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Introduction by the Organisers

The meeting continued the biannual conference series Differentialgeometrie im
Großen at the MFO which was established in the 60’s by Klingenberg and Chern.
Traditionally, the conference series covers a wide scope of different aspects of global
differential geometry and its connections with geometric analysis, topology and
geometric group theory. The Riemannian aspect is emphasized, but the inter-
actions with the developments in complex geometry, symplectic/contact geome-
try/topology and physics play an important role as well. Within this spectrum,
each particular conference gives special attention to two or three topics of partic-
ular current relevance.

Similar to the last conference, the scientific program consisted of 22 one hour
talks. This allowed to include many of the interesting talk proposals in the schedule
while still leaving ample time for informal discussions.
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Among the broad spectrum of topics presented at the workshop, a prominent
theme were Kähler manifolds, in particular conditions for the existence of Kähler-
Einstein metrics, gluing constructions for Einstein manifolds, and singular Kähler
metrics on polyhedral manifolds and complex surfaces.

Another area of focus were geometric flows, with several talks concerned about
the existence and regularity as well as curvature estimates for graphical mean
curvature flows and mean convex hypersurfaces. Furthermore, the (finiteness of)
singularities of Ricci flow in dimension three and in the Kähler-Ricci case were
studied.

Moreover, singular spaces with curvature bounds played an important role.
Special attention was given to different notions of non-positive curvature, involving
the existence of a geodesic bicombing or coarse medians, a quasi-isometry invariant
concept applicable to Cayley graphs. The implications of group actions exhibiting
some hyperbolic dynamics were also considered.

Apart from these topics, other talks presented results from min-max theory
(in particular the Willmore conjecture), Lorentzian geometry (globally hyperbolic
manifolds and manifolds with noncompact isometry groups), complete affine man-
ifolds, the action of discrete subgroups of higher rank Lie groups on the boundary
of the associated symmetric space (with emphasis on domains of discontinuity and
cocompactness), a geometric characterization of certain representations of surface
groups into higher rank Lie groups of Hermitian type, and geometrically formal
4-manifolds.

There were 51 participants from 8 countries, more specifically, 21 participants
from Germany, 11 from the United States of America, 8 from France, 4 from
England, 4 from Switzerland and respectively 1 from Japan, Spain and Russia.
There were 2 women among the participants. 33% of the participants (17) were
young researchers (less than 10 years after diploma or B.A.), both on doctoral and
postdoctoral level.

The organizers would like to thank the institute staff for their great hospitality
and support before and during the conference. The financial support for young
participants, in particular from the Leibniz Association and from the National
Science Foundation, is gratefully acknowledged.
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Abstracts

Kähler-Einstein metrics on Fano manifolds

Song Sun

(joint work with Xiuxiong Chen, Simon Donaldson)

Let X be a Fano manifold. A Kähler metric ω ∈ 2πc1(X) is Kähler-Einstein if it
satisfies the equation Ric(ω) = ω. In this lecture we discuss the following theorem.

Theorem 0.1 ([2, 3, 4, 5]). X admits a Kähler-Einstein metric if X is K-stable.

It is well-known that the Kähler-Einstein condition imposes restrictions on the
Lie algebra g of holomorphic vector fields:

• Matsushima: g must be reductive.
• Futaki: The Futaki invariant Fut : g → C must vanish.

In complex dimension 2 these are indeed equivalent to the existence of a Kähler-
Einstein metric [13], but this is no longer true in higher dimension [15]. Yau [16]
first proposed that there should be further algebro-geometric stability conditions
that are equivalent to the existence of a Kähler-Einstein metric. The precise notion
of K-stability was later introduced in [15] and [6]. The definition involves the
notion of a test configuration. Choose an arbitrary projective embedding of X into
some PN by sections ofK−r

X , and a one parameter subgroup λ(t) of PGL(N+1;C).
Then we obtain a limit scheme X0 := limt→0 λ(t).X . Putting these together
yields a C∗ equivariant family X of polarized schemes over C with general fiber
X and central fiber X0. X is then called a test configuration for X . It has
a Futaki invariant Fut(X ), defined in terms of the coefficients occurring in the

asymptotic expansion of the dimension of H0(X,K−rk
X ) and the total weight of

the induced C∗ action. X is called K-stable if Fut(X ) > 0 for all X such that the
central fiber X0 has KLT singularities and X0 is not isomorphic to X (the fact
that one can restrict the singularities follows from the proof of Theorem 0.1 and
also see [9] for an algebro-geometric study). Formally a Kähler-Einstein metric
is a critical point of a geodesically convex functional (defined by Mabuchi) on
an infinite dimensional space and the notion of K-stability can be viewed as an
algebraization of the condition that the derivative at infinity of this functional
along any rational geodesic ray is positive. The converse to Theorem 0.1 is also
known (see for example [1] and the references therein).

The strategy we use in the proof of Theorem 0.1 is the one proposed in [7],
involving metrics with cone singularities along a divisor. This is a variant of the
classical Aubin-Yau continuity method. Choose λ > 1 and fix a smooth divisor
D ∈ | − λKX |. Consider the family of equations

(1) Ric(ωβ) = rβωβ + 2π(1− β)[D],

where rβ = 1− (1−β)λ and β ∈ (0, 1]. The metrics ωβ are required to be smooth
away from D and have cone angle 2πβ along D. For β = 1/N with N a big
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integer we have rβ < 0, and one can obtain a solution of (1) by the Aubin-Yau
theorem and an orbifold trick. Then the idea is to show that we can deform these
solutions as we deform β all the way up to 1. The openness is proved in [7] (with
a technical point clarified in [11] concerning the kernel of the linearized operator)
and the main difficulty is to then show the closedness. The following theorem is
the essential ingredient in the proof of Theorem 0.1.

Theorem 0.2. Given a sequence βi → β∞ ∈ (0, 1] and a corresponding sequence
of conical Kähler-Einstein metrics ωi.

• By passing to a subsequence we obtain a Gromov-Hausdorff limit X∞ to-
gether with a closed subset D∞.

• There is an integer k depending only on β∞, and projective embeddings
Ti : X → PNk defined by orthonormal bases of H0(X,K−k

X ) (with respect
to the Hermitian metric defined by ωi), so that Ti converges to a map
T∞ : X∞ → PNk .

• T∞ is a homeomorphism onto a Q-Fano variety W , and it maps D∞ onto
a Weil divisor ∆, so that (W, (1 − β∞)∆) is a KLT pair.

• W admits a weak conical Kähler-Einstein metric ω∞ with cone angle 2πβ∞

along ∆, in the sense of pluripotential theory. In particular, it has a locally
continuous potential function that is smooth in W \ (∆ ∪W sing).

Given i and k, the Bergman density of state function on X is defined by

ρk,ωi
(x) = sup{|s(x)| : s ∈ H0(X,K−k

X ), ||s||L2 = 1},
where the norms are defined by the metric ωi. The following technical theorem is
the key to prove Theorem 0.2.

Theorem 0.3. There are k0 and ǫ0 > 0 depending only on β∞ so that ρk,ωi
(x) ≥

ǫ0 for all i and x ∈ X.

For a sequence of smooth Kähler-Einstein Fano manifolds, Theorem 0.3 and 0.2
are proved in [8] in general dimension (this was conjectured by Tian [14] and also
proved by Tian [13] in dimension two). The proof of Theorem 0.3 involves a com-
bination of convergence theory of Riemannian manifolds developed by Cheeger-
Colding and the Hörmander L2 method for constructing holomorphic sections. At
the presence of cone singularities many more technical difficulties arise and these
occupy the main content in the series of papers [3, 4, 5].

Next we use the K-stability assumption to prove that (W, (1−β∞)∆) is isomor-
phic to (X, (1− β∞)D) (This means when β∞ = 1 we ignore the divisors). As in
the smooth case, there is also a corresponding notion of K-stability for the triple
(X,D, β), where we consider the same notion of a test configuration X , but need
to modify the definition of Futaki invariant to

(2) Futβ(X ) = Fut(X ) + (1− β)C(X0, D0).

A crucial fact is that the constant C depends only on X0 and D0, so that Futβ
depends linearly on β. By [12], [10] (X,D, 0) is K-stable, so under the assumption
that X is K-stable we know (X,D, β) is K-stable for all β ∈ (0, 1]. Suppose
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(W, (1− β∞)∆) is not isomorphic to (X, (1−β∞)D), then we want to construct a
test configuration X with Futβ∞

(X,D, β∞) = 0. Clearly the above limit (W, (1−
β∞)∆) serves as a natural candidate for the central fiber, but to construct X one
needs to strengthen the sequential convergence into a C∗ orbit closure. This can be
regarded as a finite-dimensional question about group orbits but in this generality
the assertion is not true. However, it is true if we know Aut(W, (1 − β∞)∆) is
reductive. Now we see that we are back to prove the Matsushima and Futaki
theorem for the weak singular Kähler-Einstein pair (W, (1−β∞)∆). The presence
of singularities of W causes serious difficulty if one would like to directly extend
the standard proof to prove the Matsushima theorem. In [5] we instead make use
of the recent advance in pluripotential theory due to Berndtsson and others.

Therefore we have proved X admits a weak conical Kähler-Einstein metric with
cone angle 2πβ∞ along D. To continue the deformation we need to prove higher
regularity. When β∞ < 1 we need to prove a priori Cα regularity on ωi so that
the limit metric ω∞ has the correct geometry near D and fits into the assumption
in the openness theorem in [7]. In [4] we achieved this by a rescaling argument
involving Cheeger-Colding theory again. When β∞ = 1 we have proved ω∞ is
smooth away from ∆ and we need to prove a removable singularity theorem [5],
similar to a result of Trudinger, and finally we obtain a smooth Kähler-Einstein
metric on X .
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Ricci flow on quasiprojective manifolds

John Lott

(joint work with Zhou Zhang)

We consider the Kähler-Ricci flow on a complete Kähler metric that lives on a
quasiprojective manifold X = X − D, where X is a compact complex manifold
that admits a Kähler metric andD is a divisor in X. In a series of papers, Tian and
Yau gave sufficient conditions for X to admit a complete Kähler-Einstein metric
[2, 3, 4]. We consider the flow of an initial metric satisfying the same spatial
asymptotics as in the Tian-Yau papers.

In earlier work [1], we considered an initial metric which has finite volume,
with spatial asymptotics like those considered in [2]. Going to infinity in a given
direction, the metric looks like a family of products of hyperbolic surface cusps.
We showed that at a later time, the metric has similar asymptotics, taking into
account the Kähler-Ricci flow on the divisor. We computed the first singularity
time (if there is one) and gave a sufficient condition for the singularity to be type-II.

We now consider initial metrics with spatial asymptotics of the type that were
considered in [3, 4] to build complete Ricci-flat Kähler metrics. There are three
cases :

(1) Families of cylinders [3].
(2) Bulging asymptotics [3].
(3) Conical asymptotics [4].

In case (1), we again show that at a later time, the ensuing metric has similar
asymptotics to the initial metric, taking into account the Kähler-Ricci flow on the
divisor.

In case (2), we show that at a later time, the ensuing metric has the exact same
spatial asymptotics as the initial metric. Under a mild curvature assumption, we
show that one sees the divisor flow when taking parabolic blowdowns based at
points in the time-zero manifold that go to spatial infinity.

In case (3), we use pseudolocality to show that there is a blowdown limit flow,
which evolves from a metric cone. In known cases, this blowdown limit flow is an
expanding soliton (possibly with a singular point). We show that an expanding
soliton always exists in the sense of a formal asymptotic expansion in the inverse
of the radial variable, and that it is the formal blowdown limit flow.
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There are finitely many surgeries in Perelman’s Ricci flow

Richard H. Bamler

In this talk we analyze the long-time behavior of Ricci flows with surgery on 3
dimensional manifolds without imposing any assumptions on the topology of the
initial manifold. In particular, we will prove the following theorem which resolves
a conjecture raised by Perelman:

Theorem 0.1. There is a continuous function δ : [0,∞) → (0,∞) such that
the following holds: Let M be a Ricci flow with surgery with normalized initial
conditions which is performed by at least δ(t)-precise cutoff. Then M has only
finitely many surgeries and there are constants T,C < ∞ such that |Rmt| < Ct−1

on M(t) for all t ≥ T .

We mention two important direct consequences of Theorem 0.1 which can be
expressed in a more elementary way:

Corollary 0.2. Let (M, (gt)t∈[0,∞)) be a non-singular, long-time existent Ricci
flow on a compact 3-manifold M , i.e. ∂tgt = −2Ricgt . Then there is a constant
C < ∞ such that

|Rmt| <
C

t+ 1
for all t ≥ 0.

Moreover, we obtain the following result which ensures that the condition of
the previous Corollary can be satisfied.

Corollary 0.3. Let M be a compact, orientable 3-manifold. There exists a long-
time existent Ricci flow (gt)t∈[0,∞) on M if and only if M is irreducible and as-
pherical.

Both results are new and follow directly from Theorem 0.1. In fact, Corollary
0.2 is just the statement of the Theorem for non-singular Ricci flows. Note that its
proof in the non-singular case cannot be simplified essentially. The existence of the
non-singular Ricci flow (gt)t∈[0,∞) in Corollary 0.3 can be established as follows:
Choose an arbitrary normalized metric g0 on M . By Perelman’s work there is a
Ricci flow with surgeryM which is performed by δ(t)-cutoff and whose initial time
slice is (M, g0). Theorem 0.1 implies that M is non-singular on the time-interval
[T,∞) for some large T . The topological assumption ensures that the topology of
the underlying manifold does not change between any two time-slices. So shifting
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this Ricci flow restricted to [T,∞) back in time by −T yields the desired flow.
The reverse direction is well known.

The Ricci flow with surgery has been used by Perelman to solve the Poincaré
and Geometrization Conjecture ([Per1], [Per2], [Per3]). Given any initial metric
on a closed 3-manifold, Perelman managed to construct a solution to the Ricci
flow with surgery on a maximal time-interval and showed that its surgery times
do not accumulate. Hence every finite time-interval contains only a finite number
of surgery times. Furthermore, he could prove that if the given manifold is a
homotopy sphere (or more generally a connected sum of prime, non-aspherical
manifolds), then this flow goes extinct in finite time. This implies that the initial
manifold is a sphere if it is simply connected and hence establishes the Poincaré
Conjecture. On the other hand, if the Ricci flow continues to exist for infinite
time, Perelman could show that the manifold decomposes into a thick part which
approaches a hyperbolic metric and a thin part which becomes arbitrarily collapsed
on local scales. Based on this collapse, it is then possible to show that the thin
part can be decomposed into more concrete pieces ([ShY], [MT], [KL]). This
decomposition can then be reorganized to a geometric decomposition, establishing
the Geometrization Conjecture.

Observe that although the Ricci flow with surgery was used to solve such hard
and important problems, some of its basic properties remained unknown, because
they surprisingly turned out to be irrelevant for these problems. Perelman conjec-
tured that in the long-time existent case there are finitely many surgery times, i.e.
that after some time the flow can be continued by a conventional smooth, non-
singular Ricci flow defined up to time infinity. Furthermore, it is still unknown
whether and in what way the Ricci flow exhibits the full geometric decomposition
of the underlying manifold as t → ∞.

In [Lot1], [Lot2] and [LS], Lott and Lott-Sesum could give a description of the
long-time behavior of certain Ricci flows on manifolds which consist of a single
component in their geometric decomposition. However, they needed to make ad-
ditional curvature and diameter or symmetry assumptions. In [Bam1], the author
proved that under a purely topological condition T1, which roughly states that
the manifold only consists of hyperbolic components, there are only finitely many
surgeries and the curvature is bounded by Ct−1 after some time. In [Bam2], this
condition was generalized to a far more general topological condition T2, which
requires the non-hyperbolic pieces in the geometric decomposition of the under-
lying manifold to contain sufficiently many incompressible surfaces. For example,
manifolds of the form Σ×S1 for closed, orientable surfaces Σ—such as the 3-torus
T 3—satisfy property T2, but the Heisenberg manifold does not. We refer to [Bam2,
sec 1.2] for a precise definition and discussion of the conditions T1 and T2.

Theorem 0.1 announced in this talk does not require any extra topological
assumption on the initial manifold anymore and hence confirms Perelman’s con-
jecture in its full generality. It can essentially be applied to all Ricci flows with
surgery constructed by Perelman. The only restriction is that the function δ(t)
which bounds the preciseness under which the surgeries are performed might be
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smaller than the function that Perelman had to assume in the construction process.
Note however that the choice of δ(t) in Perelman’s work was highly non-explicit
and its behavior essentially cannot be controlled whatsoever.

The curvature bound Ct−1 in Theorem 0.1 is optimal in the sense that its
asymptotics are realized by most known examples of Ricci flows, e.g. the sectional
curvatures on a Ricci flow starting from a hyperbolic manifold behave asymptoti-
cally like − 1

4t for t → ∞.
In the course of the proof of Theorem 0.1 we also obtain a more detailed de-

scription of the geometry of the time-slices M(t) for large t. A more precise
characterization of the long-time behavior would however still be desirable and it
is very likely that the new curvature bound enables us to describe this behavior
using more analytical tools. A central question in this direction, which still re-
mains unanswered, is whether the diameter of the manifold is bounded by C

√
t

for large t whenever the underlying manifold consists of a single geometric piece.
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Weakly maximal representations and causal structures

Anna Wienhard

(joint work with G. Ben Simon, M. Burger, T. Hartnick, A. Iozzi)

Given a compact oriented surface Σ of negative Euler characteristic, possibly with
boundary, a general theme is to study the space of representations hom(π1(Σ), G)
of the fundamental group of Σ into a semisimple Lie group G, and in particular
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to distinguish subsets of geometric significance, such as holonomy representations
of geometric structures. Classical examples include the set of Fuchsian represen-
tations in hom(π1(Σ),PSL(2,R)) or the set of quasi-Fuchsian representations in
hom(π1(Σ),PSL(2,C)), where the target group is of real rank one. In recent years
these studies have been extended to the case where G is of higher rank. They are
summarized under the terminus higher Teichmüller theory. We refer the reader to
[4] for a survey and references to the literature.

Here we discuss an extension of higher Teichmüller theory in the Hermitian
context. For more details and proofs we refer the reader to [1]. Recall that a
semisimple Lie group G is called Hermitian if the associated symmetric space X
admits a G-invariant Kähler form ωX . This Kähler form can be used to define
a continuous function T : hom(π1(Σ), G) → R on the representation variety; the
invariant T (ρ) is called the Toledo number of the representation ρ (see [6]). The
Toledo number is subject to a Milnor-Wood type inequality of the form

|T (ρ)| ≤ ||κb
G|| · |χ(Σ)|,(1)

where κb
G ∈ H2

cb(G;R) denotes the bounded Kähler class of G, i.e. the class
corresponding to ωX under the isomorphisms H2

cb(G;R) ∼= H2
c (G;R) ∼= Ω2(X )G,

and || · || denotes the seminorm in continuous bounded cohomology (see [6]). The
class of representations ρ with maximal Toledo invariant T (ρ) = ||κb

G|| · |χ(Σ)|, or
maximal representations for short, has been the main object of study in higher
Teichmüller theory with Hermitian target groups.

Our starting point here is the observation that the inequality (1) can be refined
into the chain of inequalities

|T (ρ)| ≤ ||ρ∗κb
G|| · |χ(Σ)| ≤ ||κb

G|| · |χ(Σ)|.
In particular, a representation is maximal iff it satisfies both ||ρ∗κb

G|| = ||κb
G|| and

T (ρ) = ||ρ∗κb
G|| · |χ(Σ)|. Representations satisfying ||ρ∗κb

G|| = ||κb
G|| are called

tight ; these have been investigated in much greater generality in [5]. Here we are
interested in representations satisfying the complementary property (see [10]):

Definition 0.1. A representation ρ : π1(Σ) → G is weakly maximal if it satisfies

T (ρ) = ||ρ∗κb
G|| · |χ(Σ)|.(2)

By definition a representation is maximal iff it is weakly maximal and tight.
Various general structure theorems for maximal representations have been es-

tablished in [6]. An essential part of these structure theorems holds similarly for
weakly maximal representations. For example:

Theorem 0.2. Let ρ : π1(Σ) → G be a weakly maximal representation and T (ρ) 6=
0. Then ρ is faithful with discrete image.

An important step in the proof of Theorem 0.2 is the realization that a repre-
sentation ρ is weakly maximal iff there exists λ ≥ 0 such that

ρ∗κb
G = λ · κb

Σ,(3)
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where κb
Σ ∈ H2

b (Γ) is the bounded fundamental class of the surface Σ as introduced
in [6]. We prove in [1] that the constant λ has in fact to be rational. This provides
severe restrictions on the kernel and range of ρ.

Causal structures

It turns out that techniques from [3] can be used to provide a geometric char-
acterization of weakly maximal representations with nonzero Toledo invariant in
terms of bi-invariant orders. To simplify the formulation we will only spell out the
results in the case where the target group G is of tube type. We will also assume
that G is adjoint simple.

We now fix an adjoint simple Hermitian Lie group G of tube type and denote

by Ĝ = G̃/π1(G)tor the unique central Z-extension of G. Then causal geometry

gives rise to a bi-invariant partial order on Ĝ (see [2] for a discussion of this and
various related bi-invariant partial orders on Lie groups). A prototypical example
arises from the action of G = PU(1, 1) on the boundary of the Poincaré disk D;

this action lifts to an action of the universal covering Ĝ = ˜PU(1, 1) on R, hence
induces a bi-invariant partial order on Ĝ by setting

g ≤ h :⇔ ∀x ∈ R : g.x ≤ h.x.

In the general case one utilizes the fact that by the tube type assumption there
exists a unique pair ±C of G-invariant causal structures on the Shilov boundary
Š of the bounded symmetric domain associated with G (see [9]). Here, by a
causal structure C we mean a family of closed cones Cx ⊂ TxŠ with non-empty
interior, and invariance is understood in the sense that g∗Cx = Cgx. The causal

structures ±C lift to Ĝ-invariant causal structures on the universal covering Ř of
Š, which in turn induce a pair of mutually inverse (closed) partial orders on Ř via
causal curves. Let us denote by � the partial order which is compatible with the
orientation given by the Kähler class. We then obtain a bi-invariant partial order

on Ĝ by setting

g ≤Ĝ h :⇔ ∀x ∈ Ř : g.x � h.x.

The dominant set Ĝ++ (in the sense of [7, 3]) of this bi-invariant order is given
by the formula

Ĝ++ := {g ∈ Ĝ | ∀h ∈ G∃n ∈ N : gn ≥Ĝ h},
We provide the following simple description in terms of the causal structure:

Theorem 0.3. If Ĝ is of tube type then

Ĝ++ = {g ∈ Ĝ | ∀x ∈ Ř : g.x ≻ x}.
We now provide an interpretation of weakly-maximal representations in terms

of dominant sets. Let Σg,n be a compact oriented surface of genus g with n
boundary components. We always assume that χ(Σ)g,n < 0 so that there exists
a hyperbolization ρ : Γg,n := π1(Σg,n) → PU(1, 1). If n ≥ 1, then Γg,n is a
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free group, hence ρ admits a lift ρ̃ : Γg,n → ˜PU(1, 1) whose restriction to the
group of homologically trivial loops Λg,n := [Γg,n,Γg,n] is unique. In particular,

the translation number quasimorphism on ˜PU(1, 1) pulls back to a quasimorphism
fΣg,n

on Λg,n. It turns out that this quasimorphism is independent of the choice of
hyperbolization ρ; in fact it admits a topological description in terms of winding
numbers [8]. In the case in which n = 0, one cannot perform this construction
on Γg,0, but one has to pass to the central extension Γg,0 that corresponds to the
generator of H2(Γg,0,Z) or, equivalently, can be realized as the fundamental group
of the S1-bundles over Σg of Euler number one. One then obtains in the same way

as above a canonical quasimorphism fΣg,0
on Λg,0 := [Γg,0,Γg,0]. We emphasize

that the quasimorphism fΣg,n
depends on the topological surface Σg,n, not just

the abstract group Γg,n.

Theorem 0.4. Let G be an adjoint simple Hermitian Lie group of tube type and

let Ĝ, Ĝ++ as above. Let Σg,n be a surface of negative Euler characteristic and

Γg,n := π1(Σg,n). Then a representation ρ : Γg,n → G is weakly maximal with

T (ρ) 6= 0 iff for the unique lift ρ̃ : Λg,n → Ĝ there exists N > 0 such that

fΣg,n
(γ) > N ⇒ ρ̃(γ) ∈ Ĝ++ (γ ∈ Λg,n).(4)
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Dynamics at infinity of discrete subgroups of isometries of higher rank

symmetric spaces

Joan Porti

(joint work with M. Kapovich and B. Leeb)

Let X = G/K be a symmetric space of noncompact type. For a discrete subgroup
Γ ⊂ G, we look for domains of discontinuity of Γ in G-orbits in the geometric
boundary ∂∞X , if possible cocompact. When X has rank one, then G acts tran-
sitively on ∂∞X and Ω = ∂∞X − ΛΓ is a domain of discontinuity for Γ, where
ΛΓ = Γx ∩ ∂∞X denotes the limit set. Moreover, if Γ is convex cocompact, then
the action of Γ on Ω is cocompact.

When G has higher rank, the situation is more involved. A theorem of Karlsson
[2] for CAT(0) spaces asserts that the action of Γ is properly discontinuous on

∂∞X − Nπ/2(ΛΓ). Our aim is to improve this result by using the Tits building
structure of ∂∞X , considering the action on G-orbits and, in addition, discussing
cocompactness. The idea will be to remove the analog of a tubular neighborhood
of the limit set.

To simplify, we assume that Γ satisfies a regularity assumption, so that one
can define “chamber convergence” and there is a well defined chamber limit set
ΛCh(Γ) ⊂ ∂FX , where ∂FX denotes the Fürstenberg boundary of X . This can
be relaxed so that one can define a limit set on other partial flag manifolds. For a
chamber σ ∈ ∂FX , one defines a relative position

pos(·, σ) : ∂∞X → amod,

where amod denotes the model apartment. When restricted to a G-orbit, pos(·, σ)
takes values on a W -orbit of the model apartment. Its level sets are the so-called
Schubert cells, whose closure are Schubert cycles and define a partial ordering on
W -orbits, by inclusion. More precisely, for ξ1, ξ2 ∈ Wξ, we say that ξ1 ≤ ξ2 when

{pos(·, σ) = ξ1} ⊂ {pos(·, σ) = ξ2}.
A thickening is a subset Th ⊂ Wξ closed by this partial ordering: if ξ1 ≤ ξ2 and

ξ2 ∈ Th, then ξ1 ∈ Th, so that {pos(·, σ) ∈ Th} is a closed subset of the G-orbit
at ∂∞X . Let w0 ∈ W denote the longest element for the Bruhat order. We say
that Th is fat if Wξ = Th ∪ w0Th, slim if Th ∩ w0Th = ∅, and balanced if it is
both slim and fat.

Theorem 1. Let Γ be a regular discrete subgroup of G and Th ⊂ Wξ̄ a thickening.
Then Gξ −⋃

σ∈ΛCh(Γ)
{ξ | pos(ξ, σ) ∈ Th} is:

• a domain of discontinuity for Γ if Th is fat;
• Γ-cocompact if Th is slim and Γ is RCA.

We say that Γ is RCA if it is regular, chamber conical (limit chambers can be
approached by orbit points in a tubular neighborhood of sectors) and antipodal
(different chambers in ΛCh(Γ) are antipodal).

We can show that regular orbits always have balanced thickenings. Further-
more, this domain is non-empty for all irreducible types other than B2 and G2.



1944 Oberwolfach Report 33/2013

We also show that a group is RCA if and only if it is a hyperbolic group that is
Anosov in the sense of Labourie [3] and Guichard-Wienhard [4].
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Complete affine manifolds: a survey

William M. Goldman

An affinely flat manifold (or just affine manifold) is a manifold with a distin-
guished coordinate atlas with locally affine coordinate changes. Equivalently M
is a manifold equipped with an affine connection with vanishing curvature and
torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a
discrete group of affine transformations acting properly on E. This is equivalent to
geodesic completeness of the connection. In this case, the universal covering space
of M is affinely diffeomorphic to E, and the group π1(M) of deck transformations
identifies with the affine holonomy group Γ.

Flat Riemannian manifolds are special cases where Γ is a group of Euclidean
isometries. The classical theorems of Bieberbach provide a very satisfactory picture
of such structures: every compact flat Riemannian manifold is finitely covered by
a flat torus E/Λ where Λ ⊂ G is a lattice in the group G of translations of
E. Furthermore every complete flat Riemannian manifold is a flat orthogonal
vector bundle over its soul, a totally geodesic flat Riemannian manifold. (See, for
example, Wolf [29].)

An immediate consequence is χ(M) = 0 if M is compact (or even if Γ is just
nontrivial). This follows immediately from the intrinsic Gauß-Bonnet theorem of
Chern [11], who conjectured that the Euler characteristic of a closed affine manifold
vanishes. (Chern-Gauß-Bonnet applies only to orthogonal connections and not to
linear connections.) In this generality, Chern’s conjecture remains unsolved.

Affine manifolds are considerably more complicated than Riemannian mani-
folds, where metric completeness is equivalent to geodesic completeness. In par-
ticular, simple examples such as a Hopf manifold Rn \ {0}/〈γ〉, where γ is a linear
expansion of Rn illustrate that closed affine manifolds need not be complete. For
this reason we restrict only to geodesically complete manifolds.

Kostant and Sullivan [20] proved Chern’s conjecture when M is complete. In
other directions, Milnor [24] found flat oriented R2-bundles over surfaces with
nonzero Euler class. Using Milnor’s examples, Smillie [26] constructed flat affine
connections on some manifolds of nonzero Euler characteristic. (Although the
curvature vanishes, it seems hard to control the torsion.)
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Auslander’s flawed proof [4] of Kostant-Sullivan still contains interesting ideas.
Auslander claimed that every closed complete affine manifold is finitely covered
by a complete affine solvmanifold G/Γ, where G ⊂ Aff(E) is (necessarily solvable)
closed subgroup of affine automorphisms of E. This generalizes Bieberbach’s struc-
ture theorem for flat Riemannian manifolds. Whether every closed complete affine
manifold has this form is a fundamental question in its own right, and this question
is now known as the “Auslander Conjecture.” ([16]). It has now been established
in all dimensions n < 7 by Abels-Margulis-Soifer [2, 3].

Milnor’s paper [25] clarified the situation. Influenced by Tits [28] he asked
whether any discrete subgroup of Aff(E) which acts properly on E must be virtually
polycyclic. If so then complete affine manifolds admit a simple structure, and can
be classified by techniques similar to the Bieberbach theorems. Tits’s theorem
implies that either Γ is virtually polycyclic or it must contain a free subgroup of
rank two. Thus Milnor’s question is equivalent to whether Z ⋆ Z admits a proper
affine action.

Margulis [21, 22] showed that indeed nonabelian free groups can act prop-
erly and affinely on affine spaces of all dimensions > 2. In dimension 3, Fried-
Goldman [16] showed that if Γ ⊂ Aff(E) is discrete and acts properly, then ei-
ther Γ is polycyclic or the linear holonomy homomorphism L maps Γ faithfully
onto a discrete subgroup of a subgroup conjugate to the special orthogonal group
SO(2, 1) ⊂ GL(3,R). In particular Σ := H2/L(Γ) is a complete hyperbolic surface
homotopy-equivalent to M3 = E/Γ.

Already this implies Auslander’s Conjecture in dimension 3: Since M3 is closed,
Γ has cohomological dimension 3, contradicting Γ being the fundamental group
of a surface Σ. Much deeper is the fact that Σ cannot be closed (Mess [23]).
Therefore Γ must itself be a free group.

Since Margulis’s examples admit complete flat Lorentzian metrics, quotients
E/Γ where Γ is free of rank > 2, have been called Margulis spacetimes.

Which groups admit proper affine actions in higher dimension remains an in-
triguing and mysterious question. The Bieberbach theorems imply that any dis-
crete group of Euclidean isometries is finitely presented. The class of properly
acting discrete affine groups contains Z ⋆ Z, and is closed under Cartesian prod-
ucts and taking subgroups. Thus properly discontinuous affine groups needn’t
be finitely generated, and even finitely generated properly discontinuous affine
groups needn’t admit finite presentations (Stallings [27]). The only hyperbolic
groups known to admit proper affine actions are free.

In his 1990 doctoral thesis [14], Drumm gave a geometric proof of Margulis’s
result and sharpened it. Using polyhedral hypersurfaces in R3 called crooked
planes, he built fundamental polyhedra for proper afffine actions of discrete groups.
Therefore his examples are homeomorphic to solid handlebodies. (This has been
recently proved in general, for convex cocompact L(Γ), by Choi-Goldman [12] and
Danciger-Guéritaud-Kassel [13] independently.)

Using crooked planes, Drumm [15] showed that Mess’s theorem is the only
obstruction for the existence of a proper affine deformation: Every noncompact
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hyperbolic surface admits a proper affine deformation with a fundamental poly-
hedron bounded by crooked planes. Using much different dynamical methods,
Goldman-Labourie-Margulis [18] identify the space of proper affine deformations
of a convex cocompact Fuchsian group as an open convex cone in a vector space.

Our joint work [6, 7, 5, 8] with Charette and Drumm classifies Margulis space-
times where Γ ∼= Z ⋆Z using crooked planes. Recently Danciger-Guéritaud-Kassel
announced that every Margulis spacetime with convex cocompact L(Γ) admits a
crooked fundamental polyhedron.
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The geometry of the initial singularity of space-times of constant

curvature

Thierry Barbot

A lorentz metric g on a manifold M is a pseudo-Riemannian metric of signature
(−,+, ...,+). We denote by n the number of +, so that M has dimension n + 1.
An immersed curve c : I → M is time-like (respectively causal) if the g-norm of
every ċ(t) is negative (respectively non positive).

At every point p, the set of time-like vectors in TpM has two connected compo-
nent; a time orientation on M is a selection of one of these connected components
continuous in p. It is tantamount to the choice of a time-like everywhere continuous
vector field ξ. A space-time is a time oriented lorentz manifold.

On a given space-time (M, g) one can define a partial order - the causal order
� on M , where p � q means that there is a future causal curve starting from p
and finishing at q.

The causality theory is nowadays well developed, with contributions by several
authors; let us mention here Kronheimer, Penrose ([11]), Harris ([8]), Bernal,
Sanchez ([5]). A crucial notion in this theory is the notion of global hyperbolicity,
which emerged from General Relativity, ie. the study of Einstein Equations. It
has been introduced by J. Leray ([9]), and developed by Choquet-Bruhat ([6])
and Geroch ([7]). A particularly interesting case is the case of spatially compact
globally hyperbolic space-times (abbrev. GHC). A brief and accurate way to define
GHC space-times is to characterize them as space-times admitting a time function
whose level sets are all compact.

In the 90’s, G. Mess classified GHC space-times of dimension 2 + 1 of constant
curvature ([10]) which are maximal, ie. cannot be extended to a bigger GHC
spacetimes of constant curvature. His main discovery is a 1-1 correspondence
between maximal GHC space-times of dimension 2 + 1 and measured geodesic
laminations on closed surfaces. This work has then been extended in any dimension
([12], [1]).
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The main focus of the talk is to present a recent result by M. Belraouti ([2]):
let T : M → (0,+∞) be a time function on a globally hyperbolic flat space-time
of dimension 2 + 1. Assume that T is in expansion, ie. that every level set of
T is convex. Then, when t → 0, the level sets T−1(t) converge in the Gromov
equivariant topology to the real tree dual to the measured geodesic lamination
defining M. This result answers a question by R. Benedetti and R. Guadagnini
([4]).

In higher dimensions, there is a similar result ([3]): the level sets still converge
to some CAT(0) space, but which in general may not be a real tree.
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Lorentz manifolds with noncompact isometry group

Charles Frances

It is a vague general principle, stated for instance in [3] and [2], that rigid geo-
metric structures having a large group of automorphisms, for instance a noncom-
pact group when the underlying manifold is compact, must be peculiar enough
to be classified. Pseudo-Riemannian structures are examples of rigid structures
on which the principle can be tested and illustrated. Because the isometry group
of a compact Riemannian manifold is a compact Lie transformation group (this
is a theorem of Myers and Steenrod proved in [4]), the first signature which is
interesting for our purpose is the Lorentzian one. And indeed, some nice compact
Lorentz manifolds may admit a noncompact group of isometries. For instance, if
Σ = H2/Γ is a complete hyperbolic surface, there is on the unit tangent bundle
T 1(Σ) a natural Lorentz metric of constant curvature −1 which is preserved both
by the geodesic and the horocyclic flows. Also, the flow obtained by suspending a
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hyperbolic linear transformation on the 2-torus preserves a (flat) Lorentz metric
on the associated solmanifold. This is a first hint of the richness that Lorentz
dynamics can display.

In [5], A. Zeghib obtained a complete classification of 3-dimensional compact
Lorentz manifolds (M3, g) admitting a noncompact isometry group. Actually,
Zeghib’s assumption was that the connected component of the identity Isoo(M, g)
was noncompact. From the classification he gave, we will only retain the following
relevant consequence:

Theorem ([5]) Let (M, g) be a compact, 3-dimensional Lorentz manifold. If
the group Isoo(M, g) is noncompact, then (M, g) is locally homogeneous.

Zeghib’s conclusion can be compared to a result proved by Gromov in [3],
saying that whenever the automorphism group of a rigid geometric A-structure
(for instance a Lorentz manifold) has a dense orbit, then the structure must be
locally homogeneous on a dense open set.

One can wonder if Zeghib’s result remains true under the weaker assumption
that Iso(M, g) is noncompact. Indeed, one could imagine that the isometry group
Iso(M, g) is noncompact, still having a compact identity component (for instance,
Iso(M, g) may be infinite discrete). One interesting, and maybe rather unexpected,
feature is that new phenomena can happen when the isometry group is noncom-
pact with a compact Isoo(M, g). For instance, we give examples of Lorentz metrics
on the 3-torus having a noncompact isometry group, and which are locally homo-
geneous on no open subset of T3. Also, it is possible to build more complicated
examples (still with a noncompact isometry group), where infinitely many open
subsets of T3 are locally homogeneous, but pairwise locally nonisometric, and
other subsets are not locally homogeneous. Those more complicated examples are
smooth, but not analytic. In the analytic case, we show that the possibilities are
more restricted, and prove the following:

Theorem Let (M, g) be a compact, 3-dimensional Lorentz manifold. If the
group Iso(M, g) is noncompact, then we are in exactly one of the following situa-
tions.

(1) The manifold (M, g) is locally homogeneous.
(2) Around each point of M , the Lie algebra of local Killing vector fields is

isomorphic to the 3-dimensional algebra sol. The Killloc-orbits are flat
Lorentz tori. Up to finite index, Iso(M, g) is a semi-direct product of Z
and T2.
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(3) Around each point of M , the Lie algebra of local Killing vector fields is
isomorphic to the Heisenberg algebra heis(3). The Killloc-orbits are de-
generate tori. Up to finite index, Iso(M, g) is a semi-direct product of Z
and T2.

One deduces from the theorem that 3-dimensional compact analytic Lorentz
manifolds, the fundamental group of which is not solvable, must have a compact
isometry group.
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Curvature Decay Estimate of Graphical Mean Curvature Flow in

Higher Codimensions

Mao-Pei Tsui

(joint work with Knut Smoczyk, Mu-Tao Wang)

This report gives a short account of results on curvature decay estimate of
graphical mean curvature flow obtained in [2]. Let Σ1 and Σ2 be two compact
Riemannian manifolds and M = Σ1 ×Σ2 be the product manifold. We consider a
smooth map f : Σ1 → Σ2 and denote the graph of f by Σ; Σ is a submanifold ofM
by the embedding id× f . We study the deformation of f by the mean curvature
flow. The idea is to deform Σ along its mean curvature vector in M with the
hope that Σ will remain a graph. This is the negative gradient flow of the volume
functional and a stationary point is a “minimal map” introduced by Schoen in [1].

To describe previous results, we recall the differential of f , df , at each point of
Σ1 is a linear map between the tangent spaces. The Riemannian structures enables
us to define the adjoint of df . Let {λi} denote the eigenvalues of

√
(df)T df , or

the singular values of df , where (df)T is the adjoint of df . Note that λi is always
nonnegative. We say f is an area decreasing map if λiλj < 1 for any i 6= j at each
point. In particular, f is area decreasing if df has rank one everywhere.

In [3], we prove that the area decreasing condition is preserved along the mean
curvature flow and the following global existence and convergence theorem.

Theorem A. Let Σ1 and Σ2 be compact Riemannian manifolds of constant cur-
vature k1 and k2 respectively. Suppose k1 ≥ |k2|, k1 + k2 ≥ 0 and dim(Σ1) ≥ 2. If
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f is a smooth area decreasing map from Σ1 to Σ2, the mean curvature flow of the
graph of f remains the graph of an area decreasing map and exists for all time.
Moreover, if k1 + k2 > 0 then it converges smoothly to the graph of a constant
map.

In general, the global existence and convergence of a mean curvature flow relies
on the boundedness of the second fundamental form. In the above theorem, the
boundedness of the second fundamental form is obtained by an indirect blow-up
argument (see [3, 4, 5]). While the idea of the proof of convergence is to use the
positivity of k1 + k2 (or k1) to show that the gradient of f is approaching zero,
which in turn gives the boundedness of the second fundamental form when the
flow exists for sufficiently long time. In the following theorem, we prove pointwise
estimates without making any smallness assumption. As a result, the convergence
result when Σ1 = Σ2 = T 2 follows. We have the following results.

Theorem B([2]) (Joint work with Mu-Tao Wang and Knut Smoczyk)
Suppose Σ is the graph of a area decreasing map f : T 2 → T 2 as a submanifold
of M = T 2 × T 2 and Σt is the mean curvature flow with initial surface Σ0 = Σ.
Then Σt remains the graph of an area decreasing map ft along the mean curvature
flow. The flow exists smoothly for all time and Σt converges smoothly to a totally
geodesic submanifold as t → ∞. Moreover, we have the following mean curvature
decay estimate

t|H |2 ≤ 1

α

where α = inft=0
(1−λ2

1
λ2

2
)

(1+λ2

1
)(1+λ2

2
)
> 0. If Σ is a Lagrangian submanifold in T 2 × T 2

then a stronger estimate can be obtained:

t|A|2 ≤ 8(
1

α2
+

642

α5
).

We will briefly sketch the proof of the mean curvature decay estimate. Let

u =
(1−λ2

1
λ2

2
)

(1+λ2

1
)(1+λ2

2
)
. Then u satisfies the following differential inequality

(
d

dt
−∆) lnu ≥ 2|A|2 + |∇ lnu|2

2
.

On the other hand, we can also derive

(
d

dt
−∆) ln(t|H |2 + 1) ≤ 2|A|2 + |∇ ln(t|H |2 + 1)|2

2
.

Combining these two inequalities, we have

(
d

dt
−∆) ln

( t|H |2 + 1

u

)
≤

∇ ln( t|H|2+1
u ) · ∇ ln

(
u(t|H |2 + 1)

)

2
.

By the maximum principle, we have t|H|2+1
u ≤ supt=0

1
u . Thus t|H|2

u ≤ supt=0
1
u

and

t|H |2 ≤ u

inft=0u
≤ 1

α



1952 Oberwolfach Report 33/2013

where α = inft=0
(1−λ2

1
λ2

2
)

(1+λ2

1
)(1+λ2

2
)
> 0. Here we have also used the fact that u =

(1−λ2

1
λ2

2
)

(1+λ2

1
)(1+λ2

2
)
> 0 is preserved by MCF and u ≤ 1.

References

[1] Richard Schoen, The role of harmonic mappings in rigidity and deformation problems,
Complex geometry (Osaka, 1990), 179–200, Lecture Notes in Pure and Appl. Math., 143,
Dekker, New York, 1993.

[2] Knut Smoczyk, Mao-Pei Tsui and Mu-Tao Wang, Curvature Decay Estimate of Graphical
Mean Curvature Flow in Higher Codimensions, preprint.

[3] Mao-Pei Tsui and Mu-Tao Wang, Mean curvature flows and isotopy of maps between
spheres, Comm. Pure Appl. Math. 57 (2004), no. 8, 1110–1126.

[4] Mu-Tao Wang, Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential
Geom., 57, (2001), no. 2, 301–338.

[5] Mu-Tao Wang, Long-time existence and convergence of graphic mean curvature flow in
arbitrary codimension, Invent. Math. 148 (2002), no. 3, 525–543.

Smoothing singular extremal Kähler surfaces and minimal Lagrangians

Yann Rollin

(joint work with Olivier Biquard)

We consider smoothings of a complex surface with singularities of class T and
no nontrivial holomorphic vector field. Under a hypothesis of non degeneracy of
the smoothing at each singular point, we prove that if the singular surface admits
an extremal metric, then the smoothings also admit extremal metrics in nearby
Kähler classes.
In addition, we construct small Lagrangian stationary spheres which represent
Lagrangian vanishing cycles for surfaces close to the singular one.

Min-max theory in Geometry

André Neves

(joint work with Fernando Marques)

Min-max theory was first used in Geometry by Birkhoff in the 20’s to show that
every sphere admits a closed embedded geodesic. Since then the technique was
explored to show that every sphere admits three closed embedded geodesics (Lus-
ternick and Shnirelmann), that every manifold of dimension no bigger than eight
admits a smooth embedded minimal hypersurface (Pitts and Schoen-Simon for the
regularity), and that every 3-sphere admits an embedded minimal sphere (Simon-
Smith).

Recently, Fernando and I used this technique to prove the Willmore conjecture
and, with Agol, we also used this technique to solve a conjecture regarding two
component links with least Mobius energy.
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In the end, I mentioned my new result with Fernando Marques, where we show
that manifolds with dimension no bigger than eight having a metric of positive
Ricci curvature, admit an infinite number of minimal embedded hypersurfaces.

Mean curvature flow without singularities

Oliver Schnürer

(joint work with Mariel Sáez)

We study the evolution of complete graphs under mean curvature flow. This is
illustrated by three examples:

Figure 1. Examples of evolution

(1) Picture on the left: A graph (thick) inside a cylinder (thin) disappears to
infinity at the time the cylinder collapses.

(2) Picture in the middle: The middle part of the 4-dimensional graph disap-
pears to infinity and avoids the formation of a neck-pinch.

(3) Picture on the right: Before the cylinder inside the surface (thick) degen-
erates to a line, a “cap at infinity” is being added to the surface that moves
downwards very quickly. The thin surface depicts the surface shortly after
that.

If u0 : Ω0 → R is locally Lipschitz, defined on a bounded domain Ω0 ⊂ Rn+1,
u0(x) → ∞ as x → ∂Ω0, and u0 is bounded below, then there exists a maximal
smooth solution u to graphical mean curvature flow with initial value u0.
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The orthogonal projections Rn+2 → Rn+1 of the evolving graphs yield a level
set solution to mean curvature flow.

This allows to define weak solutions as projections of classical graphical solu-
tions.

Critical metrics on connected sums of Einstein four-manifolds

Jeff A. Viaclovsky

(joint work with Matthew J. Gursky)

A Riemannian manifold (M4, g) in dimension four is critical for the Einstein-
Hilbert functional

R(g) = V ol(g)−1/2

∫

M

RgdVg,(1)

where Rg is the scalar curvature, if and only if it satisfies

Ric(g) = λ · g,(2)

where λ is a constant; such Riemannian manifolds are called Einstein manifolds.
Non-collapsing limits of Einstein manifolds have been studied in great depth. In
particular, with certain geometric conditions, the limit space is an orbifold, with
asymptotically locally Euclidean (ALE) spaces bubbling off at the singular points.
A natural question is whether it is possible to reverse this process: can one start
with the limit space, and glue on a bubble in order to obtain an Einstein metric?
A recent article of Olivier Biquard makes great strides in the Poincaré-Einstein
setting [Biq11]. In this work it is shown that a Z/2Z-orbifold singularity p of a
non-degenerate Poincaré-Einstein orbifold (M, g) has a Poinaré-Einstein resolution
obtained by gluing on an Eguchi-Hanson metric if and only if the condition

det(R+(p)) = 0(3)

is satisfied, where R+(p) : Λ2
+ → Λ2

+ is the purely self-dual part of the curvature
operator at p. The self-adjointness of this gluing problem is overcome by the
freedom of changing the boundary data of the Poincaré-Einstein metric.

However, there is not much known about gluing compact manifolds together
in the Einstein case. In this work, we will replace the Einstein equations with a
generalization of the Einstein condition. Namely, we ask whether it is possible to
glue together Einstein metrics and produce a critical point of a certain Riemannian
functional generalizing the Einstein-Hilbert functional. It turns out that there is
a family of such functionals; this gives an extra parameter which will allow us to
overcome the self-adjointness of this problem. The particular functional will then
depend on the global geometry of the gluing factors.

To describe the functionals, let M be a closed manifold of dimension 4. We will
consider functionals on the space of Riemannian metrics M which are quadratic
in the curvature. Such functionals have also been widely studied in physics under
the name “fourth-order,” “critical,” or “quadratic” gravity. In previous work,
the authors have studied rigidity and stability properties of Einstein metrics for
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quadratic curvature functionals [GV11]; those results play a crucial role in this
work.

Using the standard decomposition of the curvature tensor Rm into the Weyl,
Ricci and scalar curvature components (denoted by W , Ric, and R, respectively),
a basis for the space of quadratic curvature functionals is

W =

∫
|W |2 dV, ρ =

∫
|Ric|2 dV, S =

∫
R2 dV,(4)

where we use the tensor norm. In dimension four, the Chern-Gauss-Bonnet formula

32π2χ(M) =

∫
|W |2 dV − 2

∫
|Ric|2 dV +

2

3

∫
R2 dV(5)

implies that ρ can be written as a linear combination of the other two (plus a
topological term). Consequently, we will be interested in the functional

Bt[g] =

∫
|W |2 dV + t

∫
R2 dV(6)

(with t = ∞ formally corresponding to
∫
R2dV ).

The Euler-Lagrange equations of Bt are given by

Bt ≡ B + tC = 0,(7)

where B is the Bach tensor defined by

Bij ≡ −4
(
∇k∇lWikjl +

1

2
RklWikjl

)
= 0,(8)

and C is the tensor defined by

Cij = 2∇i∇jR− 2(∆R)gij − 2RRij +
1

2
R2gij .(9)

It follows that any Einstein metric is critical for Bt. We will refer to such a critical
metric as a Bt-flat metric. Note that by taking a trace of (7), it follows that the
scalar curvature of a Bt-flat metric on a compact manifold is necessarily constant.
Therefore a Bt-flat metric satisfies the equation

B = 2tR ·E,(10)

where E denotes the traceless Ricci tensor. That is, the Bach tensor is a constant
multiple of the traceless Ricci tensor.

Our main theorem involving the existence of critical metrics is the following:

Theorem 1 (Gursky-Viaclovsky [GV13]). A Bt-flat metric exists on the mani-
folds in the table for some t near the indicated value of t0.

Topology of connected sum Value(s) of t0

CP2#CP
2 −1/3

S2 × S2#CP
2
= CP2#2CP

2 −1/3, −(9m1)
−1

2#S2 × S2 −2(9m1)
−1
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The constant m1 is a geometric invariant called the mass of a certain asymp-
totically flat metric: the Green’s function metric of the product metric S2 × S2.

Employing various symmetries, it is possible to produce many more examples
on other 4-manifolds. For more examples, and details of the proof, we refer the
reader to [GV13].
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Group actions on quasi-trees

Koji Fujiwara

(joint work with Mladen Bestvina, Ken Bromberg)

Let X be a geodesic space with a base point x. Let g be an isometry of X . We
say g is hyperbolic if there is C > 0 such that for all n, d(x, gn(x)) ≥ C|n|. Let
Ox be the orbit of x by g, namely, 〈g〉(x). Let π : X → Ox be the nearest points
projection. Maybe the image of a point is more than one point. We say Ox is D-
strongly-contracting if for any metric ball B ⊂ X disjoint from Ox, diam(π(B)) ≤
D. We say g is strongly-contracting if Ox is D-strongly-contracting for some D,
[2]. One can show that it does not depend on the choice of x (maybe the constant
D does).

Here are some examples. If X is δ-hyperbolic, then any hyperbolic isometry is
strongly-contracting. If X is a proper CAT(0) space, then a hyperbolic isometry
is rank-1 (in the sense of Ballmann) iff it is strongly-contracting. Moreover, if X
is the Teichmuller space of the Teichmuller metric, then a pseudo-Anosov map is
hyperbolic and strongly contracting (Minsky).

Now I discuss an application. A quasi-tree is a graph which is quasi-isometric
to a simplicial tree. In [1] we studied group actions on quasi-trees and found in-
teresting applications. For example we showed that mapping class groups have
finite asymptotic dimension. In [1] we obtained a set of conditions (or Axioms)
from which we can produce quasi-trees and group actions on them. It gives many
natural examples for hyperbolic groups, mapping class groups and the outer au-
tomorphism groups of free groups.

The theorem I discuss in the talk from [2] is that if G acts on a geodesic space
X with a hyperbolic and strongly contracting element g, and moreover if g is a
“weakly proper” element then G acts on a quasi-tree with g a hyperbolic and
weakly proper element. This gives a unified approach to the examples in the
previous paragraph. Once we have such an action, the results in [1] and [2] will
apply to G.
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Weak global notions of nonpositive curvature

Urs Lang

By a geodesic bicombing σ on a metric space (X, d) we mean a map

σ : X ×X × [0, 1] → X

such that for every pair (x, y) ∈ X ×X , the map σxy := σ(x, y, ·) : [0, 1] → X is
a constant speed geodesic with σxy(0) = x and σxy(1) = y. We call a geodesic
bicombing σ on X

• convex if the function s 7→ d(σxy(s), σx′y′(s)) is convex on [0, 1] for all
x, y, x′, y′ ∈ X ;

• conical if d(σxy(s), σx′y′(s)) ≤ (1− s)d(x, x′)+ sd(y, y′) for all x, y, x′, y′ ∈
X and s ∈ [0, 1];

• consistent if σx′y′(λ) = σxy((1−λ)s+λt) whenever x, y ∈ X , 0 ≤ s < t ≤ 1,
x′ := σxy(s), y

′ := σxy(t), and λ ∈ [0, 1];

Convex geodesic bicombings are conical, and every conical and consistent geodesic
bicombing is convex. However, there exist geodesic bicombings that are conical
but not convex. If X is a linearly convex subset of a normed space, then σxy(s) :=
(1 − s)x + sy defines a convex and consistent geodesic bicombing on X . If X̄
is a metric space with a conical geodesic bicombing σ̄, and if ρ : X̄ → X is a
1-Lipschitz retraction onto some subspace X ⊂ X̄, then σ := ρ ◦ σ̄|X×X×[0,1] is a
conical geodesic bicombing on X .

The existence of a convex or conical geodesic bicombing on a metric space X
may be seen as weak global nonpositive curvature condition. This leads to the
following hierarchy of properties for a geodesic metric space X :

(A) X is a CAT(0) space;
(B) X is globally convex in the sense of Busemann, that is, for every pair of

constant speed geodesics σ, τ : [0, 1] → X , the function s 7→ d(σ(s), τ(s))
is convex on [0, 1];

(C) X admits a convex and consistent geodesic bicombing;
(D) X admits a convex geodesic bicombing;
(E) X admits a conical geodesic bicombing.

Clearly the implications

(A) ⇒ (B) ⇒ (C) ⇒ (D) ⇒ (E)

hold. We prove the following two results that allow to “go back” from (E) to (D)
and from (D) to (C), under suitable additional assumptions.
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Theorem 1. Let X be a proper metric space with a conical geodesic bicombing.
Then X also admits a convex geodesic bicombing.

Theorem 2. Let X be a metric space of finite combinatorial dimension in the
sense of Dress [1] (see below), and suppose that X has a convex geodesic bicombing
σ. Then σ is consistent and furthermore unique, that is, σ is the only convex
geodesic bicombing on X.

Our interest in these results comes from the fact that above condition (E) is
satisfied for every metric space X that is injective as an object in the category
of metric spaces and 1-Lipschitz maps. This means that for every isometric em-
bedding ρ : A → B of metric spaces and every 1-Lipschitz map f : A → X there
exists a 1-Lipschitz extension f̄ : B → X , so that f̄ ◦ ρ = f ; equivalently, X is
an absolute 1-Lipschitz retract. Basic examples of injective metric spaces are the
real line, every L∞ space, and all metric (R-)trees; however, this list is by far
not exhaustive. Indeed, Isbell [2] showed that every metric space X possesses an
essentially unique injective hull E(X). If X is compact, then so is E(X), and
if X is finite, then E(X) is a finite polyhedral complex with l∞ metrics on the
cells. Isbell’s construction was rediscovered twenty years later by Dress [1], who
gave it the name tight span. The combinatorial dimension of a metric space X is
the supremum of the dimensions of the polyhedral complexes E(S) for all finite
subsets S of X .

In [3], we proved that if Γ is a Gromov hyperbolic group, endowed with the word
metric with respect to some finite generating set of Γ, then the injective hull E(Γ) is
a proper, finite-dimensional polyhedral complex with finitely many isometry types
of (l∞) cells, and Γ acts properly and cocompactly on E(ΓS) by cellular isometries.
Since E(Γ) satisfies condition (E) from the above list, Theorems 1 and 2 now show
that E(Γ) possesses in fact a convex and consistent geodesic bicombing that is
furthermore unique and hence equivariant with respect to the action of Γ. In other
words, every word hyperbolic group acts properly and cocompactly on a proper,
finite-dimensional polyhedral complex with a Γ-equivariant convex structure of
type (C).
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Median algebras and coarse non-positive curvature

Brian H. Bowditch

There are several ways in which one can formulate a notion of non-positive
curvature for a general geodesic metric space. The most frequently used is the
notion of a CAT(0) space, described by Gromov, and based on work of Aleksandrov
and Toponogov. This hypothesis states that any geodesic triangle in the space is at
least as thin, in the appropriate sense, as the comparison triangle in the euclidean
plane.

Similarly, one can formulate a notion of negative curvature in terms of the
CAT(−1) property, where the euclidean plane is replaced by the hyperbolic plane.
This latter condition has a natural coarse variation, namely that of a hyperbolic
space, in the sense of Gromov. Unlike the CAT conditions, hyperbolicity is quasi-
isometry invariant, and hence applicable to finitely generated groups via their
Cayley graphs.

Ideally, one might search for a notion of non-positive curvature which is also
quasi-isometry invariant. While there is no one preferred choice, various candidates
involving combings etc. have been proposed. Here, we introduce the notion of a
“coarse median space”. It includes a number of naturally occuring examples, and
is closed under various natural operations; though it is not clear exactly which
spaces admit such a structure.

A coarse median space is a geodesic space equipped with a ternary operation
satisfying the axioms of a median algebra up to bounded distance. This can be
applied to a broad class of groups. Many results about such groups can be viewed
in these terms. The idea was inspired by work of Behrstock and Minsky, and other
people, on the mapping class group.

Recall that a “median algebra” is a set, M , together with a a ternary operation,
µ : M3 −→ M , such that, for all a, b, c, d, e ∈ M ,

(M1): µ(a, b, c) = µ(b, c, a) = µ(b, a, c),

(M2): µ(a, a, b) = a,

(M3): µ(a, b, µ(c, d, e)) = µ(µ(a, b, c), µ(a, b, d), e).

Any finite median algebra can be identified as the vertex set of a finite CAT(0)
cube complex. Moreover, any finite subset of a median algebra lies inside a finite
subalgebra. In view of this, we make the following definition [3].

Let (Λ, ρ) be a geodesic metric space and µ : Λ3 −→ Λ be a ternary operation.
We say that µ is a “coarse median” if it satisfies the following:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ we have

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function, h : N −→ [0,∞), with the following property. Suppose
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that A ⊆ Λ with 1 ≤ |A| ≤ p < ∞, then there is a finite median algebra, (Π, µΠ)
and maps π : A −→ Π and λ : Π −→ Λ such that for all x, y, z ∈ Π we have:

ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤ h(p)

and
ρ(a, λπa) ≤ h(p)

for all a ∈ A.

The existence of a coarse median on a geodesic space is a quasi-isometry invari-
ant, so we can apply this to finitely generated groups via their Cayley graphs. We
can thus define a “coarse median group” as a finitely generated group whose Cay-
ley graph is coarse median. For example, a hyperbolic group is a coarse median
group of rank 1. Also, it follows using work of Behrstock and Minsky [2] that a
mapping class group is coarse median of finite rank.

From this one can recover various facts [3, 4]. For example the asymptotic
cone embeds into a finite product of R-trees [1]. As a result, we recover the rank
theorem of Behrstock and Minsky and Hamenstädt, as well as rapid decay, etc.
One can also show that the asymptotic cone is bilipschitz equivalent to a CAT(0)
space.
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Polyhedral Kähler manifolds

Dmitri Panov

(joint work with Anton Petrunin, Misha Verbitsky)

In this talk I review the theory of Polyhedral Kähler manifolds [2] and state some
new results obtained in collaboration with Anton Petrunin and Misha Verbitsky.

Definition. A polyhedral manifold is a manifold glued from a collection of
Euclidean simplexes by identifying their hyperfaces via isometry. A polyhedral
manifold M2n is called Polyhedral Kähler if the holonomy of the singular flat
metric on it belongs to U(n) ⊂ SO(2n).

Note that any orientable polyhedral surface is polyhedral Kähler by definition
(since U(1) = SO(2)). On the other hand in higher dimensions the condition of
being polyhedral Kähler is very restrictive. In particular we have the following
conjecture.

Complex conjecture. Let M2n be a polyhedral Kähler manifold. Then the flat
complex structure on the complement to the metric singularities of M2n extends
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to the whole manifold so that the resulting manifold is a normal complex analytic
variety with complex singularities in codimension 3.

This conjecture holds trivially for n = 1, it was proven in [2] for n = 2 and
for n > 2 this statement is a subject of a joint work in progress [4] with Misha
Verbitsky. Note that complex singularities can indeed appear in codimension 3,
since the complex hypersurface x3 + y2+ z2+ t2 = 0 is PL diffeomorphic to R6, it
admits a compatible polyhedral Kähler metric and has an isolated singularity at
zero.

One of the applications of this complex conjecture is a different conjecture.
A polyhedral analogue of Frankel’s conjecture. Consider an orientable

manifold M with a polyhedral metric. Assume it is non-negatively curved, i.e., the
conical angles along co-dimension 2 faces of M are at most 2π. Suppose that the
holonomy of the metric on M is irreducible and b2(M) > 0.

Then M has a natural holomorphic structure with respect to which it is biholo-
morphic to CPn and the original polyhedral metric on M is a singular Kähler
metric with respect to this complex structure.

By a theorem of Cheeger [1] any polyhedral manifold satisfying the conditions
of this conjecture is polyhedral Kähler. One can show further that this conjecture
would follow from the complex conjecture combined with an orbi-analogue of Mori’s
characterization of CPn.

Let us note that non-negatively curved polyhedral metrics on CPn exist for any
n, for example such metrics can be obtained by taking symmetric powers of CP 1

with a non-negatively curved polyhedral metric on it. Classifying all such metrics
seems to be a very hard problem even in the case of CP 2. Nevertheless Anton
Petrunin and I were able to prove in [3] the following theorem.

Theorem. Take any non-negatively curved polyhedral metric on CP 2 with sin-
gularities along a line arrangement. Then the complement to the line arrangement
is aspherical.

As one can see in [2, Theorem 1.12, Corollary 7.8], this class of arrangements is
quite nontrivial and include all complex reflection line arrangements. In particular
applying results of [2] we get the following corollary.

Corollary. Suppose we have a line arrangement in CP 2 such that each line
intersects n+3

3 lines and less than 2n
3 lines pass through each point. Then the

complement to the arrangement of lines is of type K(π, 1).
Arrangements of this type appeared for the first time in the work of Hirzebruch.

All such arrangements that are known at this moment are complex reflection ar-
rangements and it is not known if other such arrangements exist.
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Quaternionic Kähler manifolds from physics

Vicente Cortés

(joint work with D. V. Alekseevsky, M. Dyckmanns and T. Mohaupt)

I have presented explicit constructions of quaternionic Kähler manifolds inspired
from physics. The talk is based on [1, 2]. We prove that every projective special
Kähler manifold M̄ gives rise to a one-parameter family of quaternionic Kähler
metrics gc. These metrics arise as one-loop quantum deformations of the Ferrara-
Sabharwal metric g0, which is complete under the assumption that the initial
manifold M̄ is complete [4]. Complete projective special Kähler manifolds of (real)
dimension 6 are constructed in [3]. They define complete quaternionic Kähler met-
rics of negative scalar curvature of dimension 16, which do all admit an isometric
group action of cohomogeneity ranging from 0 to 2.
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Gluing constructions for minimal surfaces and mean curvature

self-shrinkers

Nicolaos Kapouleas

I first discussed doubling constructions where given a minimal surface two nearby
copies of it are joined by a large number of catenoidal bridges and the resulting
surface is corrected to minimality. I discussed doublings of the Clifford torus and
the equatorial two-sphere and also work in progress for the round sphere as a
self-shrinker and also for minimal hypersurfaces in higher dimensions (with coau-
thors). I also discussed the difficulties and the conditions for a general doubling
construction without symmetries.

I then discussed desingularization constructions either with symmetries or with-
out and I discussed briefly the ideas in the proof of the theorem in the general
case.

Finally I discussed some of the questions motivated by the above for minimal
surfaces in the round three-sphere.
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Mean curvature flow of mean convex hypersurfaces

Robert Haslhofer

(joint work with Bruce Kleiner)

In the last 15 years, White and Huisken-Sinestrari developed a far-reaching
structure theory for the mean curvature flow of mean convex hypersurfaces [1, 2,
3, 4, 5, 6]. We recently gave a new treatment of this theory [7], based on the
beautiful non-collapsing result of Andrews [8]. Our new proofs are both more
elementary and substantially shorter than the original arguments.

Recall that for any mean convex hypersurface Mn
0 ⊂ Rn+1 (smooth, closed,

embedded), there is a unique weak solution {Mt = ∂Kt}t≥0 of the mean curvature
flow starting at M0. It is characterized by the condition that {Kt} is the maximal
family of closed sets satisfying the avoidance principle

(1) Kt0 ∩ Lt0 = ∅ ⇒ Kt ∩ Lt = ∅ (t ∈ [t0, t1])

for every smooth mean curvature flow {Lt}t∈[t0,t1]. By the main result of Andrews
[8] (which we extended to the weak setting via elliptic regularization) we have

Theorem. There exists a constant α = α(K0) > 0 such that every point p ∈ ∂Kt

admits interior and exterior balls tangent at p of radius at least α
H(p) .

The Andrews condition immediately rules out higher multiplicity planes as po-
tential blowup limits. However, taking a much broader perspective, it turned out
that one can actually develop the entire theory based on the Andrews condition.
The starting point was the following estimate, which says that curvature control
at a single point implies curvature control in a whole parabolic ball.

Theorem (Curvature estimate). There exist constants δ = δ(α) > 0 and C =
C(α) < ∞ such that for any α-Andrews flow Kt in a parabolic ball P (p, t, r):

(2) H(p, t) ≤ r−1 ⇒ sup
P (p,t,ρr)

|A| ≤ Cr−1.

To prove this we use comparison and the Andrews condition to show that the
flow is, after suitable rescaling, Hausdorff close to a halfspace on a large time
interval. Then the local regularity theorem implies the desired curvature bounds.

Theorem (Convexity estimate). For every ε > 0 there exists η = η(ε, α) < ∞
such that if Kt is an α-Andrews flow defined in P (p, t, ηH(p, t)−1) then

(3)
λ1

H
(p, t) ≥ −ε.

In particular, blowup limits of α-Andrews flows are convex.

The proof is very short (one page as opposed to a couple of sophisticated pa-
pers): Take a sequence of counterexamples where the infimum of λ1

H is negative.
By the local curvature estimate the infimum is actually a minimum. However, by
the strict maximum principle, λ1

H can never attain a negative minimum.
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Our treatment of the global theory is based on the following global convergence
result, which says that after normalizing the mean curvature at a single point we
can pass smoothly and globally to a limit.

Theorem (Global convergence). Every sequence of α-Andrews flows in P (0, 0, ηj)
with H(0, 0) = 1 and ηj → ∞ has a smoothly and globally convergent subsequence.

Roughly, the idea of the proof is as follows: If the global convergence theorem
failed, by looking at the first radius where the curvature blows up we could find a
nonflat convex cone; this however cannot happen under mean curvature flow.

Theorem (Structure of ancient solutions). Ancient α-Andrews flows are smooth
and convex until they become extinct. In particular, the only self-similarly shrink-
ing ancient α-Andrews flows are the sphere, the cylinders, and the plane.

For more about ancient solutions we refer to Haslhofer-Hershkovits [9]. By
standard stratification the structure theorem immediately implies:

Theorem (Partial regularity). For every α-Andrews flow Kt ⊂ RN , the singular
set has parabolic Hausdorff dimension at most N − 2.

In fact, using quantitative stratification this can be improved to Minkowski and
Lp-estimates, in particular in the k-convex case, see Cheeger-Haslhofer-Naber [10].

Theorem (Cylindrical estimate). For every ε > 0 there exists a δ = δ(ε, α, β) > 0
such that if Kt is a uniformly k-convex (i.e. λ1 + . . .+ λk ≥ βH for some β > 0)

α-Andrews flow and
λ1+...+λk−1

H (p, t) < δ, then Kt is ε-close to a round shrinking

cylinder Rk−1 × Sn−k+1 near (p, t).

All our estimates are local and universal, i.e. they only depend on the value of
the Andrews constant. In a forthcoming paper [11], we will give a new construction
of mean curvature flow with surgery based on these estimates.
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Constant mean curvature surfaces in homogeneous manifolds

Benôıt Daniel

There are several characterisations of round spheres among constant mean curva-
ture (CMC) surfaces in Euclidean 3-space R3. In particular, two classical results
are Hopf’s theorem and Alexandrov’s theorem.

• Hopf’s theorem [8] states that any immersed CMC surface in R3 that is
diffeomorphic to a sphere must be a round sphere. Its proof relies on the
fact that the (2, 0)-part of the second fundamental form of CMC surfaces
in R3 is holomorphic. This theorem also holds in the round 3-sphere S3

and in hyperbolic 3-space H3.
• Alexandrov’s theorem [4] states that any compact embedded CMC surface
in R3 must be a round sphere. Alexandrov’s proof uses a moving plane
technique and the maximum principle for elliptic partial differential equa-
tions. This theorem also holds in H3 and in a hemisphere of S3.

We will present some extensions of these two theorems to other ambient homo-
geneous Riemannian 3-manifolds. Abresch and Rosenberg [1, 2] extended Hopf’s
theorem to simply connected homogeneous Riemannian 3-manifolds with a 4-
dimensional isometry group (i.e., S2 × R, H2 × R, the Heisenberg group Nil3,
the universal cover of PSL2(R) and Berger spheres): they proved that any im-
mersed CMC sphere there is rotational. To do this, they proved that a certain
quadratic differential is holomorphic for CMC surfaces. We mention that these
ambient manifolds form a two-parameter family E(κ, τ), and each E(κ, τ) admits
a Riemannian submersion over the simply connected surface of constant curvature
κ with bundle curvature τ .

In a joint work with P. Mira [7], we study existence and uniqueness of CMC
spheres in the Lie group Sol3 endowed with a standard left-invariant metric, i.e.,
the only Thurston geometry that is neither a space-form nor one of the E(κ, τ)
manifolds. Indeed, the isometry group of Sol3 only has dimension 3.

Together with a work by W. Meeks [9], we obtain that for every H > 0 there
exists a unique CMCH sphere in Sol3 (up to translations). The method of Abresch
and Rosenberg consisting in finding a holomorphic quadratic differential for CMC
surfaces does not work here. Moreover, no explicit CMC spheres are known due
to the lack of rotations.

To prove existence, we start from a solution to the isoperimetric problem for
a small volume and use the implicit function theorem to deform it. Using nodal
domain arguments, we prove that the CMC spheres we obtain have index one
and that their Gauss map is a diffeomorphism, from what we deduce curvature



1966 Oberwolfach Report 33/2013

estimates. Together with Meeks’ height estimates, this yields existence for any
H > 0.

To prove uniqueness, we introduce a quadratic differential for CMC surfaces
that satisfies the Cauchy-Riemann inequality [3], a condition weaker than holo-
morphicity. An important difference with the proof of Abresch and Rosenberg is
that here the quadratic differential is not explicit : it is defined in terms of the
Gauss map of the existing CMC sphere, and the fact that this Gauss map is a
diffeomorphism plays a crucial role.

We now mention some related open problems.
The isoperimetric problem in the Heisenberg group Nil3 is still unsolved. More

generally, we do not know a classification of compact stable CMC surfaces in Nil3.
We do not know either a classification of compact embedded CMC surfaces in
Nil3. We conjecture that in both cases these surfaces must be rotational spheres
(this would extend respectively Barbosa-do Carmo’s theorem [5] and Alexandrov’s
theorem). For instance, we cannot make the Alexandrov moving plane argument
work because there are no “reflections” in Nil3. Also, since CMC spheres are not
totally umbilical, proofs of the Alexandrov theorem relying on the fact that round
spheres in R3 are totally umbilical (like Reilly’s one [12]) do not seem obvious to
adapt in Nil3.

Similar questions are still also open in the universal cover of PSL2(R) and Berger
spheres.

In Sol3, H. Rosenberg proved that compact embedded CMC surfaces must be
topological spheres. In particular, all isoperimetric surfaces are spheres. However,
it is still an open problem to know if, conversely, all CMC spheres are solutions to
the isoperimetric problem (or even stable).

For more details, we refer for instance to [6] (in French) and references therein.
See also [10] for possible generalisations of these results to other homogeneous
Riemannian 3-manifolds and for other open problems, and the recent work [11]
about isoperimetric domains of large volume in simply connected homogeneous
Riemannian 3-manifolds and their relation to CMC surfaces.
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Geometrically formal 4-manifolds with nonnegative sectional curvature

Christian Bär

This talk is based on [1]. Throughout the talk, Mn denotes a connected compact
oriented smooth n-manifold without boundary. By the classification of surfaces
and the Gauß-Bonnet theorem, M2 possesses a metric of positive curvature if and
only if M2 is diffeomorphic to S2. If we only demand nonnegative curvature, then
T 2 equipped with a flat metric is also possible. In 3 dimensions we also have a
good understanding of the possible nonnegatively curved spaces:

Theorem 1 (Hamilton [2, Thm. 1.2]). Let (M3, g) satisfy Ric ≥ 0. Then one of
the following holds:

(1) M3 is diffeomorphic to a spherical spaceform or to RP3♯RP3;
(2) (M3, g) is isometric to a twisted product S2×ρS

1 where S2 carries a metric
of nonnegative curvature;

(3) (M3, g) is flat.

In dimension 4, nonnegative sectional curvature is only poorly understood. The
only M4 known to carry a metric with K > 0 are S4 and CP2. On the other hand,
one has only very few obstructions which are not already obstructions to weaker
curvature conditions. In particular, it is still unknown whether S2 × S2 carries a
metric with K > 0. This is known as the Hopf conjecture. If we want to say some-
thing substantial, then we presently have to add further geometric assumptions.
In [3, 4] the existence of a 1-parameter family of isometries is assumed. Here we
use geometric formality instead.

Definition 1. A Riemannian manifold is called geometrically formal if the wedge
product of any two harmonic forms is again harmonic.

Now we can prove

Theorem 2 ([1, Thm. A]). Let (M4, g) be geometrically formal such that the
sectional curvature satisfies K ≥ 0. Then one of the following holds:

(1) M is a rational homology 4-sphere with finite fundamental group;
(2) M is diffeomorphic to CP2;
(3) M is flat;
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(4) M is isometric to a twisted product S2×ρT
2 where T 2 carries a flat metric

and S2 carries a metric of nonnegative curvature;
(5) M is isometric to a twisted product Σ3 ×ρ S

1, where Σ3 is isometric to a
spherical spaceform or to RP3♯RP3 with a metric satisfying K ≥ 0;

(6) M is isometric to S2 × S2 with product metric where both factors carry
metrics with nonnegative curvature.

Conversely, the manifolds in cases (3)–(6) are actually geometrically formal with
K ≥ 0. Cases (1) and (2) also do occur, S4 and CP2 with their standard metrics
are examples. The classification simplifies if we add the requirement of simple
connectedness.

Theorem 3 ([1, Thm. B]). Let (M4, g) be simply connected and geometrically
formal such that the sectional curvature satisfies K ≥ 0. Then one of the following
holds:

(1) M is homeomorphic to S4;
(2) M is diffeomorphic to CP2;
(3) M is isometric to S2 × S2 with product metric where both factors carry

metrics with nonnegative curvature.

Kotschick obtained classification results for geometrically formal 4-manifolds
with a possibly different metric of nonnegative scalar curvature in [5].

Theorem 4 ([1, Thm. C]). Let (M4, g) be geometrically formal such that the sec-
tional curvature satisfies K > 0. Then M is homeomorphic to S4 or diffeomorphic
to CP2.

Seaman has the following result which applies in the geometrically formal case:

Theorem 5 ([6]). Let (M4, g) be such that all harmonic 2-forms have constant
length and the sectional curvature satisfies K > 0. Then M4 is homeomorphic to
S4 or to CP2.

We can weaken the assumption in Seaman’s theorem to the requirement that
the length of the harmonic 2-forms is “not too nonconstant”.

Theorem 6 ([1, Thm. D]). Let (M4, g) be such that the sectional curvature sat-

isfies K ≥ κ > 0 and all harmonic 2-forms ω satisfy |∇|ω|| ≤
√
8κ · |ω| wherever

ω does not vanish. Then M is homeomorphic to S4 or diffeomorphic to CP2.
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Département de Mathématiques
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