result:

Theorem 12. The absolute Galois group Gal(Q̄/Q) acts faithfully on the set of
connected components of the (coarse) moduli space of surfaces of general type.
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A tale of two surfaces

Arnaud Beauville

1. Introduction

The aim of the talk was to point out a link between two surfaces which have
appeared recently in the literature: the surface of cuboids ([8], [6]) and the surface
(actually a family of surfaces) discovered by Schoen [7]. We showed that both
surfaces give rise to a surface X with q = 4, whose canonical map is 2-to-1 onto
a complete intersection of 4 quadrics Σ ⊂ P6 with 48 nodes. In the first case (§2)
X is a quotient (C × C′)/(Z/2)2, where C and C′ are genus 5 curves with a free
action of (Z/2)2. In the second case (§3), X is a double étale cover of the Schoen
surface. Despite their similarity the two families of surfaces X constructed are
different, in fact they have different homotopy type.

When the canonical map of a surface X of general type has degree > 1 onto a
surface, that surface either has pg = 0 or is itself canonically embedded ([1], Th.
3.1). Our surfaces X provide one more example of the latter case, which is rather
exceptional (see [4] for a list of the examples known so far).

2. The surface of cuboids and its deformations

In P4, with coordinates (x, y;u, v, w), we consider the curve C given by

(1) u2 = a(x, y) , v2 = b(x, y) , w2 = c(x, y)

where a, b, c are quadratic forms in x, y. We assume that the zeros of a, b, c form
a set of 6 distinct points. Then C is a smooth curve of genus 5, canonically
embedded. It is preserved by the group Γ+

∼= (Z/2)3 which acts on P4 by changing
the signs of u, v, w. The subgroup Γ ⊂ Γ+ (isomorphic to (Z/2)2) which changes
an even number of signs acts freely on C.

Proposition 1. Let C,C′ be two genus 5 curves of type (1), and let X be the
quotient of C × C′ by the diagonal action of Γ ∼= (Z/2)2.

1) X is a minimal surface of general type with q = 4, pg = 7, K2 = 32.
2) The involution iX of X defined by the action of Γ+/Γ ∼= Z/2 has 48 fixed

points. The canonical map canX : X → P6 factors through iX, and induces an
isomorphism of X/iX onto a complete intersection of 4 quadrics in P6 with 48
nodes.

Proof : 1) The computation of the numerical invariants of X is straightforward.

2) Let us denote by (x′, y′;u′, v′, w′) the coordinates on C′, and by a′, b′, c′

the corresponding quadratic forms. A basis of the canonical space H0(X,KX) =(
H0(C,KC)⊗H0(C′,KC′)

)Γ
is given by the elements

X = x⊗x′ Y = x⊗y′ Z = y⊗x′ T = y⊗y′ U = u⊗u′ V = v⊗v′ W = w⊗w′

They satisfy the relations

XT − Y Z = 0 , U2 = A(X,Y, Z, T ) , V 2 = B(X,Y, Z, T ) , W 2 = C(X,Y, Z, T ) ,
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where A,B,C are quadratic forms satisfying A(X,Y, Z, T ) = a(x, y) ⊗ a(x′, y′) ,
and the analogous relations for B and C.

Let Σ be the surface defined by these 4 equations. Since iX acts trivially on
H0(X,KX), the canonical map canX induces a map from X/iX onto Σ. Since
K2

X = 32 = 2 deg(Σ), this map is one-to-one, hence an isomorphism.

The number ν of fixed points of iX can be computed directly; it can also be

deduced from the formula χ(OX) = 2χ(OΣ) −
ν

4
, which follows from Riemann-

Roch. �

Example. Let us take for C and C′ the curve C0 defined by

u2 = xy , v2 = x2 − y2 , w2 = x2 + y2 .

We get for Σ the following equations :

XT = Y Z = U2 , V 2 = X2 − Y 2 − Z2 + T 2 , W 2 = X2 + Y 2 + Z2 + T 2 ;

or, after the linear change of variablesX = x+ t, T = t− x, Y = y + iz, Z = y − iz,
U = u, V = 2v, W = 2w:

t2 = x2 + y2 + z2 , u2 = y2 + z2 , v2 = x2 + z2 w2 = x2 + y2 .

These are the equations of the surface of cuboids, studied in [8], [6]. It encodes the
relations in a cuboid (= rectangular box) between the sides x, y, z, the diagonals
of the faces u, v,w, and the big diagonal t. Thus the surface of cuboids belongs to
a 6-dimensional family of intersection of 4 quadrics in P6 with 48 nodes.

The curve C0 is isomorphic to the modular curve X(8), and the map C0×C0 →
Σ can be described in terms of theta functions [5].

3. The Schoen surface

The Schoen surfaces S have been defined in [7], and studied in [3]. A Schoen
surface S is contained in its Albanese variety A; it has the following properties:

a) K2
S = 16 , pg = 5 , q = 4 (hence χ(OS) = 2);

b) The involution (−1A) induces an involution iS of S with 40 fixed points. The
canonical map canS : S → P4 factors through iS, and induces an isomorphism of
S/iS onto the complete intersection of a quadric and a quartic in P4 with 40 nodes
[3].

Let ℓ be a line bundle of order 2 on A; we denote by π : B → A the corresponding
étale double cover, and put X := π−1(S).

Proposition 2. 1) X is a minimal surface of general type with q = 4, pg = 7,
K2

X = 32.
2) For an appropriate choice of ℓ, the involution (−1B) induces an involution iX

of X with 48 fixed points. The canonical map canX : X → P6 factors through iX,
and induces an isomorphism of X/iX onto the complete intersection of 4 quadrics
in P6 with 48 nodes.
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Idea of proof : 1) Since π : X → S is an étale double cover, we have K2
X = 32 and

χ(OX) = 4; using Schoen’s original construction one finds q = 4, hence pg = 7.
2) The surface X has a natural action of (Z/2)2, given by the involution iX in-

duced by (−1B) and the involution τ associated to the double coveringX → S. We
want to determine how these involutions act on H0(X,KX). The decomposition
of H0(X,KX) into eigenspaces for τ is

H0(X,KX) ∼= H0(S,KS)⊕H0(S,KS ⊗ ℓ) .

The key point of the proof is the following

Claim. One can choose ℓ so that iX acts trivially on H0(X,KX).

Idea of proof : This is equivalent to saying that iS acts trivially on H2(S, ℓ). One
uses the holomorphic Lefschetz formula to translate this into a property of ℓ with
respect to the fixed points of iS , then some coding theory to prove that some line
bundles ℓ satisfy this property.

Once this is done, one concludes as follows. Choose bases (x0, . . . , x4) and (u, v)
of the (+1) and (−1)-eigenspaces in H0(X,KX) with respect to τ . The elements
u2, uv, v2 of H0(X,K⊗2

X ) are invariant under τ and iX , therefore they are pull-

back of iS-invariant forms in H0(S,K⊗2
S ). Such a form comes from an element of

H0(P4,OP(2)). Thus we have equations

u2 = a(x) uv = b(x) v2 = c(x) q(x) = 0

where a, b, c, q are quadratic forms in x0, . . . , x4, and q is the quadratic form in P4

vanishing on the image of canS . Geometric considerations show that the subvariety
Σ of P6 defined by these 4 quadratic forms is a surface. Since iX acts trivially
on H0(X,KX), the canonical map X → P6 induces a map X/iX → Σ which has
degree 1, hence is an isomorphism.

Finally the number of fixed points of iX is computed as in §2. �

Details can be found in [2].
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Birational stability of the orbifold cotangent bundle

Frédéric Campana

(joint work with Mihai Păun)

The extension of geometric properties from (complex) projective varieties X to
(orbifold) pairs (X,∆) has proven to be unavoidable in birational classification,
not only because of the so called LMMP (Log-Minimal Model Program), but also
to deal with the multiple fibres of fibrations f : X → Y , encoded in an ‘orbifold’
base (Y,∆f ) which permits to a certain extent to express the geometric proper-
ties of X in terms of the generic fibre Xy of f , together with the ‘geometry’ of
(Y,∆f ). The main task being to define appropriately the geometric invariants of
such (orbifold) pairs. This extension from the category of varieties to the category
of (orbifold) Log-pairs is usually done to the expense of only minor technicalities,
while the range of applications is immensely widened. This is once more the case
at hand in what follows.

In the sequel, (X,∆) will be a l.c (for ‘Log-canonical’) pair, with X a normal
and connected complex projective variety of dimension n, and ∆ :=

∑
j aj .Dj

an effective divisor with rational coefficients 0 ≤ aj ≤ 1, supported on the (finite)
union D of the D′

js, prime and distinct Weil divisors on X . These pairs interpolate
between the two extreme cases when ∆ = 0 (and then (X, 0) = X), and the
purely logarithmic case where ∆ = D (and then (X,D) is identified with the
quasi-projective variety X −D). In the general case, (X,∆) stands for a virtual
ramified cover of X ramifying to order mj :=

1
1−aj

over Dj .

Theorem 1. If KX+∆ is pseudo-effective, then Ω1(X,∆) is ‘generically positive’
(‘gsp’ for short).

Recall that a Q-line bundle L is pseudo-effective if L+a.H is Q-effective for any
polarization H on X and any positive rational number a. A torsion-free sheaf F is
said to be ‘gsp’ if, for any H and any quotient Q of F , we have: det(Q).Hn−1 ≥ 0.
This is tested on ‘Mehta-Ramanathan curves’ C, generic complete intersections of
high multiples of H . An essential property of such curves is to be ’free’ (i.e.: they
can be chosen to avoid any given codimension 2 subset of X). This property will
be used crucially in each step of the proof.

When ∆ = 0, we recover Miyaoka’s generic semi-positivity theorem, because
KX is pseudo-effective (‘pseff’ for short) if and only if X is not uniruled (i.e.:
covered by rational curves). The original proof of Miyaoka however mixed char
p > 0 and char 0 arguments, and could not be adapted to the present orbifold
context. Our proof is in char 0 only.

A second case when the statement of the theorem does not need any new defi-
nition is when (X,∆ = D) is purely logarithmic: Ω1(X,D) is then defined to be
Ω1

U (Log(D|U)) on the Zariski open set U with codimension at most two comple-
ment consisting of points where X is smooth and D is of normal crossings (or even
smooth). One then defines Ω1(X,D) u∗(Ω

1
U (Log(D|U ))).
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In the general case, we define similarly Ω1(X,∆) over U first and take the
extension as above. Assume thus that we are near a point x ∈ U , and have local
coordinates (x1, ..., xn) such that D is supported in the union of the coordinates

hyperplanes. For 1 ≤ j ≤ n, let aj =
bj
cj

be the coefficient of the coordinate

hyperplane xj = 0 in ∆, with 0 ≤ bj ≤ cj coprime integers. When aj = 0 (resp.
aj = 1), we thus have: bj = 0, cj = 1 (resp. bj = cj = 1). Otherwise 1 ≤ bj < cj.

Morally, Ω1(X,∆) is then, locally, the locally free sheaf of OX -modules gen-

erated by the
dxj

xj

aj

. This does not make sense over X but it does by taking

π∗(
dxj

xj

aj

= (k.cj).y
kj .(cj−bj).

dyj

yj
, if π : Y → X is any local ramified cover defined

by: π(y1, ..., yn) = (yk1.c1
1 , ...., ykn.cn

n ). In this way, π∗(Ω1(X,∆)) can be defined
locally, for any choice of positive integers k1, ...., kn.

In order to have a global definition of π∗(Ω1(X,∆)), we take a global cyclic
ramified cover π : Y → X associated to any reduced section of k.c.H − D, for
k > 0 sufficiently large and c := lcm(cj). The Galois group is then Zk.c. We say
that π∗(Ω1(X,∆)) is ‘gap’ if for any G-invariant quotient sheaf Q of π∗(Ω1(X,∆)),
and any H , det(Q).(π∗(H))n−1 ≥ 0.

Remark 1. This property turns out to be independent of the choices made. This
follows from the proof of the theorem. A direct conceptual proof were more inter-
esting.

Corollary 1. Let (X,∆) be as above (l.c, thus). Assume that KX + ∆ is pseff,
and that (KX +∆).Hn−1 = 0 for some H. Let L a line bundle on X together with
an inclusion π∗(L) → ⊗m(π∗(Ω1(X,∆))), for some m > 0. Then L.Hn−1 ≤ 0.

When ∆ = 0, this says for example that the covariant holomorphic tensors onX
are ‘parallel’ if KX is numerically trivial, a conclusion also obtained via Ricci-flat
Kähler metrics and Bochner formula. But the ‘orbifold’ version above applies to
many more situations.

The proof of the above theorem rests on Bogomolov-Mc Quillan algebraicity
criterion for foliations and a refinement of Viehweg’s weak positivity theorem for
direct images of relative pluricanonical sheaves, taking into account the multiple
fibres of a fibration (even when ∆ = 0, these intervene crucially in the proof).

Using the existence of Log-minimal models by Birkar-Cascini-Hacon-McKernan
([BCHM]), we can deduce:

Corollary 2. Let (X,D) be a purely l.c logarithmic pair. Assume the existence
of a big line bundle L on X, together with an injection: L → ⊗m(Ω1

X(Log(D))).
Then KX +D is big.

Let us explain the idea when K := KX + D is nef: we then have: L =
aH + E for some a > 0 and E effective. From the gsp property we obtain:
a.H.Kn−1 ≤ L.Kn−1 ≤ c.K.Kn−1 = c.Kn, where c = c(m,n) > 0 is such
that det(Ω1

X(Log(D))) = c.K. This is because K = lim(Hn := K + 1
n ). We

now conclude by the Hodge index theorem: a.(Hn)
1
n ≤ a.H.Kn−1 ≤ c.Kn that

(ac )
n.Hn ≤ Kn. Thus Kn has positive volume and is big.
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The case when K is pseff is easily reduced to the preceding case by using
[BCHM].

It remains to show that K has to be pseff: if not replace D by D + t.H where
t > 0 is minimal such that K + tH is pseff. This t is rational, by [BCHM] again.
But Ω1(X,D) injects naturally into Ω1(X,D + tH). Thus K + tH its big, which
contradicts the minimality of t. (Strictly speaking, for this step we need to prove
the statement above for (X,D + tH) assuming it to be pseff, but the proof is
the same while the statement requires replacing L by π∗(L), and similarly for
Ω1(X,∆)).

Using the existence of the Viehweg-Zuo line bundle (which gives a big line
bundle L together with an injection as above in the situation below), we get:

Theorem 2. Let f : Z → B be an algebraic proper submersion between connected
quasi-projective manifolds. Assume that the fibres of f all have a semi-ample
canonical bundle, and that the ‘variation’ of f is maximal, that is: the rank of the
Kodaira-Spencer map is equal to dim(B) at the generic point of B. Then B is of
Log-general type (i.e: KX +D is big, if B = X−D, where X is smooth projective,
and D a normal crossing divisor on X).

This statement (sometimes called ‘Shafarevich hyperbolicity conjecture’, and
conjectured by Viehweg-Zuo) was proved when dim(B) ≤ 3 by Kebekus-Kovács.

On base point freeness in positive characteristic

Paolo Cascini

(joint work with Hiromu Tanaka and Chenyang Xu)

0.1. Introduction. Mori’s cone theorem and Kawamata-Shokurov base point free
theorem represent two of the main tools in the study of the birational geometry
of varieties defined over the field of complex number (e.g. [3]). The natural
generalisation of these results to varieties defined over an arbitrary algebraically
closed field is still open. The purpose of our work is to extend many of the results
which, over C, are obtained as applications of these two theorems to varieties
defined over a field of positive characteristic.

More specifically, let X be a normal variety defined over an algebraically closed
field k of characteristic p > 0 and let B be an effective R-divisor such that KX+B
is R-Cartier. Fix a closed point x ∈ X . For any D effective, and for any positive
integer e, we consider the trace map

TreX(D) : F e
∗ (OX(−(pe − 1)KX −D)) → OX .

A pair (X,B) is strongly F -regular at x if, for every effective divisor E, there
exists a positive integer e such that TreX(p(pe− 1)Bq+E) is surjective at x. By a
result of Hara and Watanabe, if (X,B) is of strongly F -regular type then (X,B)
is klt. Moreover, combining together results by Hara and Watanabe and Tagaki,
if (X,B) is a pair over C then (X,B) is klt if and only if its reduction modulo p
is strongly F -regular for any sufficiently large prime p.
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0.2. Strictly nef divisors. Recall that a divisorD on a normal projective variety
X is said to be strictly nef if D · C > 0 for all C curve in X . Note that, even
in positive characteristic, strictly nef divisors are not necessarily ample. Our first
result is the following:

Main Theorem 1: Let (X,B) be a strongly F -regular pair, where B is an
effective R-divisor. Assume that A is an ample R-divisor such that KX + A + B
is strictly nef. Then KX +A+B is ample.

As a consequence, we obtain the following rationality theorem:
Corollary Let (X,B) be a strongly F -regular pair, where B is an effective

Q-divisor. Assume that KX +B is not nef and A is an ample Q-divisor. Let

λ := min{t > 0 | KX +B + tA is nef }.
Then there exists a curve C in X such that (KX +λA+B) ·C = 0. In particular,
λ is a rational number.

0.3. Divisors of maximal nef dimension. A divisorD over a normal projective
variety X is of maximal nef dimension if D · C > 0 for all C movable curve in X .
In this case we have:

Main Theorem 2: Let X be a normal projective variety. Assume that A is
an ample R-divisor and B ≥ 0 is a R-divisor such that KX + B is R-Cartier and
KX +A+B is nef and of maximal nef dimension. Then KX +A+B is big.1

By the main result of [1] we obtain that if X is a normal projective variety
defined over an uncountable algebraically closed field k, and L is a nef R-divisor,
then there exists an open set U ⊆ X and a proper morphism ϕ : U → V , such that
L is numerically trivial on a very general fibre F of ϕ and for a very general point
x, we have that L ·C = 0 if and only if C is contained in the fibre of ϕ containing
x.

Thus, combining the results above we obtain the following:
Theorem: Let X be a normal projective variety. Assume that A is an ample

R-divisor, B ≥ 0 is an R-divisor such that L = KX + A + B is nef but not big.
Then X is covered by rational curves R such that

L ·R = 0 and − 2 dimX ≤ (KX +B) · R < 0.

0.4. Threefolds. We now consider projective threefolds defined over an alge-
braically closed field of positive charcteristic. We first obtain the following:

Weak Cone Theorem: Let X be a Q-factorial projective threefolds. Let
B be an effective Q-divisor on X whose coefficients are strictly less than one.
Assume that KX +B is not nef. Then there exist an ample Q-divisor A such that
KX +A+B is not nef and finitely many curves C1, · · · , Cr on X such that

NE(X) = NE(X)KX+A+B≥0 +

r∑

i=1

R≥0[Ci].

1The same result was independently obtained by J. McKernan using different methods
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Thus, by combining together earlier results of Kollár, Keel and Hacon and Xu,
we are able to obtain the following weak version of the minimal model program
for threefolds:

MMP for 3-folds: LetX be a Q-factorial terminal projective threefold defined
over Fp with p > 5. Then there exists a KX -negative birational contraction
f : X 99K Y to a Q-factorial terminal projective threefold such that one of the
following is true:

(1) if KX is pseudo-effective, then KY is nef;
(2) if KX is not pseudo-effective, then there exist a KY -negative extremal ray

R of NE(Y ) and a surjective morphism g : Y → Z to a normal projective
variety such that g∗OY = OZ and for every curve C in Y , g(C) is a point
if and only if [C] ∈ R.

Finally, we obtain the following:
Weak Base Point Free Theorem: Let (X,B) be a projective three dimen-

sional log canonical pair for some big Q-divisor B ≥ 0 such that KX + B is nef.
Assume that p > 2

a for any coefficient a of B.

(1) If KX +B is not numerically trivial, then

κ(X,KX +B) = ν(X,KX +B) = n(X,KX +B).

(2) If κ(X,KX +B) = 1 or 2, then KX +B is semiample.
(3) If k = Fp, and all coefficients of B are strictly less than 1, then KX +B is

semiample.

This talk is based on our recent preprint [2].
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Abelian varieties in Brill–Noether loci and irregular surfaces

Ciro Ciliberto

(joint work with Margarida Mendes Lopes, Rita Pardini)

This is a report on joint work in progress with Margarida Mendes Lopes and Rita
Pardini.

In [1] the authors posed the problem of studying, and possibly classifying, sit-
uations like this:
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(*) C is a smooth, projective, complex curve of genus g, Z is an irreducible
r–dimensional subvariety of a Brill–Noether locus W s

d (C) ( Jd(C), and
Z is stable under translations by the elements of an abelian subvariety
A ( J(C) of dimension a > 0 (if so, we will say that Z is A–stable).

Actually in [1] the variety Z is the translate of a positive dimensional proper
abelian subvariety of J(C), while the above more general formulation was given
in [6].

The motivation for studying (*) resides, among other things, in a theorem of
Faltings (see [7]) to the effect that if X is an abelian variety defined over a number
field K, and Z ( X is a subvariety not containing any translate of a positive
dimensional abelian subvariety of X , then the number of rational points of Z
over K is finite. The idea in [1] was to apply Faltings’ theorem to the d–fold
symmetric product C(d) of a curve C defined over a number field K. If C has
no positive dimensional linear series of degree d, then C(d) is isomorphic to its
Abel–Jacobi image Wd(C) in Jd(C), thus C(d) has finitely many rational points
over K if Wd(C) does not contain any translate of a positive dimensional abelian
subvariety of J(C). The suggestion in [1] is that, if, by contrast, Wd(C) contains
the translate of a positive dimensional abelian subvariety of J(C), then C should
be quite special, e.g., it should admit a map to a curve of lower positive genus
(curves of this kind clearly are in situation (*)). This idea was tested in [1], where
a number of partial results were proven for low values of d.

The problem was taken up in [6] where, among other things, it is proven that if
(*) holds, then r+a+2s 6 d, and, if in addition d+ r 6 g− 1, then r+a+2s = d
if and only if:

(a) there is a degree 2 morphism ϕ : C → C′, with C′ a smooth curve of genus
a, such that A = ϕ∗(J(C′)) and Z =Wd−2a−2s(C) + ϕ∗(Ja+s(C′)).

In [6] there is also the following example with (d, s) = (g − 1, 0):

(b) there is a degree 2 morphism ϕ : C → C′, with C′ a smooth curve of genus
g′ = r + 1, A is the Prym variety of ϕ and Z = ϕ−1

∗ (KC′) ∼= A.

One more family of examples we discovered is the following:

(c) C is hyperelliptic, there is a degree 2 morphism ϕ : C → C′ with C′ a
smooth curve of genus a such that g > 2a+1, A = ϕ∗(J(C′)), 0 < s < g−1
and Z = ϕ∗(Ja(C′)) +Wd−2s−2a(C) +W s

2s(C) (notice that W s
2s(C) is a

point).

The result in [6] goes in the direction indicated in [1]. The unfortunate feature
of it is the hypothesis d + r 6 g − 1 which turns out to be quite strong. To
understand how strong it is, consider the case (d, s) = (g − 1, 0), which is indeed
the crucial one (see [6, Proposition 3.3]) and in which Debarre–Fahaloui’s theorem
is void.

Our first result is the full classification of the cases in which (*) happens and
d = r+ a+ 2s. We then prove that, with no further assumption, either (a) or (b)
or (c) occurs.
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The idea of the proof is not so different, in principle, from the one proposed in
[6] in the restricted situation considered there. Indeed, one uses the A–stability
of Z and its maximal dimension to produce linear series on C which are not
birational, in fact composed with a degree 2 irrational involution. The main tool
in [6], inspired by [1], is a Castelnuovo’s type of analysis for the growth of the
dimension of certain linear series.

Our approach also consists in producing a non birational linear series on C, but
it is in a sense more direct. We consider (*) with (d, s) = (g−1, 0) and a+r = g−1,
i.e., the basic case, in which Z is contained in Wg−1(C), which is a translate of the
theta divisor Θ ⊂ J(C). This immediately produces, using the Gauss map of Θ
restricted to Z, a base point free sublinear series L of dimension r of the canonical
series of C. It turns out that Z is birational to an irreducible component of the
variety C(g − 1, L) ⊂ C(g − 1) consisting of all divisors of degree g − 1 contained
in some divisor of L. The A–stability of Z implies that C(g− 1, L) has some other
component besides the one birational to Z, and this forces L to be non–birational.
Once one knows this, a (rather subtle) analysis of the map determined by L and
of its image leads to the conclusion.

The motivation for considering this problem is for us quite different from the
one of [1, 6]. It is in fact related to the study of irregular surfaces S of general
type, where situation (*) presents itself in a rather natural way. For example, let
C ⊂ S be a smooth, irreducible curve, and assume C corresponds to the general
point of an irreducible component C of the Hilbert scheme of curves on S which
dominates Pic0(S). There is also only one irreducible component K of the Hilbert
scheme of curves homologous to canonical curves on S which dominates Pic0(S)
(this is called the main paracanonical system). The curves in C cut out on C
divisors which are residual, with respect to |KC |, of divisors cut out by curves
in K. Consider now the one of the two systems C and K whose curves cut on C
divisors of minimal degree d = min{C2,KS ·C}, and denote by s the dimension of
the general fibre of this system over Pic0(S). Then we have a natural restriction
map Pic0(S) 99KW s

d (C) ⊂ Jd(C), whose image is a q–dimensional abelian variety
contained inW s

d (C), which is what happens in (*). Thus understanding (*) would
provide us with the understanding of (most) curves on irregular surfaces.

Our aforementioned result on (*), even if restricted to the very special case in
which Z has maximal dimension, turns out to be useful in surface theory. For
example, if S is a minimal, irregular surface of general type, then K2

S > 2pg (see
[5]) and we are able to classify surfaces for which K2

S = 2pg. Precisely we prove
that minimal, irregular surface of general type with K2

S = 2pg are of one of the
following types:
(i) q = 1, an infinite family with any pg > 1, which are suitable double covers of
elliptic scrolls (classified in [8], see also [3]);
(ii) pg = q = 2, K2

S = 4, double covers of principally polarised abelian surfaces
(A,Θ) branched along a divisor in |2Θ|;
(iii) pg = q = 3, K2

S = 6, symmetric products of smooth curves of genus 3
(classified in [4]);
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(iv) pg = q = 4, K2
S = 8, products of genus 2 curves (classified in [2]).

The idea of the proof is as follows. Results in [5] yield q 6 4 with equality only in
case (iv). The case q = 1 was treated in [8]. The case χ = 1, q = 3, was treated
in [4]. The case χ = 1, q = 2 leads to (ii), thus solving a conjecture which has
been open for some years. The case χ > 2, 2 6 q 6 3, is excluded in the following
way. One checks that, if such a surface S exists, then Albdim(S) = 2. So by
Severi’s inequality 2pg = K2

S > 4χ. This leads to the only numerical possibility
q = 3, pg = 4,K2

S = 8, which is ruled out using an analysis of the canonical map.
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Non-simplicity of the planar Cremona group (after S. Cantat and S.
Lamy)

Igor Dolgachev

The Cremona group CrF (n) in dimension n over a field F is the group of birational
transformation of the projective space Pn

F . In purely algebraic terms it is the
group of automorphisms AutF (F (t1, . . . , tn)) of the field of rational functions with
coefficients in F . In the case n = 1, the group is isomorphic to the simple algebraic
group PGL2(F ), but in the case n > 1 it does not admit any sensible algebraic
structure. However, one can define the corresponding non-representable functor
on the category of F -algebras [4]. In particular, the Lie algebra of the Cremona
group makes sense, and it is isomorphic to the infinite-dimensional Lie algebra
DerF (F (t1, . . . , tn)) of derivations of F (t1, . . . , tn) over F .

In 1895 F. Enriques asked whether the group CrC(2) is simple as an abstract
group. Apparently not being aware of Enriques’s question, Yu. Manin in Moscow
in the sixties and D. Mumford in the early seventies posed the same question.
Here are the arguments pro and contra of the simplicity statement.
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Pro:
1) The Lie algebra DerF (F (t1, . . . , tn)) is a simple Lie algebra (L. Makar-Limanov).

2) By Noether’s Factorization Theorem (see [5]), the group CrC(2) is generated by

its subgroup of projective transformations PGL3(C) and a single transformation
(t1, t2) 7→ (t−1

1 , t−1
2 ), called the standard quadratic transformation. By a remark

of M. Gizatullin, any proper normal subgroup H of CrC(2) does not contain a
non-identical projective transformation.

3) Gizatullin proved that the normal subgroup containing a Cremona transfor-
mation given by homogeneous polynomials of degree ≤ 7 coincides with the whole
group [7].
4) Previous attempts to find a non-injective homomorphism of CrC(2) some other

group of Cremona transformations had failed.

Conra:V. Danilov proved that the subgroup of AutF (F [t1, . . . , tn]) that consists
of automorphisms of the polynomial algebra F [t1, . . . , tn] with the jacobian equal
to the identity is not simple [3].

In my talk I explain a recent remarkable result of Serge Cantat and Stéphane
Lamy that gives the negative answer to the question of Enriques. The goal of my
talk was to make the community of algebraic geometers to be aware of this result
and hint on the methods of its proof coming from a different area of mathematics.

Theorem 1. For any algebraically closed field F , the group CrF(2) contains proper
normal subgroups.

In fact, one can construct an explicit birational transformations g of the plane
such that the smallest normal subgroup containing some power gn is proper.

The proof of the theorem is based on a known representation of the group CrF(2)
in the group of isometries of the infinite-dimensional hyperbolic space associated
with the Néron-Severi space of Manin’s bubble space of a smooth projective surface
S obtained by blowing up all points in the plane including infinitely near points [8].
Its element are pairs (D,

∑
mixi), where D is divisor class on S and

∑
mixi is an

element of the free abelian group generated by the set of closed points and infinitely
points on S. The intersection product is defined by 〈(D,∑mixi), (D

′,
∑
m′

ixi)〉 =
D ·D′ −∑mim

′
i. This space Z(S), the Néron-Severi space of the bubble space,

equipped with this pairing becomes a hyperbolic space of infinite dimension. The
Cremona group CrF (2) has a natural faithful action by isometries of Z(P2).

An example of a subgroup of CrF (2) is a subgroup H of the group of biregular
automorphisms of a rational surface S admitting a birational morphism π : S →
P2
F . In this case the group H acts on the Néron-Severi group NS(S) equipped

with the intersection of divisor classes pairing. The space NS(S) can be viewed
as the orthogonal space of Z(S) in Z(P2). It is a free module of some some rank
ρ and in a natural hyperbolic orthonormal basis (e0, . . . , en) of NS(S) formed by
e0 = π∗(OP2(1)) and the classes ei of exceptional curves Ei of π, the action g∗ of
g ∈ H is defined by the classical characteristic matrix of a Cremona transformation
(see [5]).
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We will restrict ourselves with trying to find a proper subgroup of the Cremona
group among subgroups of a rational surface, although the paper deals with a
more general case. Let H be the real hyperbolic space associated with the real
vector space V = NS(S)R, i.e. the connected component of the image of the light
cone {x ∈ H : x2 > 0} in H \ {0}/R+ containing the ample cone. Its boundary
consists of positive rays of isotropic vectors.

The group of isometries of a real hyperbolic space is a connected component
of the projectivized orthogonal group of V . An isometry σ is called hyperbolic if
it has two different fixed points on the boundary. It corresponding to two real
eigenvalues λ(σ) > 1 and λ(σ)−1 in V , all other eigenvalues are complex numbers
of absolute value 1. There is a unique geodesic line Ax(σ) and σ preserves this
line and acts on it by translating a point x ∈ Ax(σ) to a point σ(x) with distance
dist(x, σ(x)) equal to L(σ) = logλ(σ).

Let ǫ, B be two positive numbers. A subset A of H is called (ǫ, B)-rigid if
diam(A ∩ǫ σ(A)) ≥ B for some isometry σ implies σ(A) = A. Here A ∩ǫ σ(A) is
the set of points whose distance to A and σ(A) is less than or equal to ǫ. It is
called ǫ-rigid if it is (ǫ, B)-rigid for some B. It is clear that, if σ is ǫ-rigid, then it
is ǫ′-rigid for ǫ′ < ǫ. In fact, the converse is true:if ǫ > 2θ = 16 log 3 and Ax(σ) is
2θ-rigid, then it is also ǫ-rigid.

A hyperbolic isometry σ in a group G of isometries is called tight if Ax(σ) is
2θ-rigid, and, for all τ ∈ G, τ(Ax(σ) = Ax(σ) implies τ ◦ σ ◦ τ−1 = σ or σ−1.

The main result from hyperbolic which is used in the proof of the theorem is
the following.

Theorem 2 (Normal subgroup theorem). Let G be a group of isometries of a
hyperbolic space H. Suppose that σ ∈ G is tight and satisfies 1

20L(g) > 60θ + 2B
for some B > 0. Then any element τ 6= 1 in the smallest normal subgroup
〈〈σ〉〉 ⊂ G containing σ satisfies the following alternative:either τ is conjugate
to σ, or L(τ) > L(g).

In particular, since L(σ2) > L(σ) and σ2 is not conjugate to σ (they have differ-
ent eigenvalues larger than 1), we obtain that 〈〈g2〉〉 is a proper normal subgroup
of G.

To apply this theorem to the Cremona group we need a geometric condition
that g∗ satisfies the assumption of the Normal subgroup theorem.

Theorem 3. Let S be a rational surface over F such that Aut(S) acts faithfully
on NS(S) and let g ∈ Aut(S) such that σ = g∗ is hyperbolic. Let Vg ⊂ NS(S)R
be the plane spanned by two isotropic eigenvectors of g∗. Assume that g∗ acts
identically on V ⊥

g ∩NS(S). Then Ax(g∗) is rigid, any h ∈ Bir(S) ∼= CrF (2) which
preserves Ax(g∗) is an automorphism of S, and g∗ is a tight element of Bir(S). In
particular, for sufficiently large n, the group 〈〈gn〉〉 is a proper normal subgroup of
CrF (2).

Example 1. Let S be a general Coble surface, i.e. a rational surface obtained by
blowing up the ten nodes x1, . . . , x10 of a general rational plane curve of of degree
6. It is known that Aut(S) acts faithfully on NS(S) and its image in the subgroup
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of isometries of the orthogonal complement K⊥
S of the canonical class in NS(S) is

equal to the 2-congruence subgroup W (2), i.e. the group of isometries such that,
for any x ∈ K⊥

S , 1
2 (σ(x) − x) ∈ K⊥

X (see [1]).
Let e0, e1, . . . , e10 be the canonical basis of NS(S). Consider the following divi-

sors:

D1 = 6e0 − 2

8∑

i=1

ei − e9 − e10, D2 = 6e0 − 2

8∑

i=1

ei − e7 − e8.

We haveD2
1 = D2

2 = 2 and D1 ·D2 = 4. The plane L spanned by the divisor classes
of D1 and D2 in NS(S)R contains two isotropic vectors. Consider the isometry φ of
L defined by D1 7→ 4D1−D2 and D2 7→ D1. Then φ

2 maps D1 to 15D1−4D2 and
D2 to 4D1−D2. Let σ be defined as an isometry that coincides with φ2 on L and
with the identity on L⊥ ∩ NS(S). Note that KX = −3e0 +

∑10
i=1 ei ∈ L⊥, hence

σ acts on K⊥
X and, obviously, belongs to the 2-level congruence subgroup. Thus

there exists g ∈ Aut(S) such that g∗ = σ. Applying the previous proposition, we
obtain that some power of g normally generates a proper subgroup of the Cremona
group. A direct computation shows that

σ(e0) = 73e0 − 24(e1 + · · ·+ e6)− 30(e7 + e8)− 6(e9 + e10).

As the corresponding Cremona transformation, g is given by the linear system of
curves of degree 73 with base point of multiplicity 24 at x1, . . . , x6, of multiplicity
30 at x7, x8 and multiplicity 6 at x9, x10.

Example 2. Let E be an elliptic curve with complex multiplication by i =
√
−1 and

let X = E × E/(τ), where τ acts diagonally by multiplication by i. The surface
X is a rational surface, it is the quotient of the Kummer surface Kum(E × E)
by a non-symplectic involution. The group PGL2(Z[i]) acts on X in an obvious
manner. Cantat and Lamy prove that any matrix M ∈ SL(Z) such that it is
congruent to the identity matrix modulo 2 with |tr(M)| ≥ 3 defines an element g
of Aut(X) such some power of g normally generates a proper normal subgroup of
the Cremona group.
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Characterization of varieties of Fano type via singularities of Cox rings

Yoshinori Gongyo

(joint work with A. Sannai, S. Okawa, S. Takagi)

The notion of Cox rings was defined in [HK], generalizing Cox’s homogeneous
coordinate ring [Co] of projective toric varieties.

Let X be a normal (Q-factorial) projective variety over an algebraically closed
field k. Suppose that the divisor class group Cl(X) is finitely generated and free,
and let D1, · · · , Dr be Weil divisors on X which form a basis of Cl(X). Then the
ring ⊕

(n1,...,nr)∈Zn

H0(X,OX(n1D1 + · · ·+ nrDr)) ⊆ k(X)[t±1 , · · · , t±r ]

is called the Cox ring of X . If the Cox ring of a variety X is finitely generated
over k, X is called a (Q-factorial) Mori dream space. This definition is equivalent
to the geometric one given in the original definition of MDS ([HK, Proposition
2.9]). Projective toric varieties are Mori dream spaces and their Cox rings are
isomorphic to polynomial rings [Co]. The converse also holds [HK], characterizing
toric varieties via properties of Cox rings.

We say that X is of Fano type if there exists an effective Q-divisor ∆ on X
such that −(KX + ∆) is ample and (X,∆) is klt. It is known by [BCHM] that
Q-factorial varieties of Fano type are Mori dream spaces. Since projective toric
varieties are of Fano type, this result generalizes the fact that projective toric
varieties are Mori dream spaces. Therefore, in view of the characterization of toric
varieties mentioned above, it is natural to expect a similar result for varieties of
Fano type. The purpose of this paper is to give a characterization of varieties of
Fano type in terms of the singularities of their Cox rings.

Main Theorem [with A. Sannai, S. Okawa, S. Takagi]: Let X be a Q-
factorial normal projective variety over an algebraically closed field of characteristic
zero. Then X is of Fano type if and only if its Cox ring is finitely generated and
has only log terminal singularities.

Our proof of Main Theorem 1 is based on the notion of global F -regularity,
which is defined for projective varieties over a field of positive characteristic via
splitting of Frobenius morphisms. A projective variety over a field of characteristic
zero is said to be of globally F -regular type if its modulo p reduction is globally
F -regular for almost all p. Schwede–Smith [SS] proved that varieties of Fano type
are of globally F -regular type, and they asked whether the converse is true. We
give an affirmative answer to their question in the case of Mori dream spaces.
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Theorem A: Let X be a Q-factorial Mori dream space over a field of char-
acteristic zero. Then X is of Fano type if and only if it is of globally F -regular
type.

Theorem A is a key to the proof of Main Theorem 1, so we outline its proof
here. The only if part was already proved by [SS, Theorem 5.1], so we explain the
if part. Since X is a Q-factorial Mori dream space, we can run a (−KX)-MMP
which terminates in finitely many steps. A (−KX)-MMP Xi 99K Xi+1 usually
makes the singularities of Xi worse as i increases, but in our setting, we can check
that each Xi is also of globally F -regular type. This means that each Xi has only
log terminal singularities, so that a (−KX)-minimal model becomes of Fano type.
Finally we trace back the (−KX)-MMP above and show that in each step the
property of being of Fano type is preserved, concluding the proof.

In order to prove Main Theorem 1, we also show that if X is a Q-factorial
Mori dream space of globally F -regular type, then modulo p reduction of a multi-
section ring of X is the multi-section ring of modulo p reduction Xp of X for
almost all p. The proof is based on the finiteness of contracting rational maps
from a fixed Mori dream space, vanishing theorems for globally F -regular varieties
and cohomology-and-base-change arguments. This result enables us to apply the
theory of F -singularities to a Cox ring of X and, as a consequence, we see that
that a Q-factorial Mori dream space over a field of characteristic zero is of globally
F -regular type if and only if its Cox ring has only log terminal singularities. Thus,
Main Theorem 1 follows from Theorem A.

I also report the following theorem. Remark that in the following theorem we
do not assume the MDS-ness.

Theorem B (with S. Takagi): Let S be a normal projective surface over an
algebraically closed field of characteristic zero. If S is of dense globally F -split
type (resp. globally F -regular type), then it is of Calabi–Yau type (resp. Fano
type).

One of the key ingredients in the proof is to show that taking the Zariski
decomposition of the anti-canonical divisor of a surface of dense globally F -split
type commutes with reduction modulo p. The globally F -regular case of Theorem
B immediately follows from this fact.

The proof of the globally F -split case is much more involved. First, by taking
the minimal resolution, we may assume that S is smooth. If S is not rational, then
the problem can be reduced to whether the projective bundle of a rank 2 vector
bundle of degree zero over an elliptic curve is globally F -split. This question was
already answered by Mehta and Srinivas [MS], so we suppose that S is rational.
Using the Zariski decomposition of −KS and a result of Laface and Testa [LT] on
rational surfaces, we can reduce to the case where −KS is nef and there exists an
effective divisor D linearly equivalent to −KS. We can assume in addition that
the modulo p reduction Sp of S is a minimal elliptic surface and the reduction
Dp of D is an indecomposable curve of canonical type. We then make use of the
classification of singular fibers (Kodaira’s table) to see that if Dp is not of type
In, then (Sp, Dp) has to be globally F -split for infinitely many p. Finally, since
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a fiber of type In is a normal crossing divisor and global F -splitting implies log
canonicity (see [HW, Theorem 3.9]), we conclude that (S,D) is log canonical, that
is, S is of Calabi-Yau type.
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Étale fundamental groups of klt spaces, flat sheaves, and quotients of
Abelian varieties

Daniel Greb

(joint work with Stefan Kebekus and Thomas Peternell)

Working with a singular complex algebraic variety X , one is often interested in
comparing the (étale) fundmental group or the set of finite étale covers of X
with that of its smooth locus Xreg. For example, Lefschetz theorems for singular
varieties only hold for the smooth locus of X and for the smooth locus of a general
hyperplane section. More precisely, one may ask the following.

What are the obstructions to extend finite étale covers of Xreg to X? How do the
étale fundamental groups of X and of its smooth locus differ?

We answer these questions for projective varieties X with Kawamata log termi-
nal (klt) singularities, a class of varieties that is important in the Minimal Model
Program. The main result of our upcoming paper [GKP13], see Theorem 1 below,
asserts that there are no infinite towers of finite Galois morphisms over a klt base
variety where all morphisms are étale in codimension one, but branched over a
small set. In a certain sense, this result can be seen as saying that the difference
between the sets of étale covers of X and of Xreg is small in case X is klt.

1. Main results

While the main technical result of [GKP13] is quite general, and its formulation
is therefore somewhat involved, for many applications the following special case
suffices.
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Theorem 1. Let X be a normal, complex, quasi-projective variety. Assume that
there exists a Q-Weil divisor ∆ such that (X,∆) is Kawamata log terminal (klt).
Assume we are given a sequence of finite, surjective morphisms that are étale in
codimension one,

X = Y0 Y1
γ1

oo Y2
γ2

oo Y3
γ3

oo · · · .γ4
oo

If the composed morphisms γ1 ◦ · · · ◦ γi : Yi → X are Galois for every i ∈ N+, then
all but finitely many of the morphisms γi are étale.

Here, a finite, surjective morphism γ : Y → X is called Galois, if it is the
quotient morphism for the action of a finite group G acting algebraically on Y .
The statement does not continue to hold if one drops the “Galois” assumption on
the composed morphisms γ1 ◦ · · · ◦ γi (in my talk I discussed singular Kummer
surfaces S = A/± 1, where A is an abelian surface, and towers of endomorphisms
of S induced by isogenies of A). The proof of Theorem 1 is by induction using the
singularity stratification of X . The base of the induction is secured by a recent
result of Chenyang Xu on the finiteness of local algebraic fundamental groups of
klt singularities, see [Xu12].

Before stating an almost direct consequence of Theorem 1, let us recall that if
Y is a complex algebraic variety, the étale fundamental group π̂1(Y ) is isomorphic
to the profinite completion of the topological fundamental group of the associated
complex space Y an, cf. [Mil80, § 5].

Theorem 2 (Extension of étale covers from the smooth locus of klt spaces). Let
X be a normal, complex, quasi-projective variety. Assume that there exists a Q-

Weil divisor ∆ such that (X,∆) is klt. Then, there exists a normal variety X̃ and

a finite, surjective Galois morphism γ : X̃ → X, étale in codimension one, such
that the following, equivalent conditions hold.

(1) Any finite, étale cover of X̃reg extends to a finite, étale cover of X̃.

(2) The natural map ι̂∗ : π̂1(X̃reg) → π̂1(X̃) of étale fundamental groups in-

duced by the inclusion of the smooth locus, ι : X̃reg → X̃, is an isomor-
phism.

2. Applications to flat sheaves and to quotients of Abelian

varieties

Flat sheaves. Let us recall that if Y is a complex algebraic variety and G is a
holomorphic vector bundle on the underlying complex space Y an, we call G flat
if it is defined by a representation of the topological fundamental group π1(Y

an).
An algebraic vector bundle or locally free sheaf is called flat if and only the the
associated complex vector bundle is flat. With this terminology, we have the
following consequence of Theorem 2.

Theorem 3 (Extension and algebraicity theorem for flat sheaves). Let X be a
normal, complex, projective variety. Assume that there exists a Q-Weil divisor

∆ such that (X,∆) is klt. Then, there exists a normal variety X̃ and a finite,
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surjective Galois morphism γ : X̃ → X, étale in codimension one, such that the

following holds: if F̃ ◦ is any flat holomorphic vector on X̃an
reg, then there exists a

flat algebraic vector bundle F̃ on X̃ such that F̃ |X̃an
reg

∼= F̃ ◦.

Quotients of abelian varieties. Consider a Ricci-flat compact Kähler manifold
whose second Chern class vanishes. As a classical consequence of Yau’s results on
the existence of a Kähler-Einstein metric, X is then covered by a complex torus,
cf. [Kob87, Ch. IV, Cor. 4.15]. Building on our results discussed so far, we are able
to generalise this to the singular case, when X is assumed to have singularities as
they appear in the Minimal Model Program.

Theorem 4 (Characterisation of torus quotients). Let X be a normal, complex,
projective variety of dimension n with at worst canonical singularities. Assume
that X is smooth in codimension two and that the canonical divisor is numerically
trivial, KX ≡ 0. Further, assume that there exists an ample divisor H on X and

a desingularisation π : X̃ → X such that

c2(TX̃) · π∗(H)n−2 = 0.

Then, there exists an Abelian variety A and a finite, surjective, Galois morphism
A→ X that is étale in codimension two.

A more general statement for threefolds was proven in [SBW94].

3. Sketch of the proof of Theorem 4

Suppose we are given a projective varietyX as in Theorem 4. As all assumptions
on X are invariant under taking finite, surjective Galois morphisms that are étale
in codimension one, an application of Theorem 3 allows us to assume that any flat
holomorphic vector bundle on Xan

reg extends to a flat algebraic vector bundle on X .
In order to show the claim, it then suffices to show that under these assumptions
the variety X is actually smooth, cf. the introduction to Section 2.

As KX ≡ 0, Miyaoka’s Generic Nefness Theorem implies that TX is semistable
with respect to H , see for example [GKP11]. Consequently, the theorem of Mehta-
Ramanathan implies that for any m ≫ 0, and any general complete intersection
surface S for |mH |, the restriction TX |S is an H |S-semistable vector bundle on the
smooth projective surface S (here we use the assumption on the codimension of
the singular set of X) with vanishing first and second Chern class. It then follows
(essentially from the Kobayashi-Hitchin correspondence) that TX |S is flat, see for
example [Sim92]; i.e, TX |S is given by a representation of π1(S). Furthermore,
in the situation under discussion Hamm’s version [BS95, Thm. 2.3.1] of Lefschetz’
Theorem states that the natural morphism π1(S) → π1(Xreg) is an isomorphism,
and hence can be used to define a representation of π1(Xreg), and therefore a flat
holomorphic vector bundle G ◦ on Xreg, which by our WLOG assumption extends
to a flat algebraic vector bundle G on the whole of X . As G |S is isomorphic to
TX |S , the tangent sheaf TX is therefore a flat vector bundle. In particular, TX is
locally free. The Lipman-Zariski-Conjecture for klt spaces, as proven for example
in [GKKP11], hence implies that X is smooth.
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Equivariant compactifications of the vector group

Jun-Muk Hwang

(joint work with Baohua Fu)

Let G = Cn be the complex vector group of dimension n. An equivariant com-
pactification of G is a G-action A : G ×X → X on a projective variety X of di-
mension n with an open orbit O ⊂ X . In particular, the orbit O is G-equivariantly
biregular to G. Given a projective variety X , such an action A is called an EC-
structure on X , in abbreviation of ‘Equivariant Compactification-structure’. Let
A1 : G × X1 → X1 and A2 : G × X2 → X2 be EC-structures on two projective
varieties X1 and X2. We say that A1 and A2 are isomorphic if there exist a lin-
ear automorphism F : G → G and a biregular morphism ι : X1 → X2 with the
commuting diagram

G×X1
A1−→ X1

(F, ι) ↓ ↓ ι
G×X2

A2−→ X2.

In [3], Hassett and Tschinkel studied EC-structures on projective spaceX = Pn.
They discovered that there are many distinct isomorphism classes of EC-structures
on Pn if n ≥ 2 and infinitely many of them if n ≥ 6. They posed the question
whether a similar phenomenon occurs when X is a smooth quadric hypersurface.
This was answered negatively in [6], using arguments along the line of Hassett-
Tschinkel’s approach. A further study was made in [1] where the authors raised the
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corresponding question when X is a Grassmannian. Even for simplest examples
like the Grassmannian of lines on P4, a direct generalization of the arguments in
[3] or [6] seems hard.

Our main result gives a uniform conceptual answer to these questions, as follows.

Theorem Let X be a Fano manifold of dimension n with Picard number 1,
different from Pn. Assume that X has a family of minimal rational curves whose
VMRT Cx ⊂ PTx(X) at a general point x ∈ X is smooth. Then all EC-structures
on X are isomorphic.

Recall that Cx is the union of tangent directions to rational curves of minimal
degree through x. Theorem has the following consequence.

Corollary Let X ⊂ PN be a projective submanifold of Picard number 1 such
that for a general point x ∈ X, there exists a line of PN passing through x and
lying on X. If X is different from the projective space, then all EC-structures on
X are isomorphic.

It is well-known that when X has a projective embedding satisfying the as-
sumption of Corollary, some family of lines lying on X gives a family of minimal
rational curves, for which the VMRT Cx at a general point x ∈ X is smooth
(e.g. by Proposition 1.5 of [4]). Thus Corollary follows from Theorem. Corol-
lary answers Arzhantsev-Sharoyko’s question on Grassmannians and also gives a
more conceptual answer to Hassett-Tschinkel’s question on a smooth quadric hy-
persurface, as a Grassmannian or a smooth hyperquadric can be embedded into
projective space with the required property. In fact, all known examples of Fano
manifolds of Picard number 1, which admit EC-structures, can be embedded into
projective space with the property described in Corollary. These include all irre-
ducible Hermitian symmetric spaces and some non-homogeneous examples coming
from Proposition 6.14 of [2].

The proof of Theorem is a simple consequence of the Cartan-Fubini type ex-
tension theorem in [5].
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MJ-discrepancy and Shokurov’s conjectures

Shihoko Ishii

If X is a normal Q-Gorenstein variety, by taking an appropriate resolution f :
Y → X , we can define the discrepancy divisorKY/X (call it the “usual discrepancy
divisor”). By using this discrepancy, we can define canonical (resp. log canonical
) singularities and also multiplier ideals. If X is not normal or Q-Gorenstein, the
usual discrepancy is not defined. We think of another kind of discrepancy which
works also for more general settings. Let X be an equidimensional reduced scheme
of finite type over algebraically closed field k of characteristic zero.

Let a be a non zero ideal onX and let f : Y → X be a log resolution for the prod-
uct of a with the Jacobian ideal JX of X . Such a resolution has the property that
the image of the canonical map f∗(Ωd

X) → Ωd
Y (where d = dim(X)) can be written

as OY (−K̂Y/X) · Ωd
Y , for some effective divisor K̂Y/X on Y . This is the Mather

discrepancy divisor, and if we write JX · OY = OY (−JY/X), then the difference

K̂Y/X−JY/X is called the Mather-Jacobian discrepancy divisor. By using this dis-
crepancy as an replacement of the usual discrepancy, we can define MJ-canonical
singularities, log MJ-canonical singularities, MJ-minimal log discrepancy and MJ-
multiplier ideal ([2]) for an arbitrary equidimensional reduced scheme X of finite
type over k. The Mather-Jacobian discrepancy has good properties, sometimes
better properties than the usual discrepancy. The most distinguished property is
the following Inversion of Adjunction ([1],[3]):

Let X be embedded to a non-singular variety A as a closed subscheme of codi-
mension c, and W a proper closed subset of X . Let ã ⊆ OA be an ideal sheaf such
that a := ãOX is a non-zero ideal sheaf of OX , and let IX ⊆ OA be the ideal sheaf
defining X . Then we obtain the formula on MJ-minimal log discrepancies:

m̂ld(W ;X, aJX) = m̂ld(W ;A, ãIcX).

By making use of this formula, we obtain the following:

(1) The answer to the Mather-Jacobian version of Shokurov’s conjectures
about minimal log discrepancy ([4])

(2) The fact that small deformations of log MJ-canonical singularities (resp.
MJ-canonical singularities) are log MJ-canonical singularities (resp. MJ-
canonical singularities).

(3) The complete list of MJ-canonical singularities and log MJ-canonical sin-
gularities of dimension ≤ 2.
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Dynamical Systems and categories

L. Katzarkov

Over the last several years, a variety of new categorical structures have been dis-
covered by physicists. Furthermore, it has become transparently evident that the
higher categorical language is beautifully suited to describing cornerstone concepts
in modern theoretical physics.

The goal of my talk is to describe the connection between Dynamical Systems
and Categories.

Recent work of Cantat-Lamy on the Cremona group and Blanc-Cantat on dy-
namical spectra suggests that there is a deep parallel between the study of groups
of birational automorphisms on one hand, and mapping class groups on the other.
Under this parallel, the dynamical degree of a birational map plays the role of the
entropy of a pseudo-Anosov map. We consider these developments from the per-
spective of derived categories and their groups of autoequivalences. In a striking
series of papers Gaiotto-Moore-Neitzke and Bridgeland-Smith have established a
connection between Teichmüller theory and the theory of stability conditions on
triangulated categories. An analogy between the Teichmüller geodesic flow and
the wall crossing on the space of stability conditions had been noticed previously
in the works of Kontsevich and Soibelman.

We take all these discoveries further. First, we define and study entropy in
the context of triangulated and A∞-categories. More specifically we construct
and study a categorical version of the notion of dynamical entropy. Dynamical
entropy typically arises as a measure of the complexity of a dynamical system. This
notion exists in a variety of flavors, e.g. the Kolmogorov-Sinai measure-theoretic
entropy, the topological entropy of Thurston and Gromov, algebraic entropy, etc.
In analogy with these notions, we define the entropy of an exact endofunctor of a
triangulated category with a generator.

In the case of saturated (smooth and proper) A∞-categories we prove the fol-
lowing foundational results:

Theorem 1. In the saturated case, the entropy of an endofunctor may be computed
as a limit of Poincaré polynomials of Ext-groups.

This result is connected to classical dynamical systems:

Theorem 2. In the saturated case (under a certain generic technical condition),
there is a lower bound on the entropy given by the logarithm of the spectral radius
of the induced action on Hochschild homology.

We develop further the parallel with dynamical systems. We build on the following
basic correspondences:

1) geodesics ↔ stable objects.
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2) compactifications of Teichmüller spaces ↔ stability conditions.
3) classical entropy of pseudo-Anosov transformations ↔ categorical entropy.
4) categories ↔ differential equations.

We record our findings in the following table:

Category Stable objects Stab. cond.
Density
of phases

Diff. eq.

An eP(z)(dz)2 NO
(
( d
dz )

2 + eP(z)
)
f = 0

Ân q(z)(dz)2 YES Schrödinger eq.

Tot

( A2

↓
C

)
Spectral networks H0(K2) ⊕ H0(K3) YES Lax pair

We develop further the connection between categories and differential equations.
Figure 1 suggests that one can study the WKB approximation of flat connections
via harmonic maps to buildings.

Figure 1. Harmonic maps to Buildings and WKB.
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The corresponding categories are given by singularities of the harmonic map -
the so called spectral networks. This project makes a connection between cate-
gories and differential equations. We show that there is an interpretation of the
higher dimensional Cremona group and certain groups of autoequivalences.

In such a way we approach a classical question in Algebraic Geometry posed by
Enriques in 1886 - show that the higher dimensional Cremona group is not simple.

Steenbrink vanishing extended

Sándor J Kovács

The importance of rational singularities has been demonstrated for decades through
various applications. Log terminal singularities (of all stripes) are rational and this
single fact has far reaching consequences in the minimal model program. Unfortu-
nately, not all singularities that appear in the minimal model program are rational.
In particular, the class of log canonical singularities which emerges as the most im-
portant class in many applications, for instance in moduli theory, is not necessarily
rational.

The class of Du Bois singularities is an enlargement of the class of rational
singularities. Even though this notion was introduced several decades ago [DB81,
Ste83], it has remained relatively obscure for a long time. It was recently proved
that log canonical singularities are Du Bois [KK10] and this fact has started a
flurry of activities and Du Bois singularities are becoming central in the minimal
model program and related areas.

An important application of Du Bois singularities appeared in [GKKP11] and
in some other articles that grew out of it [Dru13, Gra13]. The way Du Bois
singularities were used in these articles is through a vanishing theorem that can
be considered a generalization of a vanishing theorem due to Steenbrink [Ste85].

The notion of Du Bois singularities was recently extended for pairs in [Kov11]
and in this talk I reported on an extension of the vanishing theorem used in
[GKKP11] to Du Bois pairs:
Theorem [Kov13] Let X be a normal variety and π : Y → X a resolution of
singularities. Let Σ ⊆ X be a subvariety and E the reduced exceptional divisor of
π and Γ = E ∪ (π−1Σ)red. Assume that (X,Σ) is a Du Bois pair. Then for all p,

RdimX−1π∗
(
Ωp

Y (log Γ)(−Γ)
)
= 0.
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[GKKP11] D. Greb, S. Kebekus, S. J. Kovács, and T. Peternell: Differential forms on log

canonical spaces, Publ. Math. Inst. Hautes Études Sci. (2011), no. 114, 87–169. 2854859



Complex Algebraic Geometry 1595
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Covering semigroups

Vik. S. Kulikov

Let f : E → F be a finite morphism between complex non-singular irreducible
projective curves. Let us fix a point q ∈ F that is not a branch point of f and
order the points of E lying over q. We call the morphism f with a fixed ordering
of the points of f−1(q) a marked covering.

Consider the fundamental group π1(F \B, q) of the complement of the branch
set B ⊂ F of a marked covering f of degree d = deg f . Then, the ordering of the
points of f−1(q) defines a homomorphism f∗ : π1(F \ B, q) → Sd of π1(F \ B, q)
to the symmetric group Sd. Due to irreducibility of E, the image imf∗ = G ⊂ Sd

acts transitively on f−1(q). We fix the embedding G →֒ Sd.
The movement along a standard simple loops γ around branch points b ∈ B

defines the local monodromy f∗(γ) ∈ G of f at b. The homotopy class of this
standard loop, and hence the local monodromy, are defined by b uniquely only up
to conjugation, in G. We denote by O ⊂ G the union of the conjugacy classes of
all the local monodromies of f and call the pair (G,O) the equipped group. The
collection τ = (τ1C1, . . . , τmCm), where C1, . . . , Cm list all the conjugacy classes
included in O and τi counts the number of branch points of f with the local
monodromies belonging to Ci, is called the monodromy type of f . Below, we will
assume that the elements of O generate G.

The degree d marked coverings of F with monodromy group G having n branch
points with local monodromies from O form a so called Hurwitz space
HUR(G,O),n(F, q). The same coverings, but with fixed monodromy type τ and∑
τi = n form its subspace HURd,G,τ(F ) which consists of some its connected

components and this space is called the Hurwitz space of degree d coverings of F
having ramification type τ .

In the case F = P1, G = Sd, and O is the set of transpositions, the famous
Clebsch – Hurwitz Theorem states that HURd,Sd,τ (P

1) consists of a single irre-
ducible component if τ = (nO) with even n ≥ 2(d− 1) and it is empty otherwise.
Generalizations of Clebsch – Hurwitz Theorem were obtained in [11], [2], and [6]
– [8]. In particular, Clebsch – Hurwitz Theorem was extended to the following
cases: in [11], if all but two local monodromies are transpositions; and in [6], if
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there are at least 3(d− 1) transpositions among the local monodromies. In [7], it
is proved that for an equipped group (Sd, O) such that the first conjugacy class
C1 of O contains an odd permutation leaving fixed at least two elements, the Hur-
witz space HURd,Sd,τ (P

1) is irreducible if τ1 is big enough. On the other hand,
the example in [11] shows that HUR8,S8,τ (P

1) consists of at least two irreducible
components if τ = (1C1, 1C2, 1C3), where C1 is the conjugacy class of the per-
mutation (1, 2)(3, 4, 5), C2 is the conjugacy class of (1, 2, 3)(4, 5, 6, 7), and C3 is
the conjugacy class of (1, 2, 3, 4, 5, 6, 7). Articles [2] and [8] are devoted to partial
generalizations of Clebsch – Hurwitz Theorem to the case of arbitrary group G.
In particular, in [8], it was proved that for a fixed equipped finite group (G,O)
the number of irreducible components of HURd,G,τ (P

1) (if it is non-empty) does
not depend on τ if all τi are big enough.

For higher genus, the irreducibility of HURd,Sd,τ (F ) is proved in [3] under hy-
pothesis that n ≥ 2d and all local monodromies are transpositions. After that,
this result was improved, first, in [4] where the hypothesis n ≥ 2d was replaced
by n ≥ 2d− 2, and next, in [9], where the second hypothesis was replaced by as-
sumption that all but one local monodromies are transpositions. In addition, the
result of [6], mentioned above, was generalized in [10] to the coverings of curves of
arbitrary genus.

The aim of my talk is to extend results of [6] – [8] from F = P1 to the case of F
of arbitrary genus. The approach used there for counting the number of irreducible
components of HURd,G,τ(P

1) is based on a systematic work with semigroups over
groups; in particular, factorization semigroups S(G,O) with factors belonging to
O play the crucial role in this study, especially since subsets of elements of type τ
of subsemigroup S(G,O)G

1
⊂ S(G,O) are in a canonical bijection with the sets of

irreducible components of the Hurwitz space HURd,G,τ(P
1).

To treat the coverings of projective curves of arbitrary genus we generalize
the notion of factorization semigroups to that of semigroups of marked coverings.
One can consider different levels of the equivalence relations of coverings and so
we introduce, respectively, different species of semigroups of marked coverings.
The equivalence relation of the level that is most appropriate to construction of
Hurwitz spaces is based essentially on moving of branch points, while that the
level most appropriate to topological classification of coverings includes, in ad-
dition, the action on the base of coverings by the whole mapping class group.
In particular, considering the coverings up to moving of branch points we in-
troduce a semigroup GSd(G,O) of marked degree d coverings with monodromy
group G and set of local monodromies O ⊂ G. If we consider the same cover-
ings up to the action of the modular group, then we obtain another semigroup,
which we denote by GWSd(G,O). They are related by a natural epimorphism
Φ : GSd(G,O) → GWSd(G,O) of semigroups. Certain specific subsemigroups of
these two semigroups are in a canonical bijection with the set of irreducible com-
ponents of the Hurwitz space HURd,G(F ) and, respectively, the set of topological
classes of marked degree d coverings of F with monodromy groups G.
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By definition, the monodromy type of an element s = (f : E → F ) belong-
ing to one of these semigroups is the collection τ(s) = (τ1C1, . . . , τmCm) of local
monodromies of f . The monodromy type behaves additively and gives a homo-
morphism from semigroups of coverings to the semigroup Zm

≥0. Therefore, for any
constant T ∈ N, there appear well defined subsemigroups

GSd,T (G,O) = {s ∈ GSd(G,O) | τi(s) ≥ T for i = 1, . . . ,m}
and

GWSd,T (G,O) = {s ∈ GWSd(G,O) | τi(s) ≥ T for i = 1, . . . ,m}.
The main results are as follows1.

Theorem 1. For any equipped finite group (G,O) such that the elements of O
generate the group G, there is a constant T ∈ N such that the restriction of Φ to
GSd,T (G,O) is an isomorphism of GSd,T (G,O) and GWSd,T (G,O).

In [8], an ambiguity index a(G,O) was defined for each equipped finite group
(G,O).

Theorem 2. For each equipped finite group (G,O), O = C1 ⊔ · · · ⊔Cm, such that
the elements of O generate the group G, there is a constant T such that for any
projective irreducible non-singular curve F the number of irreducible components
of each non-empty Hurwitz space HURd,G,τ(F ) is equal to a(G,O) if τi ≥ T for all
i = 1, . . . ,m.

Theorem 3. Let C be the conjugacy class of an odd permutation σ ∈ Sd such that
σ leaves fixed at least two elements. Then there is a constant NC such that for
any projective irreducible non-singular curve F the Hurwitz space HURd,Sd,τ (F )
is irreducible if C enters in τ with a factor ≥ NC .

The author was partially supported by grants of NSh-4713.2010.1, RFBR 11-
01-00185, and by AG Laboratory HSE, RF government grant, ag. 11.G34.31.0023.

References

[1] E. Fadell , L. P. Neuwirth:Configuration spaces, Math. Scand. 10 (1962), 111 – 118.
[2] M.D. Fried and H. Völklein: The inverse Galois problem and rational points on moduli

space. Math. Ann., 290, (1991), 771 – 800.
[3] T. Graber, J. Harris, J. Starr: A note on Hurwitz schemes of covers of a positive genus

curve. arXiv:math/0205056
[4] V. Kanev: Irreducibility of Hurwitz spaces. arXiv: math/0509154v1 [math.AG] 7 Sep 2005.
[5] Vik.S. Kulikov: Hurwitz curves. UMN 62:6 (2007), 3 – 86.
[6] Vik.S. Kulikov: Factorization semigroups and irreducible components of Hurwitz space, Izv.

Math. 75:4 (2011), 711 – 748.
[7] Vik.S. Kulikov: Factorization semigroups and irreducible components of Hurwitz space. II,

(accepted in Izv. Math.; primiry version is in arXiv:1011.3619).
[8] Vik.S. Kulikov: Factorizations in finite groups, arXiv:1105.1939 (accepted in Sb. Math.).

1These results were obtained in collaboration with V.Kharlamov and they will be published
in Izvestiya: Mathematics, 2013, 77:3.



1598 Oberwolfach Report 27/2013

[9] F. Vetro: Irreducibility of Hurwitz spaces for coverings with one special fibre, Indag. Math.
(N.S.), vol. 17 (2006), no. 1, 115 – 127.

[10] F. Vetro: A note on coverings with special fibres and monodromy group Sd, Izv. Math. 76:6
(2012), 1110 – 1115.

[11] B. Wajnryb: Orbits of Hurwitz action for coverings of a sphere with two special fibres.
Indag. Math. (N.S.), vol. 7 (1996), no. 4, 549 – 558.

From surfaces of general type to stable (log) surfaces

Wenfei Liu

(joint work with Sönke Rollenske)

Stable surfaces come to help compactify the moduli space of surfaces of general
type. They have semi-log-canonical singularities and ample canonical divisors.
One asks if the facts about the canonical models of surfaces of general type still
hold for the more general stable surfaces.

Together with Sönke Rollenske I investigated the pluri-log-canonical maps and
the geography of stable log surfaces ([LR12, LR13]). Here the notion of stable
log surface is slightly more general than that of stable surfaces, in that, a reduced
boundary is allowed in the log case.

1. Pluri-log-canonical maps

Theorem 1. Let (X,∆) be a stable log surface and I its (global) index. Then
mI(KX + ∆) is base point free for m ≥ 4 and mI(KX + ∆) is very ample for
m ≥ 8.

Remark 1. We can do better if the singularities are assumed to be mild. For
example, 5KX is very ample if X has only semi-canonical singularities.

We prove the base point freeness by applying a Reider-type result of Kawachi’s
on the normalisation combined with a detailed analysis of the non-normal locus.

Our result on pluri-log-canonical embeddings are somewhat more involved. We
follow an approach due to Catanese, Franciosi, Hulek, and Reid: for every sub-
scheme of length two find a pluri-log-canonical curve containing it and then prove
that this curve is embedded by |mI(KX +∆)| for m ≥ 8.

As further quests in this topic it would be interesting to address the follow
problems:

(1) Let (X,∆) be a stable log surface and U the (open) Gorenstein locus of
(X,∆). What is the optimal number r such that rKU induces a birational
map or an embedding?

(2) Is there a stable log surface (X,∆) such that 5I(KX + ∆) is not very
ample? Such a surface (if exists) tends to be Gorenstein, i.e., its index I
is 1.
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2. Geography

The geography problem of stable log surfaces asks: for which (a, b) ∈ Q>0×Z, do
there exist stable log surfaces (X,∆) such that (KX+∆)2 = a and χ(ωX(∆)) = b?
At the moment we are only able to answer the question for Gorenstein stable log
surfaces.

Theorem 2. Let (X,∆) be a Gorenstein stable log surface. Then

(i) (KX +∆)2 ≥ χ(ωX(∆)) − 2 (stable Noether inequality);
(ii) (KX +∆)2 ≥ −χ(ωX(∆)) (P2-inequality).

Theorem2, (i) was proved by Sakai ([S80]) when X is normal. The problem in
the nonnormal case is that, X could have arbitrarily many irreducible components,
so that one can not apply Sakai’s result to the normalisation X̄ directly. We solve
this issue by showing that enough log canonical sections in H0(X̄,KX̄+D̄+∆̄) get
lost in glueing X̄ back to X , where D̄ (resp. ∆̄) is the conductor divisor (resp. the
strict transform of ∆) in X̄ .

Theorem2, (ii) follows simply from

χ(ωX(∆)⊗2) = h0(X, 2(KX +∆)) ≥ 0.

Surprisingly the P2-inequality is almost sharp, as shown by an example. In par-
ticular χ(ωX(∆)) could be arbitrarily negative for Gorenstein stable log surfaces.

For a general stable log surface (X,∆), we make the following speculation:

h0(X,KX +∆) ≤ p(KX +∆)2q+ 2.

The normal case has been treated by Tsunoda and Zhang ([TZ92]).
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Enriques surfaces as neighbors of rational surfaces (and vice versa)

Shigeru Mukai

Enriques surfaces are similar to K3 surfaces. Both are of Kodaira dimension one
and can be studied lattice theoretically by virtue of Torelli type theorem. But
Enriques surfaces, with the same birational invariants q = pg = 0, are similar to
rational surfaces too. They mildly degenerate to rational surfaces with quotient
singularities of type (1,1)/4, and change into rational elliptic surfaces by loga-
rithmic transformation. This similarity and intimacy is very useful in studying
Enriques and rational surfaces. In my talk I discussed Theorems A–C on auto-
morphism groups from this view point.
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Let R5 be a quintic del Pezzo surface, the blow-up of the projective plane P2

at four points in general position, say, at (x0 : x1 : x2) = (1 : ±1 : ±1). It has ten
lines, that is, smooth rational curves of anti-canonical degree one, and the dual
graph of their configuration is the Petersen graph. There are 15 intersection points
among the ten lines in total. Let R−10 be the blow-up of R5 at the 15 intersection
points. The Cremona transformation (x0 : x1 : x2) 7→ (1/x0 : 1/x1 : 1/x2) induces
an involution of R−10, which we denote by σ. Taking conjugate by the action of
AutR5 ≃ S5, we obtain five involutions σ = σ1, . . . , σ5.

Theorem A. The automorphism group of R−10 is generated by AutR5 and
σ. Moreover, it is isomorphic to the semi-direct product of the amalgam of five
involutions 〈σ1〉 ∗ · · · ∗ 〈σ5〉 by S5.

The double cover of R5 with branch the union of ten lines is a K3 surface with
15 nodes. The minimal resolution X4 is a double cover of R−10. (The suffix
“4” denotes the discriminant of rank 2 transcendental lattice of the K3 surface.)
Hence R−10, with the strict transform of ten lines, is a Coble-Enriques surface in
the following sense.

Definition A smooth algebraic surface S with a boundary divisor B = ⊔m
1 Bi is

a Coble-Enriques surface of index m if S is the a quotient of a smooth K3 surface
X by an involution ε whose fixed point locus is the disjoint union of m smooth
rational curves and if B is the branch divisor.

The boundary components Bi’s are all smooth rational curves with self intersec-
tion number (B2

i ) = −4. When indexm = 0, S is nothing but an Enriques surface.
Those with positive index are classified by Dolgachev-Zhang [1]. The maximum
index is m = 10 and the rational surface R−10 above is the unique Coble-Enriques
surface of maximum index.

Example (1) Let B̄ ⊂ P2 be an (irreducible) plane sextic with ten nodes and
R−1 the blow-up of P2 at the ten nodes. Then R−1 with the strict transform B
of B̄ is a Coble-Enriques surface of index one.

(2) Let B̄ be the union of six lines in P2. Then the blow-up R−6 of P2 at the 15
intersection points, with the strict transform B of B̄, is a Coble-Enriques surface
of index six.

Returning to Theorem A, let L ≃ Z10 be the orthogonal complement of the
boundary components B1, · · · , B10 in the Picard lattice PicR−10 ≃ Z20. The 15
exceptional curves of the blowing up R−10 → R5 define 15 roots, that is, divisor
classes of self intersection number −2, in L. The five involutions σ1, . . . , σ5 also
define five roots in L. These 20 roots have the same graph as the Enriques surface
S of type VII in Kondo [3]. Theorem A is proved in an analogous way to his proof
of AutS ≃ S5.

Remark Since the Picard lattice of the covering K3 surface X4 is 2-elementary,
AutX4 is the central extension of AutR−10 by the covering involution. Hence the
latter half of Theorem A also follows from Vinberg [7]. Our proof is the one which
eliminates the K3 surface X4 and Torelli type theorem from his.



Complex Algebraic Geometry 1601

Let S be an Enriques surface which has semi-symplectic action of both the
alternating group A6 of degree six and the group 32D8 of order 72 and are found
in [4] and [6]. (An automorphism of an Emriques surface S is semi-symplectic if
it acts trivially on H0(OS(2KS)) ≃ C.) The covering K3 surface of S is the one
found by Keum-Oguiso-Zhang [2] using the Leech lattice and Leech roots.

Theorem B. S is isomorphic to the logarithmic transform of the Hesse elliptic
surface

R0 := Bl9 P2 · · · → P1, (x0 : x1 : x2) 7→ (x30 + x31 + x32 : 3x0x1x2)

at the two fibers over (1 ±
√
3 : 1) (with multiplicity two).

By a similar argument with the proof of Theorem A, we have

Theorem C. The semi-symplectic automorphism group of S is isomorphic to
the amalgam (32D8) ∗ A6 over 32C4.

The Enriques surface S has 40 roots of P1’s and involutions. It is interesting
to observe that the graph of these 40 roots are the same as that of Example (2).
When the six lines tangent to the same conic, the Coble-Eniques surface R−6 of
index six is the projection of a Kummer quartic surface from one of 16 nodes,
say n0. The boundary B =

∑6
1Bi is the image of six tropes passing through n0.

In this case, the 40 roots of R−6 consists of 15 P1’s over the remaining 15 nodes
n1, . . . , n15, 15 involutions of Hutchinson-Göpel type ([5]) and the images of 10
tropes which does not pass through n0.

Remark The action of A6 on the Enriques surface S extends to that of M10,
the 2-point stabilizer group of the Mathieu group M12 (as permutation group of
degree 12). The group M10 contains A6 as subgroup of index two and the full
automorphism group AutS is the amalgam (32D8) ∗M10 over 32C4.
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On the components of moduli spaces of curves with symmetry

Fabio Perroni

(joint work with Fabrizio Catanese, Michael Lönne)

I report on a research project aimed at classifying the connected components of
the moduli space Sg(G) of smooth curves of genus g with a G-action via numerical
and homological invariants of the G-action. G is a finite group and we work over
C.

Let us recall that a G-marked curve is a pair (C, a), where C is an algebraic
curve and a : G → Aut(C) is an injective group homomorphism, hence yielding
an effective G-action on C ([2]). An isomorphism (C1, a1) → (C2, a2) is a G-
equivariant isomorphism of curves f : C1 → C2. Families of G-marked curves are
defined in the usual way, (C, a) is smooth if C is so and the genus of (C, a) is that
of C. Under certain conditions that ensure the stability of (C, a) (e.g. g ≥ 2), one
can prove that the set of smooth G-marked curves of genus g modulo isomorphisms
has a structure of quasi-projective variety. The group Aut(G) acts naturally on it
and we denote by Sg(G) the quotient variety.

The first invariant we can use to address our problem of classification comes
from the Galois cover p : C → C′ := C/G associated to a given G-marked curve
(C, a). The genus g′ of C′ and the number d of branch points y1, . . . , yd ∈ C′ are
numerical invariants (under deformations) of (C, a). Then a first simplification
of the problem consists in considering families where the genus g′ of C′ and the
number d of branch points is fixed. In this way one obtains a stratification of
Sg(G) and then one asks which strata is irreducible. These strata are related
to the so-called Hurwitz spaces [16] and the archetypal result is the theorem of
Lüroth-Clebsch [9] and Hurwitz [18] saying that simple coverings of the projective
line (C′) form an irreducible variety (cf. also [1]). This result has been extended
in several ways, see e.g. [17], [19], [20], [22] and the references therein.

A further numerical invariant is provided by the function ν that to each conju-
gacy class C ⊂ G associates the number of branch points with local monodromy
lying in C modulo Aut(G). Notice that ν determines d and, together with the
genus g of C, we deduce g′ via Hurwitz’s formula:

2g − 2 = |G|
[
2g′ − 2 +

d∑

i=1

(
1− 1

mi

)]
,

where mi is the order of the local monodromy of p around yi. Therefore ν pro-
vides a finer stratification of Sg(G) and again one asks whether these strata are
irreducible. In the case where G is cyclic, the answer is affirmative: [11] for free
actions; [10] when |G| is prime; [3] in the general case.

For finite abelian groups G, ν is not enough to distinguish the components of
Sg(G). A further topological invariant of (C, a) is obtained as follows. Let H ≤ G
be the subgroup generated by the local monodromies of p around the branch points
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y1, . . . , yd, then p factorizes as follows:

C

p
$$❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

// C′′ = C/H

q

��

C′

where q : C′′ → C′ is an étale Galois covering with group G/H . Let Bq : C′ →
B(G/H) be a classifying map for q, then Bq∗([C

′]) ∈ H2(G/H,Z) is a topological
invariant of (C, a). Combining the results of [13] and [4], one can prove that the
locus of Sg(G) consisting of curves with a G-action having the same numerical
type ν and the same class in H2(G/H,Z) is irreducible.

In general, for any finite group G, one defines the topological type of (G, a) as
the group homomorphism

ρ : G→ Out+(π1(C, x0))

induced by g 7→ (a(g)∗ : π1(C, x0) → π1(C, a(g) · x0)), modulo the action of Aut(G)
by pre-composition and the adjoint action by the mapping class group Mapg. By

a lemma of Lefschetz ρ is injective. Identifying Out+(π1(C, x0)) with Mapg, we
obtain a finite subgroup ρ(G) ≤ Mapg. Now, using a result of [4] (cf. also [14]
and [3]), we deduce that the locus Sg(G, ρ) ⊂ Sg(G) of curves with G-action of
topological type ρ is irreducible. In particular π0(Sg(G)) is in bijection with the
set of possible topological types.

Now we reduce our problem to a combinatorial one. A Hurwitz generating
system is an element v = (c1, . . . , cd, a1, b1, . . . , ag′ , bg′) ∈ Gd+2g′

such that the
following conditions hold:

i) G is generated by the entries of v;
ii) ci 6= 1, ∀i;
iii)

∏d
i=1 ci

∏g′

j=1[aj , bj ] = 1.

Denote by HS(G; g′, d) the set of such v’s. The group Aut(G) acts on HS(G; g′, d)
diagonally and the mapping class group Map(g′, d) acts on HS(G; g′, d)/Aut(G).
Once we choose a geometric basis for π1(C

′\{y1, . . . , yd}, y0), we obtain a bijection
between the set of topological types of curves C with G-action, for which the genus
of C/G is g′ and C → C/G has d branch points, and

(
HS(G; g′, d)

Aut(G)

)
/Map(g′,d) .

Our main contributions are the following. We first introduce [6, 7] a new homo-
logical invariant, the ǫ-invariant. In order to do that, let us fix a free presentation
of G, G = F

R , where F = 〈ĝ|g ∈ G \ {1}〉 is the free group generated by ĝ,
g ∈ G \ {1}. Then, for any conjugation-invariant subset Γ ⊂ G, Γ 6= {1}, set

RΓ := 〈〈[F,R], âb̂ĉ−1b̂−1|a ∈ Γ , ab = bc ∈ G〉〉E F
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and KΓ the kernel of F
RΓ

→ G induced by ĝ 7→ g. Finally, we define

K :=

(∐

Γ

Kγ

)
/Aut(G) .

One can prove that the map HS(G; g′, d) → K,

v 7→
d∏

i=1

ĉi

g′∏

j=1

[âj , b̂j] ∈ KΓv , Γv = ∪i{conjugacy class of ci}

descends to the map

ǫ :

(
HS(G; g′, d)

Aut(G)

)
/Map(g′,d) → K .

Since ǫ([v]) can be interpreted as an element in a certain quotient ofH2(BG,BG
1),

we refer to ǫ as a homological invariant of G-marked curves.
Notice that the ǫ-invariant extends both the numerical type ν and the class

Bq∗([C
′]) ∈ H2(G/H,Z) mentioned before. For example, the natural morphism

KΓ → Kab
Γ induces a map A : K → (⊕CZ〈C〉) /Aut(G) (where C varies over the

conjugacy classes of G) such that ν = A◦ ǫ. We say that [(nC)C ] (⊕CZ〈C〉) /Aut(G)

is admissible if∑

C

nC [C] = 0 in the abelianized group Gab of G.

Then we prove the following results:
Theorem 1. ([5, 6])
Let G = Dn be the dihedral group of order 2n. Then the following holds:

i) ǫ is injective for any g′ and d;
ii) Im(ǫ) is the preimage under A of the admissible elements.

Theorem 2.(Genus stabilization [7])
For any G, g′ and d, there exists an integer s = s(d) such that:

i) ǫ is injective ∀g′ > s;
ii) Im(ǫ) is the preimage under A of the admissible elements, if g′ > s.

Theorem 3.(Branch stabilization [8])
For any G, Γ = {g1, . . . , gr} ⊂ G any conjugation-invariant subset 6= {1}. Assume
that 〈Γ〉 = G and set

uΓ = (g1, . . . , g1︸ ︷︷ ︸
ordg1

, . . . , gr, . . . , gr︸ ︷︷ ︸
ordgr

) .

Then there existsm ∈ N such that, ∀v, w ∈ HS(G; g′, d) with ν(v) ≥ ν(uΓ, . . . , uΓ︸ ︷︷ ︸
m−times

),

the following holds:

ǫ([v]) = ǫ([w]) ⇒ [v] = [w] ∈
(
HS(G; g′, d)

Aut(G)

)
/Map(g′,d) .
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Notice that Thm. 2 generalizes [12, Thm. 6.20] and reduces to it when d = 0
(étale case), while Thm. 3 extends a result of Conway-Parker (cf. [15]) which holds
for g′ = 0 and when H2(G,Z) is generated by commutators. A result similar to
Thm. 3 has been obtained in [21], with different techniques; it would be interesting
to compare the two approaches.
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Minimal models for Kähler threefolds

Thomas Peternell

(joint work with Andreas Höring)

The minimal model program (MMP) is one of the cornerstones in the classifi-
cation theory of complex projective varieties. It is fully developped in dimension
3, due to Kawamata, Kollár, Mori, Reid and Shokurov, despite tremendous re-
cent progress in higher dimensions, in particular by Birkar, Cascini, Hacon and
McKernan [1]. In the Kähler situation the basic methods from the MMP, such as
the base point free theorem, fail. Nevertheless it is expected that the main results
should be true also in this more general context.

The goal of this report is to discuss and develop the minimal model program
for Kähler threefolds X whose canonical bundle KX is pseudoeffective, which is
joint recent work with A.Höring [10]. To be more specific, we obtain the following
result:

Theorem 1. Let X be a (non-algebraic) normal Q-factorial compact Kähler
threefold with at most terminal singularities. Suppose that KX is pseudo-effective.
Then X has a minimal model, i.e., there exists a MMP

X 99K X ′

such that KX′ is nef.

In our context a variety X is said to be Q-factorial if every Weil divisor is Q-
Cartier and a multiple (K⊗m

X )∗∗ of the canonical sheaf KX is locally free. The
bimeromorphic map X 99K X ′ exhibiting the minimal model X ′ decomposes into
a finite sequence of divisorial contractions and flips, given by extremal rays in the
dual of the Kähler cone. For previous partial results, we refer to [5], [14], [15] and
[12].

As to further notations, recall that an irreducible and reduced complex space
X is Kähler if there exists a Kähler form ω, i.e. a positive closed real (1, 1)-form
on the smooth part Xreg of X , such that the following holds: for every point
x ∈ Xsing there exists an open neighbourhood x ∈ U ⊂ X and a closed embedding
iU : U ⊂ V into an open set V ⊂ CN , and a strictly plurisubharmonic C∞-function
f : V → C with ω|U∩Xreg = (i∂∂f)|U∩Xreg . In the same way, differential forms
of type (p, q) are defined. Dually, the notion of a (positive closed) current on a
singular space is defined.

A line bundle L is pseudo-effective if c1(L) is represented by a positive closed
current. In case X is projective, this is equivalent to saying that, given an ample
line bundle A, for all large m, some power of the bundle Lm ⊗A is effective. L is
nef, if c1(L) is in the closure of the Kähler cone, the cone generated by the classes
of the Kähler forms. The classes are taken in N1(X), the space of d−closed real

(1, 1)−forms modulo ∂∂ of real functions.
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A remarkable theorem of Brunella [3] says that a smooth non-algebraic compact
Kähler threefold is uniruled if and only its canonical bundle KX is not pseudo-
effective. Thus Theorem 1 states that a non-uniruled Kähler threefold has a min-
imal model.

We now explain the methods and main steps for proving Theorem 1. Restricting
therefore from now on to varietiesX (Q−factorial, terminal singularities) with KX

pseudoeffective, we consider the divisorial Zariski decomposition [2]

KX =

r∑

j=1

λjSj +N(KX).

Here the Sj are irreducible surfaces, λj are positive real numbers and N(KX)
is an R−line bundle which is “nef in codimension one”, in particular N(KX) is
pseudo-effective on every surface. If KX |Sj is not pseudoeffective, one shows that
the surface Sj is uniruled. It follows that KX is not nef (in the sense of [8]) if
and only if there exists a curve C ⊂ X such that KX · C < 0. We then show
how deformation theory on the threefold X and the (possibly singular) surfaces
Sj can be used to establish an analogue of Mori’s bend and break technique. As

a consequence we derive the cone theorem for the Mori cone NE(X).
It is important to note that the Mori cone NE(X) is not the correct object to

consider in the non-algebraic setting: even if we find a bimeromorphic morphism
X → Y contracting exactly the curves lying on some KX-negative extremal ray
in NE(X), it is not clear that Y is a Kähler space. The Mori cone is simply to
small in the non-algebraic context. However it had been observed in [14] that the
Kähler condition is preserved if we contract extremal rays

R ⊂ NA(X),

the cone generated by positive closed currents of bidimension (1, 1). In general,
NE(X) is a proper subcone of NA(X), even if X is projective. Based on the
description of NA(X) by Demailly and Pǎun [7], we derive from the cone theorem
for NE(X) the following cone theorem:

Theorem 2. Let X be a normal Q-factorial compact Kähler threefold with at
most terminal singularities such that KX is pseudoeffective. Then there exists a
countable family (Γi)i∈I of rational curves on X such that

0 < −KX · Γi ≤ 4

and

NA(X) = NA(X)KX≥0 +
∑

i∈I

R+[Γi].

We now fix a KX−negative extremal ray R = R+[Γi] ⊂ NA(X) and prove the
existence of the contraction of R. In other words, we are going to construct a
morphism

ϕ = ϕR : X → Y
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to a normal Kähler space Y contracting exactly those curve lying in R. If the
curves C ⊂ X with class [C] ∈ R cover a divisor S, we can use generalisations of
Grauert’s criterion [9] to contract S.

If the curves in the extremal ray cover only a 1-dimensional set C (i.e. the
contraction, if it exists, is small), the problem is more subtle. By Grauert’s cri-
terion it is sufficient and necessary to find an ideal sheaf I ⊂ OX such that the
conormal sheaf I/I2 is ample and has support on C. In practice it is very difficult
to compute the conormal sheaf, even for the reduced curve C. However since the
curves in C belong to an extremal ray there exists a nef and big cohomology class
α which is zero exactly on the curves in R; the class α being the analogon of the
nef supporting divisor in the projective case. Considering once again the divisorial
Zariski decomposition KX =

∑r
j=1 λjSj + N(KX), we now make a case distinc-

tion. If there exists a surface Sj such that Sj · C < 0, this gives one direction
where the conormal sheaf I/I2 is ample. Moreover we prove that α|Sj is nef and
big, so an application of the Hodge index theorem yields another direction where
I/I2 is ample.

Thus we are left with the case where N(KX) · C < 0. If X is projective,
Nakayama [13, III, 4.b] gives a very short argument: if H is an ample divisor,
some multiple of the class N(KX) + εH with 0 < ε ≪ 1 gives a linear system
without fixed component, so C is contained in a local complete intersection curve
having ample conormal bundle along C, so we conclude as in the first case. In
the non-algebraic case we use again the deep results by Demailly-Pǎun [7] and

Boucksom [2] to prove that there exists a modification µ : X̃ → X and a Kähler
form α̃ such that µ∗α̃ = α. Analysing the positivity of the µ-exceptional divisor
we construct an ideal sheaf I having the required properties. In summary we have
proven the contraction theorem:

Theorem 3. Let X be a normal Q-factorial compact Kähler threefold with at
most terminal singularities such that KX is pseudoeffective. Let R+[Γi] be a KX-
negative extremal ray in NA(X). Then the contraction of R+[Γi] exists in the
Kähler category.

Since Mori’s theorem [11] assures the existence of flips also in the analytic category,
termination of the process being elementary, we can now run the MMP and obtain
Theorem 1.

By [6], Theorem 0.3, this also implies that the non-vanishing conjecture holds
for compact Kähler threefolds:

Corollary 1. Let X be a normal Q-factorial compact (non-projective) Kähler
threefold with at most terminal singularities. Then X is uniruled if and only if
κ(X) = −∞.

Actually one can obtain a little more, using [15]:

Corollary 2. Let X be a normal Q-factorial compact (non-projective) Kähler
threefold with at most terminal singularities. Suppose that KX is nef. Then mKX

is spanned for some positive m, unless (possibly) there is no positive-dimensional
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subvariety through the very general point of X and X is not bimeromorphic to
T/G where T is a torus and G a finite group acting on T.

The remaining problem to solve abundance for Kähler threefolds completely is
to prove the following well-known

Conjecture Let X be a smooth compact Kähler threefold or a normal Q-factorial
compact Kähler threefold with at most terminal singularities. Assume there is no
positive-dimensional subvariety through the very general point of X. Then X is
bimeromorphic to T/G with T a torus and G a finite group acting on T .

Recently, Campana, Demailly and Verbitsky [4] obtained some results towards this
conjecture. Using the results of [10], these results can be generalized as follows.

Theorem 4. Let X be a Q−factorial Kähler threefold with only terminal singular-
ities without divisors. Suppose furthermore that there is no positive-dimensional
subvariety through a very general point of X. Then there exists a finite morphism
X̃ → X étale outside a finite set, the singular locus of X, such that X̃ is a torus.
If X is even smooth, then X is itself a torus.

Proof. By Corollary 1, κ(X) ≥ 0. Since X does not contain any divisor, there
exists a number m such that mKX ≃ OX . Then, following [4], we take a finite

cover X̃ → X , étale in codimension 1, such that KX̃ ≃ OX̃ . Now Riemann-

Roch for Gorenstein threefolds gives χ(X̃,OX̃) = 0. Since X̃ is not algebraic,

with only rational singularities, h2(OX̃) 6= 0, hence X̃ has positive irregularity

q(X̃) = h1(OX̃). Thus we obtain a non-trivial Albanese map X̃ → Ã, again using
the fact that X has only rational singularities. It is now obvious to conclude that
α is an isomorphism.
If X is actually smooth, then right away χ(X,OX) = 0 and we conclude as before
that X is a torus (see [4], Lemma 1.4).

References

[1] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of
log general type, J. Amer. Math. Soc. 23 (2010), 405–468

[2] S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann Sci.
Ecole Norm. Sup, 37 (2004), 45–76

[3] M. Brunella, A positivity property for foliations on compact Kähler manifolds, Int. J. Math.
17 (2006), 35–43

[4] F. Campana, J.P. Demailly, M. Verbitsky, Compact Kähler 3-manifolds without non-trivial
subvarieties, arXiv:1304.7891

[5] F. Campana, Th. Peternell, Towards a Mori theory on compact Kähler manifolds, I, Math.
Nachr. 187 (1997), 29–59

[6] J.P. Demailly, Th. Peternell, A Kawamata-Viehweg vanishing theorem on compact Kähler
manifolds, J. Diff. Geom. 63 (2003), 231–277

[7] J.P. Demailly, M. Paun, Numerical characterization of the Kähler cone of a compact Kähler
manifold, Ann. Math. 159 (2004), 1247–1274

[8] J.P. Demailly, Th. Peternell, M. Schneider, Compact complex manifolds with numerically
effective tangent bundles, J. Alg. Geom. 3 (1994), 295–345



1610 Oberwolfach Report 27/2013
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Multiplicative Hodge structures of conjugate varieties

Stefan Schreieder

In my talk I reported on the results in [6]. For a smooth complex projective variety
X and a field automorphism σ of the complex numbers, the conjugate variety Xσ

is defined via the fiber product diagram

Xσ

��

// X

��

Spec(C)
σ∗

// Spec(C).

To put it another way, Xσ is the smooth variety whose defining equations in some
projective space are given by applying σ to the coefficients of the equations of X .
As abstract schemes – but in general not as schemes over Spec(C) – X and Xσ

are isomorphic.
The aim of this talk is to study to which extent cohomological and Hodge

theoretic data on X and Xσ coincides. Let me first state some previously known
results.

(1) Pull-back of forms induces a σ-linear isomorphism between the algebraic de
Rham complexes of X and Xσ. This induces an isomorphism of complex
Hodge structures

H∗(X,C)⊗σ C
∼−→ H∗(Xσ,C),

where ⊗σC means that the tensor product is taken where C maps to C via
σ, see [3]. In particular, Hodge and Betti numbers of conjugate varieties
coincide.

(2) The singular cohomology with Qℓ-coefficients coincides on smooth complex
projective varieties with ℓ-adic étale cohomology. Since étale cohomology
does not depend on the structure morphism to Spec(C), we obtain isomor-
phisms of graded Qℓ-, resp. C-algebras,

H∗(X,Qℓ)
∼−→ H∗(Xσ,Qℓ) and H∗(X,C)

∼−→ H∗(Xσ,C),
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where the latter depends on an embedding Qℓ ⊆ C.
(3) There are conjugate varieties which are not homeomorphic. The first such

examples were found 1964 by Serre [7], who showed that the topological
fundamental groups of X and Xσ may in fact be non-isomorphic. More
recently, Bauer–Catanese–Grunewald showed in [1] that this actually hap-
pens for any nontrivial element σ ∈ Gal(Q/Q) which is not contained in
the conjugacy class of complex conjugation; see also Ingrid Bauer’s talk
on this work.

(4) In 2009, Charles constructed in [2] conjugate varieties X and Xσ with

π1(X) ∼= π1(X
σ) ∼= Z8 and H∗(X,R) 6∼= H∗(X,R).

Given the above results, this work is motivated by two questions. The first one is
of topological nature and can for instance be found in Reed’s Oxford thesis [5].

Question 1. Do there exist simply connected conjugate varieties X , Xσ which are
non-homeomorphic?

The second question will be motivated by the Hodge conjecture. In order to
state it, we define for any subfield K ⊆ C, the space of K-rational (p, p)-classes
on X by

Hp,p(X,K) := Hp,p(X) ∩H2p(X,K);

the corresponding gradedK-algebra is denoted by H∗,∗(X,K). The Hodge conjec-
ture predicts that H∗,∗(X,Q) is generated by algebraic cycles. Since each algebraic
cycle Z ⊆ X induces a canonical cycle Zσ ⊆ Xσ and vice versa, the Hodge con-
jecture implies the following weaker conjecture:

H∗,∗(X,Q) ∼= H∗,∗(Xσ,Q).(1)

Apart from the (few) cases where the Hodge conjecture is known, and apart from
Deligne’s result [4] which settles (1) for abelian varieties, this conjecture is wide
open, see [3]. The above consequence of the Hodge conjecture motivates our second
question:

Question 2. For which subfields K ⊆ C is it true that

H∗,∗(X,K) ∼= H∗,∗(Xσ,K)(2)

holds for all conjugate varieties X , Xσ?

If K = Q(iw) with w2 ∈ N is an imaginary quadratic number field, then the
real part, as well as 1/w times the imaginary part of a Q(iw)-rational (p, p)-class
is Q-rational. Hence,

H∗,∗(−,Q(iw)) ∼= H∗,∗(−,Q)⊗Q Q(iw).

The Hodge conjecture therefore predicts (2) for imaginary quadratic number fields
K. In [6], I am able to settle all remaining cases:

Theorem 1. Let K ⊆ C be a subfield, not contained in an imaginary quadratic
number field. Then there exist conjugate smooth complex projective varieties whose
graded algebras of K-rational (p, p)-classes are not isomorphic.
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By Theorem 1, there are conjugate smooth complex projective varieties X , Xσ

with

H∗,∗(X,C) 6∼= H∗,∗(Xσ,C).

This shows the following:

Corollary 1. The complex Hodge structure on the complex cohomology algebra of
smooth complex projective varieties is not invariant under the Aut(C)-action on
varieties.

Building upon some examples I construct in the proof of Theorem 1, I can
extend the above mentioned result of Charles substantially:

Theorem 2. Any birational equivalence class of complex projective varieties in
dimension ≥ 10 contains conjugate smooth complex projective varieties whose real
cohomology algebras are non-isomorphic.

Since the fundamental group of smooth complex projective varieties is a bira-
tional invariant, Theorem 2 answers Question 1:

Corollary 2. Let G be the fundamental group of a smooth complex projective
variety. Then there exist conjugate smooth complex projective varieties with fun-
damental group G, but non-isomorphic real cohomology algebras.
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Derived categories of some surfaces of general type and rationality
questions

Pawel Sosna

(joint work with Christian Böhning, Hans-Christian Graf von Bothmer)

It has become commonplace to study the geometry of a smooth complex pro-
jective variety Z through its bounded derived category of coherent sheaves Db(Z).
Since Db(Z) is usually fairly complicated, one can hope that sometimes it can be
“decomposed” into hopefully simpler pieces:
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Definition. A semiorthogonal decomposition (s.d.) of Db(Z) as above is a sequence
of full triangulated subcategories A1, . . . ,Am satisfying:

(1) Aj ⊂ A⊥
i := {T | Hom(Ai, T ) = 0 ∀Ai ∈ Ai} for all i > j.

(2) For all D ∈ Db(Z) there exists a sequence of maps

0 = Dm
// Dm−1

// . . . // D1
// D0 = D

such that the cone of the map Di → Di−1 is contained in Ai for all
i = 1, . . . ,m.

We will write a semiorthogonal decomposition as Db(Z) = 〈A1, . . . ,Am〉.
As an example, if E ∈ Db(Z) is exceptional, that is, Hom(E,E[k]) = C for k = 0

and 0 otherwise, then Db(Z) = 〈E⊥, E〉, where we write E for the triangulated
category generated by E (this category is just Db(Spec(C))). For instance, any
line bundle on a Fano variety is exceptional. The same holds for line bundles on
surfaces with pg = q = 0. If Db(Z) = 〈A, E1, . . . , Em〉 is an s.d. and all Ei are
exceptional, we call (E1, . . . , Em) an exceptional collection. Note that if the Ei are
line bundles, condition (1) boils down to Hk(Z,Ej ⊗ E−1

i ) = 0 for all k and all
i > j.

Concerning the interplay between semiorthogonal decompositions and geome-
try, consider the following example. If V is a cubic threefold, we have Db(V ) =
〈AV ,O,O(1)〉. It was shown in [2] that two cubic threefolds V and V ′ are iso-
morphic if and only if the categories AV and AV ′ are equivalent. The proof relies
on reconstructing the intermediate Jacobian from AV using Bridgeland stability
conditions.

One dimension higher, Kuznetsov proved in [7] that

Db(W ) = 〈AW ,O,O(1),O(2)〉
ifW is a smooth cubic fourfold. Furthermore, for the fourfoldsW which are known
to be rational, the category AW is equivalent to Db(S) for a smooth projective
complex K3 surface S . Kuznetsov then conjectured that a cubic fourfold is rational
if and only if AW is the bounded derived category of a smooth projective K3
surface.

In this approach to the rationality question one wants to define a Clemens–
Griffiths component of the bounded derived category which is invariant under
birational transformations. To be able to do this, it would be useful to know
whether any s.d. can be extended to a maximal one, i.e. one whose components do
not admit any semiorthogonal decompositions. A natural approach to establish
this, is to use invariants which are additive on semiorthogonal decompositions,
such as Hochschild homology HH• or the Grothendieck group K0. More precisely,
folklore conjectures state that if A 6= 0 is a component in a s.d., then HH•(A) 6= 0,
and similarly for K0. Another ingredient in this categorical approach to rationality
of cubic fourfolds is a conjectural Jordan–Hölder type property for semiorthogonal
decompositions. Note that this property was known to fail for general triangulated
categories but it was unknown whether it does hold for categories of the form
Db(Z).
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The purpose of the talk was to give an outline of the proofs of the theorems
below. To formulate them, consider the Fermat quintic Y =

{
x51 + . . .+ x54 = 0

}

in P3
C and the action of G = Z/5 = 〈ξ〉 on P3 given by xi 7→ ξixi. The classical

Godeaux surface is defined as the quotient X = Y/G. It is a surface of general
type with pg = q = 0 whose canonical bundle KX is ample. Furthermore, K2

X = 1,
Pic(X) = Z9 ⊕ Z/5, and, since the Bloch conjecture holds for X , one can check
that K0(X) = Z11 ⊕ Z/5.

Theorem 1 ([3]). There exists a semiorthogonal decomposition

Db(X) = 〈A,L1, . . . ,L11〉,
where Li ∈ Pic(X) and the category A is non-trivial with HH•(A) = 0, K0(A) =
Z/5.

Theorem 2 ([5]). There exists a semiorthogonal decomposition

Db(X) = 〈B,M1, . . . ,M9〉,
where Mj ∈ Pic(X) and the category B contains no exceptional object. In par-
ticular, Db(X) does not satisfy the Jordan–Hölder property for semiorthogonal
desompositions.

The proof of the first result proceeds in several steps. First one works on the
level of N(X), the Picard group modulo torsion, and constructs a sequence of
(classes of) line bundles Li satisfying χ(Li, Lj) = 0 for i > j. One then has to
make sure that one can find line bundles Li having this numerical behaviour and
satisfying

H0(X,Lj ⊗ L−1
i ) = H2(X,Lj ⊗ L−1

i ) = H0(X,KX ⊗ Li ⊗ L−1
j )∗ = 0 for i > j.

One of the main ingredients in this step is a classification of effective degree 1
divisors on X . Lastly, one can use the torsion in Pic(X) to twist away unwanted
sections, giving the exceptional sequence (L1, . . . ,L11). By the additivity of HH•

and K0 on semiorthogonal decompositions, the stated properties of A, called a
quasi-phantom category, are immediate.

For the second result one starts by observing that N(X) ∼= Pic(S), where S is
a del Pezzo surface of degree 1. On the other hand, effectiveness of line bundles
is very different on both sides: Roughly speaking, one can find line bundles L on
S and L on X corresponding to each other via the above isomorphism of lattices,
and satisfying χ(L) = 0 = χ(L). However, RΓ•(L) 6= 0, while RΓ•(L) can be zero.
The idea is then to find a collection of line bundles whose Euler pairing χ vanishes
and where such a bundle occurs as a difference, meaning that this collection can
never be lifted to an exceptional collection on S, while a lifting will indeed be
possible on X . The shape of this particular sequence consisting of nine elements
readily implies that B cannot have any exceptional object, concluding the proof.

Remark. Quasi-phantoms were shown to exist on other “fake del Pezzo surfaces”
as well, see, for instance, [1], where the Grothendieck group of the quasi-phantom
is (Z/2)6. There also exist phantom categories, that is, categories A appearing in
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a semiorthogonal decomposition and satisfying HH•(A) = 0 = K0(A). This was
proved in [4] for the generic determinantal Barlow surface and in [6] for products
of surfaces of general type admitting quasi-phantoms whose Grothendieck groups
have coprime order.

Finally note that the existence of (quasi-)phantoms is not restricted to surfaces
of general type, since, for example, one can blow up P5 in the Godeaux surface.
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[4] Chr. Böhning, H.-Chr. Graf von Bothmer, L. Katzarkov and P. Sosna, Determinantal Barlow
surfaces and phantom categories, preprint (2012), arXiv:1210.0343v1 [math.AG].
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Toward the Chow ring of the moduli space of genus 6 curves

Ravi Vakil

(joint work with Nikola Penev)

This is a report on work in progress. We believe the arguments to be complete,
but this is only certain once full details of the arguments are written up. We will
work throughout with Chow rings with Q-coefficients.

The modern algebro-geometric study of the moduli space of curves was initiated
by Faber’s papers [F1, F2] on the Chow ring of M3 and M4, which made clear that
much could be understood about Chow rings of Mg, and Faber’s conjecture [F3],
which suggested the existence of an incredibly rich structure in the “tautological”
part of the Chow ring. (Looijenga’s seminal paper [L] must be mentioned in this
context.) Earlier work of Mumford [Mum], and Witten’s conjecture [W] (with its
many remarkable proofs) provided the backbone for these papers.

Mumford earlier described the Chow ring of M2 in his landmark paper [Mum],
and Izadi later determined the Chow ring of M5, [I]. In genus up to 5 the Chow

ring is all tautological, and of a particular form, Q[κ1]/(κ
g−1
1 ). Simpler proofs of

these facts were given in [FL], by describing perfect stratifications.
In genus 6, the tautological ring is more complicated; it was determined by

Faber [F3] (and is given in the right side of (1)). At first this looks like an ugly
ring, but it is not. Instead, you should consider Faber’s conjecture as suggesting
that the tautological ring of Mg should be of a particularly beautiful form, with
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simple generators, certain (beautifully combinatorially) defined top intersections,
and “Poincaré duality” forcing the structure of the ring. Faber showed in [F3] and
in later work that the tautological ring is indeed of this form for g ≤ 23 (and in
particular, in our case g = 6).

Our main result says that in fact the full Chow ring has this structure.
Main Theorem. The Chow ring of M6 (with Q-coefficients) is all tautological,
and thus is given by:

(1) A∗(M6) = Q[κ1, κ2]/(127κ
3
1 − 2304κ1κ2, 113κ

4
1 − 36864κ22).

In particular, in H∗(M6), all “algebraic cohomology” is tautological, and the nat-
ural map A∗(M6) → H2∗(M6) is an injection.

We briefly describe the new points of view which make the Main Theorem
possible.

(i) We take advantage of the fact that Faber has already described the tauto-
logical ring completely; we will show that all classes in a certain generating set are
tautological, and do not worry about describing relations.

(ii) We cut up M6 into locally closed strata as is traditional, but we do not
worry about whether the strata have nontrivial Chow classes. Instead, we choose
strata which are group quotients, and use a theorem of Vistoli (from [V]) to show
that the Chow rings are generated by Chern classes of some natural vector bundle.
We then show that the fundamental class of the stratum is tautological, and also
relate the Chern classes of the vector bundle to the Hodge bundle to show that
they too are tautological.

(iii) The case of trigonal curves requires some work and some new ideas.
(iv) For a large open subset MM

6 of M6 (those curves which have finitely many
g14 ’s, or which are bi-elliptic), we use Mukai’s fundamental work [Muk] describing
each of the corresponding curves as a complete intersection in G(2, 5), and in
particular we construct a rank 5 vector bundle V on the open subset MM

6 (the
“Mukai-general curves”), relativizing Mukai’s construction. We reduce to showing
that the Chern classes of V are tautological on MM

6 .
(v) We then show the Mukai bundle V on MM

6 is a subbundle of the rank 6
bundle of quadric relations on the canonical curve. We use this to show that the
Chern classes of V are all tautological.

The fact that we can determine A∗(M6) requires a number of fortunate co-
incidences. But we hope that aspects of our methods will be useful in other
circumstances. As a first example, it seems plausible that such methods can show
that A∗(Mg) is finitely generated for g = 7, 8, 9, using Mukai’s description of large
open subsets of Mg in this genus range. (There seems no complelling reason to
believe that A∗(Mg) is finitely generated in general.)

This work was supported by the National Science Foundation. I also thank
the American Institute of Mathematics for hospitality during the writing of this
article.
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Nonexistence of asymptotically chow semistable limit

Chenyang Xu

(joint work with Xiaowei Wang)

Given a smooth curve of genus at least 2, Mumford showed that it is asymptotically
chow stable. For canonically polarized smooth surface, the asymptotical chow
stability was proved by Gieseker and for general dimensional case, it was showed
by Donaldson. As GIT stability automatically yields a compact moduli space,
then it is natural to ask the following question

Question. Does asymptotically chow semi stability yields a compact moduli space?

Our work [2] gives a negative answer to this question, which has been expected
by people for long time, via an indirect way of comparing different notions of
stability.

KSBA stability is another notion which was invented to compactify the moduli
space of canonically polarized manifolds via minimal model theory. In fact, for a
family of canonically polarized manifolds, its KSBA stable limit is just the fiber
of the canonically model of its semi stable reduction, which is precisely the same
construction as in Deligne-Mumford. Such canonically model exists because of the
finite generation of the canonical ring as proved in [1].
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For a family of n-dimensional polarized projective varieties (X ,L) over a com-
plete smooth curve C, we can define the Donaldson-Futaki invariant to be

DF(X ,L/X) = (n+ 1)(Ln
t )(Ln ·KX )− n(Ln+1)(Ln−1

t ·KXt).

where (Xt, Lt) is the general fiber of (X ,L). When the general fibers are canoni-
cally polarized manifolds, i.e. Lt = rKXt , this formula is simplified to

DF(X ,L/X) = C((n+ 1)(Ln ·KX )−
n

r
Ln+1),

for C = Ln
t > 0.

We first show that if (X ,L) and (X s, ω[r]) are two polarized families over C,
which over an open set C0 ⊂ C, they parametrize the isomorphic family of canon-
ically polarized manifolds, and the latter one is a KSBA family, then

DF(X ,L) ≥ DF(X s, ω[r]).

In other words, the KSBA compactification minimizes the Donaldson-Futaki in-
variants among all compactifications. Moreover, if X is normal, then the equality
of Donaldson-Futaki invariants will imply (X ,L) ∼= (X s, ω[r]).

On the other hand, for a family of polarized variety (X ,L)/C, we can also
define its geometric height h(X ,L) by considering the degree of the chow line
bundle restricting on the induced section in the relative Hilbert scheme. And
there is the equality

h(X ,L⊗k) = C ·DF(X ,L⊗k)k2n +O(k2n−1),

where C is a positive constant.
The last observation we made is that if we are provided a family of polarized

varieties whose general fibers are chow semistable over an open smooth curve, then
the compactification whose every fiber is chow semistable minimizes the geometric
height. This is obtained by comparing the zeros of invariant sections on the Hilbert
scheme and use the definition of semi-stable point.

So now let us assume we have asymptotically chow semistable compactification
(X ,L⊗k) of a family of canonically polarized manifolds. Then for every k, among
all compactifications, the geometric height h(X ,L⊗k) is minimal. In particular we
know the leading term, which is the Donaldson-Futaki invariant DF(X ,L⊗k) also
should be minimal. Since X is normal, we conclude that indeed (X ,L) will be the
KSBA compactification.

However, examples of a family of canonically polarized manifolds whose KSBA
limit is not asymptotically chow semistable has been known for a long time. One
explicit example was given by

X/C = (wm−6(xyz4+y6)+wm−10z10+t30wm+xm+ym+zm = 0) ∈ P(x, y, z, w)×C[t],

for m ≥ 30.When t 6= 0, this is a family of smooth canonically polarized surfaces.
But we can explicitly calculate the KSBA limit which has a singularity with mul-
tiplicity larger than 8. In particular, it is not asymptotically chow semistable due
to Mumford’s calculation. Therefore, we verify this family provides an example
which answers the Question negatively.
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Bhargava’s formula and the Hilbert scheme of points

Takehiko Yasuda

(joint work with Melanie Machett Wood)

In this talk, we tried to relate two similar formulas, Bhargava’s formula counting
extensions of a local field and a formula concerning the Hilbert scheme of points.

Let K be a local field with the residue field having q elements. Bhargava [1]
proved that for a positive integer n,

(1)
∑

[E:K]=n

1

♯Aut(E)
q−vK(dE/K) =

n−1∑

i=0

P (n, n− i)q−i.

Here E runs over étaleK-algebras of degree n modulo isomorphism and P (n, n−i)
denotes the number of partitions of n into exactly n − i parts. Let GK be the
absolute Galois group of K and Γ a finite group. Following [4] and [5], we put

M(K,Γ, c) :=
1

♯Γ

∑

ρ:GK→Γ

q−c(ρ),

where ρ runs over continuous homomorphisms and c is some real-valued function
in ρ. Kedlaya [4] reduced Bhargava’s formula (1) to the form,

(2) M(K,Sn, a) =

n−1∑

i=0

P (n, n− i)q−i,

with a the Artin conductor induced by the standard representation of Sn.
To see the other formula, consider the Hilbert-Chow morphism

Hilbn(A2
k) → SnA2

k

from the Hilbert scheme of n points on the affine plane to the nth symmetric
product with k a base field. It is known that the morphism is a crepant resolution
(see [2]). Let E ⊂ Hilbn(A2

k) be the preimage of the origin of SnA2
k. If k = Fq,

then we see

(3) ♯E(Fq) =

n−1∑

i=0

P (n, n− i)qi,

using a cell decomposition by Ellingsrud and Stømme [3]. We find an obvious
similarity between (1)=(2) and (3).

The relation between them is explained to some extent in terms of the wild
McKay correspondence. Let X be the quotient scheme associated to a faithful
OK-linear Γ-action on An

OK
without peudo-reflection. Suppose that there exists
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a crepan resolution Y → X . We put E ⊂ Y to be the preimage of the origin of
X(κ) with κ the residue field of K. Then the following equality is conjectured in
[6] as a variant of a conjecture in [8].

Conjecture (The wild McKay correspondence). We have

♯E(κ) =M(K,Γ,−w).

Here w is the weight function coming from a study of motivic integration over wild
Deligne-Mumford stacks [8].

The conjecture holds when K is a power series field of characteristic p, Γ is
the cyclic group of order p and the Γ-action on An

OK
is already defined over the

coefficient field [7].
Our main result is the following.

Theorem 1. The above conjecture holds when Γ = Sn, X = SnA2
OK

and Y =

Hilbn(A2
OK

). In particular, we have

M(K,Sn,−w) =
n−1∑

i=0

P (n, n− i)qi.

Thus the right hand sides of formulas (2) and (3) become the same if we replace
the Artin conductor a with the weight w. The proof of the theorem is based on
Bhargava’s more precise formula in [1] and a comparison of a and w.
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Semi stable Higgs bundles and representations of fundamental groups
over positive and mixed characteristic

Kang Zuo

Let k be an algebraic closure of finite fields with odd characteristic p and X a
smooth projective scheme over the Witt ring W (k). To an object (M,Fil•,∇,Φ)
in Fontaine-Faltings categoryMF▽

[0,n](X), whereM is a vector bundle overX with

an integrable connection ∇,

{0} = Filn+1 ⊂ Filn ⊂ Filn−1 ⊂ · · · ⊂ Fil0 =M

is a filtration of OX−module satisfying Griffiths-transversality and Φ is a relative
Frobenius acting on M satisfying the strongly p−divisible property, one associates
a crystalline representation of the fundamental group of the generic fibre X0 of
X under the so-called arithmetic Riemann-Hilbert correspondence developed by
Fontaine and Faltings ([Fa1], [Fo]). On the other hand by taking the grading
of (M,∇) with respect to the filtration Fil• ⊂ M one obtains a Higgs bundle
in the form (

⊕
s+t=n E

s,t, θ) over X (called system of Hodge bundles), which is
semi-stable and with trivial Chern classes. In fact, one obtains immediately a
purely algebraic proof for the semistablity of Higgs bundles arising from geometry
over Z/p2. Faltings conjectures that semi-stable Higgs bundles with trivial Chern
classes over X corresponds to representations of π1(X

0 ×Qp Q̄p) ([Fa2]). In our
project we intend to study this conjecture by finding the analogue of the Simp-
son’s correspondence over the complex numbers [S]. The main discovery in our
projects is introducing intermediate notions strongly semistable Higgs bundles and
(quasi)periodic Higgs bundles connecting semistable Higgs bundles and objects in

MF▽
[0,n](X)([SZ], [LSZ]) In char. p the both notions rely on the Cartier’s inverse

constructed by Ogus and Vologodsky in their work on char. p nonabelian Hodge
theory ([OV]). A lifting of Cartier’s inverse to mixed characteristic is constructed
in our project, which is used for the notion (quasi)periodicity in the mixed char-
acteristic. Using the strong Higgs semistablity we define a self map on the moduli
space of semistable Higgs bundles on X with trivial Chern classes. The periodic
points in the moduli space under this map is a flavor of Analysis, looks like so-
lutions of the Higgs-Yang-Mills equation on Higgs bundles over C. We get the
following results:

1) There is one to one correspondence between the category of periodic Higgs
bundles and Fontaine-Faltings category. Hence via the arithmetic Riemann-Hilbert
correspondence there is one to one correspondence between the category of periodic
Higgs bundles and the category of crystalline representations of π1(X

0). The
statement over char. p generalizes a theorem du to H. Lange and U. Stuhler
([LS]).

2)A Higgs bundle with trivial Chern classes is strongly semistbale if and only
it is quasiperiodic.
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3) A semistable Higgs bundle with trivial Chern classes of rank ≤ 3 is strongly
semistable.

Conjecture Any semistable Higgs bundle with trivial Chern classes is always
strongly semistable.

Hence by 2) any semistable Higgs bundle with trivial Chern classes is always
quasiperiodic.

At the moment we are trying to find relations between quasiperiodic Higgs bun-
dles and representations of π1(X

0 ×Qp K), where K is a ramified field extension
of Qp.
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